
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IN-THE-FLOW AGENTIC SYSTEM OPTIMIZATION FOR
EFFECTIVE PLANNING AND TOOL USE

Anonymous authors
Paper under double-blind review

ABSTRACT

Outcome-driven reinforcement learning has advanced reasoning in large language
models (LLMs), but prevailing tool-augmented approaches train a single, mono-
lithic policy that interleaves thoughts and tool calls under full context; this scales
poorly with long horizons and diverse tools and generalizes weakly to new sce-
narios. Agentic systems offer a promising alternative by decomposing work
across specialized modules, yet most remain training-free or rely on offline train-
ing decoupled from the live dynamics of multi-turn interaction. We introduce
AGENTFLOW, a trainable, in-the-flow agentic framework that coordinates four
modules (planner, executor, verifier, generator) through an evolving memory and
directly optimizes its planner inside the multi-turn loop. To train on-policy in
live environments, we propose Flow-based Group Refined Policy Optimization
(Flow-GRPO), which tackles long-horizon, sparse-reward credit assignment by
converting multi-turn optimization into a sequence of tractable single-turn pol-
icy updates. It broadcasts a single, verifiable trajectory-level outcome to every
turn to align local planner decisions with global success and stabilizes learning
with group-normalized advantages. Across ten benchmarks, AGENTFLOW with a
7B-scale backbone outperforms top-performing baselines with average accuracy
gains of 14.9% on search, 14.0% on agentic, 14.5% on mathematical, and 4.1%
on scientific tasks, even surpassing larger proprietary models like GPT-4o. Fur-
ther analyses confirm the benefits of in-the-flow optimization, showing improved
planning, enhanced tool-calling reliability, and positive scaling with model size
and reasoning turns. Codebase is available at https://anonymous.4open.
science/r/agentflow.

Bamboogle

2Wiki

HotpotQA

Musique

GAIA

AIME24
AMC23

GameOf24

GPQA

MedQA

19.2

25.3
17.216.7

47.4

31.0

37.0

76.0 58.4
60.0

51.3 57.0

71.2
69.6

80.0

47.0

53.0

61.5 40.0

33.1
+19.8%

Math +15.9%
Agentic

+7.0%
Science

+10.1%
Search

2Wiki (Search) HotpotQA (Search) GAIA (Agentic)

AIME24 (Math) GameOf24 (Math) GPQA (Science)

AgentFlow (w/o Flow-GRPO) AgentFlow

Ac
cu

ra
cy

(%
)

Ac
cu

ra
cy

(%
)

Qwen-2.5-7B GPT-4o (~200B) Search-R1 (7B)
AgentFlow (7B)TIR (7B) ToRL (7B) AutoGen (7B)
ReSearch (7B)

Figure 1: Left: Performance of AGENTFLOW with a 7B-scale backbone before and after Flow-
GRPO tuning across ten diverse reasoning benchmarks. Flow-GRPO substantially improves per-
formance by enhancing planning quality and tool-calling reliability. Right: AGENTFLOW achieves
consistent gains over top baselines, including base LLMs, tool-integrated RL models, and training-
free agentic systems. All 7B results use Qwen2.5-7B-Base/Instruct as the backbone and tools. NEW

1 INTRODUCTION
Recent advances in large language models (LLMs) have unlocked remarkable reasoning capabilities,
largely driven by reinforcement learning (RL) from outcome-based feedback. By fine-tuning models
to maximize verifiable rewards, LLMs like DeepSeek-R1 (Guo et al., 2025) and SimpleRL (Zeng
et al., 2025b) have demonstrated sophisticated behaviors in self-correction and multi-step deduction.

1

https://anonymous.4open.science/r/agentflow
https://anonymous.4open.science/r/agentflow

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) AgentFlow: In-the-Flow Agentic System

Planner 𝑎1 Executor Verifier

Planner 𝑎2 Executor Verifier

Planner 𝑎𝑇 Executor Verifier Generator

o

Query

...
Turn T

Turn 1

Turn 2

Answer

Toolkit Set ...

𝑞 𝐾 𝑀𝑡

𝑎𝑡

Input:
[Query Analysis]
[Global Goal]
[Required Skills]

Output:
[Current Sub-Goal]
[Selected Tool]
[Context for Tool Use]

Input:
[Current Sub-Goal]
[Selected Tool &
Context]
[Tool Metadata]

Output:
[Generated Command]
[Execution Result]

𝑒𝑡

𝑎𝑡 𝐾

𝑣𝑡

𝑞 𝑒𝑡 𝑀𝑡

𝑀𝑡+1

Input:
[Generated Command]
[Execution Result]

Output:
[Execution Analysis]
[Memory Analysis]
[Verification Status]

Planner VerifierExecutor

(b) In-the-Flow Rollout at Turn t

Trained

Frozen

𝜋𝜃 Memory

Memory

Figure 2: (a) Overview of AGENTFLOW, a trainable agentic system for in-the-flow planning and tool
use. Four modules (planner, executor, verifier, generator) coordinate via a shared evolving memory
M and toolset K, given a query q. The planner policy is optimized on-policy inside the system’s
multi-turn loop to enable adaptive, long-horizon reasoning. (b) A single state transition, showing
the action at, execution result et, and verifier signal vt that update the memory from M t to M t+1.

A complementary line of work augments LLMs with external tools (e.g., web search, code exe-
cution) for knowledge retrieval and precise computation. Tool-integrated reasoning (TIR) extends
reinforcement learning with verifiable rewards to learn when and how to call tools by interleav-
ing reasoning (e.g., <think>) with tool invocations (e.g., <tool call>) under full context (Jin
et al., 2025; Song et al., 2025; Chen et al., 2025; Feng et al., 2025). Early systems supported only
a single tool type, whereas recent work enables multi-tool settings by encoding tool metadata into
prompts (Dong et al., 2025; Qian et al., 2025a; Zhang et al., 2025). However, these methods still
train a single, monolithic policy under multi-turn full-context reasoning, which introduces scaling
challenges: (i) training becomes increasingly unstable as horizons lengthen, tool diversity grows,
and environments shift with tool feedback (Wang et al., 2025c; Mai et al., 2025; Moonshot AI, 2025;
Xue et al., 2025); and (ii) inference-time generalization remains brittle to unseen tasks or tools (Dong
et al., 2025; Hu et al., 2025b).

Agentic systems (Wu et al., 2024; Hong et al., 2024; Hu et al., 2025b) offer a promising alter-
native to monolithic tool-integrated reasoning models. They consist of multiple modules—often
distinct LLMs with prescribed roles (e.g., planner, critic) or specialized components with dedicated
tools and capabilities (e.g., executor, coder)—that coordinate via shared memory and inter-module
communication. By decomposing problems into sub-goals and iterating over multiple turns, these
systems can tackle tasks that demand diverse tools, long horizons, or multi-stage reasoning. How-
ever, achieving robust coordination in such systems ultimately requires training, since handcrafted
logic or static prompting cannot reliably capture when and how modules should collaborate, adapt to
evolving tool outputs, or recover from early mistakes. At the same time, they introduce new training
challenges: modules coordinate sequentially, outcome feedback propagates through long reasoning
chains, and state distributions shift with evolving tool outputs. As a result, most systems remain
training-free, relying on handcrafted logic or prompting heuristics. While some employ supervised
fine-tuning or preference optimization for key modules (Motwani et al., 2024; Park et al., 2025),
these off-policy approaches are decoupled from live dynamics and learn poorly from downstream
successes or failures. Thus, agentic systems struggle with sparse rewards, brittle adaptation, and
inefficient orchestration in dynamic environments.

To address the central challenge of learning long-horizon reasoning with sparse rewards in tool-
integrated agentic systems, we introduce AGENTFLOW, a trainable framework for effective plan-
ning and tool use (Figure 2). AGENTFLOW comprises four specialized modules—planner, executor,
verifier, and generator—that interact iteratively over multiple turns via a shared evolving memory
and a toolset. The system operates in the flow, with each turn cycling through planning, execu-
tion, and verification. Unlike prior agentic systems, AGENTFLOW directly optimizes its planner
on-policy, inside the live multi-turn loop, allowing it to dynamically adapt to trajectories shaped by
tool calls, verifier signals, and memory updates. This evolving memory serves as a deterministic,
structured record of the reasoning process, enabling transparent state tracking, controllable behavior,
and bounded context growth.

To train the planner on-policy within this agentic system, we need to overcome the long-horizon
credit assignment problem inherent to sparse, trajectory-level rewards. We introduce Flow-based
Group Refined Policy Optimization (Flow-GRPO, Figure 4), an on-policy algorithm designed for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

this setting. Flow-GRPO operates on in-the-flow rollouts, which capture the full trajectory of states,
actions, and tool events induced by the live system. Instead of attempting to assign credit with brit-
tle, intermediate heuristics, we assign a single, verifiable final-outcome reward to the entire trajec-
tory and broadcast it to every turn. This design effectively transforms the multi-turn reinforcement
learning challenge into a series of single-turn updates: at each turn, the planner has access to the full
memory context and receives a consistent reward signal aligned with global success. This approach,
coupled with group-normalized advantages to stabilize training, enables robust credit assignment
and allows the planner to learn effective long-horizon strategies from sparse feedback.

We evaluate AGENTFLOW on ten benchmarks across diverse reasoning domains, as results high-
NEWlighted in Figure 1. AGENTFLOW substantially outperforms top-performing specialized tool-

integrated reasoning models and agentic systems, achieving average accuracy by 14.9% on
knowledge-intensive search, 14.0% on broader agentic tasks, 14.5% on mathematical reasoning, and
4.1% on scientific reasoning (§4.2). Notably, our 7B-backbone system even surpasses the ∼200B-
parameter GPT-4o (Hurst et al., 2024) across all domains. Further analyses confirm that our in-
the-flow optimization with Flow-GRPO is crucial, far surpassing offline supervised tuning (§4.3).
The trained planner learns to optimize planning, enhance tool-calling reliability, and discover ef-
fective solution pathways (§4.4). Moreover, our training approach proves highly efficient, leading
to increased rewards and condensed responses compared to traditional tool-integrated RL methods
(§4.5). Finally, we demonstrate that these benefits generalize, with consistent gains from scaling
backbone size and turn budget (§4.6).

Our work makes three key contributions: (1) We present AGENTFLOW, a trainable in-the-flow agen-
tic system that directly optimizes its planner inside the multi-turn loop. By coordinating specialized
modules through an evolving memory, it enables adaptive long-horizon planning and robust tool
orchestration. (2) We introduce Flow-GRPO, an on-policy, outcome-driven algorithm that hat con-
verts multi-turn RL into a sequence of tractable single-turn policy updates by broadcasting a sin-
gle, verifiable final-outcome reward to every turn. (3) Through comprehensive experiments on ten
benchmarks, we show that AGENTFLOW with a 7B backbone outperforms specialized baselines and
even larger proprietary models. Further analyses reveal improved planning, enhanced tool-calling
reliability, and positive scaling with model size and turn budgets.

2 PRELIMINARY

Reinforcement learning for reasoning LLMs. Recent progress in reasoning LLMs has been sig-
nificantly driven by reinforcement learning from outcome feedback, using a verifiable reward sig-
nal (Shao et al., 2024; Yu et al., 2025). This paradigm fine-tunes a language model to maximize
an outcome-based reward while remaining close to a reference policy. Formally, the objective is to
optimize a policy LLM πθ to generate a response o for a given query q from dataset D:

max
πθ

Ex∼D, o∼πθ(·|q)
[
R(q, o)

]
− β DKL(πθ(o | q) ∥πref(o | q)) , (1)

where R(q, o) is the outcome-based reward, πref is a reference model to prevent policy collapse, and
β controls KL regularization. Algorithms like Group Relative Policy Optimization (GRPO) (Shao
et al., 2024) implement this by sampling groups of responses, normalizing advantages by their re-
wards, and updating the policy with a clipped objective to encourage high-reward outputs.

Tool-integrated reasoning models (LLM agents). LLMs can be augmented with external tools
to access knowledge and perform precise computation under reinforcement learning with outcome-
based reward. As shown in Figure 3(a), the LLM interleaves reasoning and tool calls, produc-
ing a chain of thought within <think></think> tokens followed by tool invocations (e.g.,
<tool call></tool call>). The resulting trajectory τ is a sequence of model generations
and tool observations: τ = {s1, a1, e1, . . . , sT , aT }, where st denotes the context, at the generated
action (thought + tool call), and et the tool’s execution result. The policy model πθ is then trained to
maximize a final outcome reward. Prior work has explored single- and multi-tool settings for search
and code execution (Jin et al., 2025; Chen et al., 2025; Feng et al., 2025; Qian et al., 2025a).

Agentic systems with tool usage. An alternative approach is the use of agentic systems (Wu et al.,
2024; Hong et al., 2024; Lu et al., 2025). As shown in Figure 3(b), these frameworks deploy mul-
tiple specialized modules—often distinct LLMs with carefully designed prompts and roles—within
a collaborative workflow. By decomposing tasks and assigning subproblems to modules with dedi-
cated tools and capabilities (e.g., planner, coder, critic), they can address complex problems such as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Tool-Integrated Reasoning Models (LLM Agents) (b) Training-Free Agentic Systems

LLM

Query

Answer o

Module 1 Module 2

Answer o

Module 3

Query

Module 1

Module 2

Module N

Answer o

Query

...

Module N

...

<think> </think>

<tool_call> </tool_call>

<answer> </answer >

Trained

Frozen

token

LLM

Query

Answer o

<think> </think>

<tool_call> </tool_call>

<answer> </answer >

<tools>
</tools>

Figure 3: Comparison of two paradigms of LLMs with tool use. (a) Monolithic tool-integrated
reasoning models train a single policy to interleave reasoning (e.g., <think>) and tool calls (e.g.,
<tool call>) within a single, full-context trajectory. (b) Agentic systems decompose tasks across
multiple specialized modules (e.g., planner, coder) that collaborate. These systems are typically
training-free, orchestrated by handcrafted logic or prompting.

web browsing, document processing, and multi-stage programming that exceed the scope of a sin-
FIXgle model. A central limitation, however, is that these systems are typically training-free: modules

remain frozen pre-trained models orchestrated by handcrafted logic or prompting heuristics.

3 IN-THE-FLOW AGENTIC SYSTEM OPTIMIZATION

We aim to bridge the gap between trainable but monolithic reasoning models and flexible yet static
agentic systems. We present AGENTFLOW, a flexible and trainable agentic system that integrates
four specialized modules with an evolving memory (§3.1). Unlike prior agentic systems, AGENT-
FLOW directly optimizes the planner within the multi-turn loop of an agentic system (§3.2).

3.1 AGENTFLOW: AN IN-THE-FLOW AGENTIC SYSTEM

We propose AGENTFLOW, a general-purpose tool-integrated agentic framework for solving com-
plex reasoning tasks through fine-grained planning and effective tool use within a multi-turn archi-
tecture. As shown in Figure 2, the framework comprises four specialized modules—Action Planner
P , Tool Executor E , Execution Verifier V , and Solution Generator G—coordinated by a shared
evolving memory M and a toolset K. These modules interact sequentially and iteratively to per-
form action planning, tool execution, context verification, and solution generation, thereby enabling
tool-integrated reasoning across multiple turns.

We formalize AGENTFLOW’s problem-solving process as a multi-turn Markov Decision Process
(MDP). Given a query q and a toolset K, the system proceeds for a variable number of turns. Let
M t denote the memory state before turn t (with M1 initialized from q). At turn t, the planner P (a
trainable policy πθ) formulates a sub-goal, selects an appropriate tool k ∈ K, and retrieves relevant
context from memory, producing an action: at ∼ πθ(a

t | q,K,M t).

The executor E invokes the chosen tool with context, yielding an execution observation et ∼ E(et |
at,K). The verifier V then evaluates whether et is valid and whether the accumulated memory is
sufficient to solve the query, producing a binary verification signal vt ∼ V(vt | q, et,M t). If vt = 0,
the memory is updated deterministically to incorporate new evidence: M t+1 = fmem(M

t, at, et, vt),
where fmem(·) denotes the memory-update function, which records agent-process information in a
concise, structured form along with contextual details such as time, turn index, and error signals.

The process repeats until vt = 1 (termination) or a predefined maximum turn budget is reached.
Upon termination at turn T , the solution generator G produces the final solution o, conditioned on
the query and the accumulated memory: o ∼ G(o | q,MT).

This formulation decomposes multi-turn, tool-integrated reasoning into structured, observable tran-
sitions. After T turns, the trajectory τ = {(at, et, vt)}Tt=1 records the history of planning, execution,
and verification. The joint generative process can be written as

pθ
(
{at, et, vt}Tt=1, o | q

)
=

[
T∏

t=1

πθ(a
t | q,K,M t) E(et | at,K) V(vt | q, et,M t)

]
G(o | q,MT), (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Multi-turn Group
Computation

Frozen
Models

Trained
Models

R
ew

ar
d

M
od

el

Multi-turn Agentic System Rollouts

Policy
Model

Reference
Model

Flow-GRPO

Figure 4: Optimization for our proposed agentic system AGENTFLOW. Given a query q, an
evolving memory M , and a toolset K, the policy model generates actions that target sub-goals and
select tools. It is trained via Flow-based Group Refined Policy Optimization (Flow-GRPO), which
enables multi-turn reinforcement learning and stable optimization under collaborative dynamics.

where {at, et, vt}Tt=1 are explicit realizations of the latent reasoning chain. Importantly, unlike latent
thoughts behind trajectories, our memory M is an explicit and deterministic record of the reasoning
process, ensuring transparency and controllability of multi-turn decisions.

3.2 IN-THE-FLOW REINFORCEMENT LEARNING OPTIMIZATION

We target tool-integrated agentic systems operating under long-horizon tasks with sparse rewards.
In this setting, the Action Planner (the trainable policy of AGENTFLOW) selects a sequence of
interdependent actions while the state (q,K,M t) evolves with tool results and verifier feedback.
Conventional offline training—e.g., supervised fine-tuning or preference fine-tuning on curated
traces—optimizes the planner outside the active loop (Motwani et al., 2024; Park et al., 2025).
This decoupling prevents real-time coordination with the executor, verifier, and solution generator,
induces distribution shift between training and deployment, and provides limited guidance about
which intermediate decisions truly matter. As a result, planners often adapt poorly to multi-turn
dynamics; early errors cascade, and post-hoc fixes are brittle.

In-the-flow learning. To address these issues, we optimize the planner in the flow of execution.
We roll out the full AGENTFLOW system under the current policy, collect the actual trajectory τ
of states, actions, and tool events it induces, and update the policy within the agentic system using
a verifiable final-outcome signal. This exposes the multi-turn credit-assignment problem directly
and trains the planner on the exact states it will face at inference. Our objective, Flow-GRPO, is
designed to stabilize learning under sparse, trajectory-level rewards over multiple turns.

As established in §3.1, rollouts in AGENTFLOW define a finite-horizon MDP with a variable horizon
T . At turn t, the planner observes the state (q,K,M t), selects an action at, the executor and verifier
return (et, vt), and the memory updates deterministically to M t+1.

Policy optimization objective. The planner policy πθ is trained to maximize the expected return
over on-policy rollouts. Let R(τ) be the reward for a complete trajectory τ . The objective is:

J (θ) = Eτ∼πθ

[
R(τ)

]
, θ⋆ = argmax

θ
J (θ), (3)

where a rollout τ is the sequence of decisions {at}Tt=1 generated on-policy by πθ.

Final-outcome reward. Assigning credit to intermediate actions is challenging because each at

influences the final solution only indirectly, and their value may only emerge after several turns (e.g.,
error or improvement accumulation). To avoid brittle local feedback, we adopt a final-outcome-
based reward: every action within a rollout receives the same global reward signal, based on the
correctness of the final solution o with respect to query q and ground truth y∗:

r = R(at) = R̄(o, q, y∗), ∀t = 1, . . . , T, (4)

where R̄(o, q, y∗) ∈ {0, 1} is assigned by an LLM-as-judge rubric for semantic, numeric, and
option-level equivalence (see §E.3). This propagates a trajectory-level success signal back through
the reasoning chain, aligning every decision at with global correctness.

Objective function. We formalize Flow-based Group Refined Policy Optimization for the plan-
ner. The goal is to optimize the policy πθ by maximizing the expected return over a group of parallel

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

rollouts. For each query-label pair from training corpus (q, y∗) ∼ D, we sample a group of G on-
policy trajectories {τi}Gi=1 by running the current behavior policy πθold inside AGENTFLOW, where
τi = {a1i ,a

Ti
i , oi}. Let sti = (q,K,M t

i) be the state at turn t of rollout i, ati the planner’s ac-
tion (a token sequence of length |ati|), and oi the final response. This structure is key to addressing
the long-horizon credit assignment challenge: by broadcasting a single trajectory-level reward to
all turns, we effectively decompose the multi-turn RL problem into a set of independent, single-turn
policy updates; we provide a formal proof of this equivalence and analyze its convergence properties
in §B. Each update for an action ati is conditioned on the full historical context encapsulated in the
state sti and receives the same global success signal, simplifying optimization. The objective is
JFlow-GRPO(θ) = E(q,y∗)∼D, {τi}Gi=1∼πθold[

1

G

G∑
i=1

1

Ti

Ti∑
t=1

1

|at
i|

|at
i|∑

j=1

min
{
ρti,jA

t
i, clip(ρ

t
i,j , 1− ϵ, 1 + ϵ)At

i

}
− β DKL

(
πθ ∥πref

)]
,

(5)
where Ti is the (variable) number of turns in rollout i, and

ρti,j =
πθ

(
ati,j

∣∣ sti, ati,1:j−1

)
πθold

(
ati,j

∣∣ sti, ati,1:j−1

) (6)

is the token-level importance ratio for the j-th token of ati, ϵ > 0 is the PPO clipping parameter, and
β > 0 controls the KL penalty to a fixed reference policy πref.

Group-normalized advantages. Because the reward in Eq. 4 is a single trajectory-level signal,
the per-turn advantage At

i is constant over t within a rollout i. We reduce variance and sharpen
credit assignment across the group by using a group-normalized advantage:

At
i =

R̄(oi, q, y
∗)−mean

(
{R̄(ok, q, y

∗)}Gk=1

)
std

(
{R̄(ok, q, y∗)}Gk=1

) . (7)

Technical contribution summary. To tackle long-horizon, sparse-reward training in multi-
module agentic systems, we propose Flow-GRPO. This novel algorithm (i) formalizes the multi-
turn RL problem in agentic systems into a series of tractable, single-turn policy updates, and (ii)
broadcasts a single trajectory-level outcome to every turn to align local planner decisions with
global success. Training uses an LLM-based rubric to assign verifiable final-outcome rewards,
with group-normalized advantages, KL regularization, and clipping to stabilize learning.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In our main experiments, all modules—Action Planner, Tool Executor, Executive Verifier, and Solu-
tion Generator—are instantiated with the Qwen2.5-7B-Instruct model (Yang et al., 2024a). Among
these, only the Action Planner is trainable. The system operates with five interactive tools: Base
Generator is an instance of Qwen2.5-7B-Instruct that acts as the default reasoning engine if the
planner decides not to use an external tool; Python Coder generates and executes Python code given
a query and returns the execution result; Google Search searches the web and returns a summariza-
tion of Top-K search results; Wikipedia Search searches articles matching a given query and returns
a summarization; and Web Search returns summarized information from a given web page. Dur-
ing the RL fine-tuning phase, we mix data from Search-R1 (Jin et al., 2025) and DeepMath (He
et al., 2025) as training data, which provides paired question-answer examples across search and
mathematical domains. We use a batch size of 32 with 8 rollouts per sample.

To comprehensively evaluate tool-use capabilities of AGENTFLOW, we conduct experiments on four
types of reasoning tasks: (1) Knowledge-intensive search including Bamboogle (Press et al., 2023),
2Wiki (Ho et al., 2020), HotpotQA (Yang et al., 2018), and Musique (Trivedi et al., 2022); (2) Agen-
tic reasoning such as GAIA (Mialon et al., 2023) (where we adopt the textual split); (3) Logic-dense
mathematical reasoning including AIME2024 (Art of Problem Solving, 2025), AMC23 (MAA,
2023), and GameOf24 (Lightman et al., 2023); and (4) Scientific reasoning including GPQA (Rein
et al., 2024) and MedQA (Yang et al., 2024c). To mitigate randomness, we report the average accu-
racy across three trials for all experiments. More experimental details are in §C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Search Intensive Agentic
Model Size Bamboogle 2Wiki HotpotQA Musique Avg. ∆ GAIA ∆

Qwen-2.5-7B-Instruct 7B-Inst 12.0 23.0 21.0 6.0 15.5 ↑ 41.8 3.2 ↑ 29.9
Qwen-2.5-14B-Instruct 14B-Inst 21.6 26.7 20.0 8.0 19.1 ↑ 38.2 5.5 ↑ 27.6
Qwen-2.5-32B-Instruct 32B-Inst 24.0 26.7 27.0 6.0 20.9 ↑ 36.4 9.5 ↑ 23.6
Llama-3.3-70B-Instruct 70B-Inst 18.4 22.7 52.0 16.0 27.3 ↑ 30.0 3.2 ↑ 29.9

GPT-4o-mini (Hurst et al., 2024) ∼8B 40.8 35.6 41.0 15.0 33.1 ↑ 24.2 7.1 ↑ 26.0
GPT-4o (Hurst et al., 2024) ∼200B 68.8 49.5 54.0 24.0 49.1 ↑ 8.2 17.3 ↑ 15.8

Supervised Fine-Tuning (SFT) 7B-Inst 12.0 25.9 22.0 6.6 16.6 ↑ 40.7 3.2 ↑ 29.9

Iter-RetGen (Shao et al., 2023) 7B-Inst 36.8 33.6 37.4 17.8 31.4 ↑ 25.9 3.9 ↑ 29.2
Search-R1 (Jin et al., 2025) 7B-Inst 43.2 38.2 37.0 14.6 33.3 ↑ 24.0 19.1 ↑ 14.0
ZeroSearch (Sun et al., 2025) 7B-Base 27.8 35.2 34.6 18.0 28.9 ↑ 28.4 16.5 ↑ 16.6
ReSearch (Chen et al., 2025) 7B-Base 42.4 47.6 43.5 22.3 39.0 ↑ 18.3 17.3 ↑ 15.8
StepSearch (Wang et al., 2025d) 7B-Base 40.0 36.6 38.6 22.6 34.5 ↑ 22.8 – –
VerlTool (Jiang et al., 2025) 7B-Base 46.4 45.3 44.8 19.3 39.0 ↑ 18.3 11.2 ↑ 21.9

AutoGen (Wu et al., 2024) 7B-Inst 59.6 44.0 50.0 15.9 42.4 ↑ 14.9 6.3 ↑ 26.8

AGENTFLOW 7B-Inst 58.4 60.0 51.3 19.2 47.2 ↑ 12.1 17.2 ↑ 15.9
AGENTFLOW (w/ Flow-GRPO) 7B-Inst 69.6 77.2 57.0 25.3 57.3 – 33.1 –

Table 1: Accuracy comparison on search-intensive and agentic tasks. 7B-Base refers to Qwen-
2.5-7B-Base and 7B-Inst refers to Qwen-2.5-7B-Instruct. AutoGen and our AGENTFLOW method
are agentic systems, which use Qwen-2.5-7B-Instruct for the LLM-powered agents and tools for fair
comparison. We visualize the gains of AGENTFLOW to the each baseline in the ∆ columns .

Math Reasoning Scientific Reasoning
Model Size AIME24 AMC23 GameOf24 Avg. ∆ GPQA MedQA Avg. ∆

Qwen-2.5-7B-Instruct 7B-Inst 6.7 47.5 33.0 29.1 ↑ 22.5 34.0 66.0 50.0 ↑ 13.5
Qwen-2.5-14B-Instruct 14B-Inst 6.7 60.0 25.0 30.6 ↑ 21.0 31.0 75.0 53.0 ↑ 10.5
Llama-3.3-70B-Instruct 70B-Inst 6.7 47.5 31.0 28.4 ↑ 23.1 35.0 67.0 51.0 ↑ 12.5
Llama-3.1-405B-Instruct 405B-Inst 26.7 47.5 23.0 32.4 ↑ 19.1 30.0 62.0 46.0 ↑ 17.5

GPT-4o-mini (Hurst et al., 2024) ∼8B 13.3 57.5 16.0 28.9 ↑ 22.6 27.0 66.0 46.5 ↑ 17.0
GPT-4o (Hurst et al., 2024) ∼200B 13.3 60.0 32.0 35.1 ↑ 16.4 31.0 60.0 45.5 ↑ 18.0

Supervised Fine-Tuning (SFT) 7B-Inst 6.7 47.5 33.0 29.1 ↑ 22.5 34.0 66.0 50.0 ↑ 13.5

SimpleRL-reason (Zeng et al., 2025b) 7B-Base 16.7 60.0 33.0 36.6 ↑ 15.0 45.0 65.0 50.0 ↑ 13.5
Open-Reasoner-Zero (Hu et al., 2025a) 7B-Base 16.7 54.9 32.0 34.5 ↑ 17.0 34.0 54.0 44.0 ↑ 19.5
General-Reasoner (Ma et al., 2025) 7B-Base 13.3 55.0 33.0 33.8 ↑ 17.7 35.5 61.0 48.3 ↑ 15.2
Luffy (Yan et al., 2025) 7B-Inst 30.7 44.8 33.0 36.2 ↑ 15.3 34.0 77.0 55.5 ↑ 8.0

TIR (Yang et al., 2024b) 7B-Inst 10.0 50.0 33.0 31.0 ↑ 20.5 42.0 76.8 59.4 ↑ 4.1
ToRL (Li et al., 2025b) 7B-Inst 20.0 60.0 31.0 37.0 ↑ 14.5 35.0 76.5 55.8 ↑ 7.7

AutoGen (Wu et al., 2024) 7B-Inst 13.3 57.5 24.0 31.6 ↑ 19.9 42.0 72.0 57.0 ↑ 6.5

AGENTFLOW 7B-Inst 16.7 47.4 31.0 31.7 ↑ 19.8 37.0 76.0 56.5 ↑ 7.0
AGENTFLOW (w/ Flow-GRPO) 7B-Inst 40.0 61.5 53.0 51.5 – 47.0 80.0 63.5 –

Table 2: Accuracy comparison of mathematical and scientific reasoning tasks.

4.2 MAIN RESULTS

Baselines. As presented in Tables 1 and 2, we include five categories of baselines: (1) Open-
source LLMs: Qwen2.5 (Yang et al., 2024a), Llama-3.1, and Llama-3.3 (Dubey et al., 2024); (2)
Proprietary LLMs: GPT-4o-mini and GPT-4o; (3) Reasoning LLMs: supervised fine-tuning (Yang
et al., 2024b), SimpleRL-reason, Open-Reasoner-Zero, General-Reasoner, and LUFFY; (4) Tool-
integrated reasoning LLMs: both search-enhanced, including Iter-RetGen, Search-R1, ZeroSearch,
ReSearch, StepSearch, and VerlTool, and code-enhanced, including TIR and ToRL; (5) Training-free
agentic system: AutoGen. More details on baseline implementations are in §C.3.

Key insights. AGENTFLOW consistently outperforms all baseline models by large margins. Com-
pared to the best-performing 7B models without tool integration, AGENTFLOW achieves absolute
gains of 40.7% on search (SFT), 29.9% on agentic reasoning (SFT), 15.0% on math (SimpleRL-
reason), and 8.0% on scientific tasks (Luffy). Against specialized tool-integrated systems, AGENT-
FLOW surpasses the top models by 14.9% in search (AutoGen), 14.0% in agentic reasoning (Search-
R1), 14.5% in math (ToRL), and 4.1% in science (TIR). Notably, our 7B-backbone AGENTFLOW
even outperforms the ∼200B-parameter GPT-4o across all domains, with gains ranging from 8.2%
to 18.0%. A detailed analysis is provided in §D.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Question: Compute the check digit the Tropicos ID for the Order
Helotiales would have if it were an ISBN-10 number.
Ground truth answer: 3

AgentFlow (before Flow-GRPO Fine-tuning)

• Selected tool: Wikipedia Search
• Sub-goal: Retrieve Tropicos ID of Order Helotiales from Wikipedia.
• Tool call: query="Tropicos ID for the Order Helotiales"
• Result: No results found for query: Tropicos ID for Order Helotiales.

• Selected tool: Google Search
• Sub-goal: Retrieve the Tropicos ID of the Order.
• Tool call: query="Tropicos ID for the Order Helotiales"
• Result: The Tropicos ID for the Order Helotiales is 100370510.

• Selected tool: Python Coder
• Sub-goal: Calculate the check digit for the Tropicos ID 100370510
if it were an ISBN-10 number.
• Tool call: query="Calculate check digit for ISBN-10 number 100370510”
• Result: name 'isbn' is not defined.

Action steps 3 to 9 have similar sub-goals, commands, and results;
the agent is stuck in error loops and unable fix the naming issue.

Solution: The Python tool failed repeatedly with the same 'isbn'
variable error). The agent failed to calculate the check digit.

• Selected tool: Python Coder
• Sub-goal: Write and execute a Python script to calculate the check digit for
`tropicos_id` as if it were an ISBN-10 number.
• Tool call: query="Calculate the check digit for the ISBN-10 number" + tropicos_id
• Result: Error in execute_command: name 'tropicos_id' is not defined.

• Selected tool: Python Coder
• Sub-goal: Write and execute a Python script to calculate the check digit for
`tropicos_id` as if it were an ISBN-10 number.
• Tool call: query="Compute the check digit for 100370510 as an ISBN-10 number”
• Result: 3 (printed output).
def calculate_check_digit(isbn):

isbn_digits = [int(digit) for digit in isbn[:9]]
total_sum = sum(position * digit for position, digit in enumerate(isbn_digits, start=1))
check_digit = total_sum % 11

 if check_digit == 10:
 return 'X'
 else:
 return str(check_digit)
result = calculate_check_digit("100370510")
print(f“The check digit is {result}”)

Solution: The check digit is 3, resulting in the full number 1003705103.

• Selected tool: Wikipedia Search (Truncated...) • Result: No results found.

• Selected tool: Google Search (Truncated...) • Result: Tropicos ID: 100370510.

AgentFlow (after Flow-GRPO Fine-tuning)

1

2

3

4

1

2

3

4-9
...

...

Figure 5: One case study example. Initially failed with repetitive errors (left), AGENTFLOW,
trained with Flow-GRPO, explores a new solution pathway at turn 4 after two failed attempts (right).

4.3 TRAINING STRATEGIES ON THE PLANNER
NEW

We conduct an ablation study to analyze the impact of different training strategies for the Action
Planner module in AGENTFLOW, with results reported in Table 3. The executor, verifier, and gen-
erator modules remain fixed as Qwen2.5-7B-Instruct, consistent with our main setup (§4.1).

Planner Model Training Bamboogle 2Wiki GAIA AIME24 AMC23 GameOf24 Avg.
Qwen-2.5-7B Frozen 58.4 60.0 17.2 16.7 47.4 31.0 38.5

GPT-4o Frozen 65.0 ↑ 6.6 70.0 ↑ 10.0 23.6 ↑ 6.4 16.7 ↑ 0.0 48.7 ↑ 1.3 42.0 ↑ 11.0 44.3 ↑ 5.8

Qwen-2.5-7B SFT 30.4 ↓ 28.0 32.7 ↓ 27.3 6.3 ↓ 10.9 3.3 ↓ 13.4 37.5 ↓ 9.9 7.0 ↓ 24.0 19.5 ↓ 19.0

Qwen-2.5-7B Flow-GRPO 69.6 ↑ 11.2 77.2 ↑ 17.2 33.1 ↑ 15.9 40.0 ↑ 23.3 61.5 ↑ 14.1 53.0 ↑ 22.0 55.7 ↑ 17.2

Table 3: Performance comparison of AGENTFLOW across different training methods.

A more capable planner is beneficial, but has limits. Replacing the frozen Qwen2.5-7B-Instruct
baseline with a stronger proprietary model, GPT-4o, yields only a modest 5.8% average gain. This
indicates a key bottleneck that, while a more powerful model improves planning, its static nature
prevents co-adaptation with the live dynamics of AGENTFLOW.

Offline SFT leads to performance collapse, while in-the-flow RL is crucial. The limitations of
a static planner are further exposed when distilling GPT-4o’s behavior via offline supervised fine-
tuning (SFT) on its trajectories as Action Planner in AGENTFLOW. This results in a catastrophic
performance collapse, with an average accuracy drop of 19.0% compared to the frozen baseline.
This failure arises from the token-level imitation objective of SFT, which misaligns with trajectory-
level task success and prevents the planner from adapting to dynamic tool feedback or recovering
from compounding errors. In contrast, training the planner with our on-policy Flow-GRPO method
proves highly effective: by optimizing for the final outcome, the planner learns to handle long-
horizon workflows, achieving a 17.2% average gain over the frozen baseline.

4.4 IN-DEPTH ANALYSIS OF OPTIMIZED PLANNING

Flow-GRPO optimizes tool usage. We compare tool usage distributions before and after in-the-
flow RL training. Figure 6 shows results on two knowledge-intensive tasks, 2Wiki and MedQA,
which exhibit distinct optimization patterns alongside improved task accuracy. For 2Wiki, which re-
quires broad factual knowledge, Flow-GRPO optimizes the planner to increase Google Search usage
by 42.0%. In contrast, for the specialized MedQA benchmark, which requires deep, domain-specific
information retrieval, fine-tuning shifts the planner away from general tools, reducing Google Search
calls (66.2→10.9%) in favor of in-document Web Search (0→19.5%) and specialized Wikipedia
Search (0→59.8%). This demonstrates that the planner learns to select task-appropriate tools.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

28.5

Acc:60.0%

28.8

70.5

13.6

4.0

28.7

66.2

6.3
10.9

19.5

59.8

Acc: 77.2% (+17.2%)

36.0

+42.0

-22.4

-24.8

After Fine-tuning

Acc: 76.0% Acc: 80.0% (+4.0%)

After Fine-tuning +59.8

+19.5

-22.4
-55.3

(a) 2Wiki (b) MedQA

Base Generator Google Search Web Search Wikipedia Search

Figure 6: Tool call ratio change by Flow-GRPO fine-tuning.

0 8 18 28 32
Training Steps

0

10

20

30

40

50

Ca
llin

g
Er

ro
r R

at
e

(%
)

-28.4%

-19.4%
-7.8%
-8.4%

GAIA
2Wiki
Bamboogle
AIME24

Figure 7: Calling error rate.

Flow-GRPO enhances tool-calling efficacy. A key aspect of the model’s improvement is its in-
creased reliability in tool usage. As shown in Figure 7, the tool-calling error rate consistently de-
creases across tasks during training, with a reduction of up to 28.4% on GAIA. This trend indicates
that the training process not only teaches the model which tool to use but also how to invoke it
correctly with proper arguments and format, leading to more robust and effective tool integration.

Flow-GRPO incentivizes autonomous discovery of new solutions. We further examine qualita-
tive examples in Figure 5 and additional cases in §F. These cases show that AGENTFLOW, trained

NEWwith Flow-GRPO, develops enhanced capabilities for task planning and tool use. The planner ex-
hibits adaptive efficiency, stronger self-correction, and spontaneous new integration of tools through-
out step-by-step problem-solving, autonomously discovering effective solution pathways.

4.5 TRAINING EFFICIENCY ANALYSIS

180

190

200

210

220

230

Re
sp

on
se

 L
en

gt
h

(to
ke

ns
)

0 10 20 30 40 50 60
Training Steps

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 R
ew

ar
d

(A
cc

.)

(a)

Training Reward Trend
Response Length Trend

0 10 20 30
Training Steps

0.1

0.2

0.3

0.4

Va
lid

at
io

n
Re

wa
rd

 (A
cc

.)

(b)

Flow-GRPO (ours)
ToRL

Figure 8: Training dynamics and efficiency of Flow-GRPO.

Optimized planning with increased
rewards and condensed responses.
We analyze the training dynamics of
the AGENTFLOW planner by track-
ing its average reward and response
length on the train set (Figure 8a).
Training rewards steadily increase,
indicating effective policy improve-
ment via Flow-GRPO. Meanwhile,
response length, after an initial ex-
ploratory rise, progressively shortens and stabilizes. This shows the planner learns to balance con-
ciseness and informativeness, avoiding unnecessarily long outputs.

Flow-GRPO efficiency over tool-integrated reasoning RL. We compare AGENTFLOW (trained
with Flow-GRPO) against a monolithic tool-integrated reasoning baseline (ToRL) on AIME24. As
shown in Figure 8b, AGENTFLOW achieves sustained performance gains, with validation accuracy
growing steadily. In contrast, ToRL’s performance quickly stagnates and trends downwards, high-
lighting the superior efficiency of our agentic training approach, which uses decomposition and
stable credit assignment to avoid the instability.

4.6 SCALING TRENDS IN AGENTFLOW

Bamboogle 2Wiki GAIA AIME24
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

53.6
63.0

14.3 13.3

68.8 72.3

29.1
20.0

AgentFlow (Qwen-2.5-3B-Instruct)
Before tuning
After tuning

Bamboogle 2Wiki GAIA AIME24
0

20

40

60

80

58.4 60.0

17.2 16.7

69.6
77.2

33.1
40.0

AgentFlow (Qwen-2.5-7B-Instruct)
Before tuning
After tuning

Figure 9: Flow-GRPO fine-tuning offers consistent gains on
AGENTFLOW as the backbone model size scales from 3B to 7B.

Training scaling in backbone size.
We study how backbone LLM scale
affects AGENTFLOW’s performance
and the efficacy of Flow-GRPO. We
build two versions of the system: one
using Qwen2.5-3B-Instruct and an-
other using Qwen2.5-7B-Instruct for
all four modules (planner, executor,
verifier, and generator) and tools. In
both, only the planner is fine-tuned
with Flow-GRPO. As shown in Figure 9, Flow-GRPO fine-tuning consistently improves perfor-
mance across tasks for both backbones. This demonstrates that our in-the-flow optimization is ef-
fective across model capacities, enhancing AGENTFLOW regardless of LLM size.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Turns (Tmax) 3 5 7 10
2Wiki 2.22 3.18 3.81 4.44
GameOf24 1.63 2.12 2.36 2.67
AIME24 1.63 1.63 1.86 1.90
GAIA 2.43 3.46 4.28 5.42

3 5 7 10
Max Allowed Turns

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

+15.8%

+20.0%

+16.7%
+6.3%

2Wiki

GameOf24
AIME24
GAIA

GameOf24
AIME24
GAIA

Figure 10: Average turns and
accuracy with increased Tmax.

Inference scaling in turn budgets. We investigate how the
maximum allowed turns (Tmax) affect reasoning depth and final
performance of AGENTFLOW during test-time inference with the
Qwen2.5-7B-Instruct backbone. As shown in Figure 10, increas-
ing Tmax from 3 to 10 consistently improves outcomes across
all tasks, accompanied by a rise in average turns consumed.
On knowledge-intensive benchmarks such as 2Wiki and GAIA,
a larger turn budget enables AGENTFLOW for deeper informa-
tion retrieval. On mathematical benchmarks like GameOf24 and
AIME24, it supports decomposed sub-goals, alternative strate-
gies, and refinement of errors. Final performance peaks at Tmax =
10 for all tasks, confirming that a longer reasoning horizon ben-
efits the system without causing degenerate loops. This validates
that AGENTFLOW adapts its turn allocation to problem complex-
ity to achieve better solutions through iterative refinement.

5 RELATED WORK

Reinforcement learning (RL) from outcome-based rewards has become a dominant paradigm for
training LLMs to use external tools. Much of this work trains a single, monolithic policy to interleave
reasoning with tool calls. This strategy has proven effective in specialized, single-tool settings,
such as code execution for mathematical problems (Mai et al., 2025; Xue et al., 2025; Feng et al.,
2025; Li et al., 2025b) and web search for knowledge-intensive questions (Chen et al., 2025; Jin
et al., 2025; Song et al., 2025; Li et al., 2025a; Sun et al., 2025). Recent efforts have extended
this monolithic framework to multi-tool environments by focusing on data synthesis (Dong et al.,
2025), unified training infrastructure (Jiang et al., 2025), and principled reward design (Qian et al.,
2025a; Zhang et al., 2025). However, this monolithic approach scales poorly as task complexity
and planning horizons grow. The central challenge is long-horizon credit assignment; attributing
a final outcome to specific intermediate tool calls remains difficult, even with fine-grained, turn-
level rewards (Zeng et al., 2025a; Wang et al., 2025d). This difficulty leads to training instability
and brittle inference-time generalization, manifesting as strategic deficiencies like tool overuse or
“cognitive offloading” (Wang et al., 2025b; Qian et al., 2025b), suboptimal personalization (Cheng
et al., 2025), and poor alignment with user preferences for tool invocation (Huang et al., 2025).

Agentic systems with tool use. Agentic systems offer an alternative to monolithic models by de-
composing tasks across specialized modules. Many such systems are training-free, orchestrating
pre-trained LLMs with handcrafted logic and prompting, as seen in frameworks like AutoGen (Wu
et al., 2024), MetaGPT (Hong et al., 2024), and OctoTools (Lu et al., 2025). This static approach,
however, limits their ability to learn and adapt collaborative strategies from experience. Recognizing
this, recent work explores training these systems to improve coordination (Deng et al., 2025; Liao
et al., 2025). However, most training paradigms are offline, relying on supervised fine-tuning or
preference optimization on static datasets (Motwani et al., 2024; Park et al., 2025). These methods
are decoupled from the live, multi-turn dynamics of the system, preventing modules from learning
to adapt to evolving tool outputs or recover from early mistakes. Training directly in the flow with
on-policy RL is difficult due to sparse rewards and long-horizon credit assignment, where feedback
is delayed across long reasoning chains and shifting state distributions (Wang et al., 2025c). Con-
sequently, these systems often suffer from brittle adaptation and require complex reward shaping to
learn effectively (Wang et al., 2025a).

6 CONCLUSION

We presented AGENTFLOW, a trainable, in-the-flow agentic system that coordinates four specialized
modules via an evolving memory and optimizes its planner directly inside the multi-turn loop. To
enable stable on-policy learning under long-horizon, sparse-reward settings, we introduced Flow-
GRPO, which converts multi-turn RL into a sequence of tractable single-turn policy updates by
broadcasting a single, verifiable trajectory-level outcome to every turn and stabilizing credit as-
signment with group-normalized advantages. Comprehensive experiments show that AGENTFLOW
achieves strong cross-domain performance, surpassing specialized baselines and even larger propri-
etary models. In-depth analyses confirm improved planning and tool-calling reliability, along with
positive scaling trends in model size and allowed turn budgets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm compliance with the ICLR Code of Ethics. Our research exclusively utilizes publicly
available benchmarks, and our methodology does not involve human subjects, personally identi-
fiable information, or proprietary user data. We adhere to the licensing and usage terms of all
datasets employed in this study. The agentic system interacts with external tools, for which we have
implemented safeguards to ensure responsible use. Web-based tools, such as Google Search and
Wikipedia Search, are used solely to access public information while respecting platform terms of
service and API rate limits. All code execution is performed within a sandboxed local environment
with restricted network access to mitigate the security risks of executing model-generated code.

We acknowledge two primary ethical considerations. First, the use of an LLM-as-judge for reward
signaling could introduce or amplify biases. To mitigate this, we employ a structured, rubric-based
evaluation protocol, report results averaged over multiple random seeds to ensure robustness, and
conduct detailed analyses of failure modes. Second, advanced agentic systems pose a risk of misuse
in harmful automation. To address this, our work and the released codebase are intentionally focused
on benign research domains (e.g., mathematics, scientific reasoning). We document the intended
scope and limitations to discourage misuse.

In the interest of transparency and research integrity, we will release our codebase, model prompts,
and experimental configurations to support reproducibility. The authors declare no conflicts of in-
terest. All funding sources and affiliations will be fully disclosed in the camera-ready version.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive documentation and re-
sources. Our full codebase, including end-to-end scripts for training and evaluation, is available at
https://anonymous.4open.science/r/agentflow. This repository contains all con-
figuration files (hyperparameters, model IDs, rollout settings), prompt templates for the planner,
executor, verifier, generator, and memory modules (§E.1), toolset metadata (§E.2), and the LLM-as-
judge evaluation rubric (§E.3). Our experimental setup, including baselines, datasets, and evaluation
protocols, is detailed in §C, with training details provided in §C.1 and evaluation details in §C.2. For
our theoretical contributions, a mathematical analysis of Flow-GRPO, including proofs and conver-
gence guarantees, is presented in §B.

REFERENCES

Art of Problem Solving. Aime problems and solutions, 2025. URL https:
//artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions. 6, 22

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z Pan,
Wen Zhang, Huajun Chen, Fan Yang, et al. ReSearch: Learning to reason with search for llms via
reinforcement learning. arXiv preprint arXiv:2503.19470, 2025. 2, 3, 7, 10, 21

Zihao Cheng, Hongru Wang, Zeming Liu, Yuhang Guo, Yuanfang Guo, Yunhong Wang, and
Haifeng Wang. ToolSpectrum: Towards personalized tool utilization for large language mod-
els. In Findings of the Association for Computational Linguistics: ACL 2025, pp. 20679–20699,
2025. 10

Yingfan Deng, Anhao Zhou, Yuan Yuan, Xian Zhang, Yifei Zou, and Dongxiao Yu. Pe-ma:
Parameter-efficient co-evolution of multi-agent systems. arXiv preprint arXiv:2506.11803, 2025.
10

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-star: Empowering llm-brained multi-tool reasoner
via reinforcement learning. arXiv preprint arXiv:2505.16410, 2025. 2, 10

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024. 7, 20

11

https://anonymous.4open.science/r/agentflow
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025. 2, 3, 10

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. 1

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025. 6

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics (COLING), pp. 6609–6625, 2020. 6, 22

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. MetaGPT: Meta programming for a
multi-agent collaborative framework. In International Conference on Learning Representations
(ICLR), 2024. 2, 3, 10

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025a. 7, 21

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
Jin, Yingru Li, Qiguang Chen, et al. Owl: Optimized workforce learning for general multi-agent
assistance in real-world task automation. arXiv preprint arXiv:2505.23885, 2025b. 2

Chengrui Huang, Shen Gao, Zhengliang Shi, Dongsheng Wang, and Shuo Shang. TTPA: Token-
level tool-use preference alignment training framework with fine-grained evaluation. arXiv
preprint arXiv:2505.20016, 2025. 10

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. GPT-4o system card. arXiv preprint
arXiv:2410.21276, 2024. 3, 7, 20

Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai
Zou, Chao Du, et al. VerlTool: Towards holistic agentic reinforcement learning with tool use.
arXiv preprint arXiv:2509.01055, 2025. 7, 10, 21

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-R1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025. 2, 3, 6, 7, 10, 20, 21

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021. 22

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025a. 10

Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025b. 7, 10, 21

Junwei Liao, Muning Wen, Jun Wang, and Weinan Zhang. Marft: Multi-agent reinforcement fine-
tuning. arXiv preprint arXiv:2504.16129, 2025. 10

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations (ICLR), 2023. 6

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nathan Lile. Math twenty four (24s game) dataset. https://huggingface.co/datasets/
nlile/24-game, 2024. 22

Pan Lu, Bowen Chen, Sheng Liu, Rahul Thapa, Joseph Boen, and James Zou. OctoTools: An agentic
framework with extensible tools for complex reasoning. arXiv preprint arXiv:2502.11271, 2025.
3, 10

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025. 7, 21

MAA. American mathematics competitions. In American Mathematics Competitions, 2023. 6, 22

Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingying Zhang, and Wenqiang Zhang. Agent RL
Scaling Law: Agent RL with Spontaneous Code Execution for Mathematical Problem Solving.
arXiv preprint arXiv:2505.07773, 2025. 2, 10

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations (ICLR), 2023. 6, 22

Moonshot AI. Kimi-Researcher: End-to-End RL Training for Emerging Agentic Capabilities.
https://moonshotai.github.io/Kimi-Researcher/, June 2025. 2

Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov, Ivan Laptev,
Philip HS Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder de Witt. Malt: Improv-
ing reasoning with multi-agent llm training. arXiv preprint arXiv:2412.01928, 2024. 2, 5, 10

Chanwoo Park, Seungju Han, Xingzhi Guo, A. Ozdaglar, Kaiqing Zhang, and Joo-Kyung Kim. MA-
PoRL: Multi-agent post-co-training for collaborative large language models with reinforcement
learning. In Annual Meeting of the Association for Computational Linguistics (ACL, 2025. URL
https://api.semanticscholar.org/CorpusId:276580906. 2, 5, 10

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pp. 5687–5711, 2023. 6, 22

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. ToolRL: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958,
2025a. 2, 3, 10

Cheng Qian, Emre Can Acikgoz, Hongru Wang, Xiusi Chen, Avirup Sil, Dilek Hakkani-Tür,
Gokhan Tur, and Heng Ji. SMART: Self-aware agent for tool overuse mitigation. In Findings
of the Association for Computational Linguistics: ACL 2025, pp. 4604–4621, 2025b. 10

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024. 6, 22

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning (ICML), pp. 1889–1897.
PMLR, 2015. 19

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
retrieval-augmented large language models with iterative retrieval-generation synergy. In Find-
ings of the Association for Computational Linguistics: EMNLP 2023, pp. 9248–9274, 2023. 7,
21

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024. 3

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
learning. arXiv preprint arXiv:2503.05592, 2025. 2, 10

13

https://huggingface.co/datasets/nlile/24-game
https://huggingface.co/datasets/nlile/24-game
https://moonshotai.github.io/Kimi-Researcher/
https://api.semanticscholar.org/CorpusId:276580906

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang,
Fei Huang, and Jingren Zhou. Zerosearch: Incentivize the search capability of llms without
searching. arXiv preprint arXiv:2505.04588, 2025. 7, 10, 21

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics (TACL), 10:539–554, 2022. 6, 22

Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, and Wenjie Li. SPA-RL: Reinforcing
llm agents via stepwise progress attribution. arXiv preprint arXiv:2505.20732, 2025a. 10

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin,
Mengdi Wang, Kam-Fai Wong, and Heng Ji. Acting less is reasoning more! teaching model to
act efficiently. arXiv preprint arXiv:2504.14870, 2025b. URL https://arxiv.org/pdf/
2504.14870. 10

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, et al. RAGEN: Understanding self-evolution in llm
agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025c. 2, 10

Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, and Yichao Wu.
Stepsearch: Igniting llms search ability via step-wise proximal policy optimization. arXiv preprint
arXiv:2505.15107, 2025d. 7, 10, 21

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
agent conversations. In First Conference on Language Modeling (COLM), 2024. 2, 3, 7, 10,
21

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint
arXiv:2509.02479, 2025. 2, 10

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025. 7, 21

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024a. 6, 7, 20

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b. 7, 21

Hang Yang, Hao Chen, Hui Guo, Yineng Chen, Ching-Sheng Lin, Shu Hu, Jinrong Hu, Xi Wu,
and Xin Wang. Llm-medqa: Enhancing medical question answering through case studies in large
language models. arXiv preprint arXiv:2501.05464, 2024c. 6

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 2369–2380, 2018. 6, 22

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025. 3

Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong. Re-
inforcing multi-turn reasoning in llm agents via turn-level credit assignment. arXiv preprint
arXiv:2505.11821, 2025a. 10

14

https://arxiv.org/pdf/2504.14870
https://arxiv.org/pdf/2504.14870

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025b. 1, 7, 20, 21

Shaokun Zhang, Yi Dong, Jieyu Zhang, Jan Kautz, Bryan Catanzaro, Andrew Tao, Qingyun Wu,
Zhiding Yu, and Guilin Liu. Nemotron-research-tool-n1: Tool-using language models with rein-
forced reasoning. arXiv preprint arXiv:2505.00024, 2025. 2, 10

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

TABLE OF CONTENTS

A Training Algorithm of AGENTFLOW 17

B Theoretical Analysis of Flow-GRPO 18

B.1 Preliminaries and Notation . 18

B.2 Equivalence Proof for Optimization Objectives 18

B.3 Convergence Analysis . 19

C Experimental Details 20

C.1 Training Details . 20

C.2 Evaluation Details . 20

C.3 Compared Baselines . 20

C.4 Evaluation Datasets . 21

D More Discussion about Experiment Results 23

D.1 Main Result Analysis . 23

D.2 In-depth Analysis of Optimized Planning . 24

E Instruction Templates in AGENTFLOW 25

E.1 Modules and Memory . 25

E.2 Toolset Metadata . 30

E.3 LLM-based Judging . 35

F Case Studies 36

F.1 Example 1: Efficient Search for Simple Tasks . 36

F.2 Example 2: Spontaneous Brute-force . 37

F.3 Example 3: A Good Initial Plan is Essential . 39

F.4 Example 4: Robust Self-Correction and Adaptation 41

F.5 Example 5: New Combo: Retrieve with Specific URL 43

F.6 Example 6: Rapid and Correct Physics Calculation 45

F.7 Example 7: Multi-Source Cross-Verification . 47

G LLM Usage Statement 49

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A TRAINING ALGORITHM OF AGENTFLOW

We provide a flowchart of the overall training algorithm of AGENTFLOW (§3) in Algorithm 1.

Algorithm 1 In-the-Flow Optimization for AGENTFLOW

Require: Dataset D, Action Planner policy πθ, Tool Executor E , Executive Verifier V , Solution
Generator G, Toolset K, and Shared Evolving Memory M

Ensure: Optimized Action Planner parameters θ⋆
1: for each training iteration do
2: for each query–label pair (q, y∗) ∼ D do
3: 1. IN-THE-FLOW ROLLOUT GENERATION
4: Initialize: t← 1, M t ← q
5: repeat
6: at ∼ πθ(a

t | q,K,M t) {Plan Action}
7: et ∼ E(et | at,K) {Execute Action}
8: vt ∼ V(vt | q, et,M t) {Verify Result}
9: M t+1 = fmem(M

t, at, et, vt) {Update Memory}
10: t← t+ 1
11: until termination condition met
12: o ∼ G(o | q,MT) {Generate Final Solution}
13: 2. REWARD COMPUTATION
14: R(at) = R̄(o, q, y∗), ∀t = 1, . . . , T
15: 3. POLICY UPDATE
16: Update the Action Planner policy πθ by maximizing the Flow-GRPO objective (Eq. 5)
17: end for
18: end for
19: return optimized parameters θ⋆

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B THEORETICAL ANALYSIS OF FLOW-GRPO

B.1 PRELIMINARIES AND NOTATION

We adopt the notation from the paper to formalize our analysis.
Definition B.1 (Core Components). Here we list core definition of variables.

Symbol and Description

πθ The trainable planner policy, parameterized by θ.
πθold The behavior policy used to sample trajectories.
st The state at turn t, defined as st = (q,K,Mt).
at The action (a sequence of tokens) generated at state st, where at ∼ πθ(· | st).
τ A trajectory of states and actions over T time steps, defined as τ = {(st, at)}Tt=1.
R(τ) The outcome-based reward for trajectory τ , where R(τ) ∈ {0, 1}.
Aτ The group-normalized advantage for trajectory τ . A crucial property is that the advantage is

constant for all timesteps within a trajectory defined in Eq. 7: at = Aτ , ∀(st, at) ∈ τ .
ρti,j The token-level importance sampling ratio, defined as:

ρti,j =
πθ

(
at
i,j

∣∣ sti, at
i,1:j−1

)
πθold

(
at
i,j

∣∣ sti, at
i,1:j−1

) .
Lclip(ρ,A) The PPO clipped objective term, defined as Lclip(ρ,A) = min(ρA, clip(ρ, 1− ϵ, 1 + ϵ)A).

Definition B.2 (Objective Functions). The global policy objective is the expected trajectory-level
reward:

J (θ) := Eτ∼πθ
[R(τ)]. (8)

The single-turn optimization objective for a given state st is defined as:

Jlocal(θ; s
t) := Eat∼πθold (·|st)

 1

|at|

|at|∑
j=1

Lclip(ρ
t
i,j , A

t
i)

 . (9)

The full Flow-GRPO objective function in the multi-turn setting is given by:

JFlow-GRPO(θ) := E (q,y∗)∼D
{τi}G

i=1∼πθold

 1

G

G∑
i=1

1

Ti

Ti∑
t=1

1

|ati|

|at
i|∑

j=1

Lclip(ρ
t
i,j , A

t
i)

− βDKL(πθ∥πref). (10)

B.2 EQUIVALENCE PROOF FOR OPTIMIZATION OBJECTIVES

Theorem B.1. In Flow-GRPO, maximizing the global multi-turn objective is mathematically equiv-
alent to maximizing the expected token-level local objective at each time step under the on-policy
induced state distribution, given standard sampling assumptions (trajectories sampled i.i.d. from
the policy with fixed finite turn T).

Proof. Let’s denote the clipping part of the Flow-GRPO objective as Jclip(θ).

First, by the linearity of expectation, we can simplify the expectation over a group of G trajectories.
Since the trajectories {τi} are sampled independently and identically (i.i.d.) from the behavior policy
πθold , the expectation of their average is equal to the expectation over a single trajectory.

Jclip(θ) = E(q,y∗)∼D

E{τi}G
i=1∼πθold

 1

G

G∑
i=1

1

Ti

Ti∑
t=1

 1

|ati|

|at
i|∑

j=1

Lclip(ρ
t
i,j , A

t
i)

 (11)

= E(q,y∗)∼D

Eτ∼πθold (·|q)

 1

T

T∑
t=1

 1

|at|

|at|∑
j=1

Lclip(ρ
t
j , Aτ)

 . (12)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Here, τ = {(st, at)}Tt=1 represents a single, arbitrarily sampled trajectory with advantage Aτ .

Next, we can re-interpret the expectation over trajectories as an expectation over the state-visitation
distribution induced by the policy πθold . Let dπθold be the on-policy distribution of states visited,
where each state st in a trajectory of length T is weighted by 1/T . The expectation can be rewritten
as:

Jclip(θ) = E(q,y∗)∼D

Est∼d
πθold

Eat∼πθold (·|st)

 1

|at|

|at|∑
j=1

Lclip(ρ
t
j , A

t)

 . (13)

Note that At is the advantage corresponding to the trajectory from which st was sampled.

We now recognize that the inner expectation is precisely the definition of the local, per-state objec-
tive, Jlocal(θ; s

t).

Jclip(θ) = E(q,y∗)∼D, st∼d
πθold

[
Jlocal(θ; s

t)
]
. (14)

Adding the KL-divergence term back, we arrive at the final equivalence:

JFlow-GRPO(θ) = E(q,y∗)∼D, st∼d
πθold

[
Jlocal(θ; s

t)
]
− βDKL(πθ∥πref). (15)

This proves that maximizing the global multi-turn Flow-GRPO objective is equivalent to maximiz-
ing the expected token-level local objective at each time step under the on-policy induced state
distribution.

B.3 CONVERGENCE ANALYSIS

Having established the structural validity of the objective, we now analyze its convergence proper-
ties. The analysis builds on the monotonic improvement guarantee provided by trust-region meth-
ods (Schulman et al., 2015).
Lemma B.2 (Policy Performance Difference). For two policies πθ and πθold , the difference in ex-
pected return can be expressed as:

J (θ)− J (θold) = Eτ∼πθ

[
T∑

t=1

Aθold(s
t, at)

]
, (16)

where Aθold is the advantage function under the old policy.

This lemma enables the construction of a lower bound on policy improvement.
Theorem B.3 (Monotonic Improvement Guarantee). Define the surrogate objective

Lθold(θ) = Eτ∼πθold

[
T∑

t=1

πθ(a
t|st)

πθold(a
t|st)

Aθold(s
t, at)

]
. (17)

Then the performance improvement satisfies the lower bound

J (θ)− J (θold) ≥ Lθold(θ)− C · D̄KL(πθold , πθ) , (18)

where C > 0 is a constant depending on the horizon and reward scale, and D̄KL denotes the average
KL-divergence between the two policies.

By optimizing the right-hand side of the above inequality, we are guaranteed to improve the perfor-
mance of πθ. Therefore, for policies πt

θ and πt+1
θ obtained from iterations t and t+ 1, we have:

J (θt+1) ≥ J (θt). (19)

Conclusion. This analysis establishes that Flow-GRPO optimizes a valid surrogate objective and
guarantees monotonic policy improvement, thereby converging reliably to a locally optimal policy.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 TRAINING DETAILS

We provide further details on the training setup for AGENTFLOW. Our Flow-GRPO implementation
uses a learning rate of 1× 10−6. The Action Planner generates actions with a sampling temperature
of 0.5 to balance exploration and exploitation. To prevent policy collapse and stabilize training, we
incorporate a KL-divergence penalty against a reference policy with a coefficient β = 0.001. The
maximum output length for the planner is set to 2048 tokens to ensure complete exploration during
rollouts.

To accelerate the training speed, we limit the maximum number of turns per rollout to 3. The final-
outcome reward signal (Eq. 4) is provided by an LLM-as-judge, for which we use GPT-4o. All
tool calls are executed synchronously with a 500-second timeout to handle external service latency
robustly. The LLM engines within the tools are set to a temperature of 0.0 to ensure deterministic
and stable outputs. The full training process was conducted on 8 NVIDIA A100 GPUs. Further
details on agent prompts and the memory update mechanism are provided in §E.1.

C.2 EVALUATION DETAILS

Here, we outline the specifics of our evaluation protocol. For evaluation, we increase the maximum
number of turns per rollout to T = 10 to allow for more extensive and deeper reasoning. The
planner’s sampling temperature is set to 0.7 to encourage diverse solution paths. Unless otherwise
specified, all tool LLM engines are initialized with Qwen2.5-7B-Instruct.

For fair and consistent evaluation, we adopt the previous work’s methodology while standardizing
tools: we replace search tools in search-enhanced models with our Google Search tool and code
tools in code-enhanced models with our Python Coder tool. We use GPT-4o as an LLM-based judge
to determine the correctness of final answers. This approach provides a robust measure of semantic
and numerical equivalence, which is critical for complex reasoning tasks. The specific judging
prompt is detailed in §E.3, and additional information on evaluation datasets can be found in §C.4.
To mitigate randomness, we report the average accuracy with standard deviation across three trials
for all experiments.

C.3 COMPARED BASELINES

Proprietary LLMs:

• Qwen2.5 Series (Yang et al., 2024a), created by Alibaba, comes in multiple configurations. These
models undergo training on multilingual corpora covering 29 different languages, demonstrating
superior performance in cross-lingual applications. Furthermore, Qwen2.5 showcases robust pro-
ficiency in programming and mathematical domains.

• Llama-3 Series (Dubey et al., 2024), created by Meta AI, encompasses various iterations.
Each model configuration within the Llama family provides dual versions: foundational and
instruction-following variants. Training incorporates diverse dataset combinations spanning mul-
tiple domains and linguistic varieties. The Llama model family demonstrates excellent results in
logical reasoning, software development, and cross-lingual comprehension evaluations. Through
progressive enhancements in fine-tuning methodologies and expanded sequence lengths, these
models become more applicable to practical deployment scenarios.

• GPT-4o Series (Hurst et al., 2024), produced by OpenAI, includes several model variants such
as GPT-4o and GPT-4o-mini, with training leveraging extensive multimodal datasets encompass-
ing text, vision, and audio modalities. The series achieves outstanding performance in complex
reasoning tasks, creative generation, and multimodal understanding benchmarks with continuous
refinements in alignment techniques and enhanced processing capabilities.

Reasoning LLMs:

• SFT (Zeng et al., 2025b) serves as our basic baseline following Search-R1 (Jin et al., 2025). We
fine-tune models using supervised fine-tuning on GPT-4o-generated reasoning chains.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• SimpleRL-Zoo (Zeng et al., 2025b) investigates zero reinforcement learning training across 10
diverse base models spanning different families and sizes using GRPO algorithm with simple
rule-based rewards, achieving substantial improvements in reasoning accuracy.

• Open-Reasoner-Zero (Hu et al., 2025a) presents the first open-source implementation of large-
scale reasoning-oriented RL training using PPO with GAE and straightforward rule-based re-
wards, without KL regularization. The framework demonstrates that minimalist design can suc-
cessfully scale both response length and benchmark performance.

• General-Reasoner (Ma et al., 2025) extends LLM reasoning capabilities beyond mathematics
to diverse domains using RLVR through a 230K verifiable reasoning questions dataset spanning
physics, chemistry, and finance.

• LUFFY (Yan et al., 2025) addresses limitations in on-policy RLVR by introducing an off-policy
framework that augments training with external reasoning demonstrations using Mixed Policy
GRPO and regularized importance sampling.

Search-Integrated Reasoning LLMs:

• Iter-RetGen (Shao et al., 2023) addresses limitations in retrieval-augmented language models by
introducing iterative retrieval-generation synergy, where a model’s previous response serves as
context for retrieving more relevant knowledge in subsequent iterations.

• Search-R1 (Jin et al., 2025) represents a reinforcement learning approach that develops a model
from the ground up to invoke search functionality throughout the reasoning process.

• ZeroSearch (Sun et al., 2025) addresses high API costs in RL-based search training by using an
LLM to simulate search engines, employing lightweight supervised fine-tuning to transform an
LLM into a retrieval module that generates both useful and noisy documents. The framework
combines this with a curriculum-based rollout strategy that progressively degrades document
quality, achieving better performance than real search engine-based methods while incurring zero
API costs.

• ReSearch (Chen et al., 2025) proposes a reinforcement learning framework that trains LLMs
to integrate search operations as components of the reasoning chain without supervised data on
reasoning steps, treating search decisions as guided by text-based thinking.

• StepSearch (Wang et al., 2025d) addresses the sparse reward problem in multi-hop reasoning
by training search LLMs using step-wise proximal policy optimization with intermediate rewards
and token-level process supervision based on information gain and redundancy penalties.

• VerlTool (Jiang et al., 2025) addresses fragmentation and synchronization bottlenecks in Agentic
Reinforcement Learning with Tool use by introducing a unified modular framework that extends
beyond single-turn RLVR paradigms, providing upstream VeRL alignment and unified tool man-
agement with asynchronous rollout execution achieving near 2× speedup.

Code-Integrated Reasoning LLMs:

• TIR (Yang et al., 2024b) is a basic baseline that demonstrates the model’s ability to generate code
for tool utilization. In our implementation, we directly prompt the model to write code that calls
the programming interpreter and processes the returned results to generate the final answer.

• ToRL (Li et al., 2025b) is a code-enhanced architecture developed via reinforcement learning
that empowers models to independently activate code execution environments for mathematical
reasoning tasks.

Training-free Agentic System

• AutoGen (Wu et al., 2024) introduces an agentic conversation framework that enables developers
to build LLM applications through conversable agents that can operate using combinations of
LLMs, human inputs, and tools.

C.4 EVALUATION DATASETS

We provide a detailed introduction to the search-intensive and agentic benchmarks in our experi-
ments as follows:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

• Bamboogle (Press et al., 2023) presents a demanding multi-step reasoning dataset containing
manually constructed questions requiring up to four inferential steps. The dataset evaluates mod-
els’ capacity for intricate compositional reasoning across interconnected facts.

• 2Wiki (2WikiMultihopQA) (Ho et al., 2020) constitutes a comprehensive multi-step QA cor-
pus combining structured Wikidata knowledge with unstructured Wikipedia text. The dataset
encompasses varied question formats and annotated reasoning chains to facilitate interpretable
sequential inference. We randomly sample 100 examples as a test set for efficiency.

• HotpotQA (Yang et al., 2018) represents a widely-adopted question answering corpus featuring
multi-step queries constructed from Wikipedia entries. We randomly sample 100 examples as a
test set for efficiency.

• Musique (Trivedi et al., 2022) comprises a multi-step reasoning corpus requiring sequential in-
ference where each reasoning stage depends on information derived from preceding steps. We
conduct evaluations using the development partition of this particularly challenging dataset. We
randomly sample 100 examples as a test set for efficiency.

• GAIA (Mialon et al., 2023) constitutes a benchmark engineered to assess general AI systems
and agents, demanding capabilities including sequential reasoning, web navigation, and compre-
hensive tool utilization skills. We utilize the text-exclusive portion of this dataset, designed to
challenge base language models in our experimental setup.

Furthermore, we also conduct a series of experiments on math and scientific reasoning benchmarks:

• AIME24 (Art of Problem Solving, 2025) A collection of 30 demanding mathematical problems
sourced from the 2024 American Invitational Mathematics Examination (AIME), encompassing
algebra, geometry, number theory, and combinatorics. Each JSONL-formatted record contains
the problem identifier, question text, comprehensive solution methodology, and the final numer-
ical result. Created to assess large language models’ sophisticated mathematical reasoning abil-
ities, the dataset presents substantial difficulty, systematic multi-phase solutions, and distinctive
answers—establishing it as a robust benchmark for evaluating advanced analytical capabilities.

• AMC23 (MAA, 2023) contains mathematical problems derived from the 2023 American Mathe-
matics Competition, emphasizing areas such as functional equations and complex analysis.

• GameOf24 (Lile, 2024) derives from the traditional numerical puzzle known as 24 (alternatively
called the 24 numbers game). The challenge requires utilizing four given numbers with fundamen-
tal arithmetic operations (addition, subtraction, multiplication, division) to create an expression
yielding 24. For instance, with numbers 4, 9, 10, and 13, a correct solution would be “(10 - 4)
× (13 - 9) = 24”. Successfully solving requires computational proficiency along with iterative
attempts to validate potential solutions. Each challenge is formatted as open-ended inquiries.

• GPQA or Graduate Level Google-Proof Q&A Benchmark (Rein et al., 2024) comprises a collec-
tion of demanding text-based multiple choice problems authored by subject specialists in biology,
physics, and chemistry, intentionally crafted to be “exceptionally challenging”. We randomly
sample 100 examples as a test set for efficiency.

• MedQA (Jin et al., 2021) features text-based multiple choice problems assembled from profes-
sional medical licensing examinations. Problems encompass comprehensive medical knowledge
and clinical reasoning skills.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D MORE DISCUSSION ABOUT EXPERIMENT RESULTS

D.1 MAIN RESULT ANALYSIS

Our main results are presented in Tables 1 and 2. Overall, AGENTFLOW consistently outperforms all
baseline models across diverse domains, including search-intensive tasks, agentic tasks, and mathe-
matical and scientific reasoning tasks. These comprehensive results yield several key insights:

Monolithic LLMs are insufficient for complex reasoning. While scaling up model size (from 7B
model to GPT-4o) improves average performance, their monolithic nature presents limitations when
facing complex tasks that require multi-turn reasoning and sub-goal decomposition. In contrast, our
proposed AGENTFLOW consistently outperforms these larger models. Specifically, it achieves an
average improvement of 8.2% over GPT-4o on search-intensive tasks (57.3% vs. 49.1% in Table 1),
and a remarkable 15.8% gain over GPT-4o on agentic tasks (33.1% vs. 17.3% in Table 1). For
mathematical reasoning benchmarks, AGENTFLOW obtains a substantial improvement of 16.4%
over GPT-4o (51.5% vs. 35.1% in Table 2). Furthermore, it surpasses the strong Llama-3.3-70B
by 12.5% on scientific reasoning tasks (63.5% vs. 51.0% in Table 2). These results demonstrate
that the carefully designed agentic system of AGENTFLOW, despite being built on a 7B-parameter
backbone, can deliver superior and more efficient performance compared to substantially larger
monolithic LLMs.

Specialized reasoning models exhibit strong in-domain focus but limited generalizability.
While domain-specific fine-tuning and tailored tool integration provide clear benefits over base
LLMs, they fail to deliver robust cross-domain performance due to fundamental scaling limitations.
Our evaluation across three reasoning domains substantiates these limitations. On search-intensive
tasks, specialized models such as Search-R1 (33.3%) and VerlTool (39.0%) perform well within
their narrow scope yet fall substantially short of AGENTFLOW (57.3%) as shown in Table 1. Sim-
ilarly, in mathematical reasoning, methods like SimpleRL-reason (36.6%) and ToRL (37.0%) trail
significantly behind AGENTFLOW (51.5%) in Table 2. Even in scientific reasoning, where models
such as Luffy (55.5%) offer competitive results, they are consistently surpassed by AGENTFLOW
(63.5%) in Table 2. These findings demonstrate that while specialized reasoning models excel within
narrow domains, their reliance on a single monolithic policy introduces poor generalization, making
them brittle when confronted with diverse, cross-domain challenges.

AGENTFLOW demonstrates superior, versatile reasoning through its adaptive agentic system.
AGENTFLOW establishes a new state-of-the-art agentic system by achieving an average accuracy
of 57.3% on search-intensive tasks, 33.1% on agentic tasks, 51.5% on mathematical reasoning, and
63.5% on scientific reasoning. Our method’s advantage stems from combining an agentic system
with targeted planning policy refinement via on-policy reinforcement learning in an online fash-
ion. When compared to AutoGen—a general agent framework with the same backbone model—
AGENTFLOW demonstrates a massive improvement of 14.9% on search tasks and 19.9% on math
tasks. This underscores that the core advantage comes from our dedicated trainable agentic system
that integrates our novel Flow-GRPO for in-system on-policy optimization, enabling effective agent
planning and tool utilization to solve complex, long-horizon problems across diverse domains.

Qwen2.5-7B-Instruct GPT-4o

Figure 11: Tool scaling study. AGENTFLOW’s
performance improves when its tools are up-
graded from Qwen-2.5-7B-Instruct to GPT-4o.

38.7

Acc:19.2%

38.5 13.6

0.9

Acc: 25.2% (+6.21%)

18.4

-1.5

-2.2

-4.7

After Finet-tuning

3.1

+5.2
13.6

13.6

Base Generator Google Search
Web Search Wikipedia Search

Figure 12: Tool call optimization on Musique.
AGENTFLOW’s planner increases Web Search
usage after Flow-GRPO training.

FIX

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D.2 IN-DEPTH ANALYSIS OF OPTIMIZED PLANNING

AGENTFLOW adapts to inference-time tool scaling. We scale the tools—the Base Generator
and Python Coder—to GPT-4o-powered versions. Empirical results on search and math datasets
(Figure 11) show that AGENTFLOW, when using these GPT-4o-powered tools, substantially outper-

FIXforms its performance with Qwen2.5-7B-Instruct-powered tools, achieving improvements of 1.0%
on GAIA, 6.0% on AMC23, and a notable 13.0% on HotpotQA. This finding further supports a
consistent trend: after in-the-flow RL training, the planner can adaptively leverage improvements in
the underlying tools to enhance the agentic system’s overall performance.

Flow-GRPO spontaneous tool usage preference change. We further compare tool usage distri-
butions before and after in-the-flow RL training on Musique. Figure 12 shows that due to Musique’s

FIXneed for a diverse source of information, Flow-GRPO optimizes the planner to increase Web Search
to delve deeper into the URL provided by other search tools. This maneuver presents a steady
performance improvement of 6.1%.

AgentFlow (Qwen-2.5-3B-Instruct) AgentFlow (Qwen-2.5-7B-Instruct)

Figure 13: Flow-GRPO fine-tuning offers consistent gains on AGENTFLOW as the backbone model
size scales from 3B to 7B.

More evidence of training scaling in backbone size. We further investigate how the backbone
LLM scale affects AGENTFLOW’s performance and the efficacy of Flow-GRPO on GameOf24,
AMC23, and MedQA. We construct two versions of the system: one using Qwen2.5-3B-Instruct and
another using Qwen2.5-7B-Instruct for all four modules (planner, executor, verifier, and generator)
as well as the associated tools. In both versions, only the planner is fine-tuned with Flow-GRPO.
As shown in Figure 13, Flow-GRPO fine-tuning consistently improves performance across tasks
for both backbones. These results demonstrate that our in-the-flow optimization is effective across
model capacities, enhancing AGENTFLOW regardless of LLM size.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E INSTRUCTION TEMPLATES IN AGENTFLOW

E.1 MODULES AND MEMORY

E.1.1 ACTION PLANNER

Tool Metadata can be found in §E.2.

Instruction for Action Planner

Task: Determine the optimal next step to address the query using available tools and previous context.

Context:
Query: {Question}
Available Tools: [Base Generator, Python Coder, Google Search, Wikipedia Search, Web Search]
Toolbox Metadata: [Tool Metadata1, Tool Metadata2, ...]
Previous Steps: {Actions from Memory}

Instructions:
1. Analyze the current objective, the history of executed steps, and the capabilities of the available tools.
2. Select the single most appropriate tool for the next action.
3. Consider the specificity of the task (e.g., calculation vs. information retrieval).
4. Consider the source of required information (e.g., general knowledge, mathematical computation, a

specific URL).
5. Consider the limitations of each tool as defined in the metadata.
6. Formulate a clear, concise, and achievable sub-goal that precisely defines what the selected tool should

accomplish.
7. Provide all necessary context (e.g., relevant data, variable names, file paths, or URLs) so the tool can

execute its task without ambiguity.

Response Format:
1. Justification: Explain why the chosen tool is optimal for the sub-goal, referencing its capabilities and

the task requirements.
2. Context: Provide all prerequisite information for the tool.
3. Sub-Goal: State the exact objective for the tool.
4. Tool Name: State the exact name of the selected tool (e.g., Wikipedia Search).

Rules:
Select only one tool per step.
The Sub-Goal must be directly and solely achievable by the selected tool.
The Context section must contain all information the tool needs; do not assume implicit knowledge.
The final response must end with the Context, Sub-Goal, and Tool Name sections in that order. No
additional text should follow.

FIX

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E.1.2 TOOL EXECUTOR

Instruction for Tool Executor

Task: Generate a precise command to execute the selected tool.

Context:
Query: {Question}
Sub-Goal: {Sub Goal from Next Step Plan}
Tool Name: {Selected Tool from Next Step Plan}
Toolbox Metadata: {Selected Tool Metadata from Next Step Plan}
Relevant Data: {Context from Next Step Plan}

Instructions:
1. Analyze the tool’s required parameters from its metadata.
2. Construct valid Python code that addresses the sub-goal using the provided context and data.
3. The command must include at least one call to tool.execute().
4. Each tool.execute() call must be assigned to a variable named execution.
5. Use exact numbers, strings, and parameters in the tool.execute() call based on the context.

Output Format: Present your response in the following structured format. Do not include any extra text
or explanations.

Example 1:
Generated Command:
execution = tool.execute(query="Summarize the following porblom:"Isaac has
100 toys, masa gets, how much are their together?")

Example 2:
Generated Command:
execution = tool.execute(query=["Methanol", "function of hyperbola",
"Fermat’s Last Theorem"])

FIX

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.1.3 EXECUTION VERIFIER

Instruction for Execution Verifier

Task: Evaluate if the current memory is complete and accurate enough to answer the query, or if more
tools are needed.

Context:

Query: {Question}
Available Tools: [Base Generator, Python Coder, Google Search, Wikipedia Search, Web Search]
Toolbox Metadata: [Tool Metadata1, Tool Metadata2, ...]
Memory (Tools Used & Results): {Actions from Memory}

Instructions:
1. Review the original query, the initial analysis, and the complete history of actions and results in the

memory.
2. Does the accumulated information fully address all aspects of the query?
3. Are there any unanswered sub-questions or missing pieces of information?
4. Are there any inconsistencies or contradictions between different steps?
5. Is any information ambiguous, potentially hallucinated, or in need of verification?
6. Determine if any unused tools could provide critical missing information based on their metadata.

Final Determination:
If the memory is sufficient to form a complete and accurate answer, explain why and conclude with
“Conclusion: STOP”.
If more information is needed, clearly state what is missing, suggest which tool(s) could help, and con-
clude with “Conclusion: CONTINUE”.

Rules:
The response must end with either exactly “Conclusion: STOP” or “Conclusion: CONTINUE”.
Do not include any text after the conclusion statement.
Your justification must be concise and directly tied to the query and memory.

FIX

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.1.4 SOLUTION GENERATOR

Instruction for Solution Generator

Task: Generate a concise final answer to the query based on all provided context.

Context:
Query: {Question}
Initial Analysis: {Query Analysis}
Actions Taken: {Actions from Memory}

Instructions:
1. Carefully review the original user query, the initial analysis, and the complete sequence of actions and

their results.
2. Synthesize the key findings from the action history into a coherent narrative.
3. Construct a clear, step-by-step summary that explains how each action contributed to solving the query.
4. Provide a direct, precise, and standalone final answer to the original query.

Output Structure:
1. Process Summary: A clear, step-by-step breakdown of how the query was addressed. For each action,

state its purpose (e.g., “To verify X”) and summarize its key result or finding in one sentence.
2. Answer: A direct and concise final answer to the query. This should be a self-contained statement that

fully resolves the user’s question.

Rules:
The response must follow the exact two-part structure above.
The Process Summary should be informative but concise, focusing on the logical flow of the solution.
The Answer must be placed at the very end and be clearly identifiable.
Do not include any additional sections, explanations, or disclaimers beyond the specified structure.

FIX

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E.1.5 EVOLVING MEMORY

Example Memory Entry
"Query": Where is the largest shopping mall besides Tokyo’s biggest
metropolitan station?

"Action Turn 1": {
"Tool Name": "Wikipedia Search",
"Sub-Goal": "Retrieve detailed information about Tokyo‘s metropolitan

area from Wikipedia.",
"Command": "execution = tool.execute(query="Tokyo metropolitan area

details")",
"Result": "The Greater Tokyo Area is the largest metropolitan area in the

world...",
"Verification Status": "

Brief Review of the Query, Initial Analysis, and Previous Memory.
Assessment of Completeness and Accuracy.
Conclusion: The memory is not complete and accurate enough to answer

the query. Additional tools are needed to verify or generate more solutions.
Final Determination: CONTINUE"

},

"Action Turn 2": {
...

},

...

"Action Turn t": {
...
"Verification Status": "

Brief Review of the Query, Initial Analysis, and Previous Memory.
Assessment of Completeness and Accuracy. (Including Time Dilation

Calculation, Geographic Precise, Inconsistencies or Contradictions, Unit
Conversion, etc.)

Conclusion: The memory is complete and accurate enough to answer the
query. No additional tools are needed to verify or generate more solutions.

Final Determination: STOP"
}

FIX
Our shared evolving memory system creates a deterministic, structured record that captures the
reasoning process across three integrated agents: the Action Planner, Tool Executor, and Execution
Verifier. By sequentially stacking crucial information from each action step, the system enables
transparent state tracking, controllable behavior, and bounded context growth.

The memory reading and matching process employs regular expressions to parse outputs generated
by different system components, adhering to standardized formats defined in their respective com-
ponent instructions. For the Action Planner, we use a relatively permissive regular expression to
extract key information. Specifically, it matches the content immediately following: Sub-Goal as
the sub-goal and the content following; Tool Name as the selected tool. This extracted information
is then used to populate the next memory entry. For the Tool Executor, the regular expression is de-
signed to capture the entire Command line starting with execution = tool.execute(...).
Additionally, the value passed to the Query parameter within this command is parsed and saved into
the memory for future reference. All results returned by the tools are directly stored in the Result
field of the memory. The Verification Status is extracted from Execution Verifier, including a brief
analysis of the current tool result and previous memory, and then it gives a conclusion whether the
loop needs to be CONTINUE or STOP.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.2 TOOLSET METADATA

This section details the implementation and metadata of the tools used in our main results. We
employ a suite of specialized tools, each designed for distinct tasks. Below, we present core metadata
for each tool, including its functionality, input/output schema, limitations, and best practices.

E.2.1 BASE GENERATOR

Tool Metadata of Base Generator

Description: A generalized tool that takes query from the user, and answers the question step by step to
the best of its ability. It can also accept an image.

Input: query: str - The query that includes query from the user to guide the agent to generate response.

Output: str - The generated response to the original query

Demo Commands:

Command:
execution = tool.execute(query="Summarize the following text in a few
lines")

Description: Generate a short summary given the query from the user.

Limitation

The Base Generator may provide hallucinated or incorrect responses.

Best Practice

1. Use it for general queries or tasks that don’t require specialized knowledge or specific tools in the
toolbox.

2. Provide clear, specific query.

3. Use it to answer the original query through step by step reasoning for tasks without complex or
multi-step reasoning.

4. For complex queries, break them down into subtasks and use the tool multiple times.

5. Use it as a starting point for complex tasks, then refine with specialized tools.

6. Verify important information from its responses.

LLM Engine Required: True

FIX

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E.2.2 PYTHON CODER

Tool Metadata of Python Coder

Description: A tool that generates and executes simple Python code snippets for basic arithmetical calcu-
lations and math-related problems. The generated code runs in a highly restricted environment with only
basic mathematical operations available.

Input: query: str - A clear, specific description of the arithmetic calculation or math problem to be solved,
including any necessary numerical inputs.

Output: dict - A dictionary containing the generated code, calculation result, and any error messages.

Output prompt: Given a query, generate a Python code snippet that performs the specified operation on
the provided data. Please think step by step. Ensure to break down the process into clear, logical steps.
Make sure to print the final result in the generated code snippet with a descriptive message explaining what
the output represents. The final output should be presented in the following format:
‘‘‘ python
<code snippet>
‘‘‘

Demo Commands:

Command:
execution = tool.execute(query="Find the sum of prime numbers up to 50")

Description: Generate a Python code snippet to find the sum of prime numbers up to 50.

Command:
query=" Given the list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], calculate the sum of
squares of odd numbers"
execution = tool.execute(query=query)

Description: Generate a Python function for a mathematical operation on a given list of numbers.

Limitation

1. Restricted to basic Python arithmetic operations and built-in mathematical functions.

2. Cannot use any external libraries or modules, including those in the Python standard library.

3. Limited to simple mathematical calculations and problems.

4. Cannot perform any string processing, data structure manipulation, or complex algorithms.

5. No access to any system resources, file operations, or network requests.

6. Cannot use ‘import’ statements.

7. All calculations must be self-contained within a single function or script.

8. Input must be provided directly in the query string.

9. Output is limited to numerical results or simple lists/tuples of numbers.

10. Output should be kept to a single numerical result or a simple list/tuple of numbers.

11. DO NOT generate loop output.

Best Practice

1. Provide clear and specific queries that describe the desired mathematical calculation.

2. Include all necessary numerical inputs directly in the query string.

3. Keep tasks focused on basic arithmetic, algebraic calculations, or simple algorithms.

4. Ensure all required numerical data is included in the query.

5. Verify that the query only involves mathematical operations and does not require any data pro-
cessing or complex algorithms.

6. Review generated code to ensure it only uses basic Python arithmetic operations and built-in math
functions.

LLM Engine Required: True

FIX

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

E.2.3 GOOGLE SEARCH

Tool Metadata of Google Search

Description: A web search tool powered by Google Search that provides real-time information from the
internet with citation support.

Input: query: str - The search query to find information on the web.

Input: add citations: bool - Whether to add citations to the results. If True, the results will be formatted
with citations. By default, it is True.

Output: str - The search results of the query.

Demo Commands:

Command:
execution = tool.execute(query="What is the capital of France?")

Description: Search for general information about the capital of France with default citations enabled.

Command:
execution = tool.execute(query="Who won the euro 2024?", add citations=False)

Description: Search for information about the Euro 2024 winner without citations.

Command:
execution = tool.execute(query="Physics and Society article arXiv August 11,
2016", add citations=True)

Description: Search for specific academic articles with citations enabled.

Limitation

1. This tool is only suitable for general information search.

2. This tool contains less domain-specific information.

3. This tool is not suitable for searching and analyzing videos on YouTube or other video platforms.

Best Practice

1. Choose this tool when you want to search for general information about a topic.

2. Choose this tool for question types of query, such as “What is the capital of France?” or “Who
invented the telephone?”.

3. The tool will return summarized information.

4. This tool is more suitable for definition, world knowledge, and general information search.

LLM Engine Required: False

FIX

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

E.2.4 WIKIPEDIA SEARCH

Wikipedia search will first call Wikipedia API to retrieve relevant URLs with snippets. Then the
RAG (Retrieval-Augmented Generation) process begins by extracting raw text content from the
given webpage URL, cleaning it to remove HTML elements and retain only meaningful text. This
content is then split into overlapping chunks of approximately 200 words each, with a 20-word
overlap to preserve context across segments from the first 1M words in each URL. Next, both
the user’s query and the document chunks are embedded into the vector space using the OpenAI
text-embedding-3-small1 model. The system computes the cosine similarity between the
query embedding and each chunk embedding to rank the chunks by relevance. We set that the top
10 most similar chunks are selected and passed forward as context. And a base LLM engine will
summarize the extracted context.

Wikipedia search will first call Wikipedia API to retrieve relevant URLs with snippets.

Tool Metadata of Wikipedia Search

Description: A tool that searches Wikipedia and returns relevant pages with their page titles, URLs, ab-
stract, and retrieved information based on a given query.

Input: query: str - The search query for Wikipedia.

Output: dict - A dictionary containing search results, all matching pages with their content, URLs, and
metadata.

Demo Commands:
Command:
execution = tool.execute(query="What is the exact mass in kg of the moon")

Description: Search Wikipedia and get the information about the mass of the moon.

Command:
execution = tool.execute(query="Funtion of human kidney")

Description: Search Wikipedia and get the information about the function of the human kidney.

Command:
execution = tool.execute(query="When was the first moon landing?")

Description: Search Wikipedia and get the information about the first moon landing.

Limitation

1. It is designed specifically for retrieving grounded information from Wikipedia pages only.

2. The returned information accuracy depends on Wikipedia’s content quality.

Best Practice

1. Use specific, targeted queries rather than broad or ambiguous questions.

2. If initial results are insufficient, examine the “other pages” section for additional potentially rel-
evant content.

3. Use this tool as part of a multi-step research process rather than a single source of truth.

4. You can use the Web Search to get more information from the URLs.

LLM Engine Required: True

FIX

1https://platform.openai.com/docs/models/text-embedding-3-small

33

https://platform.openai.com/docs/models/text-embedding-3-small

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

E.2.5 WEB SEARCH

Web search will directly access the URL in the query. Then the RAG (Retrieval-Augmented Gener-
ation) process begins by splitting content from the page into overlapping chunks of approximately
200 words each, with a 20-word overlap to preserve context across segments from the first 1M words
in each URL. Next, both the user’s query and the document chunks are embedded into the vector
space using the OpenAI text-embedding-3-small2 model. The system computes the cosine similarity
between the query embedding and each chunk embedding to rank the chunks by relevance. We set
that the top 10 most similar chunks are selected and passed forward as context. And a base LLM
engine will summarize the extracted context.

Tool Metadata of Web Search

Description: A specialized tool for answering questions by retrieving relevant information from a given
website using RAG (Retrieval-Augmented Generation).

Input: query: str - The search query for the website.

Input: url: str - The URL of the website to retrieve information from.

Output: str - The answer to the user’s query based on the information gathered from the website.

Demo Commands:
Command:
execution = tool.execute(query="What is the exact mass in kg of the moon?",
url="https://en.wikipedia.org/wiki/Moon")

Description: Retrieve information about the moon’s mass from Wikipedia.

Command:
execution = tool.execute(query="What are the main features of Python
programming language?", url="https://www.python.org/about/apps/")

Description: Get information about Python features from the official website.

Limitation

1. Requires valid URLs that are accessible and contain text content.

2. May not work with JavaScript-heavy websites or those requiring authentication.

3. Performance depends on the quality and relevance of the website content.

4. May return incomplete or inaccurate information if the website content is not comprehensive.

5. Limited by the chunking and embedding process which may miss context.

6. Requires OpenAI API access for embeddings and LLM generation.

Best Practice

1. Use specific, targeted queries rather than broad questions.

2. Ensure the URL is accessible and contains relevant information.

3. Prefer websites with well-structured, text-rich content.

4. For complex queries, break them down into smaller, specific questions.

5. Verify important information from multiple sources when possible.

6. Use it as part of a multi-step research process rather than a single source of truth.

7. It is highly recommended to use this tool after calling other web-based tools (e.g., Google Search,
Wikipedia Search, etc.) to get the real, accessible URLs.

LLM Engine Required: True

FIX

2https://platform.openai.com/docs/models/text-embedding-3-small

34

https://platform.openai.com/docs/models/text-embedding-3-small

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E.3 LLM-BASED JUDGING

We employ GPT-4o as our judge model using a two-step “analyze-then-judge” instruction paradigm
to ensure both accuracy and efficiency.

Reward Function Instruction in Training

Task: Determine if the Model Response is equivalent to the Ground Truth.

Instructions:
1. Extract: Isolate the final answer from the Model Response, ignoring all reasoning steps. Look specif-

ically for content within ... or the concluding statement.

2. Normalize & Compare: Assess equivalence after normalization:

3. Mathematical Answers: Must be mathematically identical (e.g., 1
2

is equivalent to 0.5).

4. Numerical/Textual Answers: Ignore formatting (commas, spaces), case sensitivity, and extraneous
units/currency (e.g., “1,000” == “1000”, “Paris” == “PARIS”).

5. Multiple Choice Questions (MCQ): The answer must match either the correct option’s content (e.g.,
“Paris”) or its identifier (e.g., “A” or “1st”).

6. Verdict: Return “True” only if the normalized answers are semantically or mathematically equivalent.

Inputs:
Question: {Question}
Model Response: {Final Response from Solution Generator}
Ground Truth: {GT}

Output Format: Present your response in the following structured format. Do not include any extra text
or explanations. <analysis>: Brief analysis of the comparison.
<true false>: “True” or “False”.

FIX

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F CASE STUDIES

In this section, we conduct a case study to demonstrate how our AGENTFLOW, coherent with
Flow-GRPO, enhances problem-solving performance with greater elegance, efficiency, and robust-
ness. We present solution comparisons showing brief outputs from memory of the Action Planner
(Qwen2.5-7B-Instruct) before (w/o) tuning by Flow-GRPO and after (w/) Flow-GRPO tuning, with
the methodology detailed in §3.2.

F.1 EXAMPLE 1: EFFICIENT SEARCH FOR SIMPLE TASKS

This case demonstrates that, with Flow-GRPO tuning, the Action Planner can effectively leverage
the search engine to retrieve correct answers for simple tasks in a highly efficient manner—unlike
the untuned baseline, which requires multiple trials.

Example from # GameOf24

Question: Using the numbers [1, 1, 1, 13], create an expression that equals 24. You must use basic
arithmetic operations (+, -, *, /) and parentheses.

Answer: (13-1)*(1+1)

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1:
• Tool: Google Search
• Sub-goal: Find a valid arithmetic expression that equals 24 using the numbers [1, 1, 1, 13].
• Command:
tool.execute(query="[1, 1, 1, 13] arithmetic expression to get 24")

• Result: Here’s an arithmetic expression using the numbers 1, 1, 1, and 13 to get 24: (13 - 1) * (1 +
1) = 24

Execution Verifier: PASS, STOP

Solution Generator: The arithmetic expression is ((13− 1)× (1 + 1)) = 24.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:
• Tool: Python Coder
• Sub-goal: Generate and test all possible combinations of the numbers [1, 1, 1, 13] using basic

arithmetic operations and parentheses to find an expression that equals 24.
• Command:
tool.execute(query="[1, 1, 1, 13] execution = (1 * (13 - 1 - 1))")

• Result:
Define the values
value list = [1, 1, 1, 13]
operation result = 1 * (13 - 1 - 1)
Print the result with a descriptive message
print(f"The result of the operation is: operation result")

The result of the operation is: 11

Action Step 2:
• Tool: Python Coder
• Sub-goal: Generate and test all possible combinations of the numbers [1, 1, 1, 13] using basic

arithmetic operations and parentheses to find an expression that equals 24.
• Command:
tool.execute(query="[1, 1, 1, 13] -> ((1 + 1 + 1) * 13)")

• Result: Error: unexpected indent (<string>, line 2).

Action Steps 3-8:
• Tool: No matched tool given (Tool Not Found)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

• Sub-goal: Generate and test all possible combinations of the numbers [1, 1, 1, 13] using basic
arithmetic operations and parentheses to find an expression that equals 24.

• Command: Not command is generated due to the tool not found.
• Result: Not result is generated due to the tool not found.
• Note: These steps are identical repetitions where the agent failed to find a matching tool.

Execution Verifier: STOP, Tool Not Found

Solution Generator: The agent incorrectly concludes that (1 + 1 + 1)× 13 = 24.

FIX
F.2 EXAMPLE 2: SPONTANEOUS BRUTE-FORCE

This case demonstrates that, when tuned with Flow-GRPO, the Action Planner first attempts several
solutions, recognizes their ineffectiveness, resorts to a brute-force approach, and finally verifies the
result using a search engine.

Example from # GameOf24

Question: Using the numbers [1, 1, 6, 9], create an expression that equals 24. You must use basic
arithmetic operations (+, -, *, /) and parentheses.

Answer: (1+1)*9+6

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1: Initial Attempt
• Tool: Python Coder
• Sub-goal: Generate and test all possible arithmetic expressions using the numbers [1, 1, 6, 9] exactly

once to check if any combination equals 24.
• Command:
tool.execute(query="Using the numbers [1, 1, 6, 9], create an expression
that equals 24 using basic arithmetic operations and parentheses.")

• Result:
Given numbers
numbers = [1, 1, 6, 9]
Calculate the expression
result = (numbers[0] + numbers[1]) * (numbers[3] - numbers[2])
Print the result
print(f"The result of the expression (numbers[0] + numbers[1]) *
(numbers[3] - numbers[2]) is: result")

The result of the expression (1 + 1) * (9 - 6) is: 6

Action Step 2: Tool Error
• Tool: Python Coder
• Sub-goal: Generate and test all possible permutations of the numbers with different operator place-

ments to find an expression that equals 24.
• Command:
tool.execute(query="Using the numbers [1, 1, 6, 9], create an expression
with +,-,*,/ that equals 24")

• Result: Error: eval() arg 1 must be a string, bytes or code object

Action Step 3: Second Attempt
• Tool: Python Coder
• Sub-goal: Generate all possible combinations of the four numbers with every permutation of oper-

ators (+,-,*,/) to find a valid equation resulting in exactly 24.
• Command:
tool.execute(query="Using the numbers [1, 1, 6, 9] create an expression
with +,-,*,/ that equals to ’24’")

• Result:
Given numbers
numbers = [1, 1, 6, 9]

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Calculate the expression
result = (numbers[2] - numbers[0]) * (numbers[3] / numbers[1]) /
numbers[1]
Print the result
print(f"The result of the expression is: result")

The result of the expression is: 45.0

Action Step 4: Systematic Search (Breakthrough)
• Tool: Python Coder
• Sub-goal: Generate and evaluate all possible permutations of the four numbers with every permuta-

tion of operators (+,-,*,/) to find a valid equation resulting in exactly 24.
• Command:
tool.execute(query="Using the numbers [1, 1, 6, 9] create an expression
that equals 24 using +,-,/,*")

• Result: Successfully found valid expressions: The expression (1+1)*9+6 equals 24. The expres-
sion 6+(1+1)*9 equals 24. The expression 6+(9*(1+1)) equals 24. The expression 9*(1+1)+6 equals
24.

Action Step 5: Confused Verification
• Tool: Python Coder
• Sub-goal: Simplify and verify if any minor adjustments to the existing promising expression can

achieve an exact match of 24.
• Command:
tool.execute(query="Using the numbers [1, 1, 6, 9] and basic arithmetic
operations create an expression that equals 24: (9 * (6 * (1 + 1)))")

• Result: The result of the expression (9 * (1 + 1) * 6) is: 108

Action Step 6: Final Verification
• Tool: Google Search
• Sub-goal: Search online for examples or discussions related to creating expressions using given

numbers that equal a target value.
• Command:
tool.execute(query="using the numbers [1, 1, 6, 9] create an expression
that equals 24", add citations=True)

• Result: Here’s an expression using the numbers that equals 24: (1 + 1) * 9 + 6 = 24

Execution Verifier: PASS, STOP (via exhaustive search and verification)

Solution Generator: After a multi-step process of trial, error, and verification, the final correct
expression is (1 + 1) * 9 + 6 = 24.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:
• Tool: Python Coder
• Sub-goal: Generate and test Python code snippets to find an arithmetic expression using the numbers

[1, 1, 6, 9] exactly once that equals 24.
• Command:
tool.execute(query="Using the numbers [1, 1, 6, 9], create an expression
that equals 24 using basic arithmetic operations and parentheses.")

• Result:
Define the numbers
numbers = [1, 1, 6, 9]
Calculate the expression
result = (6 * 9) - ((1 + 1) * 15)
Print the result with a descriptive message
print("The result of the expression is:", result)

The result of the expression is: 24

Execution Verifier: STOP

Solution Generator: The agent incorrectly concludes the answer is (6× 9)− ((1+ 1)× 15), failing
to notice it used the number 15, which was not in the allowed input set.

FIX

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

F.3 EXAMPLE 3: A GOOD INITIAL PLAN IS ESSENTIAL

This case demonstrates that a well-crafted initial search with a highly relevant query is far more
effective than issuing numerous wrong paths. When tuned with Flow-GRPO, the Action Planner in
AGENTFLOW can identify the optimal search engine and formulate the most effective query, leading
to a correct and targeted answer in a single trial.

Example from # GAIA

Question: Assuming scientists in the famous youtube video The Thinking Machine (Artificial Intelligence
in the 1960s) were interviewed the same year, what is the name of the scientist predicting the sooner
thinking machines or robots? Answer using the format First name Last name.

Answer: Claude Shannon

Success Case : AGENTFLOW w/ Flow-GRPO

Action Turn 1:
• Tool: Google Search
• Sub-goal: Search for details on “The Thinking Machine” YouTube video and identify key figures

making predictions about AI.
• Command:
tool.execute(query="Assuming scientists in the famous youtube video The
Thinking Machine (Artificial Intelligence in the 1960s) were interviewed
the same year, what is the name of the scientist predicting sooner
thinking machines or robots?")

• Result: The scientist who predicted the sooner emergence of thinking machines or robots in “The
Thinking Machine” video from the 1960s was Claude Shannon. He stated, “I confidently expect
that within 10 or 15 years we will find emerging from the laboratories something not too far from
the robots of science-fiction fame.” This prediction was made in the 1961 documentary, which was
produced by CBS to honor MIT’s 100th birthday.

Execution Verifier: PASS, STOP

Solution Generator: The scientist who made the prediction is Claude Shannon.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Turn 1:
• Tool: Web Search
• Sub-goal: Retrieve information from the YouTube video “The Thinking Machine” (Artificial Intel-

ligence in the 1960s) to identify the name of the scientist who made the prediction about thinking
machines or robots.

• Command:
tool.execute(query="Who predicted the sooner thinking machines or robots
in the YouTube video ’The Thinking Machine’ (Artificial Intelligence in
the 1960s)?", url="https://www.youtube.com/watch?v=your video id")

• Result: The reference information provided does not contain any details regarding predictions made
about thinking machines or robots in the YouTube video ’The Thinking Machine’ (Artificial Intelli-
gence in the 1960s). Therefore, I cannot provide an answer to the query.

Action Turn 2:
• Tool: Google Search
• Sub-goal: Find the name of the scientist who predicted the sooner development of thinking machines

or robots in the YouTube video “The Thinking Machine” (Artificial Intelligence in the 1960s).
• Command:
tool.execute(query="In the YouTube video The Thinking Machine (Artificial
Intelligence in the 1960s), which scientist predicted the sooner
development of thinking machines or robots?", add citations=True)

• Result: In the YouTube video “The Thinking Machine (Artificial Intelligence in the 1960s),” Jerome
Wiesner, then Director of the Research Laboratory of Electronics at MIT, predicted the sooner de-

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

velopment of thinking machines. He stated, “if you come back in four or 5 years I’ll say ‘Sure they
really do think.”’

Action Turn 3:
• Tool: Google Search
• Sub-goal: Find the name of the scientist who predicted the sooner development of thinking machines

or robots in the YouTube video “The Thinking Machine” (Artificial Intelligence in the 1960s).
• Command:
tool.execute(query="In the YouTube video The Thinking Machine (Artificial
Intelligence in the 1960s), which scientist predicted the sooner
development of thinking machines or robots?", add citations=True)

• Result: In the YouTube video “The Thinking Machine (Artificial Intelligence in the 1960s),” Pro-
fessor Jerome B. Wiesner, director of the research laboratory of electronics at MIT, predicted the
sooner development of thinking machines. He stated, “I suspect if you come back in four or 5 years
I’ll say ‘Sure they really do think.”’ Another scientist in the video confidently expected “within a
matter of 10 or 15 years something will emerge from the laboratories which is not too far from robot
a science fiction fan.”

Action Turn 4:
• Tool: Google Search
• Sub-goal: Find the exact year of the interview in the YouTube video “The Thinking Machine”

(Artificial Intelligence in the 1960s) where Jerome B. Wiesner made the prediction about thinking
machines or robots.

• Command:
tool.execute(query="In the YouTube video The Thinking Machine (Artificial
Intelligence in the 1960s), which scientist predicted the sooner
development of thinking machines or robots?", add citations=True)

• Result: In the YouTube video “The Thinking Machine (Artificial Intelligence in the 1960s),” a
scientist confidently predicted that “within a matter of 10 or 15 years something will emerge from
the laboratories which is not too far from the robot of science fiction fame.” While the video features
interviews with several pioneering scientists in artificial intelligence, including Jerome Wiesner,
Oliver Selfridge, and Claude Shannon, the specific speaker for this particular prediction about the
emergence of robots within 10 to 15 years is not explicitly named in the provided transcripts. Jerome
Wiesner, one of the co-hosts, also made a prediction, stating he suspected that in “four or 5 years”
machines would “really do think.”

Action Turn 5:
• Tool: Google Search
• Sub-goal: Find the exact year of the interview in the YouTube video “The Thinking Machine”

(Artificial Intelligence in the 1960s).
• Command:
tool.execute(query="When was the YouTube video ’The Thinking Machine’
released?", add citations=True)

• Result: The original television program titled ‘The Thinking Machine’ aired on the CBS TV net-
work on October 26, 1960. It was a special program produced by CBS News in conjunction with the
Massachusetts Institute of Technology (MIT). This documentary explored early concepts of artifi-
cial intelligence and computers. While the original broadcast was in 1960, various versions of ‘The
Thinking Machine’ have been uploaded to YouTube at different times.

Action Turn 6:
• Tool: Google Search
• Sub-goal: Find the exact year of the interview in the YouTube video “The Thinking Machine” (Arti-

ficial Intelligence in the 1960s) where Jerome Wiesner made his prediction about thinking machines
or robots.

• Command:
tool.execute(query="In which year did Jerome Wiesner make his prediction
about thinking machines or robots in the YouTube video ’The Thinking
Machine’ (Artificial Intelligence in the 1960s)?", add citations=True)

• Result: Jerome Wiesner made his prediction about thinking machines or robots in the YouTube
video ‘The Thinking Machine’ (Artificial Intelligence in the 1960s) in 1960. The documentary,
which features Wiesner, originally aired on October 26, 1960, as part of a CBS series titled “Tomor-
row”. In the video, Wiesner stated his confident expectation that “within a matter of 10 or 15 years
something will emerge from the laboratories which is not too far from robot a science fiction fan”.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Execution Verifier: STOP, Initial Tool Failure & Inefficient Search Path

Solution Generator: The answer is Jerome B. Wiesner. However, the initial direct video search failed,
leading to multiple, somewhat redundant Google searches to extract the information.

FIX

F.4 EXAMPLE 4: ROBUST SELF-CORRECTION AND ADAPTATION

This side-by-side comparison illustrates the critical impact of Flow-GRPO tuning on strategic tool
usage. The trained AGENTFLOW agent demonstrates adaptive planning—recovering from failed
searches, refining input formulations, and ultimately achieving a correct solution in a single effec-
tive trial. In contrast, the untrained agent, despite accessing the correct information early, fails to
properly utilize the Python Coder tool and becomes trapped in a repetitive error loop, unable to
learn or adjust. This highlights Flow-GRPO’s role in enabling not just tool selection, but strategic
resilience and goal-directed reasoning.

Example from # GAIA

Question: Compute the check digit the Tropicos ID for the Order Helotiales would have if it were an
ISBN-10 number.

Answer: 3

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1:
• Tool: Wikipedia Search
• Sub-goal: Retrieve the Tropicos ID from the Wikipedia page on Helotiales.
• Command:
tool.execute(query="Tropicos ID of Order Helotiales")

• Result: No results found for query: Tropicos ID of Order Helotiales

Action Step 2:
• Tool: Google Search
• Sub-goal: Retrieve the Tropicos ID of Order Helotiales from a reliable online source.
• Command:
tool.execute(query="Tropicos ID of Order Helotiales")

• Result: The Tropicos ID for the Order Helotiales is 100370510.

Action Step 3:
• Tool: Python Coder
• Sub-goal: Write and execute a Python script to calculate the check digit for tropicos id as if it

were an ISBN-10 number.
• Command:
tool.execute(query="Calculate the check digit for the ISBN-10 number " +
tropicos id)

• Result: Error in execute tool command: name ’tropicos id’ is not defined

Action Step 4:
• Tool: Python Coder
• Sub-goal: Write and execute a Python script to calculate the check digit for tropicos id as if it

were an ISBN-10 number.
• Command:
tool.execute(query="Compute the check digit for 100370510 as an ISBN-10
number")

• Result:
def calculate check digit(isbn):

Extract the first 9 digits of the ISBN-10
isbn digits = [int(digit) for digit in isbn[:9]]

Calculate the sum of products

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

total sum = sum(position * digit for position, digit in
enumerate(isbn digits, start=1))

Determine the check digit
check digit = total sum % 11
if check digit == 10:

return ’X’
else:

return str(check digit)

Given ISBN-10 number
isbn 10 = "100370510"

Compute the check digit
check digit result = calculate check digit(isbn 10)

Print the final result
print(f"The check digit for the ISBN-10 number isbn 10 is
check digit result")

Printed output: The check digit for the ISBN-10 number 100370510 is 3

Action Step 5:
• Tool: Python Coder
• Sub-goal: Execute the existing Python script to calculate and print the check digit for tropicos id

as an ISBN-10 number.
• Command:
tool.execute(query="Compute the check digit for tropicos id 100370510 as an
ISBN-10 number")

• Result:
def calculate isbn10 check digit(tropicos id):

Step 1: Extract the first 9 digits of the Tropicos ID
isbn digits = tropicos id[:9]
Step 2: Initialize the sum for the check digit calculation
total sum = 0
Step 3: Calculate the sum of the products of each digit and its

position
for i, digit in enumerate(isbn digits, start=1):

total sum += i * int(digit)
check digit = total sum
If the check digit is 10, it is represented as ’X’
if check digit == 10:

check digit = ’X’
Step 5: Format the ISBN-10
isbn 10 = f"isbn digitscheck digit"
return isbn 10

Given Tropicos ID tropicos id = "100370510"
Step 6: Generate the ISBN-10 and print the result
isbn 10 = calculate isbn10 check digit(tropicos id)
print(f"The ISBN-10 number for the Tropicos ID tropicos id is: isbn 10")

Printed output: The ISBN-10 number for the Tropicos ID 100370510 is: 1003705103

Execution Verifier: PASS, STOP

Solution Generator: The check digit is 3, resulting in the full number 1003705103.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:
• Tool: Wikipedia Search
• Sub-goal: Retrieve the Tropicos ID of the Order Helotiales from Wikipedia.
• Command:
tool.execute(query="Tropicos ID for the Order Helotiales")

• Result: No results found for query: Tropicos ID for the Order Helotiales

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Action Step 2:
• Tool: Google Search
• Sub-goal: Retrieve the Tropicos ID of the Order Helotiales from a reliable web source.
• Command:
tool.execute(query="Tropicos ID for the Order Helotiales",
add citations=True)

• Result: The Tropicos ID for the Order Helotiales is 100370510.[1][2]

Action Steps 3-9:
• Tool: Python Coder
• Sub-goal: Calculate the check digit for the Tropicos ID 100370510 if it were an ISBN-10 number.
• Command:
tool.execute(query="Calculate the check digit for the ISBN-10 number
100370510")

• Result: Error: name ’isbn’ is not defined
• Note: Action Steps 3 through 9 all have identical subgoals, commands, and error results—the agent

is stuck in a repetitive error loop, unable to fix the variable naming issue.

Execution Verifier: STOP, Stuck in Repetitive Tool Error

Solution Generator: The Python tool failed repeatedly with the same ‘isbn’ variable error across
7 consecutive attempts (Steps 3-9). The agent was unable to recover from this error and failed to
calculate the check digit.

FIX
F.5 EXAMPLE 5: NEW COMBO: RETRIEVE WITH SPECIFIC URL

This case highlights how both agents eventually succeed, but with markedly different efficiency
and strategy. The Flow-GRPO-tuned AGENTFLOW agent learns to refine its queries effectively
and—upon recognizing the limitations of Wikipedia search—switches tools strategically to a tar-
geted and the most task-solving relevant web search, achieving success with minimal redundancy.
In contrast, the untrained agent persists in issuing dense, ineffective queries within the same tool de-
spite diminishing returns, only escaping the loop by eventually switching to Google Search. While
both reach the correct answer, the latter exhibits inefficient exploration and delayed adaptation;
furthermore, with no path consistency, underscoring Flow-GRPO’s role in fostering not just correct-
ness, but strategic focus and timely tool transition.

Example from # HotpotQA

Question: Which part of Handel’s Messiah covers the birth of a child who, according to the gospels of
Luke and Matthew, was born in Bethlehem?

Answer: Part I

Success Case: AGENTFLOW w/ Flow-GRPO

Action Steps 1-2: Initial Failures
• Tool: Wikipedia Search
• Sub-goal: Retrieve information about the part of Handel’s Messiah that refers to the birth of Jesus

in Bethlehem.
• Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of
Jesus in Bethlehem?")

• Result: Initial long-form queries failed to find relevant pages (returned irrelevant pages like ”His-
torical Jesus”, ”Advent”, ”Passion of Jesus”).

Action Step 3: Query Refinement
• Tool: Wikipedia Search
• Sub-goal: Identify the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethle-

hem.
• Command:
tool.execute(query="Handel’s Messiah birth of Jesus Bethlehem")

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

• Result: This successfully identified relevant pages like “Structure of Handel’s Messiah” and “Mes-
siah Part I”.

Action Steps 4-6: Further Search
• Tool: Wikipedia Search
• Sub-goal: Retrieve the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethle-

hem.
• Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of
Jesus in Bethlehem?")
and
tool.execute(query="birth of Jesus in Handel’s Messiah")

• Result: Agent gets briefly confused, re-runs a failed query, but then another refined query again
locates the main “Messiah (Handel)” Wikipedia pages.

Action Step 7: Tool Switching (Breakthrough)
• Tool: Web Search (on a specific URL)
• Sub-goal: Retrieve the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethle-

hem.
• Command:
tool.execute(query="Which part of Handel’s Messiah covers the birth of
Jesus in Bethlehem?",
url="https://en.wikipedia.org/wiki/Handel%27s Messiah")

• Result: Success! The tool extracted the answer from the page: The part of Handel’s Messiah that
covers the birth of Jesus in Bethlehem is found in Part I, specifically in the scene that includes the
prophecy of Christ’s birth. This section features the well-known chorus “For unto us a child is born,”
which celebrates the nativity of Jesus.

Execution Verifier: PASS, STOP

Solution Generator: The relevant section is Part I, which includes the famous chorus “For unto us
a child is born”.

Success Case but stuck in dense information: AGENTFLOW w/o Flow-GRPO

Action Step 1: Initial Wikipedia Search
• Tool: Wikipedia Search
• Sub-goal: Retrieve information about the part of Handel’s Messiah that refers to the birth of Jesus

in Bethlehem.
• Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of
Jesus in Bethlehem?")

• Result: Returned irrelevant pages (e.g., “Historical Jesus”, “Advent”). (No direct answer)

Action Step 2: Refined Wikipedia Search
• Tool: Wikipedia Search
• Sub-goal: Retrieve information about the specific part of Handel’s Messiah that mentions the birth

of Jesus in Bethlehem.
• Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of
Jesus in Bethlehem?")

• Result: Still returned mostly irrelevant pages, but ”Messiah Part I” appeared in other suggestions.
(Hint found, but no direct answer)

Action Step 3: Keyword Wikipedia Search
• Tool: Wikipedia Search
• Sub-goal: Retrieve information about the specific part of Handel’s Messiah that mentions the birth

of Jesus in Bethlehem.
• Command:
tool.execute(query="Handel’s Messiah birth of Jesus Bethlehem")

• Result: Still no direct relevant pages, but “Structure of Handel’s Messiah” and “Messiah Part I”
again appeared. (Still no direct answer)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Action Steps 4-5: Persistent Wikipedia Queries
• Tool: Wikipedia Search
• Sub-goal: Retrieve the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethle-

hem.
• Command:
tool.execute(query="Which part of Handel’s Messiah refers to the birth of
Jesus in Bethlehem?")
tool.execute(query="Handel’s Messiah birth of Jesus Bethlehem")

• Result: Consistently returned irrelevant pages like “Historical Jesus” and “Christmas Oratorio”.
(Wikipedia tool stuck/ineffective for direct answer)

Action Step 6: External Search (Breakthrough)
• Tool: Google Search
• Sub-goal: Find the specific part of Handel’s Messiah that mentions the birth of Jesus in Bethlehem.
• Command:
tool.execute(query="Which part of Handel’s Messiah covers the birth of
a child who, according to the gospels of Luke and Matthew, was born in
Bethlehem?", add citations=True)

• Result: Successfully found the answer: Handel’s Messiah addresses the birth of a child born in
Bethlehem primarily in Part I of the work. Key elements within Part I include the chorus “For unto
us a child is born” and the scene depicting the annunciation to the shepherds.

Execution Verifier: PASS, STOP (via query refinement and external search after Wikipedia limita-
tions)

Solution Generator: The part of Handel’s Messiah referring to the birth of Jesus in Bethlehem is
found in Part I, particularly the chorus “For unto us a child is born” and the scene depicting the
annunciation to the shepherds.

FIX

F.6 EXAMPLE 6: RAPID AND CORRECT PHYSICS CALCULATION

This GPQA example reveals a fundamental difference in reasoning quality between the tuned
and untuned agents. The Flow-GRPO-enhanced AGENTFLOW correctly identifies the core chal-
lenge—relativistic time dilation over interstellar distances—and applies the appropriate physics-
based computation in minimal steps, arriving at the correct answer (81 years) efficiently. In contrast,
the untrained agent misinterprets the astronaut’s age as the travel duration, leading to a cascade
of erroneous calculations across multiple tool calls. Despite eventually retrieving the distance via
search, it fails to integrate this information coherently or recognize its conceptual mistake. This
highlights that Flow-GRPO not only improves tool usage efficiency but also promotes correct prob-
lem formulation, enabling the agent to distinguish between proper time, coordinate time, and mission
constraints—a critical capability for complex scientific reasoning.

Example from # GPQA

Question: An intelligent civilization in the Large Magellanic Cloud has engineered an extraordinary
spacecraft capable of traveling at a substantial fraction of the speed of light. The average lifetime of these
aliens is roughly 150 solar years. Now, having Earth as their destination in mind, they are determined to
travel with this spacecraft at a constant speed of 0.99999987*c, where c is the speed of light. Approxi-
mately, how long will it take for their 22 years old astronaut (from the point of view of the astronaut) to
reach the Earth using this incredibly fast spacecraft?
Choices:
A. 81 years
B. 77 years
C. 72 years
D. The astronaut will die before reaching to the Earth.

Answer: A. 81 years

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1:
• Tool: Python Coder
• Sub-goal: Calculate the time it takes for the astronaut to reach Earth from the perspective of the

astronaut.
• Command:
tool.execute(query="A spacecraft travels at a speed of 0.99999987*c, where
c is the speed of light. The distance to Earth is 165000 light-years. If
the astronaut is 22 years old, how long will it take for the astronaut to
reach Earth from the perspective of the astronaut? Using the formula time
= distance / speed, calculate the time dilation effect with the velocity
given and determine the perceived time for the astronaut.")

• Result:
import math

Constants
speed of light = 1 # Speed of light in arbitrary units
distance to earth = 165000 # Distance to Earth in light-years
astronaut age = 22 # Astronaut’s age in years
velocity factor = 0.99999987 # Velocity as a fraction of the speed of
light

Step 1: Calculate the time it takes for the spacecraft to travel to
Earth
travel time = distance to earth / velocity factor

Step 2: Calculate the Lorentz factor
lorentz factor = 1 / math.sqrt(1 - velocity factor**2)

Step 3: Calculate the perceived time for the astronaut
perceived time = travel time * lorentz factor

Print the results
print(f"The spacecraft will take travel time:.2f years to reach Earth.")
print(f"Due to time dilation, the astronaut will perceive
perceived time:.2f years passing.")

The spacecraft will take 165000.02 years to reach Earth. Due to time dilation, the astronaut will
perceive 323591675.56 years passing.

• Note: The calculation contains an error in the formula application. The correct approach should use
the inverse relationship for proper time calculation.

Execution Verifier: PASS, STOP

Solution Generator: Correct physics approach - properly calculated relativistic travel time consider-
ing distance and time dilation effects. Therefore, the correct choice is: A. 81 years.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:
• Tool: Python Coder
• Sub-goal: Generate and execute Python code to calculate the time experienced by the astronaut

using time dilation formula: t′ = t√
1− v2

c2

, where t is the travel time from a stationary observer’s

perspective, and v is 0.99999987 * c.
• Command:
tool.execute(query="Calculate the time experienced by an astronaut
using the time dilation formula: t’ = t / sqrt(1 - vˆ2/cˆ2), where t is
approximately 22 years (the lifespan of the astronaut) and v is 0.99999987

* c.")
• Result:

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Step 1: Define the constants
c = 299792458 # Speed of light in meters per second
v = 0.99999987 * c # Velocity of the astronaut as a fraction of the speed
of light

Step 2: Calculate the value inside the square root
value inside sqrt = 1 - (v ** 2 / c ** 2)

Step 3: Compute the time experienced by the astronaut
t prime = 22 / value inside sqrt # Lifespan of the astronaut in years

Step 4: Print the result
print(f"The time experienced by the astronaut is t prime:.6f years.")

• The time experienced by the astronaut is 84615390.151914 years. The time experienced by the
astronaut is 84615390.151914 years.

Action Step 2:
• Tool: Google Search
• Sub-goal: Find scientific references discussing similar scenarios regarding travel times under rela-

tivistic conditions.
• Command:
tool.execute(query="relativistic travel time calculations for speeds close
to the speed of light", add citations=True)

• Result: Retrieved detailed information about time dilation formulas and Lorentz factors, but this
theoretical knowledge was not properly integrated with the problem’s specific requirements.

Execution Verifier: STOP, Conceptual Error & Inefficient Multi-Step Process

Solution Generator: The answer is 84615390.151914 years. However, the approach incorrectly
treated the astronaut’s age as travel time, leading to multiple redundant calculations and a fundamen-
tally flawed methodology.

FIX

F.7 EXAMPLE 7: MULTI-SOURCE CROSS-VERIFICATION

The comparison highlights the effectiveness of a multi-tool, systematic reasoning approach en-
abled by Flow-GRPO. In the success case, the model leveraged sequential tool usage—starting with
Google Search, followed by targeted Wikipedia and Web Search—to accurately identify Gülçiçek
Hatun as Olivera Despina’s mother-in-law through verified historical sources. Each step built upon
prior findings, ensuring robustness and precision. In contrast, the failure case without Flow-GRPO
relied on a single, improperly executed Wikipedia query without task decomposition that resulted
in a timeout and no meaningful output, leading to premature termination. This demonstrates that
Flow-GRPO enhances reasoning trace reliability, tool coordination, and overall task completion in
complex knowledge retrieval scenarios.

Example from # 2Wiki

Question: Who is the mother-in-law of Olivera Despina?

Answer: Gülçiçek Hatun

Success Case: AGENTFLOW w/ Flow-GRPO

Action Step 1:
• Tool: Google Search
• Sub-goal: Perform a Google search for “Olivera Despina biography” to find relevant information

about her and possibly identify her husband’s family members.
• Command:
tool.execute(query="Olivera Despina biography", add citations=True)

• Result: Olivera Despina, also known as Mileva Olivera Lazarević or Despina Hatun, was a Serbian
princess born around 1372. She was the youngest daughter of Prince Lazar of Serbia and Princess

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Milica. In 1389, shortly after the Battle of Kosovo, Olivera was given in marriage to the Ottoman
Sultan Bayezid I as a peace offering between the Lazarević and Ottoman dynasties.

Action Step 2:
• Tool: Wikipedia Search
• Sub-goal: Identify any mention of Olivera’s parents or in-laws in Wikipedia articles.
• Command:
tool.execute(query="Who is the mother-in-law of Olivera Despina")

• Result: Returned pages about Bayezid I and other related historical figures, but no direct answer in
relevant pages.

Action Step 3:
• Tool: Google Search
• Sub-goal: Perform a Google search to find more detailed biographical information about Olivera

Despina and her family members.
• Command:
tool.execute(query="Who is the mother-in-law of Olivera Despina")

• Result: Olivera Despina’s mother-in-law was Gülçiçek Hatun. Olivera Despina was a Serbian
princess who married Ottoman Sultan Bayezid I after the Battle of Kosovo in 1389. Gülçiçek Hatun
was the first wife of Sultan Murad I and the mother of Bayezid I.

Execution Verifier: PASS, STOP

Solution Generator: Multi-tool verification approach successfully identified Gülçiçek Hatun as Oliv-
era Despina’s mother-in-law through systematic research.

Failure Case: AGENTFLOW w/o Flow-GRPO

Action Step 1:
• Tool: Google Search
• Sub-goal: Search for information about the film “Pugachev” (1978) and identify the director and

any awards they received.
• Command:
tool.execute(query="What is the award that the director of film Pugachev
(1978 Film) received?", add citations=True)

• Result: Alexey Saltykov, the director of the 1978 film “Pugachev,” received the title of People’s
Artist of the RSFSR in 1980 and the Order of the Badge of Honour for his contributions to cinema.
While the film “Pugachev” itself was honored with a special prize at the All-Union Film Festival in
1979, this award was given to the film rather than specifically to Saltykov for his direction of it.

• Note: This step shows the agent working on a completely different question than asked.

Action Step 2:
• Tool: Wikipedia Search
• Sub-goal: Retrieve information about the personal awards received by Alexey Saltykov for directing

the film “Pugachev” (1978).
• Command:
tool.execute(query="Alexey Saltykov awards for Pugachev 1978")

• Result: Returned pages about ”Alexey Saltykov (director)”, ”Catherine the Great”, and ”Imperial
Russian Army” but no relevant information about the original question.

Execution Verifier: STOP - Agent worked on wrong question, no useful information gathered for
original query

Solution Generator: Tool attempts failed to address the actual question about Olivera Despina’s
mother-in-law. The agent became confused and worked on an unrelated question about the Pugachev
film director.

FIX

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

G LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized LLMs as a writing assistance tool. The
primary role of the LLM was to provide feedback on wording, polish language for clarity and con-
ciseness, and identify potential grammatical errors or typos. All suggestions provided by the LLM
were carefully reviewed, edited, and approved by the authors to ensure the scientific accuracy and
integrity of the content. The LLM was not used for research ideation, experimental design, data
analysis, or the generation of core scientific arguments presented in this paper. The authors take full
responsibility for the final content of this work.

49

	Introduction
	Preliminary
	In-the-Flow Agentic System Optimization
	AgentFlow: An In-the-Flow Agentic System
	In-The-Flow Reinforcement Learning Optimization

	Experiments
	Experimental Setup
	Main Results
	Training Strategies on the Planner
	In-depth Analysis of Optimized Planning
	Training Efficiency Analysis
	Scaling Trends in AgentFlow

	Related Work
	Conclusion
	Training Algorithm of AgentFlow
	Theoretical Analysis of Flow-GRPO
	Preliminaries and Notation
	Equivalence Proof for Optimization Objectives
	Convergence Analysis

	Experimental Details
	Training Details
	Evaluation Details
	Compared Baselines
	Evaluation Datasets

	More Discussion about Experiment Results
	Main Result Analysis
	In-depth Analysis of Optimized Planning

	Instruction Templates in AgentFlow
	Modules and Memory
	Toolset Metadata
	LLM-based Judging

	Case Studies
	Example 1: Efficient Search for Simple Tasks
	Example 2: Spontaneous Brute-force
	Example 3: A Good Initial Plan is Essential
	Example 4: Robust Self-Correction and Adaptation
	Example 5: New Combo: Retrieve with Specific URL
	Example 6: Rapid and Correct Physics Calculation
	Example 7: Multi-Source Cross-Verification

	LLM Usage Statement

