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Abstract

Diffusion models have demonstrated remarkable progress in image generation qual-
ity, especially when guidance is used to control the generative process. However,
guidance requires a large amount of image-annotation pairs for training and is
thus dependent on their availability, correctness and unbiasedness. In this paper,
we eliminate the need for such annotation by instead leveraging the flexibility of
self-supervision signals to design a framework for self-guided diffusion models.
By leveraging a feature extraction function and a self-annotation function, our
method provides guidance signals at various image granularities: from the level of
holistic images to object boxes and even segmentation masks. Our experiments on
single-label and multi-label image datasets demonstrate that self-labeled guidance
always outperforms diffusion models without guidance and may even surpass guid-
ance based on ground-truth labels, especially on unbalanced data. When equipped
with self-supervised box or mask proposals, our method further generates visually
diverse yet semantically consistent images, without the need for any class, box, or
segment label annotation. Self-guided diffusion is simple, flexible and expected to
profit from deployment at scale.

1 Introduction

The image fidelity of diffusion models is spectacularly enhanced by conditioning on class labels [12].
Classifier guidance goes a step further and offers control over the alignment with the class label, by
using the classifier gradient to guide the image generation [12]. Classifier-free guidance [19] replaces
the dedicated classifier with a diffusion model that is trained by randomly setting the condition to the
special non-label class. This has proven a fruitful research line for several other condition modalities,
such as text [38; 32], image layout [36], visual neighbors [1], and image features [14]. However, all
these conditioning and guidance methods require ground-truth annotations. This is an unrealistic
and too costly assumption in many domains. For example, medical images require domain experts
to annotate very high-resolution data, which is infeasible to do exhaustively [29]. In this paper, we
propose to remove the necessity of any ground-truth annotation for guidance diffusion models.
Inspired by progress in self-supervised learning [9; 7], in this paper, we propose self-guided diffusion,
a framework for image generation using guided diffusion without the need for any annotated image-
label pairs. The framework encompasses a feature extraction function and a self-annotation function,
that are compatible with recent self-supervised learning advances. Furthermore, we leverage the
flexibility of self-supervised learning to generalize the guidance signal from the holistic image level
to (unsupervised) local bounding boxes and segmentation masks for more fine-grained guidance.
We demonstrate the potential of our proposal on single-label and multi-label image datasets, where
self-labeled guidance always outperforms diffusion models without guidance and may even surpass
guidance based on ground-truth labels. When equipped with self-supervised box or mask proposals,
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our method further generates visually diverse yet semantically consistent images, without the need
for any class, box, or segment label annotation.

2 Approach

Before detailing our self-guided diffusion framework, if readers are not familiar with diffusion models
and the classifier-free guidance technique, please refer to Appendix A.

2.1 Self-Guided Diffusion

The equations describing diffusion by classifier-free guidance implicitly assume dataset D and
its images each come with a single manually annotated class label. We prefer to make the label
requirement explicit. We denote the human annotation process as the function ξ(x;D, C) : D → C,
where C defines the annotation taxonomy, and plug this into Equation (7):

ε̃θ(xt, t; ξ(x; D, C), w) = (1− w)εθ(xt, t) + wεθ(xt, t; ξ(x; D, C)). (1)

We propose to replace the supervised labeling process ξ with a self-supervised process that requires
no human annotation:

ε̃θ(xt, t; fψ(gφ(x; D); D), w) = (1− w)εθ(xt, t) + wεθ(xt, t; fψ(gφ(x; D); D), (2)

where g is a self-supervised feature extraction function parameterized by φ that maps the input data
to feature space H, g : x → gφ(x),∀x ∈ D, and f is a self-annotation function parameterized by
ψ to map the raw feature representation to the ultimate guidance signal k, fψ : gφ(·;D) → k. The
guidance signal k can be any form of annotation, e.g., label, box, pixel, that can be paired with an
image, which we derive by k=fψ(gφ(x; D); D). The choice of the self-annotation function f can
be non-parametric by heuristically searching over dataset D based on the extracted feature gφ(·; D),
or parametric by fine-tuning on the feature map gφ(·; D).
For the noise prediction function εθ(·), we adopt the traditional UNet network architecture [37] due
to its superior image generation performance, following [20; 43; 33; 38].
Stemming from this general framework, we present three methods working at different spatial
granularities, all without relying on any ground-truth labels. Specifically, we cover image-level,
box-level and pixel-level guidance by setting the feature extraction function gφ(·), self-annotation
function fψ(·), and guidance signal k to an approximate form.

Self-labeled guidance. To achieve self-labeled guidance, we need a self-annotation function f
that produces a representative guidance signal k ∈ RK . Firstly, we need an embedding function
gφ(x),x ∈ D which provides semantically meaningful image-level guidance for the model. We
obtain gφ(·) in a self-supervised manner by mapping from image space, gφ(·) : RW×H×3 → RC ,
where W and H are image width and height and C is the feature dimension. We may use any type of
feature for the feature embedding function g, which we will vary and validate in the experiments.
As the image-level feature gφ(·; D) is not compact enough for guidance, we further conduct a
non-parametric clustering algorithm, e.g., k-means, as our self-annotation function f . For all features
gφ(·), we obtain the self-labeled guidance via self-annotation function fψ(·) : RC → RK . Motivated
by Rolfe [35], we use a one-hot embedding k ∈ RK for each image to achieve a compact guidance.
We inject the guidance information into the noise prediction function εθ by concatenating it with
timestep embedding t and feed the concatenated information concat[t,k] into every block of the
UNet. Thus, the noise prediction function εθ is rewritten as:

εθ(xt, t; k) = εθ(xt,concat[t, k]), (3)

where k=fψ(gφ(x; D); D) is the self-annotated image-level guidance signal. For simplicity, we
ignore the self-annotation function fψ(·) here and in the later text. Self-labeled guidance focuses on
the image-level global guidance. For more fine-grained spatial guidance e.g., box, mask, please check
Appendix B.

3 Experiments

Evaluation metric & Baselines & implementation details. To evaluate both diversity and fidelity
of samples, we use the Fréchet Inception Distance (FID) [18] and Inception Score (IS) [39] as our
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Figure 1: Effect of number of clusters. Self-labeled guidance outperforms DDPM without any
guidance beyond a single cluster, is competitive with classifier-free guidance beyond 1,000 clusters
and is even able to outperform guidance by ground-truth (GT) labels for 5,000 clusters. We visualize
generated samples from ImageNet64 (middle) and ImageNet32 (right) for ground-truth labels guid-
ance (top) and self-labeled guidance (bottom). More qualitative results in Appendix Figure 14.

main metrics. Throughout our experiments, we always use the diffusion model following [20]. We
train with timestep T=1000, guidance drop probability p=0.1 and the linear variance schedule. For
sampling, we set the guidance strength w=2 and deploy a clipping operation in every sampling
timestep. As the baseline for a guided diffusion model with ground-truth labels we follow classifier-
free guidance [19]. We use DDIM [42] samplers with 250 steps, σt=0. All hyperparameter of
our self-guided diffusion and the baselines are the same, allowing us to compare methods under a
fixed compute budget. For details of the learning rate, optimizer, and hyperparameters, we refer
to Appendix F. All code will be released.

3.1 Self-labeled Guidance

We use ImageNet32/64 [11] to validate the efficacy of self-labeled guidance. For better evaluation of
sampling quality, we also adopt the Inception Score (IS) [39], following the common practice on this
dataset [12; 22; 5]. IS measures how well a model fits into the full ImageNet class distribution.

Table 1: Choice of feature extraction function on
ImageNet32. DINO and MSN ViT-B/16 obtain
good trade-offs between FID and IS.

FID↓ IS↑
Label-supervised
ResNet50 22.00 8.23
ViT-B/16 22.30 7.81

Self-supervised
MAE ViTBase 32.58 8.20
SimCLR-v2 23.96 9.35
MSN ViT-B/16 21.16 10.59
DINO ViT-B/16 19.35 10.41

Choice of feature extraction function g. We
first measure the influence of the feature ex-
traction function g used before clustering. We
consider two supervised feature backbones:
ResNet50 [16] and ViT-B/16 [13], and
four self-supervised backbones: SimCLR [9],
MAE [17], MSN [2] and DINO [7]. To assure a
fair comparison we use 10k clusters for all archi-
tectures. From the results in Table 1, we make
the following observations. First, features from
the supervised ResNet50, and ViT-B/16
lead to a satisfactory FID performance, at the ex-
pense of relatively limited diversity (low IS).
However, they still require label annotation,
which we strive to avoid in our work. Second,
among the self-supervised feature extraction functions, the MSN- and DINO-pretrained ViT backbones
have the best trade-off in terms of both FID and IS. They even improve over the label-supervised
backbones. This implies the label assignment for the guidance is not unique, pretext labels on top of
self-supervised learning can still provide influential guidance signal in comparison with human anno-
tated labels. Also, the diversity of label-supervised ViT-B/16 is much lower than self-supervised
ViT-B/16 with an IS of 7.81 vs. 10.41, suggesting that self-supervised guidance leads to more
unbiased representation in comparison to supervised guidance. From now on we pick the DINO
ViT-B/16 architecture as our self-supervised feature extraction function g.

Effect of number of clusters. Next, we ablate the influence of the number of clusters on the overall
sampling quality. We consider 1, 10, 100, 500, 1,000, 5,000 and 10,000 clusters on the extracted
CLS token from the DINO ViT-B/16 feature. For efficient, yet uniform, comparison we only
run 20 epochs on ImageNet32. To put our sampling results in perspective, we also provide FID
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Table 2: Self-labeled comparisons on ImageNet32/64. Self-labelled guidance surpasses the no-
guidance baseline by a large margin on both datasets and even outperforms the guided diffusion
model trained using ground-truth class labels.

ImageNet32 ImageNet64
Diffusion Method Annotation-free? FID↓ IS ↑ FID↓ IS↑
Ground-truth labels Guidance 7 10.2 19.0 16.8 18.6
No Guidance 3 14.3 10.8 36.1 10.4
Self-labeled Guidance (this paper) 3 7.3 20.3 12.1 23.1

and IS results for DDPM and classifier-free guidance. From the result in Figure 1 we first observe
that when the cluster number is ranging from 1 to 5,000, our model’s performance monotonously
increases and always surpasses the DDPM model. Beyond 1,000 clusters, we are competitive with
classifier-free guidance using ground-truth labels. For 5,000 clusters, there is a sweet spot where we
outperform classifier-free guidance with an FID of 16.4 vs. 17.9 and an IS of 9.94 vs. 10.35, see also
the generated images in Figure 1. The performance of FID starts to deteriorate from 5,000 to 10,000
clusters. We conclude that self-labeled guidance outperforms DDPM without any guidance beyond a
single cluster, is competitive with classifier-free guidance beyond 1,000 clusters, and is even able to
outperform guidance by ground-truth labels for 5,000 clusters. From now on we use 5,000 clusters
for self-labeled guidance on ImageNet.

Varying guidance strength w. Next we consider the influence of the guidance strength w on
our sampling results. As the validation set of ImageNet32 is strictly balanced, we also consider
an unbalanced setting which is more similar to real-world deployment. Under both settings we
compare the FID between our self-labeled guidance and ground-truth guidance. We train both models
for 100 epochs. For the standard ImageNet32 validation setting in Figure 2a, our method achieves
a 17.8% improvement for respective optimal guidance strength of the two methods. Self-labeled
guidance is especially effective for lower values of w. We observe similar trends for the unbalanced
setting in Figure 2b, be it that the overall FID results are slightly higher for both methods. The
improvement increases to 18.7%. We conjecture this is due to the unbalanced nature of the k-means
algorithm [24], and clustering based on the statistics of the overall dataset can potentially lead to
more robust performance in unbalanced setting.

Self-labeled comparisons on ImageNet32/64. We compare our self-labeled guidance with ground-
truth labels guidance, which utilizes the technique of classifier-free guidance [19]. We train all
experiments for 100 epochs which take about 6 days to converge on four RTX A5000 GPUs. All
hyperparameters are the same between the two methods to make the comparison as fair as possible.
Results on ImageNet32 and ImageNet64 are in Table 2. Similar to Dhariwal & Nichol [12], we
observe that any guidance setting improves considerably over the unconditional & no-guidance
model. Surprisingly, our self-labeled model even outperforms the ground-truth labels by a large gap
in terms of FID of 2.9 and 4.7 points respectively. We hypothesize that the ground-truth taxonomy
might be suboptimal for learning generative models and the self-supervised clusters offer a better
guidance signal due to better alignment with the visual similarity of the images. This suggests that the
label-conditioned guidance from [19] can be completely replaced by guidance from self-supervision,
which would enable guided diffusion models to learn from even larger (unlabeled) datasets than
feasible today.

4 Conclusion

We have explored the potential of self-supervision signals for diffusion models and propose a
framework for self-guided diffusion models. By leveraging a feature extraction function and a
self-annotation function, our framework provides guidance signals at various image granularities:
from the level of holistic images to object boxes and even segmentation masks. Our experiments
indicate that self-supervision signals are an adequate replacement for existing guidance methods
that generate images by relying on annotated image-label pairs during training. Furthermore, both
self-boxed and self-segmented approaches demonstrate that we can acquire fine-grained control over
the image content, without any ground-truth bounding boxes or segmentation masks. Ultimately, our
goal is to enable the benefits of self-guided diffusion for unlabeled and more diverse datasets at scale,
wherein we believe this work is a promising first step.
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A Background

Diffusion models. Diffusion models [41; 20] gradually add noise to an image x0 until the original
signal is fully diminished. By learning to reverse this process one can turn random noise xT into
images. This diffusion process is modeled as a Gaussian process with Markovian structure:

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI), q(xt|x0) := N (xt;

√
αtx0, (1− αt)I, (4)

where β1, . . . , βT is a fixed variance schedule on which we define αt := 1− βt and αt :=
∏t
s=1 αs.

All latent variables have the same dimensionality as the image x0 and differ by the proportion of the
retained signal and added noise.
Learning the reverse process reduces to learning a denoiser xt ∼ q(xt|x0) that recovers the original
image as (xt−(1−αt)εθ(xt, t))/

√
αt ≈ x0. [20] optimize the network parameters θ by minimizing

the error of the noise prediction:
L(θ) = Eε,x,t

[
||εθ(xt, t)− ε||22

]
, (5)

in which ε ∼ N (0, I), x ∈ D is a sample from the training dataset D and the noise prediction
function εθ(·) are encouraged to be as close as possible to ε.
The standard sampling [20] requires many neural function evaluations to get good quality samples.
Instead, the faster Denoising Diffusion Implicit Models (DDIM) sampler [42] has a non-Markovian
sampling process:

xt−1 =
√
αt−1

(
xt −

√
1− αtεθ(xt, t)√

αt

)
+
√
1− αt−1 − σ2

t · εθ(xt, t) + σtε, (6)

where ε ∼ N (0, I) is standard Gaussian noise independent of xt.

Classifier-free guidance. To trade off mode coverage and sample fidelity in a conditional diffusion
model, Dhariwal & Nichol [12] propose to guide the image generation process using the gradients of
a classifier, with the additional cost of having to train the classifier on noisy images. Motivated by this
drawback, [19] introduce label-conditioned guidance that does not require a classifier. They obtain a
combination of a conditional and unconditional network in a single model, by randomly dropping the
guidance signal c during training. After training, it empowers the model with progressive control
over the degree of alignment between the guidance signal and the sample by varying the guidance
strength w:

ε̃θ(xt, t; c, w) = (1− w)εθ(xt, t) + wεθ(xt, t; c). (7)
A larger w leads to greater alignment with the guidance signal, and vice versa. Classifier-free
guidance [19] provides progressive control over the specific guidance direction at the expense of
labor-consuming data annotation. In this paper, we propose to remove the necessity of data annotation
using a self-guided principle based on self-supervised learning.

B Extra Method

Self-boxed guidance. Bounding boxes specify the location of an object in an image [34; 6] and
complements the content information of class labels. Our self-boxed guidance approach aims to
attain this signal via self-supervised models. We represent the bounding box as a feature map
(W × H) rather than coordinates ([X,Y,W,H]). We propose the self-annotation function f that
obtains a bounding box ks ∈ RW×H by mapping from feature space H to the bounding box
space via fψ(·; D) : RW×H×C → RW×H , and inject the guidance signal by concatenating in
the channel dimension: xt := concat[xt, ks] Usually in self-supervised learning, the derived
bounding box is class-agnostic [44; 45]. To inject a self-supervised pseudo label to further enhance
the guidance signal, we again resort to clustering to obtain k and concatenate it with the time
embedding t := concat[t,k]. To incorporate such guidance, we reformulate the noise prediction
function εθ as:

εθ(xt, t; ks,k) = εθ(concat[xt,ks],concat[t,k]), (8)
in which ks is the self-supervised box guidance obtained by self-annotation functions fψ, k is the
self-supervised image-level guidance from clustering. The design of fψ is flexible as long as it obtains
self-supervised bounding boxes by fψ(·; D) : RW×H×C → RW×H . Self-boxed guidance guides
the diffusion model by boxes, which specifies the box area in which the object will be generated.
Sometimes, we may need an even finer granularity, e.g., pixels, which we detail next.
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-18.7%

(b) Setting II: ImageNet32 unbalanced

Figure 2: Varying guidance strength w. Self-labeled guidance surpasses the guidance based on
ground-truth labels for both (a) ImageNet32 balanced and (b) ImageNet32 unbalanced. The dotted
gray line indicates the best achieved performance of both methods under various guidance strength.
The difference between them is slightly more prominent for unbalanced data, we conjecture that
is because our self-labeled guidance is obtained by clustering based on the statistics of the overall
dataset, which can potentially lead to more robust performance in unbalanced setting.

Self-segmented guidance. Compared to a bounding box, a segmentation mask is a more fine-
grained signal. Additionally, a multichannel mask is more expressive than a binary foreground-
background mask. Therefore, we propose a self-annotation function f that acts as a plug-in built on
feature gφ(·; D) to extract the segmentation mask ks via function mapping fψ(·; D) : RW×H×C →
RW×H×K , where K is the number of segmentation clusters.
To inject the self-segmented guidance into the noise prediction function εθ, we consider two pathways
for injection of such guidance. We first concatenate the segmentation mask to xt in the channel
dimension, xt := concat[xt, ks], to retain the spatial inductive bias of the guidance signal.
Secondly, we also incorporate the image-level guidance to further amplify the guidance signal along
the channel dimension. As the segmentation mask from the self-annotation function fψ already
contains image-level information, we do not apply the image-level clustering as before in our self-
labeled guidance. Instead, we directly derive the image-level guidance from the self-annotation result
fψ(·) via spatial maximum pooling: RW×H×K → RK , and feed the image-level guidance k̂ into the
noise prediction function via concatenating it with the timestep embedding t:=concat[t, k̂]. The
concatenated results will be sent to every block of the UNet. In the end, the overall noise prediction
function for self-segmented guidance is formulated as:

εθ(xt, t; ks, k̂) = εθ(concat[xt,ks], concat[t, k̂]), (9)

in which ks is the spatial mask guidance obtained from self-annotation function f , k̂ is a multi-hot
image-level guidance derived from the self-supervised learning mask ks.
We have described three variants of self-guidances by setting the feature extraction function gφ(·),
self-annotation function fψ(·), guidance signal k to an approximate form. In the end, we arrive
at three noise prediction functions εθ, which we utilize for diffusion model training and sampling,
following the standard guided [19] diffusion approach as detailed in Appendix A.

C Extra results.

C.1 Self-boxed Guidance

We report on Pascal VOC and COCO_20K to validate the efficacy of self-boxed guidance. To obtain
class-agnostic object bounding boxes, we use LOST [40] as our self-annotation function f . We report
train FID for Pascal VOC and train/validation FID for COCO_20K. For image-level clustering to
attain the guidance signal, we empirically found k=100 works best on both datasets as those datasets
are relatively small-scale in images and labels compared to ImageNet. We train our diffusion model
for 800 epochs with input image size 64×64. See Appendix F for more details.

Self-boxed comparisons on Pascal VOC and COCO_20K. For the ground-truth labels guidance
baseline, we condition on a class embedding. Since there are now multiple objects per image, we
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Table 3: Self-boxed comparisons on Pascal VOC and COCO_20K. Self-boxed guidance outper-
forms the no-guidance baseline FID considerably for multi-label datasets and is even better than a
label-supervised alternative.

Diffusion Method Annotation-free? Pascal VOC COCO_20K
Ground-truth labels Guidance 7 23.5 19.3
No Guidance 3 58.6 42.5
Self-boxed Guidance (this paper) 3 18.4 16.0

Original Image Self-Guided Generated Samples

Figure 3: Self-boxed guided diffusion results on Pascal VOC. Each column is sampled using
different random noise. Our method generates visually diverse and semantically consistent images.

represent the ground-truth class with a multi-hot embedding. Aside from the class embedding which
is multi-hot in our method, all other settings remain the same for a fair comparison. The results
in Table 3, confirm that the multi-hot class embedding is indeed effective for multi-label datasets,
improving over the no-guidance model by a large margin. This improvement comes at the cost of
manually annotating multiple classes per image. Self-boxed guidance further improves upon this
result, by reducing the FID by an additional 5.1 and 3.3 points respectively without using any ground-
truth annotation. In Figure 3, we show our method generates diverse and semantically well-aligned
images.

C.2 Self-segmented Guidance

Finally, we validate the efficacy of self-segmented guidance on Pascal VOC and COCO-Stuff. For
COCO-Stuff we follow the split from [15; 21; 10; 46], with a train set of 49,629 images and a
validation set of 2,175 images. Classes are merged into 27 (15 stuff and 12 things) categories. For
self-segmented guidance we apply STEGO [15] as our self-annotation function f . We set the cluster
number to 27 for COCO-Stuff, and 21 for Pascal VOC, following STEGO. We train all models on
images of size 64×64, for 800 epochs on Pascal VOC, and for 400 epochs on COCO-Stuff. We report
the train FID for Pascal VOC and both train and validation FID for COCO-Stuff. More details on the
dataset and experimental setup are provided in Appendix F.

Self-segmented comparisons on Pascal VOC and COCO-Stuff. We compare against both the
ground-truth labels guidance baseline from the previous section and a model trained with ground-truth
semantic masks guidance. The results in Table 4 demonstrate that our self-segmented guidance still
outperforms the ground-truth labels guidance baseline on both datasets. The comparison between
ground-truth labels and segmentation masks reveals an improvement in image quality when using
the more fine-grained segmentation mask as the condition signal. But these segmentation masks
are one of the most costly types of image annotations that require every pixel to be labeled. Our
self-segmented approach avoids the necessity for annotations while narrowing the performance gap,
and more importantly offering fine-grained control over the image layout. We demonstrate this
controllability with examples in Figure 4. These examples further highlight a robustness against
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Table 4: Self-segmented comparisons on Pascal VOC and COCO-Stuff. Any form of guidance re-
sults in a considerable FID reduction over the no-guidance model. Self-segmented guidance improves
over ground-truth multi-hot labels guidance and narrows the gap with guidance by annotation-
intensive ground-truth masks.

COCO-Stuff
Diffusion Method Annotation-free? Pascal VOC Train Val

Ground-truth labels Guidance 7 23.5 16.3 20.5
No Guidance 3 58.6 29.1 34.1
Self-segmented Guidance (this paper) 3 17.1 12.5 17.7
Ground-truth masks 7 12.5 8.1 11.2

Original image Self-Segmentation Generated Samples

Baseline

Ours

Ours

Ours

Figure 4: Self-segmented guided diffusion results on Pascal VOC. Each column is sampled using
different random noise. The first two rows indicate our self-segmented guidance provides more
fine-grained guidance than ground-truth labels guidance for the generation of bus images. Note how
the noisy window-bar in the self-segmented mask (marked by dotted ellipse) still results in plausible
window separations in the generated image samples. The two bottom rows shows our method creates
visually diverse examples that are well aligned with the self-segmented guidance signal. We provide
more examples in Appendix Figure 11.

noise in the segmentation masks, which our method acquires naturally due to training with noisy
segmentations.
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Dataset

Self-guided Signal

Step2: Self-annotation

Step 1: Self-supervised Pretraining Step 3: Self-guided diffusion process 
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Figure 5: Main pipeline of our method. Starting from unlabeled dataset D, we apply unsupervised
feature extractor gψ(.) to post-processing function fφ(.), which yield to different forms of self-
guidance signal from image-level, to box, mask-level. Those freely-obtained signals can be further
utilized for training and sampling stage of diffusion model.

D Main framework

We illustrate the pipeline of our framework in Figure 5.
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𝑅! = 0.675

Figure 6: Correlation between NMI and FID on ImageNet32. The Normalized Mutual Information
(NMI) is not related to FID for supervised backbones, while, for the self-supervised model, NMI and
FID are negatively correlated. Conclusion: Self-supervised representation learning measures the
progress via NMI, thus the (negative) correlation between NMI and FID suggest that future progress
in self-supervised learning will also translate to improvements to self-labeled guidance.

Table 5: Comparison with baseline on ImageNet32 and ImageNet64 dataset with FID, IS,
Precision (P), Recall (R).

Diffusion Method Annotation-free? ImageNet32 ImageNet64
FID↓ IS ↑ P ↑ R ↑ FID↓ IS↑ P↑ R ↑

Ground-truth labels Guidance 7 10.2 19.0 0.71 0.62 16.8 18.6 0.71 0.62
No Guidance 3 14.3 10.8 0.49 0.61 36.1 10.4 0.59 0.60
Self-labeled Gudiance (this paper) 3 7.3 20.3 0.77 0.63 12.1 23.1 0.78 0.62

E More quantitative results

E.1 Correlation between NMI and FID in different feature backbones.

To assess the correlation between cluster quality and sample fidelity, we consider the Normalized
Mutual Information (NMI), which is commonly adopted as a mutual information-derived metric to
assess clustering quality based on provided ground truth labels. In Figure 6 we plot the connection
between NMI and FID. For the label-supervised functions, the NMI is unrelated to the FID, but for
the self-supervised functions, NMI and FID are negatively correlated, suggesting that NMI — a
metric commonly applied to assess the quality of self-supervised methods — is also predictive of the
model’s usefulness in our setting.

E.2 Precision and Recall in ImageNet32/64 dataset

We show the extra results of ImageNet on precision and recall in Table 5. We follow the evaluation
code of precision and recall from ICGAN [8], our self-labeled guidance also outperforms ground-truth
labels in precision and remains competitive in recall.

E.3 Cluster number ablation in self-boxed guidance

In table 6, we empirically evaluate the performance when we alter the cluster number in our self-boxed
guidance. We find the performance will increase from k = 21 to k = 100, and saturated at k = 100.

E.4 Trend visualization of training loss and validation FID

We visualize the trend of training loss and validation FID in Figure 7.
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Table 6: Cluster number ablation on Pascal VOC dataset for self-boxed guidance.
Cluster number k FID ↓

21 22.5
50 18.6
100 18.5
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Figure 7: Training epoch loss and and validation FID by total 20 epochs. For epoch loss, our
self-labeled guidance monotonously lower than ground-truth labels. For validation FID, our validation
FID is more stable than our baseline.

F More experimental details

Training details. For our best results, we train 100 epochs on 4 GPUs of A5000 (24G) in ImageNet.
We train 800/800/400 epochs on 1GPU of A6000 (48G) in Pascal VOC, COCO_20K, COCO-Stuff,
respectively. All qualitative results in this paper are trained in the same setting as mentioned above.
We train and evaluate the Pascal VOC, COCO_20K, COCO-Stuff in image size 64, and visualize
them by bilinear up sampling to 256, following [26].
Sampling details. We sample the guidance signal from the distribution of training set in our all
experiments. For each timestep, we need twice of Number of Forward Evaluation (NFE), we optimize
them by concatenating the conditional and unconditional signal along the batch dimension so that we
only need one time of NFE in every timestep.
Evaluation details. We use the common package Clean-FID [30], torch-fidelity [28] for FID, IS
calculation, respectively. For IS, we use the standard 10-split setting, we only report IS on ImageNet,
as it might be not an appropriate metric for non object-centric datasets [3]. For checking point, we
pick the checking point every 10 epochs by minimal FID between generated sample set and train set.

guidance k time t x

sum UNet

x

sum UNet tokenize

Cross Att

Cross Att

MLP MLP

guidance k time t

MLP MLP

guidance k

(a).UNet for self-labeled guidance

concatenate

(b). UNet for self-boxed/segmented guidance

Figure 8: The structure of UNet module.
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F.1 UNet structure

Guidance signal injection. We describe the detail of guidance signal injection in Figure 8. The
injection of self-labeled guidance and self-boxed/segmented guidance is slightly different. The
common part is by concatenation between timestep embedding and noisy input, the concatenated
feature will be sent to every block of the UNet. For the self-boxed/segmented guidance, we not
only conduct the information fusion as above, but also incorporate the spatial inductive-bias by
concatenating it with input, the concatenated result will be fed into the UNet.

Timestep embedding. We embed the raw timestep information by two-layer MLP: FC(512,
128)→SiLU→FC(128, 128).

Guidance embedding. The guidance is in the form of one/multi-hot embedding RK , we feed it
into two-layer MLP: FC(K, 256)→SiLU→FC(256, 256), then feed those guidance signal into the
UNet following in Figure 8.

Cross-attention. In training for non object-centric dataset, we also tokenize the guidance signal
to several tokens following Imagen Saharia et al. [38], we concatenate those tokens with image
tokens (can be transposed to a token from typical feature map by RW×H×C → RC×WH ), the
cross-attention [36; 4] is conducted by CA(m, concat[k,m]). Due to the quadratic complexity of
transformer [23; 27], we only apply the cross-attention in lower-resolution feature maps.

F.2 Training Parameter

3×32×32 model,4GPU,ImageNet32

Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 3e− 4
Blocks per resolution: 2 Batch size: 128
Attention resolutions: 4 EMA: 0.9999
number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 4 × A5000(24G)
Conditioning embedding MLP layers: 2 Training Epochs: 100
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256

3×64×64 model, 4GPU, ImageNet64

Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 1e− 4
Blocks per resolution: 2 Batch size: 48
Attention resolutions: 4 EMA: 0.9999
number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 4 × A5000(24G)
Conditioning embedding MLP layers: 2 Training Epochs: 100
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256

3×64×64 model, 1GPU, Pascal VOC, COCO_20K, COCO-Stuff

Base channels: 128 Optimizer: AdamW
Channel multipliers: 1, 2, 4 Learning rate: 1e− 4
Blocks per resolution: 2 Batch size: 80
Attention resolutions: 4 EMA: 0.9999
Number of head: 8 Dropout: 0.0
Conditioning embedding dimension: 256 Training hardware: 1 × A6000(45G)
Conditioning embedding MLP layers: 2 Training Epochs: 800/800/400
Diffusion noise schedule: linear Weight decay: 0.01
Sampling timesteps: 256 Context token number: 8
Context dim: 32
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F.3 Dataset preparation

The preparation of unbalanced dataset. There are 50,000 images in the validation set of ImageNet
with 1,000 classes (50 instances for each). We index the class from 0 to 999, for each class ci, the
instance of the class ci is bi× 50/1000c = bi/200c.

Pascal VOC. We use the standard split from [40]. It has 12,031 training images. As there is no
validation set for Pascal VOC dataset, therefore, we only evaluate FID on train set. We sample 10,000
images and use 10,000 random-croped 64-sized train images as reference set for FID evaluation.

COCO_20K. We follow the split from [40; 44; 25]. COCO_20k is a subset of the COCO2014
trainval dataset, consisting of 19,817 randomly chosen images, used in unsupervised object discov-
ery [40; 44]. We sample 10,000 images and use 10,000 random-croped 64-sized train images as
reference set for FID evaluation.

COCO-Stuff. It has a train set of 49,629 images, validation set of 2,175 images, where the original
classes are merged into 27 (15 stuff and 12 things) high-level categories. We use the dataset split
following [15; 21; 10; 46], We sample 10,000 images and use 10,000 train/validation images as
reference set for FID evaluation.

F.4 LOST, STEGO algorithms

LOST algorithm details. We conduct padding to make the original image can be patchified to be
fed into the ViT architecture [13], and feed the original padded image into the LOST architecture
using official source code 2. LOST can also be utilized in a two-stage approach to provide multi-object,
due to its complexity, we opt for only single-object discovery in this paper.

STEGO algorithm details. We follow the official source code 3, and apply padding to make the
original image can be fed into the ViT architecture to extract the self-segmented guidance signal.
For COCO-Stuff dataset, we directly use the official pretrained weight. For Pascal VOC, we train
STEGO ourselves using the official hyperparameters.
In STEGO’s pre-processing for the k-NN, the number of neighbors for k-NN is 7. The segmentation
head of STEGO is composed of a two-layer MLP (with ReLU activation) and outputs a 70-dimension
feature. The learning rate is 5e− 4, batch size is 64.

G More qualitative results

2https://github.com/valeoai/LOST
3https://github.com/mhamilton723/STEGO

17



Figure 9: Self-segmented guidance samples from COCO-Stuff. Best viewed in color.
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Self-
segmentation

Denoising Process

Figure 10: Denoising process of self-segmented guidance samples (uncurated) from COCO-Stuff.
The first column is the self-segmented guidance mask from STEGO [15], The remaining columns are
from the most noisy period to less noisy period. Best viewed in color.
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Guidance signal from training set:

Guidance signal from validation set:

Original Image Self-
Segmentation

Self-guided Samples

Figure 11: Self-segmented guidance samples (uncurated) from COCO-Stuff. The first column is
the real image where we attain the conditional mask. The second column is the self-segmented mask
we obtain from STEGO [15], The remaining columns are the random samples conditioning on the
same self-segmented mask. Best viewed in color.

20



Original Image Self-Seg Increasing guidance strength w from 0 to 3 averagely by 8 steps. 

Figure 12: Self-segmented guidance samples from Pascal VOC. The first column is the real image
where we attain the conditional mask. The second column is the self-segmented mask we obtain from
STEGO [15]. The remaining columns are the visualization when we averagely increase guidance
strength w from 0 to 3 by 8 steps. Best viewed in color.
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Figure 13: Self-segmented guidance samples (uncurated) from COCO-Stuff companies with
segmentation mask from STEGO [15]. The color map is shared among the overall dataset. Best
viewed in color.
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Figure 14: Self-labeled guidance samples (uncurated) conditioning on the same guidance from
ImageNet64. Best viewed in color.
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Figure 15: Ground-truth labels guidance samples (uncurated) conditioning on the same guidance
signal from ImageNet64. Best viewed in color.
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Figure 16: Self-labeled guidance samples (uncurated) from ImageNet64. Best viewed in color.
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Figure 17: Self-labeled guidance samples (uncurated) from ImageNet32. Best viewed in color.
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(a) Querying by sample in feature similarity. (b) Querying by real images in feature similarity.

(c) Querying by sample in pixel similarity. (d) Querying by real images in pixel similarity.

Figure 18: k-NN query result visualization. Blue means samples, red means real images. Images
are ordered from left to right, top to down, by SimCLR [9] feature similarity or pixel similarity.
Sampled images are sampled by DDIM [42] with 250 steps. Guidance strength w is 2. Firstly, we
construct a gallery which is composed of equivalent number of sampled and real images, then we
ablate two experiments by querying using sampled image or real images in feature space and image
space. Conclusion:We can easily see, regardless of the feature space or image space, the k-NN query
results are always highly semantic similar, and they show the diffusion model is not only to memorize
the training data/real images, but also can generalize well to synthesize novel images.
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Figure 19: Denoising process for ImageNet64.

Conditioned

Unconditioned

Figure 20: Denoising process for Pascal VOC. The first two rows are sampled from guidance
strength w = 2 using our self-segmented guidance, the last two rows are sampled from guidance
strength w = 0. By conditioning on our self-segmented guidance, the denoising process becomes
easier and faster, this efficient denoising aligns with the observation from [31].
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Figure 21: Sample visualization with guidance strength w from 0 to 3 in ImageNet64. Best
viewed in color.

Figure 22: Sphere interpolation between two random self-labeled guidance signals on Ima-
geNet64. The sphere interpolation follows the DDIM [42]. Best viewed in color.
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(a) cluster625

(b) cluster807

(c) cluster890

Figure 23: Cluster visualization of real images in ImageNet32 after k-means.
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(a) cluster17 (b) cluster18

(c) cluster45 (d) cluster50

Figure 24: Cluster visualization of real images in Pascal VOC after k-means. Best viewed by
zooming in.
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Figure 25: Bounding box result from LOST on Pascal VOC. As LOST [40] is an unsupervised-
learning method, some flaws in the generated box are expected. Images are resized squarely for better
visualization.
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Figure 26: Bounding box result from LOST [40] on COCO_20K. Images are resized squarely for
better visualization.
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Figure 27: Segmentation mask result from STEGO on Pascal VOC dataset. Cluster number k is
21. Images are resized squarely for better visualization. The color map is shared among the overall
dataset. Best viewed in color.
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