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Abstract

Large Language Models (LLMs) excel in cross-
lingual question answering (QA) but often hal-
lucinate due to mismatches between the query
and the model’s internal knowledge represen-
tation. Retrieval-augmented generation (RAG)
mitigates this issue but struggles with cross-
lingual retrieval inconsistencies. We propose
a retrieval method that enhances recall and
re-ranking by improving semantic alignment
across languages. Our approach integrates a
language-aware retrieval mechanism with a
fine-tuned encoder model, ParaXILM-SR, to re-
fine query-context matching and prioritize rele-
vant information. By leveraging bias-adjusted
similarity re-ranking, our method further miti-
gates cross-lingual retrieval noise and improves
context relevance.

1 Introduction

RAG has emerged as a valuable method for enhanc-
ing LLMs by incorporating an external retrieval
mechanisms to improve response quality and fac-
tual grounding (Lewis et al., 2020; Gao et al., 2023).
By retrieving semantically relevant context before
generation, RAG mitigates knowledge gaps and re-
duces the hallucination problem in LLMs, thereby
increasing the factual reliability of generated re-
sponses. RAG has gained significant attention,
particularly in tasks requiring knowledge-intensive
reasoning, such as open-domain question answer-
ing and specialized domain-specific text genera-
tion (Chirkova et al., 2024a; Hu and Lu, 2024b).
Despite these advancements, most RAG-based re-
trieval systems are still predominantly monolingual,
with English being the primary language for both
retrieval and generation.

To overcome these challenges, we introduce a
cross-lingual retrieval question-answering RAG
designed to improve multilingual retrieval effec-
tiveness and reduce hallucinations in knowledge-
intensive tasks on figure 1. Our framework em-

ploys a multi-step process that combines cross-
lingual retrieval and re-ranking mechanisms to
identify semantically aligned information from di-
verse languages. This approach ensures that LLM-
generated responses are firmly grounded in reliable
multilingual sources. Instead of restricting retrieval
to monolingual knowledge bases, our approach dy-
namically queries multiple language-specific repos-
itories, retrieving the most relevant content irre-
spective of the query’s original language (Artetxe
and Schwenk, 2019a; Ji et al., 2023). Through
comprehensive evaluations on cross-lingual bench-
marks, we demonstrate that our method signifi-
cantly enhances cross-lingual recall while mitigat-
ing the hallucination rate. By integrating multi-
lingual evidence retrieval into the RAG pipeline,
our approach strengthens the factual consistency of
LLM-generated outputs, thereby making retrieval-
augmented architectures more reliable and linguis-
tically inclusive.

ParaXLLM-SR (Paraphrase-XLM-RoBERTa
Semantic Retrieval) is a fine-tuned multilingual
sentence encoder designed to enhance cross-lingual
semantic alignment for retrieval tasks. Built upon
paraphrase-xlm-r-multilingual-v1, this
model refines sentence embeddings by optimizing
for semantic relatedness, improving the alignment
of multilingual representations while preserving
retrieval robustness.  Unlike its predecessor,
ParaXLLM-SR incorporates domain-adaptive
fine-tuning on a filtered, high-quality multilin-
gual dataset, ensuring that semantically similar
question-context pairs exhibit greater coherence
in vector space. By reducing retrieval noise and
enhancing cross-lingual consistency, ParaXLM-SR
enables more precise retrieval of multilingual
knowledge, making it particularly effective for
retrieval-augmented generation (RAG) pipelines
and cross-lingual QA scenarios.

Our Key Findings. Through extensive evaluation,
we observe the following improvements:



Preprocess

FineTune Encoding Model

\Question

partaton by Langauge
Raw Dataset

3|

CS Chunking | !

-—
L —

Context Dataset

Baseline
Model

— ParaXLM-SR '7

Filtered Dataset
1Retrieval
'

Qu(Ition
'
| Context

'

1 Retrieval

| Rerank BAS Rerank

LLM Generation

Figure 1: Illustration of the cross-lingual RAG architecture pipeline. Preprocessing partitions data by language
with context-specific (CS) chunking. The R-Agent filters training data, enabling optimized retrieval. Queries
are translated across languages, and retrieved contexts are re-ranked using the Bias-Adjusted Similarity (BAS)

mechanism to enhance cross-lingual precision.

* Embedding Alignment: ParaXIL.M-SR re-
duces vector space distortion across lan-
guages, leading to more precise semantic sim-
ilarity computations.

* Retrieval Efficiency: Our RAG framework
enhances retrieval accuracy across multiple
language pairs, demonstrating greater adapt-
ability to cross-lingual QA tasks.

* Re-ranking Stability: The bias-adjusted re-
ranking mechanism improves ranking consis-
tency, particularly in typologically diverse lan-
guages, while preserving monolingual ranking
quality.

Despite these advancements, challenges persist in
retrieving high-quality results in low-resource lan-
guages, adapting retrieval mechanisms for complex
linguistic structures, and refining ranking functions
for domain-specific knowledge.

2 Related Work

2.1 Multilingual Sentence Embeddings and
Retrieval Models

Multilingual sentence embeddings are fundamen-
tal to cross-lingual retrieval-augmented QA, where
semantic misalignment often leads to retrieval dis-
crepancies. Early distributed representation mod-
els, such as Word2Vec (Mikolov et al., 2013a,b),
provided word-level embeddings but lacked con-
textual depth and cross-lingual adaptability. Sub-

sequent models, including LASER (Artetxe and
Schwenk, 2019b; Heffernan et al., 2022), Uni-
versal Sentence Encoder (Yang et al., 2020), and
LaBSE (Feng et al., 2020), leveraged large-scale
transformer architectures to enhance cross-lingual
embedding alignment.

Advancements in transformer-based archi-
tectures, such as mBERT and XLM-RoBERTa,
have further refined multilingual representa-
tion learning (Muller et al., 2021). RoBERTa
introduced improved contextual embeddings
through  optimized pretraining objectives
(Dadas et al.,, 2020a). To mitigate retrieval
inconsistencies, stsb-xIm-r-multilingual
(Huertas, 2023), a fine-tuned variant of XLM-
RoBERTa, has been employed to filter weakly
related question-context pairs, thereby improv-
ing retrieval precision.  Several multilingual
retrieval models have emerged, including
paraphrase-multilingual-mpnet-base-v2,
which is optimized for paraphrase identification,
and LaBSE, which employs a dual-encoder
framework for cross-lingual similarity. Lawrie
et al. (Lawrie et al., 2022) introduced Multi-
lingual ColBERT-X, a late interaction retrieval
model that enhances multilingual dense re-
trieval by leveraging token-level representations.
paraphrase-xlm-r-multilingual-v1 (Reimers
and Gurevych, 2019a), an extension of XLM-R,
has been widely adopted for multilingual retrieval,
while knowledge distillation techniques, such as



distiluse-base-multilingual-cased-v2 and
distilbert-multilingual-nli-stsb-quora,
have enhanced model efficiency. Additionally,
xlm-r-bert-base-nli-stsb-mean-tokens
fine-tunes XLM-R for sentence similarity tasks,
LASER enables zero-shot cross-lingual transfer,
and GloVe (Pennington et al., 2014) serves as a
non-contextual baseline.

2.2 Multilingual Retrieval Strategies

Cross-lingual retrieval presents unique challenges,
particularly for low-resource languages, where
naive corpus-wide retrieval amplifies retrieval mis-
matches and semantic drift. Chirkova et al.
(Chirkova et al., 2024b) systematically analyzed
multilingual retrieval pipelines, underscoring the
significance of fine-tuned retrievers, re-ranking
strategies, and retrieval optimization in mitigating
hallucinations. Feng et al. (Feng et al., 2022) inves-
tigated the constraints of code-switching in cross-
lingual transfer. Wang et al. (Wang et al., 2024) in-
troduced retrieval partitioning, demonstrating that
structured retrieval units improve both efficiency
and recall. While their M-RAG framework applies
structured retrieval to generative QA, our approach
extends this paradigm to multilingual question an-
swering by aligning queries with semantically rele-
vant cross-lingual contexts.

Cosine similarity has been widely adopted as
a fundamental metric for ranking retrieved candi-
dates in multilingual retrieval models (Conneau
and Lample, 2019; Reimers and Gurevych, 2019a).
However, inherent biases in multilingual represen-
tations necessitate further refinement to ensure eq-
uitable ranking across languages. While prior ap-
proaches have explored metadata-based retrieval
constraints (Pires et al., 2019), these methods often
fail to generalize across typologically diverse lan-
guages. Our framework introduces a bias-adjusted
re-ranking mechanism that refines cross-lingual re-
trieval precision while maintaining ranking stability
for monolingual retrieval candidates.

2.3 Retrieval-Augmented Generation and
Cross-Lingual Adaptations

RAG has become a key framework for integrating
external knowledge retrieval into language mod-
els, improving response factuality in knowledge-
intensive tasks (Finardi et al., 2024a; Hu and Lu,
2024a; Fan et al., 2024). Despite these advance-
ments, most existing RAG systems operate in
monolingual environments, limiting their effective-

ness in multilingual retrieval (Sharma et al., 2024).
Prior studies have explored domain adaptation tech-
niques for RAG in open-domain QA (Siriwardhana
et al., 2023; Veturi et al., 2024) and contextual
response generation (Jin et al., 2024), offering in-
sights into retrieval generalization.

Cross-lingual retrieval introduces additional
challenges stemming from embedding space dis-
crepancies and linguistic divergence. Recent efforts
have proposed retrieval error correction techniques
(Muller et al., 2021; Finardi et al., 2024b), but effec-
tive re-ranking strategies tailored to multilingual
QA remain underexplored. Our approach intro-
duces a bias-adjusted similarity re-ranking mecha-
nism inspired by retrieval error compensation, opti-
mizing ranking precision by addressing systematic
cross-lingual retrieval biases. Moreover, retrieval
caching mechanisms, such as RAGCache (Jin et al.,
2024), emphasize the importance of improving re-
trieval efficiency, further aligning with our struc-
tured retrieval design.

Prior work has also investigated translation-
based augmentation, such as using Google Trans-
late to enhance retrieval (Balk et al., 2012). Our
approach extends this by constructing a bias matrix
that systematically refines cross-lingual ranking
adjustments while mitigating retrieval distortions
caused by linguistic variation.

3 Methodology

A cross-lingual QA task aims to retrieve the
most semantically relevant context c; for a given
query ¢; from a multilingual QA dataset D =
(¢i,cj,1ij)i = 1Pl where lij represents the syn-
thetic language label indicating the language of
the question and context. (e.g., "ende" signifies a
question in English with a context in German). Un-
like monolingual retrieval, cross-lingual retrieval
introduces challenges such as semantic misalign-
ment, retrieval mismatches, and linguistic variation
across typologically diverse languages.

In the multi-step retrieval process, we use co-
sine similarity to measure the relevance between a
query question and a context. Given a question g;
from the question set Q; and a context c¢; from the
multilingual context set C, the cosine similarity is
calculated as:

IE @) E ()]
Cosine similarity is utilized in our retrieval pipeline
to measure the angular distance between query




and context embeddings, prioritizing semantically
aligned content across multiple languages.

L Question / Context Answer
France Dans la citation biblique chrétienne, il est plus ...? Needle
German ... durch ein Nadelohr zu gehen, ...

Spanish (Llevé a cabo una mision de predicacion y ...? Jesus
German Jesus fiihrte etwa im Jahr 28-30 n. Chr. eine Predigt-...

English The y Titleist facture which ... ? Golf
French Retrouvez les fabricants de golf qui fabriquent le ...

Spanish <Un céctel Molotov (bomba molotov casera) ... ? Molotov
English petrol bomb [C20: named after V. M. Molotov] ...

Swabhili Sauti ya vokali isiyosisitizwa *uh’ kwa kawaida ... ?  schwa
Swahili inayoitwa schwa, inawakilishwa na kichwa chini ...

Chinese B RAIAIEZET 2 Penicillin
German Das erste Antibiotikum Penicillin wurde 1928 von ...

Table 1: Examples of multilingual question-answering
data. Each row consists of a question, corresponding
context, and answer across different language pairs.

3.1 Fine-Tuning the Encoder Model

After R-Agent filtering, the dataset Dgjereq 1S
used to fine-tune the baseline retrieval model,
paraphrase-xlm-r-multilingual-v1 (Dadas,
2020), a variant of Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019b). The fine-tuning
process updates the pooling layer and fully
connected layer to optimize sentence similarity
representation, enabling the encoder model to
generate embeddings that improve the retrieval of
semantically relevant contexts.

Given a batch of training instances (¢;,¢;) €
Diiltered, the model computes the similarity logits
f(gi, ¢;) through a fully connected projection layer:

f(giyei) = w’ pool(E(q;), E(¢;)) +b.  (2)

Here, the pooling operation refers to average pool-
ing, where the final sentence representation is ob-
tained by computing the mean over all token em-
beddings. This method ensures a stable and smooth
aggregation of contextual information while reduc-
ing noise, making it effective for multilingual re-
trieval tasks. W is the learnable weight matrix, and
b is the bias term. The objective function is the
cross-entropy loss:

‘Dﬁltered |

L=— )" yilogf(g,c)+

i
(1 —yi)log(1 — f(qi,ci)).
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The binary label y; indicates whether the pair
(gi, ¢;) is semantically related, with y; = 1 rep-
resenting a semantically relevant pair and y; = 0
indicating an irrelevant pair.

3.2 Partitioning and Sharding of Embedded
Data

To improve retrieval efficiency and mitigate seman-
tic misalignment in cross-lingual question answer-
ing, we introduce a structured retrieval approach
that consists of two key components: partition-
ing and sharding. These mechanisms ensure that
retrieval occurs within semantically and linguisti-
cally aligned spaces, reducing noise and improving
cross-lingual recall.

Partitioning for Language-Specific Question Re-
trieval We first partition the embedded question
representations based on their respective language
labels. Formally, the partitioned question sets are
defined as:

Q=19 }, Q, =1{a |y, lc;) = split(li)}.

“)
Each partition Qlg; contains only questions in a
single language [,,. Since each question-context
pair (¢;, ¢;) in the dataset is assigned a synthetic
language label /;;, we first decompose it into its re-
spective question and context languages, [y, and I
During retrieval, a given query ¢’ in language I,/
is first translated into its corresponding language
¢ before being embedded into the same vector
space as Qlq’. This ensures that similarity compu-
tations occur within a shared semantic representa-
tion space, minimizing retrieval mismatches.

Sharding for Question-Context Alignment To
enhance retrieval accuracy, we introduce a sharding
mechanism that decouples question embeddings
and context embeddings while preserving their
alignment within a multilingual retrieval space.
Formally, the sharded dataset is structured as:

€ = {&y 1) b

where £, 1.y = {(E(g5), E(ck)) | (g5 le)}-
®)
Retrieval is conducted in two sequential stages. In
the first stage, a query ¢’ is compared against the
question set qu, within its respective language par-
tition. If the similarity score S(¢’, ¢;) exceeds a
predefined threshold kg, the retrieved question g; is
deemed semantically relevant and is subsequently
used to retrieve the corresponding context. In the
second stage, the most relevant context c* is se-
lected by maximizing the similarity score between

the identified question and its candidate contexts:

ct = argHi%XS(E(qj),E(Ck)), CL € glqj' (6)



This two-step retrieval mechanism ensures that the
initial retrieval step prioritizes semantically aligned
questions before searching for the most contextu-
ally relevant passage. By enforcing this hierarchi-
cal retrieval structure, we mitigate retrieval noise,
particularly in cross-lingual settings where direct
query-to-context alignment may introduce incon-
sistencies.

R-Agent Effective retrieval in cross-lingual ques-
tion answering requires high-quality training data
that aligns semantically between the question and
its associated context. However, large-scale QA
datasets such as TriviaQA(Joshi et al., 2017) con-
tain noise, where retrieved contexts may be weakly
related or irrelevant to the corresponding questions.
To mitigate this issue, we apply a filtering mech-
anism using a sentence similarity model before
fine-tuning the retrieval encoder.

To refine the training data, we filter question-
context pairs (g;, ¢;) € D based on their semantic
similarity score S(¢;, ¢;). Pairs with a similarity
score below a predefined threshold 7 are excluded,
ensuring that only strongly correlated instances
remain:

Ditered = (i, ¢i) | S(ginci) > 74 (1)

By leveraging the R-Agent, we enhance the dataset
quality, removing weakly related question-context
pairs and ensuring that the retrieval model is trained
on semantically robust data.

3.3 Cross-Language Reranking Algorithm

In cross-lingual retrieval tasks, semantic misalign-
ment between languages can introduce errors, lead-
ing to suboptimal ranking of retrieved contexts.
Standard similarity metrics, such as cosine sim-
ilarity, do not account for the inherent variation
in embeddings caused by differences in language
structure. To address this issue, we introduce a
cross-language re-ranking algorithm that applies
weighted bias adjustment to the similarity scores.
This method enhances retrieval accuracy by incor-
porating language-specific error adjustments.

Construction of the Bias Matrix To quantify
language-induced variations in embedding simi-
larity, we generate a cross-language error matrix
B. First, we select 200,000 context passages from
TriviaQA and translate each passage into seven
different target languages using Google Translate.
Let C = {c} | represent the translated contexts,

where cﬁ- denotes the i-th context in language [. Us-
ing our fine-tuned encoder model, each translated
passage is embedded into a vector space:
l l v 4
= B(d), of = B(d). (8)

7

For each context passage, we compute the pairwise
embedding difference across languages:

N
1 /
01 =5 D lvi=vill: )
i=1
The resulting error matrix B, where By = (1, 1),

represents the average embedding discrepancy be-
tween languages [ and [’. Higher values in B in-
dicate greater semantic drift in embeddings due to
language translation.

Bias-Adjusted Similarity Reranking (BAS
Rerank) Given a query ¢ in language [, and
a retrieved context ¢ in language [., we apply a
bias correction factor to the similarity score. Let
S(g, c) denote the initial cosine similarity between
the query and context embeddings. The adjusted
similarity S(g, c) is computed as:

S(g;c)
1— (B -a)

where « is a tunable weight that determines the
influence of cross-language error correction. If no
bias value exists for the given language pair, the
similarity remains unchanged. This adjustment ac-
counts for systematic language-specific variations
and improves ranking fairness by reducing the im-
pact of embedding distortions.

S(g,¢) = (10)

Interpretability of Weight Adjustment The pa-
rameter « allows control over the degree of bias
correction. Setting o = 0 recovers the standard
cosine similarity, while higher values increase the
correction strength. This flexibility enables opti-
mization based on empirical performance across
different language pairs. The re-ranking process
ensures that retrieved contexts are ranked more reli-
ably, particularly in low-resource languages where
translation discrepancies are more pronounced.

To evaluate retrieval effectiveness, we employ
the Error Rate (ER), which quantifies the propor-
tion of queries where the ground-truth context is
absent from the top-K retrieved results. Formally,
ER is defined as:

12l

Ry = ’Q|ZI Y {cr,.ck}),  (11)



A lower ER i value indicates a higher retrieval suc-
cess rate, making it a key metric for evaluating the
effectiveness of cross-lingual retrieval strategies.

4 Data Preprocessing

Given that TriviaQA is originally an English
dataset, we begin with an initial preprocessing step
before multilingual translation to ensure data in-
tegrity and relevance. The first step involves filter-
ing out instances where the ground-truth answer is
not sufficiently represented within the associated
context. Specifically, for each (g;, ¢;, ax) triplet,
a filtering mechanism is applied based on answer
presence criteria. A context ¢; is retained if the
answer ay, satisfies at least one of the following
conditions: (1) it appears as an exact substring
within the context, (2) at least 75% of its tokens
are present in the context, or (3) all its constituent
words occur in any order within the context. Only
instances meeting at least one of these criteria are
preserved, ensuring that the dataset remains seman-
tically.

To enhance adaptability to model constraints,
we apply context-specific (CS) chunking as a pre-
processing strategy for handling extended contexts
while preserving semantic integrity. Unlike fixed-
length truncation, CS chunking segments text at
natural discourse boundaries, such as sentences
or paragraphs, ensuring structural coherence and
retention of key informational elements. Addition-
ally, a lexical search mechanism is integrated to
guarantee that the segmented context retains the
complete answer span. This adaptive chunking
framework balances the trade-off between main-
taining linguistic continuity and adhering to model
input limitations.

To ensure balanced multilingual representation
and improve retrieval efficiency, the preprocessed
TriviaQA dataset is partitioned by language into
subsets. Initially, the dataset is divided into seven
equal parts, and each of these subsets is further
subdivided into seven smaller partitions. This strat-
ified approach ensures a uniform distribution of
question-context pairs across the dataset and mit-
igates any bias caused by imbalanced language
combinations. After partitioning, both the ques-
tions and contexts in these subsets are translated
into seven languages: English, French, German,
Russian, Swabhili, Spanish, and Chinese. Given
that the answers remain in English, this translation
strategy ensures comprehensive coverage of cross-

lingual retrieval scenarios while preserving answer
consistency across all languages. Notably, Swabhili,
a typologically distinct Bantu language, presents
unique structural challenges due to its divergence
from Indo-European languages, providing an op-
portunity to evaluate the model’s performance on
languages with significant typological variation.
In addition to TriviaQA, we incorporate TydiQA
(Clark et al., 2020), a dataset containing 200K
question-answer pairs spanning 11 typologically
diverse languages, to assess cross-lingual general-
ization in retrieval tasks. Both datasets undergo
partitioning and sharding to optimize retrieval ef-
ficiency and support multilingual evaluation. To
accommodate the input size constraints of the en-
coder model, CS chunking is applied to contexts
that exceed the maximum input length. This en-
sures that longer contexts are divided into semanti-
cally coherent units, preserving crucial information
for question-context alignment while adhering to
model constraints. The integration of structured
dataset partitioning, language-aware translation,
and adaptive chunking enables the construction of a
balanced, high-fidelity multilingual dataset suitable
for cross-lingual retrieval and evaluation.
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Figure 2: Pipeline of the experimental framework, in-
cluding multi-step retrieval and re-ranking. Retrieved
contexts are ranked, and the top-k results are checked
for the true context and language identification to ensure
cross-lingual alignment. We report the textual language
of one example vector for English and Chinese vector
setsdseq 090.

S5 Experiments

As illustrated in Figure 2, the experimental pipeline
consists of multi-step retrieval followed by a re-



ranking mechanism. Retrieved contexts are ranked
based on their semantic similarity to the query, and
the top-k results are analyzed to determine whether
the correct context is present. Additionally, lan-
guage identification is performed to assess cross-
lingual retrieval accuracy, ensuring alignment be-
tween queries and retrieved content across diverse
language pairs.

5.1 Finetuning RAG Encoder

After dataset refinement, the fine-
tuning process is carried out on the
paraphrase-xlm-r-multilingual-vl  model.
In this step, each question-context pair is labeled
to indicate whether it is semantically related or not.
If the pair is semantically related, it is assigned
a label of 1, and if it is deemed irrelevant, it is
assigned a label of 0. The model’s pooling and
fully connected layers are fine-tuned for 10 epochs
to optimize the model’s ability to compare and
align semantically similar question-context pairs
in a cross-lingual context. The fine-tuned model,
referred to as the ParaXLM-SR, improves the
retrieval performance by ensuring that semantically
related pairs are better aligned, while irrelevant
pairs are more dispersed in the embedding space.

The fine-tuning process utilizes the AdamW op-
timizer, with the learning rate controlling the step
size during the gradient-based optimization. The
training proceeds iteratively over 1" epochs. Once
fine-tuning is completed, the optimized model is
saved and used for retrieval tasks in subsequent
applications.

To comprehensively assess the effectiveness of
our proposed framework, we conduct a two-stage
evaluation: (1) an intrinsic evaluation of the fine-
tuned encoder model to measure its performance
in semantic representation and cross-lingual align-
ment, and (2) an extrinsic evaluation of the full
RAG architecture to analyze its retrieval efficacy
and robustness in multilingual question-answering
tasks.

5.2 Evaluation

5.2.1 Evaluation of Encoder Model

ParaXLLM-SR was evaluated across multiple lin-
guistic benchmarks by SentEval, a standard bench-
marking framework for sentence embeddings (Con-
neau and Kiela, 2018) to assess its effective-
ness in semantic representation (Table 2), para-
phrase identification, natural language inference,

and topic classification. In terms of semantic re-
latedness, and outperformed the baseline in the
CDSC-R and SICK-R benchmarks(Wréblewska
and Krasnowska-Kiera$, 2017; Zhang et al., 2019),
CDSC-R evaluates sentence representations based
on compositional distributional semantics in Pol-
ish, measuring the degree of semantic similarity
between sentence pairs, while SICK-R assesses se-
mantic relatedness through graded similarity scores
across English sentence pairs, focusing on fine-
grained distinctions in meaning and paraphrase
variability. Additionally, the model exhibited
superior performance in paraphrase identifica-
tion, surpassing the baseline in the cross-lingual
PPC Benchmark, indicating improved alignment
in cross-lingual paraphrase detection. For nat-
ural language inference, the fine-tuned model
achieved higher score in the CDSC-E benchmark
(Wréblewska and Krasnowska-Kieras, 2017), con-
firming its robustness in logical entailment recog-
nition. Furthermore, in topic classification, the
model attained competitive results on the 8-Tags
Benchmark (Dadas et al., 2020b), showcasing its
capability to generalize across diverse classification
tasks.

5.2.2 Evaluation of the RAG Architecture

In evaluating the proposed RAG architecture of
ParaXLLM-SR, Table 3 analyze Top-10 and Top-
3 retrieval error rates on TriviaQA and TydiQA
to report cross-lingual retrieval performance and
compare with existing. It shows that Swahili ex-
hibits higher error rates due to its typological diver-
gence from Indo-European languages. ParaXLM-
SR achieves notable improvements in cross-lingual
retrieval, particularly in typologically closer lan-
guage pairs. The BAS re-ranking algorithm further
refines retrieval by reducing semantic misalign-
ment, as evidenced by the Top-3 error rate con-
verging with Top-10, demonstrating its efficacy in
prioritizing semantically relevant contexts while
mitigating retrieval noise.

To further evaluate the robustness of the pro-
posed RAG architecture, we conduct experiments
on the TydiQA dataset with additional retrieval
challenges on longer contextual passages. To en-
sure compatibility with model constraints, we em-
ploy CS chunking, segmenting extended passages
into 512-token units while preserving semantic in-
tegrity. Furthermore, the proposed RAG architec-
ture was also evaluated on five languages in Ty-
diQA which are absent from the training data, pre-



‘ Semantic Relatedness ‘ Paraphrase Identification ‘

Semantic Analysis ‘ Natural Language Inference ‘ Topic Classification

WCCRS WCCRS

CDSC-R  SICK-R PPC HOTELS MEDICINE CDSC-E SICK-E 8TAGS
mbert 0.823 0.650 65.7 73.68 71.51 83.2 70.53 64.96
xImr_base_all 0.795 0.712 67.2 83.72 80.89 87.7 75.19 69.60
roberta_base_all 0.819 0.759 T2.4 84.62 82.62 86.4 75.68 70.04
paraphrase-multilingual-mpnet-base-v2 0.901 0.831 80.3 84.49 82.67 86.7 79.47 72.58
LaBSE 0.883 0.826 71.7 86.16 80.64 87.2 81.63 71.41
paraphrase-xIm-r-multilingual-v1 0.898 0.838 80.6 81.66 80.69 86.9 81.29 70.61
distiluse-base-multilingual-cased-v2 0.875 0.807 76.4 79.86 75.95 87.9 78.68 70.86
distilbert-multilingual-nli-stsb-quora-ranking 0.862 0.816 81.1 79.92 75.11 86.9 80.27 68.96
xIm-r-bert-base-nli-stsb-mean-tokens 0.853 0.820 81.5 81.72 79.26 852 80.31 69.37
LASER 0.880 0.816 81.1 82.50 77.78 87.7 81.96 64.98
GloVe 0.834 0.732 67.7 77.41 69.78 874 73.32 67.89
ParaXLM-SR 0.909 0.842 81.4 81.15 77.09 87.6 81.10 71.71

Table 2: Performance of ParaXLLM-SR vs. Baseline on Semantic and Language Tasks. We report accuracy
classification and Pearson correlation between true and predicted relatedness scores for semantic relatedness.

‘ Baseline ‘ ParaXLM-SR ‘ Re-Rank
‘Top 10 Top 3‘ Top 10 Top 3 ‘ Top 3
TriviaQA

en 0.123 0.213]0.058 (-0.065) 0.137 (-0.076 )| 0.068 (-0.069)
fr 0.177 0.286]0.126 (-0.077) 0.209 (-0.103 )]0.111 (-0.098)
de 0.215 0.345]0.138 (-0.023) 0.242 (-0.033 )] 0.154 (-0.088)
ru 0.351 0.492]0.199 (-0.055) 0.326 (-0.039 )]0.097 (-0.229)
sw 0.793 0.856|0.770 (-0.793) 0.822 (-0.856 )|0.771 (-0.056)
es 0.081 0.173]0.060 (-0.081) 0.130 (-0.173 )] 0.074 (-0.099)
zh 0.172 0.250[0.117 (-0.172) 0.211 (-0.250 )] 0.153 (-0.058)
avgw. sw | 0.273 0.373/0.210 (-0.063) 0.297 (-0.169 )0.204 (-0.093)
avg w.o. sw| 0.187 0.293]0.117 (-0.070) 0.210 (-0.184 )[0.109 (-0.101)
TydiQA
ar 0.691 0.765]0.473 (-0.218) 0.615 (-0.150 )| 0.627 (0.012)
bn 0.702 0.828]0.557 (-0.145) 0.719 (-0.109 )| 0.733 (0.014)
en 0.326 0.4040.255 (-0.071) 0.319 (-0.085 )| 0.326 (0.007)
fi 0.339 0.474]0.305 (-0.034) 0.451 (-0.023 )| 0.465 (0.014)
id 0.405 0.582]0.441 (0.036) 0.623 (0.041) | 0.642 (0.019)
ko 0.580 0.713]0.437 (-0.144) 0.599 (-0.114 )| 0.616 (0.017)
ru 0.486 0.6030.322 (-0.164) 0.514 (-0.089 )| 0.523 (0.009)
sw 0.730 0.806]0.443 (-0.287) 0.617 (-0.190 )| 0.629 (0.012)
avg | 0.532 0.647/0.404 (-0.128) 0.557 (-0.090 )| 0.570 (0.013)

Table 3: Top 10 and 3 WER Evaluation of ParaXLM-SR,
Baseline, and Re-Ranking across TriviaQA and TydiQA
datasets.

senting a rigorous zero-shot evaluation scenario for
cross-lingual retrieval.

BAS re-ranking adjusts similarity scores only for
cross-lingual question-context pairs, while mono-
lingual pairs remain unchanged. Therefore, the
Top-3 error rate post re-ranking cannot fall below
retrieval, since only cross-lingual candidates are
modified. Empirical results show that the post-re-
ranking Top-3 error rate is merely 0.013 higher than
retrieval, indicating minimal disruption to mono-
lingual ranking while effectively refining cross-
lingual retrieval accuracy.

6 Conclusion and Limitations

We present a cross-lingual retrieval-augmented
question-answering framework that improves re-
trieval accuracy across multiple languages while ad-
dressing retrieval biases. ParaXLLM-SR fine-tuned
on a semantically filtered multilingual dataset, en-
hances cross-lingual semantic alignment by reduc-
ing retrieval discrepancies. Experimental results
on TriviaQA and TydiQA demonstrate its effective-
ness in minimizing retrieval errors and improving
ranking consistency. Additionally, BAS re-ranking
compensates for cross-lingual discrepancies while
maintaining monolingual retrieval stability, further
refining retrieval fidelity in multilingual settings.

Despite the demonstrated improvements in re-
trieval accuracy, certain limitations remain. First,
due to the absence of real-world user queries in
our dataset, we did not evaluate the retrieval per-
formance when user-generated queries are used in-
stead of pre-defined questions. Future research will
focus on refining the retrieval mechanism to better
handle diverse user queries in practical applications.
Second, given the rapid advancements in LLMs,
our study did not evaluate the generation perfor-
mance of our RAG architecture with contempo-
rary LLM iterations. Since LLM architectures are
continuously evolving, subsequent studies will ex-
plore how our framework performs when integrated
with modern LLM-based text generation, ensuring
robust end-to-end retrieval-augmented generation
performance.
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A Bias Matrix

en fr es SW ru zh de
en 0.000 0.079 0372 0.588 0.403 0.444 0.399
fr  0.079 0.000 0.353 0.574 0.381 0421 0.384
es 0.372 0353 0.000 0436 0.106 0.166 0.092
sw 0.588 0.574 0436 0.000 0475 0.507 0.456
ru 0403 0.381 0.106 0475 0.000 0.154 0.130
zh 0444 0421 0.166 0.507 0.154 0.000 0.138
de 0.399 0384 0.092 0456 0.130 0.138 0.000

Table 4: Bias table in reranking for TriviaQA


https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2407.05502
https://arxiv.org/abs/2407.05502
https://arxiv.org/abs/2407.05502
https://arxiv.org/abs/2409.03708
https://arxiv.org/abs/2409.03708
https://arxiv.org/abs/2409.03708
https://arxiv.org/abs/2409.03708
https://arxiv.org/abs/2409.03708
https://arxiv.org/abs/2405.16420
https://arxiv.org/abs/2405.16420
https://arxiv.org/abs/2405.16420
https://arxiv.org/abs/2405.16420
https://arxiv.org/abs/2405.16420
https://doi.org/10.18653/v1/s19-1005
https://doi.org/10.18653/v1/s19-1005
https://doi.org/10.18653/v1/s19-1005

	Introduction
	Related Work
	Multilingual Sentence Embeddings and Retrieval Models
	Multilingual Retrieval Strategies
	Retrieval-Augmented Generation and Cross-Lingual Adaptations

	Methodology
	Fine-Tuning the Encoder Model
	Partitioning and Sharding of Embedded Data
	Cross-Language Reranking Algorithm

	Data Preprocessing
	Experiments
	Finetuning RAG Encoder
	Evaluation
	Evaluation of Encoder Model
	Evaluation of the RAG Architecture


	Conclusion and Limitations
	Bias Matrix

