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Abstract001

Large Language Models (LLMs) excel in cross-002
lingual question answering (QA) but often hal-003
lucinate due to mismatches between the query004
and the model’s internal knowledge represen-005
tation. Retrieval-augmented generation (RAG)006
mitigates this issue but struggles with cross-007
lingual retrieval inconsistencies. We propose008
a retrieval method that enhances recall and009
re-ranking by improving semantic alignment010
across languages. Our approach integrates a011
language-aware retrieval mechanism with a012
fine-tuned encoder model, ParaXLM-SR, to re-013
fine query-context matching and prioritize rele-014
vant information. By leveraging bias-adjusted015
similarity re-ranking, our method further miti-016
gates cross-lingual retrieval noise and improves017
context relevance.018

1 Introduction019

RAG has emerged as a valuable method for enhanc-020

ing LLMs by incorporating an external retrieval021

mechanisms to improve response quality and fac-022

tual grounding (Lewis et al., 2020; Gao et al., 2023).023

By retrieving semantically relevant context before024

generation, RAG mitigates knowledge gaps and re-025

duces the hallucination problem in LLMs, thereby026

increasing the factual reliability of generated re-027

sponses. RAG has gained significant attention,028

particularly in tasks requiring knowledge-intensive029

reasoning, such as open-domain question answer-030

ing and specialized domain-specific text genera-031

tion (Chirkova et al., 2024a; Hu and Lu, 2024b).032

Despite these advancements, most RAG-based re-033

trieval systems are still predominantly monolingual,034

with English being the primary language for both035

retrieval and generation.036

To overcome these challenges, we introduce a037

cross-lingual retrieval question-answering RAG038

designed to improve multilingual retrieval effec-039

tiveness and reduce hallucinations in knowledge-040

intensive tasks on figure 1. Our framework em-041

ploys a multi-step process that combines cross- 042

lingual retrieval and re-ranking mechanisms to 043

identify semantically aligned information from di- 044

verse languages. This approach ensures that LLM- 045

generated responses are firmly grounded in reliable 046

multilingual sources. Instead of restricting retrieval 047

to monolingual knowledge bases, our approach dy- 048

namically queries multiple language-specific repos- 049

itories, retrieving the most relevant content irre- 050

spective of the query’s original language (Artetxe 051

and Schwenk, 2019a; Ji et al., 2023). Through 052

comprehensive evaluations on cross-lingual bench- 053

marks, we demonstrate that our method signifi- 054

cantly enhances cross-lingual recall while mitigat- 055

ing the hallucination rate. By integrating multi- 056

lingual evidence retrieval into the RAG pipeline, 057

our approach strengthens the factual consistency of 058

LLM-generated outputs, thereby making retrieval- 059

augmented architectures more reliable and linguis- 060

tically inclusive. 061

ParaXLM-SR (Paraphrase-XLM-RoBERTa 062

Semantic Retrieval) is a fine-tuned multilingual 063

sentence encoder designed to enhance cross-lingual 064

semantic alignment for retrieval tasks. Built upon 065

paraphrase-xlm-r-multilingual-v1, this 066

model refines sentence embeddings by optimizing 067

for semantic relatedness, improving the alignment 068

of multilingual representations while preserving 069

retrieval robustness. Unlike its predecessor, 070

ParaXLM-SR incorporates domain-adaptive 071

fine-tuning on a filtered, high-quality multilin- 072

gual dataset, ensuring that semantically similar 073

question-context pairs exhibit greater coherence 074

in vector space. By reducing retrieval noise and 075

enhancing cross-lingual consistency, ParaXLM-SR 076

enables more precise retrieval of multilingual 077

knowledge, making it particularly effective for 078

retrieval-augmented generation (RAG) pipelines 079

and cross-lingual QA scenarios. 080

Our Key Findings. Through extensive evaluation, 081

we observe the following improvements: 082
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Figure 1: Illustration of the cross-lingual RAG architecture pipeline. Preprocessing partitions data by language
with context-specific (CS) chunking. The R-Agent filters training data, enabling optimized retrieval. Queries
are translated across languages, and retrieved contexts are re-ranked using the Bias-Adjusted Similarity (BAS)
mechanism to enhance cross-lingual precision.

• Embedding Alignment: ParaXLM-SR re-083

duces vector space distortion across lan-084

guages, leading to more precise semantic sim-085

ilarity computations.086

• Retrieval Efficiency: Our RAG framework087

enhances retrieval accuracy across multiple088

language pairs, demonstrating greater adapt-089

ability to cross-lingual QA tasks.090

• Re-ranking Stability: The bias-adjusted re-091

ranking mechanism improves ranking consis-092

tency, particularly in typologically diverse lan-093

guages, while preserving monolingual ranking094

quality.095

Despite these advancements, challenges persist in096

retrieving high-quality results in low-resource lan-097

guages, adapting retrieval mechanisms for complex098

linguistic structures, and refining ranking functions099

for domain-specific knowledge.100

2 Related Work101

2.1 Multilingual Sentence Embeddings and102

Retrieval Models103

Multilingual sentence embeddings are fundamen-104

tal to cross-lingual retrieval-augmented QA, where105

semantic misalignment often leads to retrieval dis-106

crepancies. Early distributed representation mod-107

els, such as Word2Vec (Mikolov et al., 2013a,b),108

provided word-level embeddings but lacked con-109

textual depth and cross-lingual adaptability. Sub-110

sequent models, including LASER (Artetxe and 111

Schwenk, 2019b; Heffernan et al., 2022), Uni- 112

versal Sentence Encoder (Yang et al., 2020), and 113

LaBSE (Feng et al., 2020), leveraged large-scale 114

transformer architectures to enhance cross-lingual 115

embedding alignment. 116

Advancements in transformer-based archi- 117

tectures, such as mBERT and XLM-RoBERTa, 118

have further refined multilingual representa- 119

tion learning (Muller et al., 2021). RoBERTa 120

introduced improved contextual embeddings 121

through optimized pretraining objectives 122

(Dadas et al., 2020a). To mitigate retrieval 123

inconsistencies, stsb-xlm-r-multilingual 124

(Huertas, 2023), a fine-tuned variant of XLM- 125

RoBERTa, has been employed to filter weakly 126

related question-context pairs, thereby improv- 127

ing retrieval precision. Several multilingual 128

retrieval models have emerged, including 129

paraphrase-multilingual-mpnet-base-v2, 130

which is optimized for paraphrase identification, 131

and LaBSE, which employs a dual-encoder 132

framework for cross-lingual similarity. Lawrie 133

et al. (Lawrie et al., 2022) introduced Multi- 134

lingual ColBERT-X, a late interaction retrieval 135

model that enhances multilingual dense re- 136

trieval by leveraging token-level representations. 137

paraphrase-xlm-r-multilingual-v1 (Reimers 138

and Gurevych, 2019a), an extension of XLM-R, 139

has been widely adopted for multilingual retrieval, 140

while knowledge distillation techniques, such as 141
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distiluse-base-multilingual-cased-v2 and142

distilbert-multilingual-nli-stsb-quora,143

have enhanced model efficiency. Additionally,144

xlm-r-bert-base-nli-stsb-mean-tokens145

fine-tunes XLM-R for sentence similarity tasks,146

LASER enables zero-shot cross-lingual transfer,147

and GloVe (Pennington et al., 2014) serves as a148

non-contextual baseline.149

2.2 Multilingual Retrieval Strategies150

Cross-lingual retrieval presents unique challenges,151

particularly for low-resource languages, where152

naive corpus-wide retrieval amplifies retrieval mis-153

matches and semantic drift. Chirkova et al.154

(Chirkova et al., 2024b) systematically analyzed155

multilingual retrieval pipelines, underscoring the156

significance of fine-tuned retrievers, re-ranking157

strategies, and retrieval optimization in mitigating158

hallucinations. Feng et al. (Feng et al., 2022) inves-159

tigated the constraints of code-switching in cross-160

lingual transfer. Wang et al. (Wang et al., 2024) in-161

troduced retrieval partitioning, demonstrating that162

structured retrieval units improve both efficiency163

and recall. While their M-RAG framework applies164

structured retrieval to generative QA, our approach165

extends this paradigm to multilingual question an-166

swering by aligning queries with semantically rele-167

vant cross-lingual contexts.168

Cosine similarity has been widely adopted as169

a fundamental metric for ranking retrieved candi-170

dates in multilingual retrieval models (Conneau171

and Lample, 2019; Reimers and Gurevych, 2019a).172

However, inherent biases in multilingual represen-173

tations necessitate further refinement to ensure eq-174

uitable ranking across languages. While prior ap-175

proaches have explored metadata-based retrieval176

constraints (Pires et al., 2019), these methods often177

fail to generalize across typologically diverse lan-178

guages. Our framework introduces a bias-adjusted179

re-ranking mechanism that refines cross-lingual re-180

trieval precision while maintaining ranking stability181

for monolingual retrieval candidates.182

2.3 Retrieval-Augmented Generation and183

Cross-Lingual Adaptations184

RAG has become a key framework for integrating185

external knowledge retrieval into language mod-186

els, improving response factuality in knowledge-187

intensive tasks (Finardi et al., 2024a; Hu and Lu,188

2024a; Fan et al., 2024). Despite these advance-189

ments, most existing RAG systems operate in190

monolingual environments, limiting their effective-191

ness in multilingual retrieval (Sharma et al., 2024). 192

Prior studies have explored domain adaptation tech- 193

niques for RAG in open-domain QA (Siriwardhana 194

et al., 2023; Veturi et al., 2024) and contextual 195

response generation (Jin et al., 2024), offering in- 196

sights into retrieval generalization. 197

Cross-lingual retrieval introduces additional 198

challenges stemming from embedding space dis- 199

crepancies and linguistic divergence. Recent efforts 200

have proposed retrieval error correction techniques 201

(Muller et al., 2021; Finardi et al., 2024b), but effec- 202

tive re-ranking strategies tailored to multilingual 203

QA remain underexplored. Our approach intro- 204

duces a bias-adjusted similarity re-ranking mecha- 205

nism inspired by retrieval error compensation, opti- 206

mizing ranking precision by addressing systematic 207

cross-lingual retrieval biases. Moreover, retrieval 208

caching mechanisms, such as RAGCache (Jin et al., 209

2024), emphasize the importance of improving re- 210

trieval efficiency, further aligning with our struc- 211

tured retrieval design. 212

Prior work has also investigated translation- 213

based augmentation, such as using Google Trans- 214

late to enhance retrieval (Balk et al., 2012). Our 215

approach extends this by constructing a bias matrix 216

that systematically refines cross-lingual ranking 217

adjustments while mitigating retrieval distortions 218

caused by linguistic variation. 219

3 Methodology 220

A cross-lingual QA task aims to retrieve the 221

most semantically relevant context cj for a given 222

query qi from a multilingual QA dataset D = 223

(qi, cj , lij)i = 1|D|, where lij represents the syn- 224

thetic language label indicating the language of 225

the question and context. (e.g., "ende" signifies a 226

question in English with a context in German). Un- 227

like monolingual retrieval, cross-lingual retrieval 228

introduces challenges such as semantic misalign- 229

ment, retrieval mismatches, and linguistic variation 230

across typologically diverse languages. 231

In the multi-step retrieval process, we use co- 232

sine similarity to measure the relevance between a 233

query question and a context. Given a question qi 234

from the question set Ql and a context cj from the 235

multilingual context set C, the cosine similarity is 236

calculated as: 237

S(qi, cj) =
E(qi) · E(cj)

∥E(qi)∥∥E(cj)∥
(1) 238

Cosine similarity is utilized in our retrieval pipeline 239

to measure the angular distance between query 240
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and context embeddings, prioritizing semantically241

aligned content across multiple languages.242

Language Question / Context Answer
France Dans la citation biblique chrétienne, il est plus ...? Needle
German ... durch ein Nadelöhr zu gehen, ...
Spanish ¿Llevó a cabo una misión de predicación y ...? Jesus
German Jesus führte etwa im Jahr 28–30 n. Chr. eine Predigt-...
English The company Titleist manufacture which ... ? Golf
French Retrouvez les fabricants de golf qui fabriquent le ...
Spanish ¿Un cóctel Molotov (bomba molotov casera) ... ? Molotov
English petrol bomb [C20: named after V. M. Molotov] ...
Swahili Sauti ya vokali isiyosisitizwa ’uh’ kwa kawaida ... ? schwa
Swahili inayoitwa schwa, inawakilishwa na kichwa chini ...
Chinese 第一个被发现的抗生素是什么 Penicillin
German Das erste Antibiotikum Penicillin wurde 1928 von ...

Table 1: Examples of multilingual question-answering
data. Each row consists of a question, corresponding
context, and answer across different language pairs.

3.1 Fine-Tuning the Encoder Model243

After R-Agent filtering, the dataset Dfiltered is244

used to fine-tune the baseline retrieval model,245

paraphrase-xlm-r-multilingual-v1 (Dadas,246

2020), a variant of Sentence-BERT (SBERT)247

(Reimers and Gurevych, 2019b). The fine-tuning248

process updates the pooling layer and fully249

connected layer to optimize sentence similarity250

representation, enabling the encoder model to251

generate embeddings that improve the retrieval of252

semantically relevant contexts.253

Given a batch of training instances (qi, ci) ∈254

Dfiltered, the model computes the similarity logits255

f(qi, ci) through a fully connected projection layer:256

f(qi, ci) = W⊤ pool(E(qi), E(ci)) + b. (2)257

Here, the pooling operation refers to average pool-258

ing, where the final sentence representation is ob-259

tained by computing the mean over all token em-260

beddings. This method ensures a stable and smooth261

aggregation of contextual information while reduc-262

ing noise, making it effective for multilingual re-263

trieval tasks. W is the learnable weight matrix, and264

b is the bias term. The objective function is the265

cross-entropy loss:266

L = −
|Dfiltered|∑
i=1

yi log f(qi, ci)+

(1− yi) log(1− f(qi, ci)).

(3)267

The binary label yi indicates whether the pair268

(qi, ci) is semantically related, with yi = 1 rep-269

resenting a semantically relevant pair and yi = 0270

indicating an irrelevant pair.271

3.2 Partitioning and Sharding of Embedded 272

Data 273

To improve retrieval efficiency and mitigate seman- 274

tic misalignment in cross-lingual question answer- 275

ing, we introduce a structured retrieval approach 276

that consists of two key components: partition- 277

ing and sharding. These mechanisms ensure that 278

retrieval occurs within semantically and linguisti- 279

cally aligned spaces, reducing noise and improving 280

cross-lingual recall. 281

Partitioning for Language-Specific Question Re- 282

trieval We first partition the embedded question 283

representations based on their respective language 284

labels. Formally, the partitioned question sets are 285

defined as: 286

Q = {Qlqi
}, Qlqi

= {qi | (lqi , lcj ) = split(lij)}.
(4) 287

Each partition Qlqj contains only questions in a 288

single language lqj . Since each question-context 289

pair (qi, cj) in the dataset is assigned a synthetic 290

language label lij , we first decompose it into its re- 291

spective question and context languages, lqi and lcj . 292

During retrieval, a given query q′ in language lq′ 293

is first translated into its corresponding language 294

q̂′ before being embedded into the same vector 295

space as Qlq′. This ensures that similarity compu- 296

tations occur within a shared semantic representa- 297

tion space, minimizing retrieval mismatches. 298

Sharding for Question-Context Alignment To 299

enhance retrieval accuracy, we introduce a sharding 300

mechanism that decouples question embeddings 301

and context embeddings while preserving their 302

alignment within a multilingual retrieval space. 303

Formally, the sharded dataset is structured as: 304

E = {E(lqj ,lck )},

where E(lqj ,lck ) = {(E(qj), E(ck)) | (lqj , lck)}.
(5) 305

Retrieval is conducted in two sequential stages. In 306

the first stage, a query q′ is compared against the 307

question set Qlq′ within its respective language par- 308

tition. If the similarity score S(q′, qj) exceeds a 309

predefined threshold kq, the retrieved question qj is 310

deemed semantically relevant and is subsequently 311

used to retrieve the corresponding context. In the 312

second stage, the most relevant context c∗ is se- 313

lected by maximizing the similarity score between 314

the identified question and its candidate contexts: 315

c∗ = argmax
ck

E(E(qj), E(ck)), ck ∈ Elqj . (6) 316
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This two-step retrieval mechanism ensures that the317

initial retrieval step prioritizes semantically aligned318

questions before searching for the most contextu-319

ally relevant passage. By enforcing this hierarchi-320

cal retrieval structure, we mitigate retrieval noise,321

particularly in cross-lingual settings where direct322

query-to-context alignment may introduce incon-323

sistencies.324

R-Agent Effective retrieval in cross-lingual ques-325

tion answering requires high-quality training data326

that aligns semantically between the question and327

its associated context. However, large-scale QA328

datasets such as TriviaQA(Joshi et al., 2017) con-329

tain noise, where retrieved contexts may be weakly330

related or irrelevant to the corresponding questions.331

To mitigate this issue, we apply a filtering mech-332

anism using a sentence similarity model before333

fine-tuning the retrieval encoder.334

To refine the training data, we filter question-335

context pairs (qi, ci) ∈ D based on their semantic336

similarity score S(qi, ci). Pairs with a similarity337

score below a predefined threshold τ are excluded,338

ensuring that only strongly correlated instances339

remain:340

Dfiltered = {(qi, ci) | S(qi, ci) ≥ τ}. (7)341

By leveraging the R-Agent, we enhance the dataset342

quality, removing weakly related question-context343

pairs and ensuring that the retrieval model is trained344

on semantically robust data.345

3.3 Cross-Language Reranking Algorithm346

In cross-lingual retrieval tasks, semantic misalign-347

ment between languages can introduce errors, lead-348

ing to suboptimal ranking of retrieved contexts.349

Standard similarity metrics, such as cosine sim-350

ilarity, do not account for the inherent variation351

in embeddings caused by differences in language352

structure. To address this issue, we introduce a353

cross-language re-ranking algorithm that applies354

weighted bias adjustment to the similarity scores.355

This method enhances retrieval accuracy by incor-356

porating language-specific error adjustments.357

Construction of the Bias Matrix To quantify358

language-induced variations in embedding simi-359

larity, we generate a cross-language error matrix360

B. First, we select 200,000 context passages from361

TriviaQA and translate each passage into seven362

different target languages using Google Translate.363

Let C = {cli}Ni=1 represent the translated contexts,364

where cli denotes the i-th context in language l. Us- 365

ing our fine-tuned encoder model, each translated 366

passage is embedded into a vector space: 367

vli = E(cli), vl
′
i = E(cl

′
i ). (8) 368

For each context passage, we compute the pairwise 369

embedding difference across languages: 370

δ(l, l′) =
1

N

N∑
i=1

∥vli − vl
′
i ∥2. (9) 371

The resulting error matrix B, where Bl,l′ = δ(l, l′), 372

represents the average embedding discrepancy be- 373

tween languages l and l′. Higher values in B in- 374

dicate greater semantic drift in embeddings due to 375

language translation. 376

Bias-Adjusted Similarity Reranking (BAS 377

Rerank) Given a query q in language lq and 378

a retrieved context c in language lc, we apply a 379

bias correction factor to the similarity score. Let 380

S(q, c) denote the initial cosine similarity between 381

the query and context embeddings. The adjusted 382

similarity S̃(q, c) is computed as: 383

S̃(q, c) =
S(q, c)

1− (Blq ,lc · α)
, (10) 384

where α is a tunable weight that determines the 385

influence of cross-language error correction. If no 386

bias value exists for the given language pair, the 387

similarity remains unchanged. This adjustment ac- 388

counts for systematic language-specific variations 389

and improves ranking fairness by reducing the im- 390

pact of embedding distortions. 391

Interpretability of Weight Adjustment The pa- 392

rameter α allows control over the degree of bias 393

correction. Setting α = 0 recovers the standard 394

cosine similarity, while higher values increase the 395

correction strength. This flexibility enables opti- 396

mization based on empirical performance across 397

different language pairs. The re-ranking process 398

ensures that retrieved contexts are ranked more reli- 399

ably, particularly in low-resource languages where 400

translation discrepancies are more pronounced. 401

To evaluate retrieval effectiveness, we employ 402

the Error Rate (ER), which quantifies the propor- 403

tion of queries where the ground-truth context is 404

absent from the top-K retrieved results. Formally, 405

ER is defined as: 406

ERK =
1

|Q|

|Q|∑
i=1

I (c∗i /∈ {c1, ..., cK}) , (11) 407
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A lower ERK value indicates a higher retrieval suc-408

cess rate, making it a key metric for evaluating the409

effectiveness of cross-lingual retrieval strategies.410

4 Data Preprocessing411

Given that TriviaQA is originally an English412

dataset, we begin with an initial preprocessing step413

before multilingual translation to ensure data in-414

tegrity and relevance. The first step involves filter-415

ing out instances where the ground-truth answer is416

not sufficiently represented within the associated417

context. Specifically, for each (qi, cj , ak) triplet,418

a filtering mechanism is applied based on answer419

presence criteria. A context cj is retained if the420

answer ak satisfies at least one of the following421

conditions: (1) it appears as an exact substring422

within the context, (2) at least 75% of its tokens423

are present in the context, or (3) all its constituent424

words occur in any order within the context. Only425

instances meeting at least one of these criteria are426

preserved, ensuring that the dataset remains seman-427

tically.428

To enhance adaptability to model constraints,429

we apply context-specific (CS) chunking as a pre-430

processing strategy for handling extended contexts431

while preserving semantic integrity. Unlike fixed-432

length truncation, CS chunking segments text at433

natural discourse boundaries, such as sentences434

or paragraphs, ensuring structural coherence and435

retention of key informational elements. Addition-436

ally, a lexical search mechanism is integrated to437

guarantee that the segmented context retains the438

complete answer span. This adaptive chunking439

framework balances the trade-off between main-440

taining linguistic continuity and adhering to model441

input limitations.442

To ensure balanced multilingual representation443

and improve retrieval efficiency, the preprocessed444

TriviaQA dataset is partitioned by language into445

subsets. Initially, the dataset is divided into seven446

equal parts, and each of these subsets is further447

subdivided into seven smaller partitions. This strat-448

ified approach ensures a uniform distribution of449

question-context pairs across the dataset and mit-450

igates any bias caused by imbalanced language451

combinations. After partitioning, both the ques-452

tions and contexts in these subsets are translated453

into seven languages: English, French, German,454

Russian, Swahili, Spanish, and Chinese. Given455

that the answers remain in English, this translation456

strategy ensures comprehensive coverage of cross-457

lingual retrieval scenarios while preserving answer 458

consistency across all languages. Notably, Swahili, 459

a typologically distinct Bantu language, presents 460

unique structural challenges due to its divergence 461

from Indo-European languages, providing an op- 462

portunity to evaluate the model’s performance on 463

languages with significant typological variation. 464

In addition to TriviaQA, we incorporate TydiQA 465

(Clark et al., 2020), a dataset containing 200K 466

question-answer pairs spanning 11 typologically 467

diverse languages, to assess cross-lingual general- 468

ization in retrieval tasks. Both datasets undergo 469

partitioning and sharding to optimize retrieval ef- 470

ficiency and support multilingual evaluation. To 471

accommodate the input size constraints of the en- 472

coder model, CS chunking is applied to contexts 473

that exceed the maximum input length. This en- 474

sures that longer contexts are divided into semanti- 475

cally coherent units, preserving crucial information 476

for question-context alignment while adhering to 477

model constraints. The integration of structured 478

dataset partitioning, language-aware translation, 479

and adaptive chunking enables the construction of a 480

balanced, high-fidelity multilingual dataset suitable 481

for cross-lingual retrieval and evaluation. 482

Figure 2: Pipeline of the experimental framework, in-
cluding multi-step retrieval and re-ranking. Retrieved
contexts are ranked, and the top-k results are checked
for the true context and language identification to ensure
cross-lingual alignment. We report the textual language
of one example vector for English and Chinese vector
setsdseq o90.

5 Experiments 483

As illustrated in Figure 2, the experimental pipeline 484

consists of multi-step retrieval followed by a re- 485
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ranking mechanism. Retrieved contexts are ranked486

based on their semantic similarity to the query, and487

the top-k results are analyzed to determine whether488

the correct context is present. Additionally, lan-489

guage identification is performed to assess cross-490

lingual retrieval accuracy, ensuring alignment be-491

tween queries and retrieved content across diverse492

language pairs.493

5.1 Finetuning RAG Encoder494

After dataset refinement, the fine-495

tuning process is carried out on the496

paraphrase-xlm-r-multilingual-v1 model.497

In this step, each question-context pair is labeled498

to indicate whether it is semantically related or not.499

If the pair is semantically related, it is assigned500

a label of 1, and if it is deemed irrelevant, it is501

assigned a label of 0. The model’s pooling and502

fully connected layers are fine-tuned for 10 epochs503

to optimize the model’s ability to compare and504

align semantically similar question-context pairs505

in a cross-lingual context. The fine-tuned model,506

referred to as the ParaXLM-SR, improves the507

retrieval performance by ensuring that semantically508

related pairs are better aligned, while irrelevant509

pairs are more dispersed in the embedding space.510

The fine-tuning process utilizes the AdamW op-511

timizer, with the learning rate controlling the step512

size during the gradient-based optimization. The513

training proceeds iteratively over T epochs. Once514

fine-tuning is completed, the optimized model is515

saved and used for retrieval tasks in subsequent516

applications.517

To comprehensively assess the effectiveness of518

our proposed framework, we conduct a two-stage519

evaluation: (1) an intrinsic evaluation of the fine-520

tuned encoder model to measure its performance521

in semantic representation and cross-lingual align-522

ment, and (2) an extrinsic evaluation of the full523

RAG architecture to analyze its retrieval efficacy524

and robustness in multilingual question-answering525

tasks.526

5.2 Evaluation527

5.2.1 Evaluation of Encoder Model528

ParaXLM-SR was evaluated across multiple lin-529

guistic benchmarks by SentEval, a standard bench-530

marking framework for sentence embeddings (Con-531

neau and Kiela, 2018) to assess its effective-532

ness in semantic representation (Table 2), para-533

phrase identification, natural language inference,534

and topic classification. In terms of semantic re- 535

latedness, and outperformed the baseline in the 536

CDSC-R and SICK-R benchmarks(Wróblewska 537

and Krasnowska-Kieraś, 2017; Zhang et al., 2019), 538

CDSC-R evaluates sentence representations based 539

on compositional distributional semantics in Pol- 540

ish, measuring the degree of semantic similarity 541

between sentence pairs, while SICK-R assesses se- 542

mantic relatedness through graded similarity scores 543

across English sentence pairs, focusing on fine- 544

grained distinctions in meaning and paraphrase 545

variability. Additionally, the model exhibited 546

superior performance in paraphrase identifica- 547

tion, surpassing the baseline in the cross-lingual 548

PPC Benchmark, indicating improved alignment 549

in cross-lingual paraphrase detection. For nat- 550

ural language inference, the fine-tuned model 551

achieved higher score in the CDSC-E benchmark 552

(Wróblewska and Krasnowska-Kieraś, 2017), con- 553

firming its robustness in logical entailment recog- 554

nition. Furthermore, in topic classification, the 555

model attained competitive results on the 8-Tags 556

Benchmark (Dadas et al., 2020b), showcasing its 557

capability to generalize across diverse classification 558

tasks. 559

5.2.2 Evaluation of the RAG Architecture 560

In evaluating the proposed RAG architecture of 561

ParaXLM-SR, Table 3 analyze Top-10 and Top- 562

3 retrieval error rates on TriviaQA and TydiQA 563

to report cross-lingual retrieval performance and 564

compare with existing. It shows that Swahili ex- 565

hibits higher error rates due to its typological diver- 566

gence from Indo-European languages. ParaXLM- 567

SR achieves notable improvements in cross-lingual 568

retrieval, particularly in typologically closer lan- 569

guage pairs. The BAS re-ranking algorithm further 570

refines retrieval by reducing semantic misalign- 571

ment, as evidenced by the Top-3 error rate con- 572

verging with Top-10, demonstrating its efficacy in 573

prioritizing semantically relevant contexts while 574

mitigating retrieval noise. 575

To further evaluate the robustness of the pro- 576

posed RAG architecture, we conduct experiments 577

on the TydiQA dataset with additional retrieval 578

challenges on longer contextual passages. To en- 579

sure compatibility with model constraints, we em- 580

ploy CS chunking, segmenting extended passages 581

into 512-token units while preserving semantic in- 582

tegrity. Furthermore, the proposed RAG architec- 583

ture was also evaluated on five languages in Ty- 584

diQA which are absent from the training data, pre- 585
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Semantic Relatedness Paraphrase Identification Semantic Analysis Natural Language Inference Topic Classification

CDSC-R SICK-R PPC WCCRS
HOTELS

WCCRS
MEDICINE CDSC-E SICK-E 8TAGS

mbert 0.823 0.650 65.7 73.68 71.51 83.2 70.53 64.96
xlmr_base_all 0.795 0.712 67.2 83.72 80.89 87.7 75.19 69.60
roberta_base_all 0.819 0.759 72.4 84.62 82.62 86.4 75.68 70.04
paraphrase-multilingual-mpnet-base-v2 0.901 0.831 80.3 84.49 82.67 86.7 79.47 72.58
LaBSE 0.883 0.826 77.7 86.16 80.64 87.2 81.63 71.41
paraphrase-xlm-r-multilingual-v1 0.898 0.838 80.6 81.66 80.69 86.9 81.29 70.61
distiluse-base-multilingual-cased-v2 0.875 0.807 76.4 79.86 75.95 87.9 78.68 70.86
distilbert-multilingual-nli-stsb-quora-ranking 0.862 0.816 81.1 79.92 75.11 86.9 80.27 68.96
xlm-r-bert-base-nli-stsb-mean-tokens 0.853 0.820 81.5 81.72 79.26 85.2 80.31 69.37
LASER 0.880 0.816 81.1 82.50 77.78 87.7 81.96 64.98
GloVe 0.834 0.732 67.7 77.41 69.78 87.4 73.32 67.89
ParaXLM-SR 0.909 0.842 81.4 81.15 77.09 87.6 81.10 71.71

Table 2: Performance of ParaXLM-SR vs. Baseline on Semantic and Language Tasks. We report accuracy
classification and Pearson correlation between true and predicted relatedness scores for semantic relatedness.

Baseline ParaXLM-SR Re-Rank

Top 10 Top 3 Top 10 Top 3 Top 3

TriviaQA

en 0.123 0.213 0.058 (-0.065) 0.137 (-0.076 ) 0.068 (-0.069)

fr 0.177 0.286 0.126 (-0.077) 0.209 (-0.103 ) 0.111 (-0.098)

de 0.215 0.345 0.138 (-0.023) 0.242 (-0.033 ) 0.154 (-0.088)

ru 0.351 0.492 0.199 (-0.055) 0.326 (-0.039 ) 0.097 (-0.229)

sw 0.793 0.856 0.770 (-0.793) 0.822 (-0.856 ) 0.771 (-0.056)

es 0.081 0.173 0.060 (-0.081) 0.130 (-0.173 ) 0.074 (-0.099)

zh 0.172 0.250 0.117 (-0.172) 0.211 (-0.250 ) 0.153 (-0.058)

avg w. sw 0.273 0.373 0.210 (-0.063) 0.297 (-0.169 ) 0.204 (-0.093)

avg w.o. sw 0.187 0.293 0.117 (-0.070) 0.210 (-0.184 ) 0.109 (-0.101)

TydiQA

ar 0.691 0.765 0.473 (-0.218) 0.615 (-0.150 ) 0.627 (0.012)

bn 0.702 0.828 0.557 (-0.145) 0.719 (-0.109 ) 0.733 (0.014)

en 0.326 0.404 0.255 (-0.071) 0.319 (-0.085 ) 0.326 (0.007)

fi 0.339 0.474 0.305 (-0.034) 0.451 (-0.023 ) 0.465 (0.014)

id 0.405 0.582 0.441 (0.036) 0.623 (0.041) 0.642 (0.019)

ko 0.580 0.713 0.437 (-0.144) 0.599 (-0.114 ) 0.616 (0.017)

ru 0.486 0.603 0.322 (-0.164) 0.514 (-0.089 ) 0.523 (0.009)

sw 0.730 0.806 0.443 (-0.287) 0.617 (-0.190 ) 0.629 (0.012)

avg 0.532 0.647 0.404 (-0.128) 0.557 (-0.090 ) 0.570 (0.013)

Table 3: Top 10 and 3 WER Evaluation of ParaXLM-SR,
Baseline, and Re-Ranking across TriviaQA and TydiQA
datasets.

senting a rigorous zero-shot evaluation scenario for586

cross-lingual retrieval.587

BAS re-ranking adjusts similarity scores only for588

cross-lingual question-context pairs, while mono-589

lingual pairs remain unchanged. Therefore, the590

Top-3 error rate post re-ranking cannot fall below591

retrieval, since only cross-lingual candidates are592

modified. Empirical results show that the post-re-593

ranking Top-3 error rate is merely 0.013 higher than594

retrieval, indicating minimal disruption to mono-595

lingual ranking while effectively refining cross-596

lingual retrieval accuracy.597

6 Conclusion and Limitations 598

We present a cross-lingual retrieval-augmented 599

question-answering framework that improves re- 600

trieval accuracy across multiple languages while ad- 601

dressing retrieval biases. ParaXLM-SR fine-tuned 602

on a semantically filtered multilingual dataset, en- 603

hances cross-lingual semantic alignment by reduc- 604

ing retrieval discrepancies. Experimental results 605

on TriviaQA and TydiQA demonstrate its effective- 606

ness in minimizing retrieval errors and improving 607

ranking consistency. Additionally, BAS re-ranking 608

compensates for cross-lingual discrepancies while 609

maintaining monolingual retrieval stability, further 610

refining retrieval fidelity in multilingual settings. 611

Despite the demonstrated improvements in re- 612

trieval accuracy, certain limitations remain. First, 613

due to the absence of real-world user queries in 614

our dataset, we did not evaluate the retrieval per- 615

formance when user-generated queries are used in- 616

stead of pre-defined questions. Future research will 617

focus on refining the retrieval mechanism to better 618

handle diverse user queries in practical applications. 619

Second, given the rapid advancements in LLMs, 620

our study did not evaluate the generation perfor- 621

mance of our RAG architecture with contempo- 622

rary LLM iterations. Since LLM architectures are 623

continuously evolving, subsequent studies will ex- 624

plore how our framework performs when integrated 625

with modern LLM-based text generation, ensuring 626

robust end-to-end retrieval-augmented generation 627

performance. 628
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