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Abstract

Graph-based learned simulators have emerged as a promising approach for simu-
lating physical systems on unstructured meshes, offering speed and generalization
across diverse geometries. However, they often struggle with capturing global
phenomena, such as bending or long-range correlations usually occurring in solid
mechanics, and suffer from error accumulation over long rollouts due to their
reliance on local message passing and direct next-step prediction. We address
these limitations by introducing the Rolling Diffusion-Batched Inference Net-
work (ROBIN), a novel learned simulator that integrates two key innovations:
(i) Rolling Diffusion-Batched Inference (ROBI), a parallelized inference scheme
that amortizes the cost of diffusion-based refinement across physical time steps
by overlapping denoising steps across a temporal window. (ii) A Hierarchical
Graph Neural Network built on algebraic multigrid coarsening, enabling multiscale
message passing across different mesh resolutions. This architecture, implemented
via Algebraic-hierarchical Message Passing Networks, captures both fine-scale
local dynamics and global structural effects critical for phenomena like beam bend-
ing or multi-body contact. We validate ROBIN on challenging 2D and 3D solid
mechanics benchmarks involving geometric, material, and contact nonlinearities.
ROBIN achieves state-of-the-art accuracy on all tasks, substantially outperforming
existing next-step learned simulators while reducing inference time by up to an
order of magnitude compared to standard diffusion simulators.

1 Introduction
Physical simulations enable many engineering and scientific fields to gain quick insights into complex
systems or to evaluate design decisions. Conventional simulations model the physical system using
Partial Differential Equations (PDEs). Usually, the PDE is discretized by numerical methods, such as
the Finite Element Method (FEM) [1], the Finite Volume Method (FVM) [2], or the Finite Difference
Method (FDM) [3]. This process reduces the need for cumbersome, resource-intensive real-world
experiments. Recent research aims to speed up simulation with Machine Learning (ML)-based
models [4, 5]. These learned simulators promise to allow researchers and practitioners to evaluate
large amounts of virtual, simulated experiments. These simulations in turn unlock applications in
engineering design and manufacturing optimization [6–8].

This work aims to improve learned simulators, focusing on simulations of nonlinear solid mechanics as
a representative class of examples. We combine recent image-based Denoising Diffusion Probabilistic
Models (DDPMs) [9–11] with Hierarchical Graph Neural Networks (HGNNs) [12–14] (cf. Figure 1).
While diffusion has shown promising results on images [15–17], audio [18, 19] and even policy
learning for robotics [20, 21], it suffers from cost-intensive inference due to its iterative denoising
procedure. We alleviate this high inference cost on time-dependent domains with Rolling Diffusion-
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Batched Inference (ROBI), a novel scheduling scheme that batches denoising steps of consecutive
time steps. ROBI already starts denoising future prediction steps by using partially refined previous
steps. This process reduces the number of model evaluations to the number of time steps and preserves
the time-shift equivariance of Markovian systems. ROBI only affects the inference process, allowing
us to utilize conventional, parallelized DDPM training.
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Figure 1: Overview of a Rolling Diffusion-Batched Inference Network (ROBIN) prediction. ROBIN
coarsens the fine mesh multiple times with Algebraic multigrid (AMG) to create a graph hier-
archy. ROBIN predicts the denoising velocity vθ(∆ut

k, k,u
t−1
0 ) at time step t using Algebraic-

hierarchical Message Passing Networks (AMPNs), given a noisy residual sample ∆ut
k, the diffusion

step k, and a previous state ut−1
0 . The prediction is used to draw a new noisy residual sample ∆ut

k−1

and to update the state ut
0.

We combine ROBI with DDPMs and Algebraic-hierarchical Message Passing Networks (AMPNs)
to form the Rolling Diffusion-Batched Inference Network (ROBIN), which significantly acceler-
ates simulation while improving predictive accuracy. ROBIN constitutes the first diffusion-based
refiner for simulating physical dynamics on unstructured meshes, surpassing the current accuracy
ceiling of HGNNs. We train ROBINs on three challenging 2D and 3D solid mechanics datasets
involving geometric, material, and contact nonlinearities. Across all datasets, ROBIN significantly
improves over state-of-the-art mesh-based simulators [5, 22] in terms of predictive accuracy. Lever-
aging DDPMs, ROBIN accurately captures low-frequency global solution modes while resolving
high-frequency components. We further find that our proposed inference method, ROBI, speeds up
diffusion-based inference for learned simulations by up to an order of magnitude while maintaining
accuracy. In addition, the AMPN architecture of ROBIN enables efficient transfer to much larger
meshes, while maintaining near-FEM accuracy.2

To summarize, we i) propose ROBI, a novel inference scheduling scheme for diffusion-based
simulators that amortizes denoising across time steps, reducing inference to a single model evaluation
per step while preserving time-shift equivariance; ii) introduce ROBIN, a diffusion-based HGNN
for nonlinear solid mechanics that combines multiscale message passing with ROBI to provide fast,
accurate diffusion-based simulations; iii) demonstrate state-of-the-art performance on challenging
2D and 3D benchmarks, outperforming existing simulators in both accuracy and runtime.

2 Related Work
Simulating Complex Physics. Simulating complex physical systems often requires numerical
solvers, such as the FEM [23, 24, 1], the FVM [2], or the FDM [3]. While accurate, numerical
solvers scale poorly with problem complexity, often requiring multiple hours or even days for a single
rollout on a modern workstation. Recent work shows that ML-based models are able to learn such
numerical simulations from data [25, 26, 4, 5, 27, 9, 22, 10]. ML-based models provide speed-ups
of one to two orders of magnitude while being fully differentiable, which accelerates downstream
applications such as design [6] or manufacturing process optimization [7, 8]. Many learned simulators
operate autoregressively. They mimic numerical solvers by using their own predictions to estimate
the residual between successive time steps [4, 5, 28]. Similarly, Neural ODEs [29, 30] predict
time derivatives and advance solutions via numerical integration. In contrast to these supervised
approaches, Physics-Informed Neural Networks [31] directly operate on a PDE loss function to
train Multilayer Perceptrons (MLPs) [32, 33, 8], Convolutional Neural Networks (CNNs) [34, 35]
or Graph Neural Networks (GNNs) [36, 37]. Finally, Neural Operators aim to learn mesh-independent
solution operators [38–40, 27, 41]. ROBIN is an autoregressive learned simulator that replaces direct

2Project page, code and datasets are available at https://tbswrth.github.io/ROBIN.
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next-step prediction with multiple denoising diffusion steps, leveraging generative inference to
improve prediction accuracy.

Learning Mesh-based Simulations with Graph Neural Network (GNN). Pfaff et al. [5] introduced
MESHGRAPHNETS, a Message Passing Network (MPN)-based simulator that encodes simulation
states as graphs using mesh connectivity and physical proximity. While accurate for small problems,
MESHGRAPHNETS (MGNs) does not scale well, as its receptive field is limited by the number of
message-passing steps in the MPN. To address this issue, recent work expands the receptive field
via global attention [42–44] or hierarchical mesh representations using Graph Convolutional Net-
works [45] and MPNs [46, 13]. Extensions further improve efficiency and accuracy through rotation
equivariance [14], hierarchical edge design [47], bi-stride pooling [48], and attention mechanisms
acting on edges and across hierarchies [22]. [49] leverages Adaptive Mesh Refinement (AMR) to
create mesh hierarchies for multi-scale GNNs. Complementary, Physics-Informed MESHGRAPH-
NETS [37] integrate FEM-based training to improve accuracy and robustness. Existing methods are
generally trained using a next-step Mean Squared Error (MSE) loss, which favors learning lower
solution frequencies at the cost of accuracy in higher frequency bands that have less impact on the
loss [9]. However, autoregressive models trained with a MSE loss often overlook low-amplitude
frequencies [9]. Our approach is orthogonal, coupling hierarchical GNN with denoising diffusion
models. This approach takes advantage of the large receptive field of multi-scale GNNs while pushing
accuracy toward diffusion limits.

Diffusion-based Simulations. Diffusion models have been applied to physics-informed image
super-resolution [35], flow field reconstruction [50], and steady-state flow generation on grids using
CNNs [51], and more recently to meshes with hierarchical GNNs [52]. These models, however,
operate on isolated frames and do not capture time-dependent dynamics. In contrast, our model
predicts deterministic physical evolution rather than equilibrium samples via autoregressive rollouts.

While next-step simulators trained with MSE loss capture high-amplitude, low-frequency components,
they often miss low-amplitude components [9]. PDERefs (PDE-Refiners) address this via iterative
refinement, improving long-horizon accuracy of grid-based CNN simulators. We extend this idea to
unstructured meshes by combining algebraic mesh coarsening [53, 54] with hierarchical GNNs [52,
22] with shared layers. We further introduce a time-parallel denoising scheme at inference, removing
the speed bottleneck while maintaining accuracy. Unlike diffusion-based CNN simulators that require
K model evaluations per physical step [11, 55, 9], our method requires only a single hierarchical GNN
call per step post warm-up, reducing inference costs over T time steps from O(KT ) to O(T ).
Compared to video-based approaches [10, 56], which need to jointly process N steps and learn a
time-dependent denoiser with high memory cost, our model, ROBIN, leverages time-translation
invariance to train a time-independent denoiser with only one time step in memory. As such, ROBIN
can be applied autoregressively and can freely interpolate between fully parallel denoising and
memory-efficient one-step denoising at inference time. It also predicts state residuals instead of states,
significantly improving long-horizon rollout fidelity.

3 Rolling Diffusion-Batched Inference Network (ROBIN)

Graph Network Simulators (GNSs) for Mesh-based Simulations. We consider solving PDEs
for physical quantities u(x, t) that change over time t ∈ [0, T ] and inside a time-dependent domain
x(t) ∈ Ω(t). We focus on simulations on meshes, where G = (V, EM) denotes the mesh graph and
the graph nodes V and the graph edges EM correspond to mesh nodes and mesh edges. We seek
solutions ui(t) = u(xi, t) at discrete node locations xi(t) ∈ Ω(t). To obtain discretized PDEs,
usually numerical methods, such as the FEM, are applied that define the discretization of spatial
operators, such as gradients ∂u(x, t)/∂x. Given the discretized operator F , the PDE simplifies to a
time-dependent Ordinary Differential Equation and requires solving ∂ui/∂t = F(t,xi,ui) . We can
solve such systems using numerical time discretization schemes. In this work we use a simple Euler
forward discretization ut+1

i = ut
i +∆t F(t,xt

i,u
t
i) , and set ∆t = 1. We extend PDE-Refiner [9]

to Lagrangian systems, where the domain Ωt and node locations xt
i ∈ Ωt evolve over time. Here,

we predict the solution ut
i at time step t by learning to reverse a probabilistic diffusion process [57]

conditioned on the previous state of time step t− 1. The proposed methods also apply without any
restriction to Eulerian systems, where the domains are time-independent.
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3.1 Denoising Diffusion Probabilistic Models (DDPMs) for time-dependent simulations

Given a time-dependent solution ut from a data distribution q(u), the forward diffusion process
is modeled by a Markov chain, where Gaussian noise is added gradually to the sample ut

k at each
diffusion step k

q(ut
1:K |ut

0) =

K∏
k=1

q(ut
k|ut

k−1) , q(ut
k|ut

k−1) := N (ut
k;
√
1− βku

t
k−1, βkI) .

N denotes the normal distribution and βk the noise specified by a variance scheduler. We learn to
reverse the diffusion process, i.e.,

pθ(u
t
k−1|ut

k) := N (ut
k−1;µθ(u

t
k, k),Σ(u

t
k, k)) ,

consisting of K iterative diffusion steps and starting from k = K. The mean µθ depends on the
prediction of a learned model with parameters θ. The covariance Σ is assumed to be isotropic and
given as Σ = σ2

kI = ( 1−ᾱk−1

1−ᾱk
βk)I [57] with αi = 1− βi and ᾱk =

∏k
i=1 αi. We train the model to

predict the denoising velocity, i.e., the v-prediction target

vt
k =

√
ᾱkϵ

t −
√
1− ᾱku

t
0 , (1)

given gaussian noise ϵt [58]. Since this target smoothly interpolates between −ut
0 as ᾱk ≈ 0

and ϵt (ᾱk ≈ 1), it emphasizes predicting the clean sample in early (high-noise) steps and the
noise in later (high-signal) steps, simplifying learning. The model predicts the denoising velocity
vθ(u

t
k, k) = vθ(u

t
k, k,u

t−1
0 ) autoregressively, conditioned the model on the last time step solution

ut−1
0 . The training objective is then defined as Eut

0,ϵ
t,k

[∥∥vθ(u
t
k, k,u

t−1
0 )− vt

k

∥∥2] [9]. To facilitate
faster denoising, we follow the DDPM formulation of [9] and use an exponential βk scheduler.
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Figure 2: Overview of a) conventional autoregressive diffusion inference and b) ROBI. a) Conven-
tional inference denoises the entire state of a physical time step at once before it shifts to the next
time step (see One Step Denoising). The Iterative Inference requires K model calls per time step,
where K denotes the number of diffusion steps. b) ROBI parallelizes denoising steps across physical
time, processing up to K time steps batched, and reconstruct the physical states with the clean sample
prediction subsequently (see Batched Denoising Step). This process allows Rolling-Batched Inference
after the initial warm-up, reducing the number of model calls to one per time step.

The first denoising step is defined such that ᾱK ≈ 0, which simplifies the v-prediction target to
vt
k ≈ −ut

0 (cf. Equation (1)). The noisy sample ut
k ≈ ϵt corresponds to Gaussian Noise and

is uninformative. Hence, for k = K the model target converges to
∥∥vθ(u

t
K ,K,ut−1

0 ))− vt
k

∥∥2 ≈∥∥vθ(ϵ
t,K,ut−1

0 )) + ut
0

∥∥2. This MSE objective of the first denoising step k = K mirrors the training
objective of one-step models [9], i.e., auto-regressive models that predict the solution of the next time
directly with a single prediction step. Hence, we expect similar accuracy as one-step models during
the first diffusion steps. However, the DDPM-based model refines the initial prediction iteratively at
each time step, improving the accuracy of the solution further. Note that, due to the noise scheduler,
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each denoising step focuses on different amplitude and frequency levels of the solution [9], with later
denoising steps increasingly paying attention to higher frequencies.

Rolling Diffusion-Batched Inference (ROBI). Conventional diffusion inference requires K model
calls, each corresponding to a denoising step, per simulation time step [9]. Figure 2 a) shows an
example. Thus, inference is roughly K times slower than one-step models [5]. We propose Rolling
Diffusion-Batched Inference (ROBI) to accelerate inference in DDPM-based autoregressive simula-
tors. Given a velocity prediction vθ(u

t
k, k,u

t−1
0 ) at the denoising step k, we reconstruct a partially

refined prediction ũt
0|k =

√
ᾱku

t
k −√

1− ᾱkvθ(u
t
k, k,u

t−1
0 ), following [58].

As discussed in Section 3.1, early denoising steps behave similarly to one-step model predictions,
while later steps progressively refine higher spatial frequencies (from coarse structures to fine details).
After m < K denoising steps at time t, the intermediate estimate ũt

0|m already captures low-to-mid
frequency content that is sufficient to condition the next physical step t+1 to predict a solution within
this already refined frequency band.

ROBI exploits this property by starting the denoising of step t+1 as soon as step t has progressed by
m steps. We initialize ut+1

K ∼ N (0, I) and denoise the batch of both time steps tw∈{t, t+ 1}. More
generally, after jm denoising steps, we initialize the time step t+j and denoise a rolling time window
with tw∈{t, ..., t+ j} in parallel. After a short warm-up, fully denoised samples (those with k=0)
drop out and the window size becomes constant with w=K/m and tw∈{t, ..., t+w−1}. Notably,
the denoising index k and thus the noise level increase along the window toward later physical times,
aligning with the natural growth of forecast uncertainty. This reduces the number of model calls from
KT (conventional inference) to K−m+mT steps. For m=1, the number of model calls reduces to
K+T , which is effectively the same complexity O(T ) as for one-step models, when K ≪ T . We
refer to m as the denoising stride. Figure 2 b) visualizes the special case m=1 and K=3 diffusion
steps. Each model call advances the simulation by one physical step and applies one denoising step
to each of the K partially denoised predictions in the window.

A single Batched Denoising Step (cf. Figure 2 b) left for m=1 and K=3) of ROBI consists of two
consecutive steps. In the Prediction step, the model outputs the velocity vθ(u

tw
kw

, kw,u
tw−1
0 ) for each

element in the prediction window tw∈{t, ..., t+w−1}, with the diffusion indices kw = ∈{m, ...,K}.
Subsequently, we perform a State Update step. Using the scheduler, we reconstruct ũtw

0|kw
to update

the conditioning states utw
0 , and sample the reverse transition utw

kw−1 ∼ pθ(u
tw
kw−1|utw

kw
). Both are

used in the next Prediction Step as inputs. After m such Batched Denoising Steps, we advance in
time and drop the fully denoised states (k=0) and initialize a new Gaussian sample (k=K) for the
next time index t+w, so the subsequent call evaluates vθ(u

tw+1
kw

, kw,u
tw
0 ).

For m=K, ROBI reduces to conventional autoregressive diffusion inference (cf. Figure 2 a)). Thus,
the denoising stride m can be considered a hyperparameter that trades off prediction accuracy and
memory usage with inference speed. Most notably, in State Update, ROBI reconstructs the physical
states, while the rolling time window is treated purely as a batch dimension in the prediction model.
Consequently, the model always predicts vθ(u

t
k, k) = vθ(u

t
k, k,u

t−1
0 ), i.e., conditioned only on the

previous reconstructed state during both training and inference, which proves to be more stable and
accurate for autoregressive ML-based simulations [5, 9]. Furthermore, this preserves the time-shift
equivariance of Markovian systems, fast training convergence and small GPU memory utilization.

In practice, we find predicting residuals ∆ut
k improves accuracy. Let the model denoise a batch

of residual states ∆ũtw
0 ≈ ∆ũtw

0|kw
of the time window tw∈{t, ..., t+w−1} and denote the last

fully denoised state as ut−1
0 . We then recover clean states inside the window via a cumulative sum

ũt+j
0 = ut−1

0 +
∑j

i=0 ∆ũt+i
0 , j ∈ {0, ..., w − 1}. To further accelerate inference, we optionally

stop denoising early at a truncation step ktr and use the partially denoised state ũt
0|ktr

as the final
prediction of the time step. This remains effective because early denoising steps already approximate
one-step prediction.

3.2 Denoising Diffusion Probabilistic Models (DDPMs) for mesh-based simulations

To fully utilize Denoising Diffusion Probabilistic Models (DDPMs)’s potential for generating rich,
multi-frequency solutions, prediction models must handle multi-scale information. Hierarchical
Graph Neural Networks (HGNNs) are particularly well-suited for this, as their architecture inherently
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learns representations at varying levels of granularity, mirroring the diverse frequency content present
in DDPM outputs. Leveraging this idea, we train HGNN to predict the discrete denoising velocity
vi,θ(u

t
i,k, k,u

t−1
i,0 ) for mesh-based simulations on the mesh graph G = (V, EM). It takes the current

noisy sample ut
i,k and is conditioned on the previous clean sample ut−1

i,0 .

Root-node AMG-based Mesh Coarsening. We construct a hierarchical mesh graph GH = G0:L =
(V0:L, E0:L,M) consisting of L+1 mesh graphs with nodes V0:L and mesh edges E0:L,M by coarsening
the fine graph G0 := G L times. Coarsening is performed with root-node smoothed aggregation [53]
implemented in [59]. The solver takes the fine-mesh adjacency (with self-loops) A0 as its system
matrix and creates a hierarchy of adjacency A0:L, upsampling (prolongation) U0:L−1 and downsam-
pling (restriction) D0:L−1 matrices. In practice, our implementation only requires the fine adjacency
A0, the root-node solver [59], and constructing the graphs of each level from the non-zeros of the
returned matrices A1:L. The resulting nodes j ∈ V0:L of each level are always a subset of the fine
mesh nodes. Unlike bi-stride pooling with Delaunay remeshing [22], this AMG-based approach
better preserves mesh geometry by leveraging the strength of connections in the adjacency matrix.
Figure 10 in Section E visualizes this difference.

We additionally define L− 1 downsampling edges E l,D and upsampling edges E l,U, which connect
nodes between successive levels Gl and Gl+1. We define these as the connections (non-zero values)
of the given up- U0:L−1 and downsampling D0:L−1 matrices, resulting in an extended hierarchy
graph GH = (V0:L, E0:L,M ∪ E0:L−1,D ∪ E0:L−1,U). As before, we found that the obtained pooling
mappings respect the mesh geometry well, as shown in Figure 10 d) in Section E.

For contact experiments, we add contact edges E0,C [22] to the graph hierarchy GH. In a simulation
involving two colliding components, we define a bidirectional edge between the nodes of the first
part and the nodes of the second part if their distance is less than the specified contact radius R. The
resulting hierarchy is given by GH = (V0:L, E0:L,M ∪ E0:L,C ∪ E0:L−1,D ∪ E0:L−1,U).

3.3 Algebraic-hierarchical Message Passing Networks (AMPNs).

Encoder. Let GH be a hierarchical graph as defined above and ut
i,k the noisy sample at denoising step

k of simulation step t. We define node embeddings ki ∈ V0:L, mesh edge embedding eM
ij ∈ E0:L,M,

contact edge embeddings eC
ij ∈ EC, downsampling edge embeddings eD

ij ∈ E0:L−1,D and upsampling
edge embeddings eU

ij ∈ E0:L−1,U. We add relative node distances xt
ij = xt

i − xt
j and their norm

|xt
ij | to all edge embeddings and the initial distance x0

ij = x0
i − x0

j and their norm |x0
ij | to mesh

edges, down- and upsampling embeddings. Node embeddings include a one-hot encoding ni of the
node type. Node embeddings at level l = 0 additionally include ut

i,k and task-specific features. All
embeddings are projected to the latent dimension d via linear layers. We add a Fourier encoding [57]
for the denoising step k and the normalized level l∗ = l/L to inform the AMPN of relative graph
depth.

Processor and Decoder. Similar to AMG solvers [54, 53] and UNets [60], Algebraic-hierarchical
Message Passing Networks (AMPNs) use a V-cycle to propagate information between levels. They
consist of five core message passing modules: Pre-Processing, Downsampling, Solving, Upsampling
and Post-Processing, as shown in Figure 1. Pre-Processing, Solving and Post-Processing modules
use an Intra-Level-Message Passing Stack (Intra-MP-Stack) consisting of N message passing steps
to update the heterogeneous subgraph Gl = (V l, E l,C ∪ E l,M) of level l. Given node embeddings
ki ∈ V l, contact edge embeddings eC

ij ∈ E l,C and mesh edge embeddings eM
ij ∈ E l,M, the message

passing update of the level graph at step n is defined by

eC,n+1
ij = Wn

θ,EC eC,n
ij + fn

θ,EC(kn
i ,k

n
j , e

C,n
ij ) ,

eM,n+1
ij = Wn

θ,EM eC,n
ij + fn

θ,EM(kn
i ,k

n
j , e

M,n
ij ) ,

kn+1
i = Wn

θ,V kn
i + fn

θ,V(k
n
i ,
⊕
j

eC,n+1
ij ,

⊕
j

eM,n+1
ij ) .

(2)

The operator
⊕

denotes a permutation-invariant aggregation, fn
θ,. MLPs and Wn

θ,. weight matrices [46,
5, 52]. Downsampling modules update the subgraph Gl,D = (V l+1 ∪ V l, E l,D) with an Inter-Level-
Message Passing Stack (Inter-MP-Stack) of N message passing steps. The receiver embeddings are
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krec
i ∈ V l+1, the sender embeddings ksend

j ∈ V l, and the edge embeddings eij ∈ E l,D. Similarly,
the upsampling layers update the embeddings of the subgraph GU

l = (V l+1 ∪ V l, E l,U) of level l.
Here, the receiver embeddings are krec

i ∈ V l, the sender embeddings ksend
j ∈ V l+1, and the edge

embeddings eij ∈ E l,U. A message passing step of an Intra-MP-Stack is defined as

en+1
ij = Wn

θ,E enij + fn
θ,E(k

rec,n
i ,ksend,n

j , enij) ,

krec,n+1
i = Wn

θ,V krec,n
i + fn

θ,V(k
rec,n
i ,

⊕
j

en+1
ij ) . (3)

Our V-cycle starts at level l = 0 with pre-processing and downsampling at each level, repeated until
the coarsest level l = L is reached. We then apply multiple message passing steps at level L, which
has the largest receptive field. Next, we upsample and post-process each level back up to l = 0. All
Pre-Processing, Downsampling, Upsampling, and Post-Processing modules share weights across
levels. A final linear layer decodes the fine-level node embeddings ki ∈ V0 to produce the velocity
prediction vi,θ(u

t
i,k, k,u

t−1
i,0 ).

4 Experiments
Datasets. We evaluate our model on the three different datasets, namely BENDINGBEAM, IMPACT-
PLATE [22] and DEFORMINGPLATE [5]. We introduce the BENDINGBEAM dataset (Figure 3a)),
featuring quasi-static, geometrically non-linear deformations of beams with high aspect ratios. The
setup challenges models to capture global deformations via broad receptive fields and resolve high
spatial frequencies due to locally thin, low-stiffness regions. In IMPACTPLATE (Figure 3 b)), the
models must learn flexible dynamics with varying material parameters and accurately resolve very
localized deformation at the contact point. DEFORMINGPLATE (Figure 3 c)) considers quasi-static
contact simulations induced by scripted actuators that deform 3D plates consisting of nonlinear,
hyperelastic material.

b) ImpactPlate c) DeformingPlate

a) BendingBeam

Figure 3: Example predictions of ROBIN on the considered datasets. ROBIN predicts the part defor-
mations as well as the von Mises stress (color, yellow is high) on all experiments. a) BENDINGBEAM
considers global part deformations of beams induced by local forces. b) In IMPACTPLATE, the
models have to predict locally large deformations, caused by a collision with an accelerated ball. c)
The hyperelastic plates in DEFORMINGPLATE are deformed by a scripted actuator.

Experimental setup. For all tasks, we target the displacement residual of the node positions with
respect to the next time step ∆ut

i,0 = xt+1
i − xt

i during denoising. We additionally denoise the
von Mises stress σt

vMises,i,0 directly without residuals to gain further insight into the dynamics of the
three experiments. ROBIN uses K = 20 denoising steps and a denoising stride of m = 1 by default.
The task-specific features are specified in Section C, listed in Table 2. We measure the prediction
error using an RMSE, as specified in Section C. Section C also provides information about additional
settings of ROBIN, including training details and hyperparameters.

Baselines. We compare our model with three prominent baselines for nonlinear deformation simula-
tions, namely MGNs, Hierarchical Contact Mesh Transformers (HCMTs), and Bi-Stride Multi-Scale
GNNs (BSMSs). Detailed setups are provided in Section D.
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Variants. We demonstrate that a single trained ROBIN can easily switch between different rollout
modes by varying the denoising stride m and the truncation step ktr. We therefore evaluate multiple
rollout settings (m/ktr) on the same trained model ROBIN model: the default (1/20), conventional
autoregressive diffusion inference (20/20) (i.e., m=20 denoising steps per physical step), and an
intermediate variant (5/20) with m = 5. To study early stopping, we further reduce the truncation
step ktr with (1/10), (1/5), (1/3), (1/2) and (1/1).

Ablations. We ablate key components of ROBIN to assess their impact. 10 diffusion steps and 5
diffusion steps train with reduced diffusion length K. W/o diffusion trains the AMPN as a one-step
autoregressive model with MSE loss. W/o hierarchy disables hierarchical message passing, operating
only on the fine mesh G0. State prediction replaces residual-based prediction with direct denoising
of ut

i,k instead of ∆ut
i,k. W/o shared layer uses 15 unshared message passing layers. HCMT model

replaces AMPNs by HCMTs as the hierarchical model for ROBIN. Section D provides additional
implementation and training details.

Generalization to large meshes. To assess upscaling, we introduce BENDINGBEAMLARGE with
meshes on average over ten times larger than in BENDINGBEAM. We compare fine-tuning a pre-
trained ROBIN to training from scratch, showing rapid transfer to substantially larger meshes without
architectural changes, enabled by shared blocks in the AMPNs that accommodate varying hierarchy
depths.

5 Results
Baselines. Figure 4 a) compares the rollout RMSE of ROBIN against HCMT, MGN, and BSMS.
ROBIN yields substantial error reductions for the prominent IMPACTPLATE and DEFORMING-
PLATE datasets, and yields an even larger improvement on BENDINGBEAM. Figure 5 demonstrates
that ROBIN is able to propagate local boundary conditions across the part for accurate predictions of
the global part deformation. In addition, ROBIN resolves the non-linear bending curve of the FEM.
This requires fusing geometric features across scales, e.g., global part dimensions together with local
thin walls, for an accurate prediction of the global part stiffness. All baselines struggle to reproduce
the FEM results, particularly the global deformation modes.
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Figure 4: Left: Rollout error measured by the RMSE of the predicted nodes positions. ROBIN
surpasses the accuracy of the baselines HCMT, MGN, and BSMS on all three datasets BENDING-
BEAM, IMPACTPLATE and DEFORMINGPLATE. Right: Comparison of inference time and error
of ROBIN and its variants on BENDINGBEAM. The default variant of ROBIN (1/20) achieves the
same accuracy as conventional diffusion inference (20/20), while the inference speed is close to the
one step variant (1/1). Reducing the truncation step ktr trades accuracy for speed.
Inference speed. Figure 4 b) plots rollout RMSE versus inference time on BENDINGBEAM. The
default variant (1/20) of ROBIN is about an order of magnitude faster than conventional autoregressive
diffusion inference (20/20), without compromising accuracy. Decreasing the truncation step ktr (i.e.,
fewer diffusion steps per physical step at inference) trades rollout accuracy for speed. Nevertheless,
the fastest variant (1/1), which can be seen as a one-step model variant of ROBIN, still significantly
outperforms the accuracy of the baselines (cf. Figure 4 a)). Most notably, ROBIN (1/20) requires
only ≈ 58% more time than the one-step variant (1/1), despite performing K=20 denoising steps
per time step, highlighting the efficiency of the parallel denoising scheme ROBI. Similar trends hold
for IMPACTPLATE and DEFORMINGPLATE (cf. Figure 11 in Section E). Figure 14 in Section E
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Figure 5: Comparison of the predicted rollout deformations and von Mises stresses (color, yellow
is high) on BENDINGBEAM between a) the FEM, b) ROBIN, c) HCMT, d) MGN, and e) BSMS.
ROBIN is able to accurately reproduce the FEM results. Neither HCMT, MGN nor BSMS are able
to resolve global deformation modes, illustrating the importance of the AMPN for global message
propagation.

visualizes how high frequency errors accumulate over the rollout if we skip the later denosing steps,
demonstrating the importance of reducing the high frequency errors for long rollouts despite low
displacement RMSE.
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Figure 6: Comparison of the predicted rollout displace-
ments and displacement gradients on BENDINGBEAM
for different truncation steps ktr. While the first diffu-
sion steps strongly decrease the displacement RMSE,
the later steps are important to reduce the local displace-
ment gradient RMSE. A fast inference with a low de-
noising stride neither increases the displacement RMSE
nor the gradient RMSE during a rollout.

Diffusion truncation. Figure 6 visualizes
displacement RMSE and fine-mesh edge-
wise gradient RMSE ||(ui−uj)||2/||(x0

i −
x0
j )||2, against ground truth. Early diffu-

sion steps primarily remove low-frequency
error (global RMSE drops), whereas later
steps reduce high-frequency error (gradi-
ent RMSE). Skipping the later denoising
steps results in high frequency error accu-
mulation and mesh degradation throughout
the rollout (cf. Figure 14 in Section E),
as observed in one step models [9]. With
m=1, ROBIN does not increase the gradi-
ent error on BENDINGBEAM. We observe
similar results on DEFORMINGPLATE and
IMPACTPLATE, as illustrated in Figure 15
in Section E.

Ablations. As shown in Figure 7, ablations
confirm the importance of each ROBIN
component. Reducing the diffusion length
K slightly decreases accuracy across all
datasets. However, even with K=5 dif-
fusion steps, ROBIN remains significantly
more accurate than all baselines. Using
non-shared layers significantly degrades performance on BENDINGBEAM, likely due to a reduced ef-
fective receptive field. The large error increase for State prediction indicates that residual prediction is
crucial for LAGRANGIAN simulations. Across all datasets, ROBIN outperforms the non-hierarchical
variant, the non-diffusion variant, and the combination of DDPMs with the strongest hierarchical
baseline (HCMT), demonstrating the synergy between DDPMs and AMPNs.

Generalization to large meshes. Fine-tuning the pre-trained ROBIN converges markedly faster and
attains substantially lower RMSE than training from scratch, demonstrating mesh-size independence
and efficient transfer to deeper AMG hierarchies with twelve times more nodes, without architectural
changes. In Figure 8, pretrained predictions are visually indistinguishable from FEM even in
thin, high-stress regions with large bending. The model trained from scratch exhibits negligible
deformation due to much slower convergence within the same training budget. ROBIN consistently
requires 31 s per case, while the numerical solver averages 108 s and can require up to 4248 s, due to
problem-dependent nonlinear convergence costs. Table 3 in Section E lists the quantitative results.
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Figure 7: Rollout RMSE of the displacement predictions. ROBIN remains accurate, even for a
very small number of diffusion steps. Shared layers are crucial for BENDINGBEAM to increase
the receptive field. Replacing residual predictions with state predictions, hierarchical architectures
with non-hierarchical architectures or with HCMT architectures, and diffusion with non-diffusion
architectures significantly decrease the accuracy across all datasets.

Figure 8: Comparison of the predicted rollout deformations and von Mises stresses (color, yellow is
large) on BENDINGBEAMLARGE between a) the FEM, b) a fine-tuned ROBIN model, which was
pre-trained on the small BENDINGBEAM dataset, and, c) a ROBIN model trained from scratch for
the same number of training iterations. The fine-tuned ROBIN closely matches the FEM deformation
and stress distribution, capturing even local high-stress hotspots, whereas the from-scratch model
underestimates deformation due to much slower convergence within the same training budget.

6 Conclusion

We introduced Rolling Diffusion-Batched Inference Network (ROBIN), a diffusion-based HGNN
that utilizes AMPNs to refine mesh-based predictions across scales. Leveraging the expressiveness
of multiscale message passing and the accuracy of diffusion, ROBIN outperforms state-of-the-art
simulators on varied nonlinear solid mechanics tasks in terms of predictive accuracy. These tasks
include a novel BENDINGBEAM dataset that reveals limitations of current learned simulators. ROBI,
ROBIN’s inference scheme, parallelizes diffusion across time steps, reducing inference runtime by
up to an order of magnitude without sacrificing accuracy. We validated ROBIN on three challenging
datasets, including the new BENDINGBEAM benchmark, and demonstrated significant gains in
accuracy and efficiency. We discuss the broader impact of this work and our method in Appendix A.

Limitations and Future Work. ROBIN currently does not possess SO(3) equivariance. Adding
this property could improve the accuracy of orientation-sensitive predictions. We focus on DDPM,
while other diffusion formulations or denoising schedules could provide valuable insights and further
enhance performance. Similarly, our experiments cover nonlinear solid mechanics, and extensions
to other domains, such as fluid dynamics, are a promising direction. Lastly, ROBIN’s combination
of fast inference and high accuracy opens opportunities for accelerating multi-stage design and
optimization workflows.
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A Broader Impact

The ML-based simulator, Rolling Diffusion-Batched Inference Network (ROBIN), offers significant
advantages for computational modeling and simulation. This is achieved by reducing computational
costs while maintaining accuracy. This enables engineers to iterate through significantly more design
variations or to quickly evaluate numerous scenarios using the fast model. However, like all powerful
computational tools, there is a risk of misuse, for instance, in weapons development or unsustainable
resource exploitation.

B Datasets

Table 1 provides an overview of the considered datasets in this work.

Table 1: Comparison of the datasets BENDINGBEAM, BENDINGBEAMLARGE, IMPACTPLATE [22]
and DEFORMINGPLATE [5] considered in this work. The column Nonlinearity distinguishes three
different types: geometry (Geo), material (Mat), and boundary conditions (BC).

Datasets Dynamic Nonlinearity avg.
# Nodes Mesh Type Steps T Dim

BENDINGBEAM Quasi-Static Geo 744 Triangles 400 2D
BENDINGBEAMLARGE Quasi-Static Geo 8897 Triangles 100 2D
IMPACTPLATE Dynamic Geo, BC 2208 Triangles 52 2D
DEFORMINGPLATE Quasi-Static Geo, BC, Mat 1271 Tetrahedrons 400 3D

BENDINGBEAM. This dataset considers the bending of beam parts due to external forces. Bending
is one of the most basic deformation modes of parts in structural mechanics. The dataset is designed
as a diagnostic benchmark for neural PDE solvers, addressing various potential bottlenecks. The
force and handle boundary conditions are very local, only being defined on a small subset of mesh
nodes (cf. Figure 9). However, the resulting deformations affect all nodes.

Figure 9: Visualization of the different node types on the BENDINGBEAM experiment. Blue nodes
mark handle boundaries with fixed node positions. The red color indicates nodes where the force
boundary condition is applied. Those locally applied forces in combination with the global, geometry-
dependent part stiffness mainly determine the global deformation.

Hence, the neural PDE must effectively propagate local information to all nodes of the mesh. Next,
the dataset considers beams with large aspect ratios. This results in large graph diameters, which
represent the shortest path between the most distant nodes. The mesh resolution is increased at thin
walls, which additionally increases the graph diameter. The local boundary conditions have to be
transmitted across a large number of nodes, which challenges the ability to propagate messages
globally. The geometry and especially the thin locations of the geometry strongly influence the global
bending stiffness and deformation of the part. Overall, the model has to output accurate solutions
across various spatial frequencies.

The solutions are created with scikit-fem [61], iteratively solved using Newton-Raphson until the
residual fell below a tolerance of 10−8. Each simulation is solved for a total number of 400 time steps.
We create a total number of 1000 simulations for training, 100 for validation and 100 for testing.

To evaluate the generalization capability of ROBIN, we create an additional dataset variant BEND-
INGBEAMLARGE, containing meshes more than ten times larger than those in BENDINGBEAM,
with an average of 8897 nodes. One simulation in BENDINGBEAMLARGE contains 100 time steps.

C Setup

Hardware and Compute. We train all models on a single NVIDIA A100 GPU with a maximum
training time of 48 hours, while most models required approximately 40 hours. In total, we trained
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11 models across 3 datasets, each on 5 seeds: ROBIN, MGN, HCMT, BSMS, as well as 7 ablations
of ROBIN. That amounts to 40 hours×5×3×11 = 6600 hours training time. Furthermore, we trained
two models on BENDINGBEAMLARGE: a pre-trained ROBIN model and a model from scratch, each
on 5 seeds for approximately 40 hours, yielding a total duration of 40 hours × 5× 2 = 400 hours.
For each training, we required a comparable amount of time for development and hyperparameter
tuning. Additionally, we conducted inference experiments to measure the inference speed for 4
models (ROBIN, MGN, HCMT, and BSMS) and 7 ROBIN variants across 5 different seeds. We run
inference experiments on 3 datasets, with each experiment taking about 1 hour on average. In total
we obtain a runtime of 1 hour × 5× 3× 11 = 165 hours for the inference experiments.

Training. We implement ROBIN in PyTorch [62] and train it with ADAM [63]. We use an exponential
learning rate decay, which decreases the learning rate from 1e− 4 to 1e− 6 over the training time,
including 1000 linearly increasing warm-up steps. We clip gradients such that their L2-norm
doesn’t exceed 1. We train ROBIN in BENDINGBEAM with 9M samples and in IMPACTPLATE
with 6M samples both with a batch size of 16, resulting in 562,500 and 375,000 training iterations.
In DEFORMINGPLATE we reduce the batch size to 12 and train for 300,000 iterations with 3.6M
samples.

Features. Table 2 provides an overview of the used input and output features for ROBIN. In addition
to the default features, we extend the node embeddings of BENDINGBEAM with the force residual
∆fBC, which is defined by the boundary condition. In IMPACTPLATE, we add the density ρi and
the Young’s modulus Yi as node features. In DEFORMINGPLATE, we add the scripted displacement
residual ∆uBC of the actuator. We normalize all input features based on the training dataset, setting
them to have a zero mean and unit variance. We add a small amount of training noise [4, 5] of
10−5 σx to the node positions xt

i, where we scale the noise level with the standard deviation of the
features σx. For IMPACTPLATE we noise the input history ∆ut−1

i,0 = xt
i − xt−1

i with 10−3 σx to
prevent overfitting on the history.

Table 2: Node ki and edge embeddings eij for the different datasets, depending on the node V and
edge sets E .

Datasets Inputs V0 Inputs
V1:L

Inputs
E0:L,M

Inputs
E0:L,C

Inputs
E0:L,U/D

Outputs
V0,M

BENDINGBEAM ni, ∆ut
i,k, ∆fBC ni

xt
ij ,|xt

ij |,
x0
ij ,|x0

ij |
xt
ij ,|xt

ij |
xt
ij ,|xt

ij |,
x0
ij ,|x0

ij |
vi,θ(∆ut

i,k)

IMPACTPLATE
ni, ∆ut

i,k, ∆ut−1
i,0 ,

ρi, Yi
ni

xt
ij ,|xt

ij |,
x0
ij ,|x0

ij |
xt
ij ,|xt

ij |
xt
ij ,|xt

ij |,
x0
ij ,|x0

ij |
vi,θ(∆ut

i,k)

DEFORMINGPLATE ni, ∆ut
i,k, ∆uBC ni

xt
ij ,|xt

ij |,
x0
ij ,|x0

ij |
xt
ij ,|xt

ij |
xt
ij ,|xt

ij |,
x0
ij ,|x0

ij |
vi,θ(∆ut

i,k)

Hierarchical Graph. Since the relative motion of the components in the considered experiments is
not too large, we define the contact edges based on the initial mesh configuration and keep them fixed
to maintain a constant graph. In DEFORMINGPLATE we set the contact radius to R = 0.1, connecting
actuator nodes with plate nodes. In IMPACTPLATE we connect ball nodes and plate nodes with a
radius of R = 1.2. In all three experiments, we create L = 2 coarse layers to obtain 3 mesh levels.

Algebraic-hierarchical Message Passing Networks. We use 3 Pre- and 3 Post-processing layers, 2
Up- and 2 Downsampling layers and 5 Solving layers, which yields a total number of 15 learnable
layers. We add a layer norm before each MLP and use two linear layers, a hidden size of 128 and
a Sigmoid Linear Unit (SiLU) [64] activation function. A max aggregation is used in all message
passing layers.

Denoising Diffusion Probabilistic Models. We use K = 20 denoising steps and a denoising stride
of m = 5 for ROBIN by default. The β variances of the DDPM scheduler are geometrically spaced
for training and inference, starting from a minimum noise variance of 1e− 4 (for β1) and going up to
1.0 (for βK).

Metrics. To compare the rollout accuracy, we follow [22] and define the Root Mean Squared

Euclidean distance error RMSE =
√
1/(NiNj)

∑Ni

i=1

∑Nj

j=1(ũij − uij)2, where the prediction ũij
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and the ground truth uij have Ni nodes and Nj features. We then calculate the mean over all time
steps, the mean over the dataset and finally the mean µ and standard deviation σ over the 5 seeds.

D Baselines, Ablations and Variants

Baselines. We use the official TensorFlow [65] implementation of the authors for the baselines
HCMT3 [22] and MGN4 [5]. We use ADAM [63] for training HCMT and MGN with an exponential
learning rate decay from 1e−4 to 1e−6, a batch size of 1 and a hidden size of 128. We use
15 message-passing steps for MGN on all datasets, as well as a total of 15 Hierarchical Mesh
Transformer (HMT) and Contact Mesh Transformer (CMT) layers for HCMT.

On BENDINGBEAM, we train HCMT for 4M training iterations with a training noise [4, 5] of
0.001. We maximize the receptive field and set the number of mesh levels to 5, the maximum at
which at least five nodes remain available across all meshes in the dataset, required for Delaunay
remeshing [66]. This results in 9 HMTs. Since BENDINGBEAM is a contact-free task, we replaced
the dual-branch CMT by 6 single-branch Mesh Transformer layers that only attend to mesh edges
instead of mesh and contact edges. We use the same architecture and hyperparameter for HCMT
on IMPACTPLATE and DEFORMINGPLATE as proposed by the authors [22], and train it for 3M steps
and 2M steps, respectively.

We follow the authors’ implementation and add world edges to the mesh graph of MGN instead of
contact edges to increase the receptive field of the non-hierarchical architecture. MGN is trained for
3M iterations on BENDINGBEAM and uses a training noise of 0.001 with a world edge radius of
R = 0.13. On IMPACTPLATE we train MGN for 3M steps and use a world edge radius of R = 0.03
and a training noise of 0.003. We train MGN on DEFORMINGPLATE for 1.5M steps and use the
authors’ proposed settings [5]. To prevent out-of-memory errors in edge cases on DEFORMINGPLATE,
we restrict the number of world edges to 200,000 by selecting those with the smallest node distances.

For BSMS [48], we use the official PyTorch [62] implementation5 of the authors. We follow the
authors and use the maximum number of hierarchy levels possible to maximize the receptive field. We
train BSMS on BENDINGBEAM with a batch size of 12 and 6M training samples, i.e., 500K training
iterations. We use a training noise of 0.001 and 5 mesh levels. On IMPACTPLATE we train BSMS
with a batch size of 8 and 5M samples (625K training iterations), a training noise of 0.003, a contact
radius of R = 0.4, and 7 hierarchy levels. We train BSMS on DEFORMINGPLATE with a batch
size of 8 and 6M samples (750K training iterations), a training noise of 0.003, a contact radius of
R = 0.03, and 6 hierarchy levels.

Ablations. The 10 diffusion steps and 5 diffusion steps ablation use the same settings as ROBIN,
despite the reduced number of diffusion steps K. For the w/o hierarchy ablation we use the fine
mesh graph G0 instead of the hierarchical graph G0:L, replace our AMPN by a single Intra-MP-Stack
with 15 learnable message passing steps and remove the positional level encoding. In addition, we
follow MGN and replace contact edges with world edges to increase the receptive field. To stay
within the training budget, we reduce the number of training samples to 1.2M for BENDINGBEAM
and to 8M for IMPACTPLATE. For DEFORMINGPLATE we reduce the batch size to 1 and the training
samples to 0.6M and also restrict the number of world edges to 200,000 as for MGN. The w/o
diffusion ablation trains the AMPN with an MSE loss to predict directly the displacement residual
∆ut

i,0 and uses a one-step autoregressive rollout, such as HCMT, MGN, and BSMS. We use the
same training noise settings as the baselines to stabilize the rollouts. The w/o shared layer ablation
uses a total number of 15 non-shared learnable message passing layers distributed as follows: 1
Pre-Processing and 1 Post-Processing layer per level, 1 Up- and 1 Downsampling layer between
each level, and 5 Solving layers. The faster predictions allow an increase in the number of training
samples to 11M for BENDINGBEAM, to 8M for IMPACTPLATE, and to 4.6M for DEFORMINGPLATE.
For the HCMT model ablation, we replace the AMPNs with HCMTs. More specifically, we use the
same mesh hierarchy and the same model architecture as HCMTs. Everything else remains the same
in ROBIN, including DDPMs and ROBI.

3https://github.com/yuyudeep/hcmt/tree/main
4https://github.com/google-deepmind/deepmind-research/tree/master/meshgraphnets
5https://github.com/Eydcao/BSMS-GNN/tree/main
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E Results

AMG-based mesh coarsening. Root-node AMG coarsening [53] preserves mesh geometry and
connectivity (cf. Figure 10). The coarse mesh remains well-aligned with thin geometrical features,
and smoothed transfer operators yield wider, algebraically informed receptive fields compared to
bi-stride pooling. This fidelity is crucial for predicting geometrically nonlinear deformations.

a) Fine mesh

b) Bi-stride-coarsening and Delaunay-remeshing

c) AMG-based coarsening 

d) AMG-based down-/upsampling graphs.

Figure 10: Comparison of AMG-based mesh coarsening to Bi-stride-coarsening and Delaunay-
remeshing (BSDL). a) the original, fine mesh. b) the mesh after two BSDL coarsening steps. c) the
mesh after one AMG coarsening step. This mesh has approximately as many nodes as the mesh in
b). d) up- and downsampling edges from level 0 to 1 (top) and level 1 to 2 (bottom). Bright blue
indicates coarse nodes of level 1 (top) or 2 (bottom), respectively.

Inference speed. Each point in Figure 11 corresponds to a rollout setting of ROBIN on IMPACT-
PLATE and DEFORMINGPLATE. As for BENDINGBEAM in Section 5, decreasing the truncation step
reduces wall time while a truncation step of ktr=2 is already sufficient to obtain a higher accuracy
than all baselines across all datasets (cf. Table 3). The ROBIN default (1/20) is significantly faster
than conventional diffusion inference and is even slightly more accurate on IMPACTPLATE, which
we attribute to anchoring low-frequency components and reducing drift.
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Figure 11: RMSE rollout error and inference time of different inference variants of ROBIN on
a) IMPACTPLATE and b) DEFORMINGPLATE. ROBIN, i.e., the variant (1/20), is most accurate
on IMPACTPLATE and on par on DEFORMINGPLATE with the slower variants (5/20) and conventional
inference (20/20). Reducing the truncation step ktr increases speed while decreasing accuracy. The
one step variant (1/1) achieves the largest speed-up on DEFORMINGPLATE, but also loses the most
accuracy there.
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Baselines. Figure 12 and Figure 13 visualize the rollout displacement and von Mises stress predic-
tion of ROBIN, HCMT, MGN, and BSMS on IMPACTPLATE and DEFORMINGPLATE, respectively.

Figure 12: Comparison of the rollout deformation prediction and von Mises stress prediction (color,
yellow is high) on IMPACTPLATE to the ground truth of the FEM. ROBIN most accurately resolves
the deformation at the contact surface and the resulting stress. The deformation prediction of HCMT
and BSMS are close to the FEM prediction, though stress is underestimated. MGN predicts accurately
the global modes but exhibits local disturbances.
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Figure 13: Rollout deformation and von Mises stress prediction (color, yellow is high) on DE-
FORMINGPLATE of ROBIN, the baselines and the FEM. All models accurately reproduce the part
deformation. HCMT slightly overestimates and BSMS slightly underestimates the stress at the thin
wall between the hole and the boundary.

Diffusion truncation. The rollouts in Figure 14 across truncation steps ktr illustrate coarse-to-
fine frequency behavior of ROBIN. Early steps capture the global, low-frequency shape, whereas
additional steps sharpen high-frequency details, e.g., high stresses in thin geometrical features. Even
with early truncation, ROBIN maintains coherent global modes. Longer schedules primarily refine
local features and minimize the accumulation of high-frequency errors, while retaining the global
deformation pattern.

Figure 15 visualize the rollout displacement RMSE and displacement gradient RMSE of different
ROBIN variants on DEFORMINGPLATE and IMPACTPLATE. As for BENDINGBEAM, early denoising
steps are critical for reducing global displacement error. Later diffusion steps focus on high-frequency
solution components. On IMPACTPLATE, the gradient RMSE shows a modest increase while ROBIN
attains the lowest displacement RMSE overall. We hypothesize that partially denoising states (small
m) stabilizes low-frequency components and reduces drift. In contrast, fully denoising (larger m)
suppresses short-term, high-frequency error accumulation. However, this trade-off does not affect
other datasets with significantly longer rollouts.

Quantitative results. Table 3 lists the quantitative results of all experiments considered in this
work and used for the visualizations.
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Figure 14: Effect of diffusion truncation on rollouts. Figures a), b), and c) show predicted defor-
mations and von Mises stress prediction (color, yellow is high) at t = 100, t = 200, and t = 400,
respectively. In each figure, rows correspond to truncation steps ktr = 3, 5, 10, 20. Using a low
truncation step ktr increases inference speed and enables robust predictions of the global deformation
modes. However, it also causes local mesh degradation due to the accumulation of high-frequency
errors, as observed in MSE trained one step models [9].

Displacement Gradient

10−2

R
M

S
E

(µ
±
σ

)

denoising stride / truncation step

20/20

5/20

1/20

1/10

1/5

1/3

1/2

1/1

(a) IMPACTPLATE.

Displacement Gradient

10−2

10−1

R
M

S
E

(µ
±
σ

)

denoising stride / truncation step

20/20

5/20

1/20

1/10

1/5

1/3

1/2

1/1

(b) DEFORMINGPLATE.

Figure 15: Comparison of the rollout displacement RMSE and displacement gradient RMSE for
different ROBIN setting (denoising stride m / truncation step ktr) on a) IMPACTPLATE and b)
DEFORMINGPLATE. Early diffusion steps substantially reduce the displacement RMSE and later
steps the local displacement gradient RMSE. The fast inference setting (1/20) remains accurate and
yields slightly lower displacement RMSE on IMPACTPLATE, but also slightly higher gradient RMSE.
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Table 3: Quantitative results on BENDINGBEAM, IMPACTPLATE, DEFORMINGPLATE, and the
large-mesh dataset BENDINGBEAMLARGE. We report displacement RMSE [10−3], gradient RMSE
of the displacement field [10−3], and rollout wall-clock time [s]. Values are mean ± std over the test
set across 5 seeds (solver timings excluded). The row Numerical solving gives the average runtime of
the high-fidelity solver (maximum in parentheses). Baselines contrasts different models, Variants
sweep the ROBI settings (denoising stride / truncation step) and additionally report Gradient RMSE,
Ablations remove ROBIN components, and Generalization to large meshes evaluates the upscaling
capabilities of ROBIN.

BENDINGBEAM IMPACTPLATE DEFORMINGPLATE
Numerical

solving
Time [s] Time [s] Time [s]

46.2 (max. 186.1) 742.6 [22] 1157.2 [5]

Baselines
RMSE [10−3] Time [s] RMSE [10−3] Time [s] RMSE [10−3] Time [s]

ROBIN 29.00 ± 1.00 15.03 ± 0.04 12.33 ± 0.96 4.94 ± 0.01 4.98 ± 0.33 61.60 ± 0.29
HCMT 121.53 ± 1.87 25.82 ± 0.28 19.57 ± 0.38 4.33 ± 0.05 8.04 ± 0.13 31.57 ± 0.14
MGN 189.52 ± 70.87 21.40 ± 0.15 54.07 ± 5.88 2.93 ± 0.03 8.76 ± 0.29 24.42 ± 0.22
BSMS 141.98 ± 7.96 4.70 ± 0.04 63.52 ± 32.36 2.16 ± 0.01 13.59 ± 5.21 13.28 ± 0.07

Variants
(denoising

stride /
truncation step)

RMSE [10−3] Time [s] RMSE [10−3] Time [s] RMSE [10−3] Time [s]
20/20 28.90 ± 1.91 162.43 ± 0.89 14.43 ± 1.93 22.61 ± 0.36 4.96 ± 0.36 190.10 ± 1.33
5/20 28.99 ± 1.93 43.39 ± 0.52 13.87 ± 1.90 7.83 ± 0.06 4.92 ± 0.35 83.61 ± 0.16
1/20 29.00 ± 1.00 15.03 ± 0.04 12.33 ± 0.96 4.94 ± 0.01 4.98 ± 0.33 61.60 ± 0.29
1/10 30.35 ± 2.41 11.03 ± 0.10 12.38 ± 0.92 2.90 ± 0.01 5.18 ± 0.35 33.71 ± 0.10
1/5 35.81 ± 3.30 9.88 ± 0.19 13.01 ± 0.98 1.91 ± 0.01 5.73 ± 0.30 20.24 ± 0.04
1/3 42.83 ± 4.54 9.57 ± 0.11 14.58 ± 1.40 1.55 ± 0.01 6.42 ± 0.23 14.85 ± 0.11
1/2 48.94 ± 7.25 9.47 ± 0.11 15.79 ± 1.71 1.42 ± 0.00 7.26 ± 0.18 12.59 ± 0.13
1/1 64.23 ± 11.86 9.49 ± 0.12 21.46 ± 2.12 1.32 ± 0.01 10.79 ± 0.52 7.11 ± 0.04

Gradient RMSE [10−3] Gradient RMSE [10−3] Gradient RMSE [10−3]
20/20 12.75 ± 0.70 1.92 ± 0.07 28.98 ± 1.56
5/20 12.74 ± 0.65 1.89 ± 0.08 28.83 ± 1.57
1/20 12.77 ± 0.72 2.55 ± 0.33 29.10 ± 1.50
1/10 37.58 ± 4.71 2.61 ± 0.30 41.59 ± 1.76
1/5 94.00 ± 20.90 3.68 ± 0.37 73.13 ± 5.64
1/3 147.97 ± 65.13 6.07 ± 0.56 110.96 ± 22.33
1/2 200.44 ± 128.29 8.61 ± 1.02 150.33 ± 48.48
1/1 324.05 ± 285.65 23.41 ± 4.85 157.30 ± 8.34

Ablations
RMSE [10−3] RMSE [10−3] RMSE [10−3]

ROBIN 29.00 ± 1.00 12.33 ± 0.96 4.98 ± 0.33
10 diff. steps 33.28 ± 2.43 14.58 ± 1.99 5.86 ± 0.61
5 diff. steps 41.33 ± 6.27 15.60 ± 1.74 6.40 ± 0.56

w/o shared layer 66.05 ± 7.36 12.88 ± 1.58 5.65 ± 0.26
State prediction 596.38 ± 70.93 130.50 ± 30.80 137.61 ± 30.54
w/o hierarchy 122.38 ± 1.52 57.02 ± 3.48 12.04 ± 0.24
w/o diffusion 43.83 ± 1.16 99.47 ± 47.30 9.78 ± 2.12
HCMT model 111.05 ± 1.15 29.18 ± 1.43 14.86 ± 0.42

BENDINGBEAMLARGE
Numerical

solving
Time [s]

108.30 (max. 4248.01)

Generalization
to large meshes

RMSE [10−3] Time [s]
Pre-trained 77.59 ± 4.97 30.94 ± 0.63

From scratch 215.50 ± 12.14 30.95 ± 0.58
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction are fully supported by our method
section, as well as in the qualitative and quantitative results in the experiments section. The
appendix provides more detailed results where required.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The conclusion discusses current limitations of the approach, including the
scope of the paper and assumptions made.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not introduce any new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We detail our method in Section 3, and provide additional information in
the appendix where required. We detail our experimental setup and datasets used in the
experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not provide data and code at the time of submission, but will open-source
both after acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify high-level training and test details in Section 4, and provide further
details in Appendices D, B and C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard deviation across five seeds for all main experi-
ments. When evaluating the runtime-error tradeoff, we directly report information for all
seeds without aggregation, explicitly showing the performance difference between runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on the compute resources for all experiments in
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics. We made sure that our research
complies to the Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a discussion on broader impact in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not use pretrained language models, image generators or similar high-
risk models in our approach, and do not scrape datasets. We still discuss potential cases for
miss-use of our learned simulator in Appendix A.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use two publicly available datasets, namely ImpactPlate and Deforming-
Plate. We credit the original papers of both explicitly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: At time of submission, we do not release new assets. After acceptance, we will
open-source our BendingBeam dataset, and provide appropriate documentation alongside it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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