
Hardness Masking via Auto-Regressive Language Model

Anonymous ACL submission

Abstract

Pre-trained masked language models have001
achieved tremendous success in natural lan-002
guage processing. Most of these methods rely003
on recovering randomly masked tokens, which004
is in general not as good as when tokens are005
masked based on how well the model can pre-006
dict. However, it is costly for a large-scale007
model to self-identify tokens that it still strug-008
gles to predict. On the other hand, we observe009
that a smaller language model can often effec-010
tively find what a large model fails to learn. In-011
spired by this observation, we propose to lever-012
age a compact bi-directional auto-regressive013
language model to dynamically discover tokens014
that a large language model has not learned well015
and guide its training via hardness masking.016
Comprehensive experiments demonstrate that017
our masking method can effectively boost the018
performance of pre-trained language models on019
general language understanding benchmarks.020

1 Introduction021

Language Modeling (LM) is one of the most fun-022

damental natural language processing tasks. Re-023

cently, pre-trained models based on Masked Lan-024

guage Modeling (MLM) and large-scale unanno-025

tated corpus, e.g. BERT (Devlin et al., 2018),026

RoBERTa (Liu et al., 2019), and T5 (Raffel et al.,027

2019), have achieved state-of-the-art performance028

on many NLP tasks. In MLM, the model aims to029

recover randomly masked input tokens. The mask-030

ing can happen at token level (Devlin et al., 2018;031

Liu et al., 2019) or phrase level (Joshi et al., 2020;032

Raffel et al., 2019). However, most of these works033

sample tokens or phrases from a uniform distribu-034

tion, which encourages models to learn more about035

frequent examples, but less on hard ones. As shown036

in (Levine et al., 2020), the model quality can sig-037

nificantly be increased if the model masks tokens038

such that they are harder to predict. One way to039

estimate the difficulty to recover a given token is to040

leverage the perplexity of prediction of this token041

when it’s masked. However, it is computational ex- 042

pensive to have a large MLM to self-identify such 043

tokens: in order to mask 15% of the tokens at a 044

time, it takes 7 rounds to estimate the difficulty of 045

all input tokens. 046

On the other hand, we find that it is often the 047

case that a simple auto-regressive language model 048

(ALM) and a large-scale MLM share a similar set 049

of tokens that they find hard to predict. In other 050

words, a small language model can quickly help to 051

detect hard tokens for a large MLM. As an exam- 052

ple, Figure 3 shows the predicted word perplex- 053

ities by a small bi-directional ALM, where the 054

darker color indicates a higher perplexity, i.e. to- 055

kens that are more difficult to recover. We find 056

that the RoBERTa-large model (Liu et al., 2019) 057

struggles to reconstruct these difficult tokens as 058

well. If we randomly mask 15% of all tokens from 059

a uniform distribution, the average perplexity of 060

RoBERTa-large is 2.47. But this number jumps 061

significantly to 35.43 if we selectively mask the 062

same number of tokens based on the probabilities 063

from auto-regressive language modeling. This re- 064

sult indicates that a small ALM can act as a good 065

indicator to guide the training of a large MLM by 066

providing an estimated perplexity. 067

Thus, we propose to use a compact bi-directional 068

auto-regressive language model to estimate the dif- 069

ficulty of each token. Specifically, after collect- 070

ing the average perplexities of this small LM from 071

both directions, we normalize the values across 072

the whole sequence and use these scores as the 073

sampling distribution for masking. We apply this 074

technique to further pre-train large language mod- 075

els based on MLM. We show that the proposed 076

efficient masking technology can effectively im- 077

prove the quality of pre-trained MLM. For exam- 078

ple, on GLUE dataset, the average performance 079

of RoBERTa-large under our hardness masking 080

method is improved by 0.6%. 081

We summarize the main contributions of this 082
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Figure 1: Masking strategies. (a) Random masking is the most widely adopted method. As it does not depend on
the input text, the most frequent tokens, such as stopwords, are more likely to be sampled. (2) Hardness masking
samples tokens based on their difficulty computed by a small bi-directional auto-regressive language model. We use
the normalized perplexity at each position as the sampling distribution for masking.

paper as follows. (i) We find that a simple auto-083

regressive language model and a large-scale pre-084

trained masked language model such as RoBERTa085

often share a similar set of words that are difficult to086

predict. (ii) We design a hardness masking strategy087

to further pre-train RoBERTa to recover words de-088

tected by a simple auto-regressive language model,089

(iii) Our masking strategy significantly improves090

pre-trained language models on multiple tasks from091

the GLUE benchmark (Wang et al., 2018).092

2 Method093

In this section, we will introduce our hard-094

ness masking framework which combines auto-095

regressive language modeling (ALM) and masked096

language modeling (MLM), as shown in Figure 1.097

2.1 Auto-Regressive Language Modeling098

Auto-regressive language modeling learns the prob-099

ability of next word occurrence based on all the100

previous words. Given a sequence X with n tokens,101

language modeling can predict the probability dis-102

tributions of each token given all of tokens to its103

left:104

−→
P (X) =

−−−−−−−−−−−→
Transformer-LM(X), (1)105

where
−→
P (X) ∈ Rn are the word level perplexities.106

A word with a higher perplexity indicates that it is107

harder to be predicted by the language model.108

We compute the right-to-left perplexity of each 109

token in a similar way: 110

←−
P (X) =

←−−−−−−−−−−−
Transformer-LM(X). (2) 111

We then average the perplexities from both direc- 112

tions for each token, and normalize the values over 113

all the tokens in the sequence. 114

P (X) =

←−
P (X) +

−→
P (X)

2
/

∥∥∥∥∥
←−
P (X) +

−→
P (X)

2

∥∥∥∥∥
1

.

(3) 115

We argue that P (X) ∈ Rn is a token-level hard- 116

ness distribution over the whole sequence, and it 117

can reflect which words are harder to predict. We 118

provide a visualization of P (X) in Appendix A. 119

2.2 Hardness Masking for MLM Pre-training 120

We find a simple auto-regressive language model, 121

e.g. 6-layer Transformer, can already give the ex- 122

act correct next tokens prediction for half of the 123

tokens in 512-length sequences. Thus, P (X) can 124

be effectively computed with a small ALM model. 125

These findings make it possible to make a pipeline 126

based method for masked language model (MLM) 127

pre-training: First train model with ALM and use it 128

to efficiently mask tokens for MLM training. The 129

model trained with ALM can be treated as a prior 130

knowledge for model pre-training. 131

Most existing MLM methods adopt uniform ran- 132

dom sampling for masking tokens/phrases. This 133
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SST MRPC CoLA STS MNLI QNLI QQP RTE Avg

Development Set

RoBERTa (base)(Liu et al., 2019) 94.8 90.2 63.6 91.2 87.6/- 92.8 91.9 78.7
Random Mask (base) 95.3 90.2 62.8 90.9 88.1/87.8 93.1 91.9 79.4 86.6
Hardness Mask (base) 95.9 91.2 64.7 91.1 88.1/87.8 93.3 91.9 81.9 87.3
RoBERTa (large)(Liu et al., 2019) 96.4 90.9 68.0 92.4 90.2/90.2 94.7 92.2 86.6 89.1
Random Mask (large) 97.0 91.7 69.3 92.4 90.6/90.2 95.0 92.2 87.7 89.6
Hardness Mask (large) 97.0 92.6 71.4 92.6 91.0/90.6 95.1 92.3 88.8 90.2

Test Set

PMI-Masking (base)(Levine et al., 2020) 94.7 87.7 57.4 87.7 86.6/85.8 93.1 89.5 72.9 83.9
Random Mask (base) 95.6 87.1 59.0 88.1 87.0/87.2 93.2 89.4 72.7 84.4
Hardness Mask (base) 95.8 87.0 60.3 88.6 87.8/87.3 93.4 89.5 75.4 85.0
Random Mask (large) 95.9 87.4 63.4 90.6 90.3/89.7 94.5 89.8 84.7 87.3
Hardness Mask (large) 96.5 88.7 65.8 91.2 90.1/89.8 94.9 89.9 83.7 87.8

Table 1: Experiment results on GLUE datasets. The results in the top half are the best performance on the dev sets
of different tasks, and the bottom half are the corresponding results on test sets. Random-Mask is same as RoBERTa
MLM training, but further train for more epochs to make a fair comparison with our method Hardness Mask.

strategy encourages models to learn more about134

frequently seen words, but less on hard examples.135

A wide experiment study (Joshi et al., 2020; Raffel136

et al., 2019) shows that the language model qual-137

ity can significantly increase if the model chooses138

“hard” tokens to mask, i.e. the words it finds harder139

to predict.140

We sample the indices of tokens to mask accord-141

ing to P (X):142

Mask_Index = Multi_Sample(
P (X) + α

||P (X) + α||1
,M)

(4)143

where α ≥ 0 is a scalar value for smoothing. When144

α = 0, the tokens are sampled completely accord-145

ing to the perplexity P (X); when α =∞, our strat-146

egy falls back to uniform random sampling. We147

sample M tokens to mask based on the smoothed148

probabilities.149

In this paper, we hypothesis that even if a large150

model has been trained for a long time over a large151

corpus, it still cannot remember everything. And152

our method is to efficiently test the existing pre-153

training models and make the models focus on154

learning unseen knowledge. Thus, we will work155

on continue pre-training existing models, such as156

RoBERTa. This will also be cost and energy effi-157

cient.158

3 Experiment159

3.1 Experiment Setting160

We are using same amount of data with RoBERTa161

for pre-training and evaluate models on GLUE162

benchmark (Wang et al., 2018). Our bi-directional 163

auto-regressive language model is a Transformer 164

with 6 layers. For model pre-training, We further 165

pre-train RoBERTa for another 6 epochs on the 166

160g data with 10% warm-up steps. 167

3.2 Experiment Results 168

We report the best performance on dev sets after 169

hyper-parameter search as shown in Table 1, and 170

the best model will be evaluated on the hidden test 171

sets. 172

Random Mask V.S. Hardness Mask To make a 173

fair comparison with proposed “Hardness Mask" 174

method, we apply “Random Mask" in the same pre- 175

training pipeline, where the only difference is the 176

masking strategy. Both methods are first initialized 177

by RoBERTa checkpoints, and then further pre- 178

train for several epochs. Based on the experiment 179

results on development and test sets, our methods 180

work for both base and large model structures. 181

PMI-Masking V.S. Hardness Mask We make 182

a comparison with another strong baseline, PMI- 183

Masking (Levine et al., 2020), which also makes 184

use of prior knowledge to construct pre-training 185

tasks. This knowledge is statistically computed by 186

Pointwise Mutual Information (PMI). We can com- 187

pare it with our “Hardness Mask (base)", and our 188

method can achieve better performance on almost 189

all the tasks, except MRPC dataset. 190

3.3 Hardness Analysis 191

ALM perplexity distribution First let us take a 192

look at a distribution of word hardness, P (x), as 193
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Figure 2: The left figure visualizes the distribution of P (X). It is a case study on the token perplexities computed
by auto-regressive language models. X-axis is the token positions. Y-axis is the hardness of the tokens over all the
tokens at each position. The right figure is about MLM perplexities of RoBERTa-large given different degree of
hardness defined by α. If α=0, it would be the hardest masking strategy, and if α is large enough, it would be same
as random masking.

SST MRPC CoLA STS MNLI QNLI QQP RTE Avg

Random Mask (α=∞) 95.3 90.2 62.8 90.9 88.1/87.8 93.1 91.9 79.4 86.6
Hardness Mask (α=0) 95.2 89.5 62.1 89.7 88.0/87.4 93.0 89.9 78.7 85.9
Hardness Mask (α=0.001) 95.9 91.2 64.7 91.1 88.1/87.8 93.3 91.9 81.9 87.3
Hardness Mask (α=0.005) 95.6 90.9 65.3 90.8 88.0/87.8 93.4 91.9 81.6 87.3

Table 2: GLUE dev fine-tuning performance with checkpoints pre-trained in different MLM tasks. The hardness of
MLM task is tuned with α value. α=0 is the hardest MLM and α=∞ is the simplest MLM with random mask.

shown in the left part of Figure 2. We can see that194

a small faction of words are much harder to predict195

than others, which means ALM can efficiently pick196

up the most important tokens but not uniformly197

assign the weights.198

Relation between ALM and MLM perplexities199

We use α in Eqn.(4) to define The hardness of200

different masking strategies. Based on the right201

side of Figure 2, we can see that when we set α202

to 0, the perplexity boosts to over ten times larger.203

With the α value increasing, some words that are204

easy to recover get more chance to be sampled.205

Thus the perplexities of both RoBERTa-base and206

RoBERTa-large decreases quite fast.207

Hardness mask pre-training As shown in Ta-208

ble 2, we can see that when we tune the MLM task209

to be the hardest one with α=0, the model will get210

worse performance. According to our experiments211

in Table 2, selecting an appropriate pre-training212

task with certain hardness can lead to better fine-213

tunig performance.214

4 Related Work215

Mask language modeling has dominated the pre-216

training task. It achieves better performance on217

most downstream tasks than auto-regressive pre-218

trained language models (Lan et al., 2019). Later 219

on, how to mask tokens for MLM has drawn much 220

attention. The tokens are masked in sub-word 221

level in earlier works (Devlin et al., 2018; Liu 222

et al., 2019). Later on, whole word masking and 223

span masking are proposed to further improve the 224

pre-training quality (Joshi et al., 2020) Instead of 225

uniformly selecting words to mask based on po- 226

sitions only, some simple statistical information 227

can be treated as the prior knowledge which can 228

be used to help the large-scale pre-training, such 229

as PMI-Masking (Levine et al., 2020) and ELEC- 230

TRA (Clark et al., 2020). Our work is under this 231

direction. 232

5 Conclusions 233

In this paper, we propose an efficient hardness 234

masking method for pre-training masked language 235

models. We propose to use the word level perplex- 236

ity predicted by a lightweight bi-directional auto- 237

regressive language model to guide a large MLM 238

to mask and recover difficult tokens. Experiments 239

show that our method can effectively improve the 240

quality of language models, e.g. it improves the 241

average performance of RoBERTa-large by 0.6% 242

on the GLUE benchmark. 243
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A Perplexity Visualization 333

We visualize the perplexity of each word from a 334

bi-directional language model in Figure 3. 335

B Dataset 336

Both our language modeling and masked lan- 337

guage modeling are trained on large-scale unla- 338

beled text data. For a fair comparison, We are 339

using same amount of data with RoBERTa for 340

training, which consists of English Wikipedia, 341

Book Corpus (Zhu et al., 2015), CommonCrawl 342

News (Nagel, 2016), OpenWebText (Gokaslan and 343

Cohen, 2019), and CommonCrawl-Stories (Trinh 344

and Le, 2018). Wikipedia, Book Corpus, and Open- 345

WebText have not widely adopted for pre-training, 346
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Figure 3: Perplexity of each word (inverse of probability of being predicted) in an example text given by a simple
bi-directional language model. Words with a darker color has a higher perplexity, i.e. higher uncertainty under the
model. We find that the RoBERTa-large model struggles to recover the words with darker color too: If we uniformly
randomly mask 15% of all tokens, the average perplexity of RoBERTa-large model is 2.47. But if we randomly
mask 15% of the words according to the color information, i.e. darker words are more likely to be masked, the
average perplexity of RoBERTa-large significantly increases to 35.43.

and we follows RoBERTa (Liu et al., 2019) to col-347

lect data from CommonCrawl for pre-training. Af-348

ter all, we use the same datasets as RoBERTa to349

make a fair comparison with ours.350

We evaluate our pre-trained models on the tasks351

from General Language Understanding Evaluation352

(GLUE) benchmark (Wang et al., 2018), which353

consists of 9 datasets in total. The tasks can354

be divided into single sentence classification (re-355

gression) tasks, which includes Stanford Senti-356

ment Treebank (SST) (Socher et al., 2013), Cor-357

pus of Linguistic Acceptability (CoLA) (Warstadt358

et al., 2019), Microsoft Research Paraphrase359

Corpus (MRPS) (Dolan and Brockett, 2005)360

and Semantic Textual Similarity Benchmark361

(STS) (Agirre, 2007); or sentence-pair classifi-362

cation tasks, which includes MultiGenre Natural363

Language Inference (MNLI-Matched and MNLI-364

Mismatched) (Williams et al., 2017), Question365

Natural Language Inference (QNLI) (Rajpurkar366

et al., 2016), Recognizing Textual Entailment367

(RTE) (Dagan et al., 2005) and Quora Question368

Pairs (QQP) (Shankar et al., 2016). Note that only369

the task STS is a regression problem. Based on of-370

ficial GLUE benchmark evaluation metrics, we use371

Spearman Correlation for STS, Matthews correla-372

tion for CoLA, and for rest of the tasks we report373

accuracy.374

C Experiment Setting375

Our hard masking strategy is based on a bi-376

directional auto-regressive language model, a377

Transformer with 6 layers and 512 dimensional378

hidden state. The language models in different379

directions are trained separately without sharing 380

parameters. It is trained for 2 epochs over all of the 381

160g data. All the texts are cut into sequences with 382

512 tokens. 383

We use Byte-Pair Encoding tokenizer which is 384

the same as RoBERTa (Liu et al., 2019). We set 385

learning rate as 5e-04, batch size as 2560, dropout 386

as 0.1, and use Adam (Kingma and Ba, 2014) as the 387

optimizer. Besides word masking, we also adopt 388

random word replacement (10% of the masked 389

words) and original word replacement (10% of the 390

masked words) from BERT and RoBERTa, which 391

have been proven to be important for pre-training. 392

For model pre-training, We further pre-train 393

RoBERTa for another 6 epochs on the 160g data 394

with 10% warm-up steps. We run MLM pre- 395

training by two mask strategies: random mask and 396

proposed hardness mask. For hardness mask, we 397

choose α in Eqn.(4) from {0, 0.001, 0.005 }. The 398

texts are also cut into sequences with 512 tokens. 399

For experiments, We set learning rate as 1e-6, batch 400

size as 2560, dropout as 0.1, and Adam optimizer. 401

For model finetuning on GLUE (Wang et al., 402

2018), we tune hyper-parameters on all tasks from 403

learning rate {7e-06, 1e-05, 2e-05}, batch size {16, 404

32} and dropout {0.1, 0.2}. We report the best 405

performance on dev sets of GLUE and also the 406

corresponding performance on test sets. 407

Our pre-training and finetuning code is mainly 408

based on fairseq1, and all the experiments are done 409

with 8 Nvidia V100 GPUs. 410

1https://github.com/pytorch/fairseq
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