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Abstract

Pre-trained masked language models have
achieved tremendous success in natural lan-
guage processing. Most of these methods rely
on recovering randomly masked tokens, which
is in general not as good as when tokens are
masked based on how well the model can pre-
dict. However, it is costly for a large-scale
model to self-identify tokens that it still strug-
gles to predict. On the other hand, we observe
that a smaller language model can often effec-
tively find what a large model fails to learn. In-
spired by this observation, we propose to lever-
age a compact bi-directional auto-regressive
language model to dynamically discover tokens
that a large language model has not learned well
and guide its training via hardness masking.
Comprehensive experiments demonstrate that
our masking method can effectively boost the
performance of pre-trained language models on
general language understanding benchmarks.

1 Introduction

Language Modeling (LM) is one of the most fun-
damental natural language processing tasks. Re-
cently, pre-trained models based on Masked Lan-
guage Modeling (MLM) and large-scale unanno-
tated corpus, e.g. BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), and T5 (Raffel et al.,
2019), have achieved state-of-the-art performance
on many NLP tasks. In MLM, the model aims to
recover randomly masked input tokens. The mask-
ing can happen at token level (Devlin et al., 2018;
Liu et al., 2019) or phrase level (Joshi et al., 2020;
Raffel et al., 2019). However, most of these works
sample tokens or phrases from a uniform distribu-
tion, which encourages models to learn more about
frequent examples, but less on hard ones. As shown
in (Levine et al., 2020), the model quality can sig-
nificantly be increased if the model masks tokens
such that they are harder to predict. One way to
estimate the difficulty to recover a given token is to
leverage the perplexity of prediction of this token

when it’s masked. However, it is computational ex-
pensive to have a large MLM to self-identify such
tokens: in order to mask 15% of the tokens at a
time, it takes 7 rounds to estimate the difficulty of
all input tokens.

On the other hand, we find that it is often the
case that a simple auto-regressive language model
(ALM) and a large-scale MLLM share a similar set
of tokens that they find hard to predict. In other
words, a small language model can quickly help to
detect hard tokens for a large MLM. As an exam-
ple, Figure 3 shows the predicted word perplex-
ities by a small bi-directional ALM, where the
darker color indicates a higher perplexity, i.e. to-
kens that are more difficult to recover. We find
that the RoBERTa-large model (Liu et al., 2019)
struggles to reconstruct these difficult tokens as
well. If we randomly mask 15% of all tokens from
a uniform distribution, the average perplexity of
RoBERTa-large is 2.47. But this number jumps
significantly to 35.43 if we selectively mask the
same number of tokens based on the probabilities
from auto-regressive language modeling. This re-
sult indicates that a small ALM can act as a good
indicator to guide the training of a large MLM by
providing an estimated perplexity.

Thus, we propose to use a compact bi-directional
auto-regressive language model to estimate the dif-
ficulty of each token. Specifically, after collect-
ing the average perplexities of this small LM from
both directions, we normalize the values across
the whole sequence and use these scores as the
sampling distribution for masking. We apply this
technique to further pre-train large language mod-
els based on MLM. We show that the proposed
efficient masking technology can effectively im-
prove the quality of pre-trained MLM. For exam-
ple, on GLUE dataset, the average performance
of RoBERTa-large under our hardness masking
method is improved by 0.6%.

We summarize the main contributions of this
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Figure 1: Masking strategies. (a) Random masking is the most widely adopted method. As it does not depend on
the input text, the most frequent tokens, such as stopwords, are more likely to be sampled. (2) Hardness masking
samples tokens based on their difficulty computed by a small bi-directional auto-regressive language model. We use
the normalized perplexity at each position as the sampling distribution for masking.

paper as follows. (¢) We find that a simple auto-
regressive language model and a large-scale pre-
trained masked language model such as RoOBERTa
often share a similar set of words that are difficult to
predict. (i7) We design a hardness masking strategy
to further pre-train ROBERTa to recover words de-
tected by a simple auto-regressive language model,
(22¢) Our masking strategy significantly improves
pre-trained language models on multiple tasks from
the GLUE benchmark (Wang et al., 2018).

2 Method

In this section, we will introduce our hard-
ness masking framework which combines auto-
regressive language modeling (ALM) and masked
language modeling (MLM), as shown in Figure 1.

2.1 Auto-Regressive Language Modeling

Auto-regressive language modeling learns the prob-
ability of next word occurrence based on all the
previous words. Given a sequence X with n tokens,
language modeling can predict the probability dis-
tributions of each token given all of tokens to its
left:

?(X ) = Transformer—LNi(X ), (1)

where ?(X ) € R™ are the word level perplexities.
A word with a higher perplexity indicates that it is
harder to be predicted by the language model.

We compute the right-to-left perplexity of each
token in a similar way:

<]S(X ) = Transformer-LM(X). ()

We then average the perplexities from both direc-
tions for each token, and normalize the values over
all the tokens in the sequence.

P(x)+ P(x)
2

P(x)+ PX)
2

PX) = /

3)
We argue that P(X) € R" is a token-level hard-
ness distribution over the whole sequence, and it
can reflect which words are harder to predict. We

provide a visualization of P(X) in Appendix A.

2.2 Hardness Masking for MLM Pre-training

We find a simple auto-regressive language model,
e.g. 6-layer Transformer, can already give the ex-
act correct next tokens prediction for half of the
tokens in 512-length sequences. Thus, P(X) can
be effectively computed with a small ALM model.
These findings make it possible to make a pipeline
based method for masked language model (MLM)
pre-training: First train model with ALM and use it
to efficiently mask tokens for MLM training. The
model trained with ALM can be treated as a prior
knowledge for model pre-training.

Most existing MLM methods adopt uniform ran-
dom sampling for masking tokens/phrases. This



SST MRPC CoLA STS MNLI QNLI QQP RTE Avg
Development Set
RoBERTa (base)(Liu et al., 2019) 94.8 90.2 63.6 912 87.6/- 928 919 787
Random Mask (base) 95.3  90.2 62.8 909 88.1/87.8 93.1 919 794 86.6
Hardness Mask (base) 959 912 647 91.1 88.1/87.8 933 919 819 873
RoBERTa (large)(Liu et al., 2019) 96.4  90.9 68.0 924 90.2/90.2 947 922 86.6 89.1
Random Mask (large) 97.0 91.7 69.3 924 90.6/90.2 950 922 877 89.6
Hardness Mask (large) 97.0 92.6 714 92.6 91.0/90.6 951 92.3 88.8 90.2
Test Set

PMI-Masking (base)(Levine et al., 2020) 94.7  87.7 574 877 86.6/85.8 93.1 895 729 839
Random Mask (base) 95.6  87.1 59.0 88.1 87.0/87.2 932 894 727 844
Hardness Mask (base) 95.8 87.0 60.3 88.6 87.8/87.3 934 895 754 850
Random Mask (large) 959 874 63.4 90.6 90.3/89.7 945 89.8 847 87.3
Hardness Mask (large) 96.5 88.7 658 91.2 90.1/89.8 949 899 837 87.8

Table 1: Experiment results on GLUE datasets. The results in the top half are the best performance on the dev sets
of different tasks, and the bottom half are the corresponding results on test sets. Random-Mask is same as RoOBERTa
MLM training, but further train for more epochs to make a fair comparison with our method Hardness Mask.

strategy encourages models to learn more about
frequently seen words, but less on hard examples.
A wide experiment study (Joshi et al., 2020; Raffel
et al., 2019) shows that the language model qual-
ity can significantly increase if the model chooses
“hard” tokens to mask, i.e. the words it finds harder
to predict.

We sample the indices of tokens to mask accord-
ing to P(X):

. P(X)+«
Mask_Index = Multi_Sample( PX) 1ol M)

4
where o > 0 is a scalar value for smoothing. When
a = 0, the tokens are sampled completely accord-
ing to the perplexity P(X); when o = oo, our strat-
egy falls back to uniform random sampling. We
sample M tokens to mask based on the smoothed
probabilities.

In this paper, we hypothesis that even if a large
model has been trained for a long time over a large
corpus, it still cannot remember everything. And
our method is to efficiently test the existing pre-
training models and make the models focus on
learning unseen knowledge. Thus, we will work
on continue pre-training existing models, such as
RoBERTa. This will also be cost and energy effi-
cient.

3 Experiment

3.1 Experiment Setting

We are using same amount of data with RoBERTa
for pre-training and evaluate models on GLUE

benchmark (Wang et al., 2018). Our bi-directional
auto-regressive language model is a Transformer
with 6 layers. For model pre-training, We further
pre-train RoBERTa for another 6 epochs on the
160g data with 10% warm-up steps.

3.2 Experiment Results

We report the best performance on dev sets after
hyper-parameter search as shown in Table 1, and
the best model will be evaluated on the hidden test
sets.

Random Mask V.S. Hardness Mask To make a
fair comparison with proposed ‘“Hardness Mask"
method, we apply “Random Mask" in the same pre-
training pipeline, where the only difference is the
masking strategy. Both methods are first initialized
by RoBERTa checkpoints, and then further pre-
train for several epochs. Based on the experiment
results on development and test sets, our methods
work for both base and large model structures.

PMI-Masking V.S. Hardness Mask We make
a comparison with another strong baseline, PMI-
Masking (Levine et al., 2020), which also makes
use of prior knowledge to construct pre-training
tasks. This knowledge is statistically computed by
Pointwise Mutual Information (PMI). We can com-
pare it with our “Hardness Mask (base)", and our
method can achieve better performance on almost
all the tasks, except MRPC dataset.

3.3 Hardness Analysis

ALM perplexity distribution First let us take a
look at a distribution of word hardness, P(z), as
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Figure 2: The left figure visualizes the distribution of P(X). It is a case study on the token perplexities computed
by auto-regressive language models. X-axis is the token positions. Y-axis is the hardness of the tokens over all the
tokens at each position. The right figure is about MLM perplexities of RoBERTa-large given different degree of
hardness defined by a. If a=0, it would be the hardest masking strategy, and if « is large enough, it would be same

as random masking.

SST MRPC CoLA STS MNLI QNLI QQP RTE Avg
Random Mask (a=00) 95.3 90.2 62.8 909 88.1/87.8 93.1 919 794 86.6
Hardness Mask (a=0) 952 89.5 62.1 89.7 88.0/87.4 93.0 89 787 859
Hardness Mask (a=0.001) 959 91.2 647 91.1 88.1/87.8 933 919 819 873
Hardness Mask (a=0.005) 95.6 90.9 65.3 90.8 88.0/87.8 934 919 81.6 873

Table 2: GLUE dev fine-tuning performance with checkpoints pre-trained in different MLM tasks. The hardness of
MLM task is tuned with a value. a=0 is the hardest MLM and a=c0 is the simplest MLM with random mask.

shown in the left part of Figure 2. We can see that
a small faction of words are much harder to predict
than others, which means ALM can efficiently pick
up the most important tokens but not uniformly
assign the weights.

Relation between ALM and MLM perplexities
We use « in Eqn.(4) to define The hardness of
different masking strategies. Based on the right
side of Figure 2, we can see that when we set «
to 0, the perplexity boosts to over ten times larger.
With the « value increasing, some words that are
easy to recover get more chance to be sampled.
Thus the perplexities of both RoOBERTa-base and
RoBERTa-large decreases quite fast.

Hardness mask pre-training As shown in Ta-
ble 2, we can see that when we tune the MLM task
to be the hardest one with =0, the model will get
worse performance. According to our experiments
in Table 2, selecting an appropriate pre-training
task with certain hardness can lead to better fine-
tunig performance.

4 Related Work

Mask language modeling has dominated the pre-
training task. It achieves better performance on
most downstream tasks than auto-regressive pre-

trained language models (Lan et al., 2019). Later
on, how to mask tokens for MLM has drawn much
attention. The tokens are masked in sub-word
level in earlier works (Devlin et al., 2018; Liu
et al., 2019). Later on, whole word masking and
span masking are proposed to further improve the
pre-training quality (Joshi et al., 2020) Instead of
uniformly selecting words to mask based on po-
sitions only, some simple statistical information
can be treated as the prior knowledge which can
be used to help the large-scale pre-training, such
as PMI-Masking (Levine et al., 2020) and ELEC-
TRA (Clark et al., 2020). Our work is under this
direction.

5 Conclusions

In this paper, we propose an efficient hardness
masking method for pre-training masked language
models. We propose to use the word level perplex-
ity predicted by a lightweight bi-directional auto-
regressive language model to guide a large MLM
to mask and recover difficult tokens. Experiments
show that our method can effectively improve the
quality of language models, e.g. it improves the
average performance of RoOBERTa-large by 0.6%
on the GLUE benchmark.
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A Perplexity Visualization

We visualize the perplexity of each word from a
bi-directional language model in Figure 3.

B Dataset

Both our language modeling and masked lan-
guage modeling are trained on large-scale unla-
beled text data. For a fair comparison, We are
using same amount of data with RoBERTa for
training, which consists of English Wikipedia,
Book Corpus (Zhu et al., 2015), CommonCrawl
News (Nagel, 2016), OpenWebText (Gokaslan and
Cohen, 2019), and CommonCrawl-Stories (Trinh
and Le, 2018). Wikipedia, Book Corpus, and Open-
WebText have not widely adopted for pre-training,
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Figure 3: Perplexity of each word (inverse of probability of being predicted) in an example text given by a simple
bi-directional language model. Words with a darker color has a higher perplexity, i.e. higher uncertainty under the
model. We find that the RoBERTa-large model struggles to recover the words with darker color too: If we uniformly
randomly mask 15% of all tokens, the average perplexity of RoBERTa-large model is 2.47. But if we randomly
mask 15% of the words according to the color information, i.e. darker words are more likely to be masked, the
average perplexity of RoOBERTa-large significantly increases to 35.43.

and we follows RoBERTa (Liu et al., 2019) to col-
lect data from CommonCrawl for pre-training. Af-
ter all, we use the same datasets as RoBERTa to
make a fair comparison with ours.

We evaluate our pre-trained models on the tasks
from General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018), which
consists of 9 datasets in total. The tasks can
be divided into single sentence classification (re-
gression) tasks, which includes Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), Cor-
pus of Linguistic Acceptability (CoLA) (Warstadt
et al., 2019), Microsoft Research Paraphrase
Corpus (MRPS) (Dolan and Brockett, 2005)
and Semantic Textual Similarity Benchmark
(STS) (Agirre, 2007); or sentence-pair classifi-
cation tasks, which includes MultiGenre Natural
Language Inference (MNLI-Matched and MNLI-
Mismatched) (Williams et al., 2017), Question
Natural Language Inference (QNLI) (Rajpurkar
et al., 2016), Recognizing Textual Entailment
(RTE) (Dagan et al., 2005) and Quora Question
Pairs (QQP) (Shankar et al., 2016). Note that only
the task STS is a regression problem. Based on of-
ficial GLUE benchmark evaluation metrics, we use
Spearman Correlation for STS, Matthews correla-
tion for CoLLA, and for rest of the tasks we report
accuracy.

C Experiment Setting

Our hard masking strategy is based on a bi-
directional auto-regressive language model, a
Transformer with 6 layers and 512 dimensional
hidden state. The language models in different

directions are trained separately without sharing
parameters. It is trained for 2 epochs over all of the
160g data. All the texts are cut into sequences with
512 tokens.

We use Byte-Pair Encoding tokenizer which is
the same as ROBERTa (Liu et al., 2019). We set
learning rate as 5e-04, batch size as 2560, dropout
as 0.1, and use Adam (Kingma and Ba, 2014) as the
optimizer. Besides word masking, we also adopt
random word replacement (10% of the masked
words) and original word replacement (10% of the
masked words) from BERT and RoBERTa, which
have been proven to be important for pre-training.

For model pre-training, We further pre-train
RoBERTa for another 6 epochs on the 160g data
with 10% warm-up steps. We run MLM pre-
training by two mask strategies: random mask and
proposed hardness mask. For hardness mask, we
choose « in Eqn.(4) from {0, 0.001, 0.005 }. The
texts are also cut into sequences with 512 tokens.
For experiments, We set learning rate as 1e-6, batch
size as 2560, dropout as 0.1, and Adam optimizer.

For model finetuning on GLUE (Wang et al.,
2018), we tune hyper-parameters on all tasks from
learning rate {7e-06, 1e-05, 2e-05}, batch size {16,
32} and dropout {0.1, 0.2}. We report the best
performance on dev sets of GLUE and also the
corresponding performance on test sets.

Our pre-training and finetuning code is mainly
based on fairseq', and all the experiments are done
with 8 Nvidia V100 GPUs.

"https://github.com/pytorch/fairseq
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