
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL THEOREM PROVING FOR VERIFICATION
CONDITIONS: A REAL-WORLD BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

Theorem proving is fundamental to program verification, where the automated
proof of Verification Conditions (VCs) remains a primary bottleneck. Real-world
program verification frequently encounters hard VCs that existing Automated
Theorem Provers (ATPs) cannot prove, leading to a critical need for extensive
manual proofs that burden practical application. While Neural Theorem Proving
(NTP) has achieved significant success in mathematical competitions, demonstrat-
ing the potential of machine learning approaches to formal reasoning, its appli-
cation to program verification—particularly VC proving—remains largely unex-
plored. Despite existing work on annotation synthesis and verification-related the-
orem proving, no benchmark has specifically targeted this fundamental bottleneck:
automated VC proving. This work introduces Neural Theorem Proving for Ver-
ification Conditions (NTP4VC), presenting the first real-world multi-language
benchmark for this task. From real-world projects such as Linux and Contiki-OS
kernel, our benchmark leverages industrial pipelines (Why3 and Frama-C) to gen-
erate semantically equivalent test cases across formal languages of Isabelle, Lean,
and Rocq. We evaluate large language models (LLMs), both general-purpose and
those fine-tuned for theorem proving, on NTP4VC. Results indicate that although
LLMs show promise in VC proving, significant challenges remain for program
verification, highlighting a large gap and opportunity for future research.

1 INTRODUCTION

Program verification has been fundamental to software reliability for over half a century (Hoare,
1969). While numerous industrial program verifiers have been developed and deployed in his-
tory (Cousot et al., 2005), the adoption of program verification remains limited to safety-critical
domains (Rushby, 2009; Woodcock et al., 2009). A primary reason is the heavy manual effort re-
quired in the theorem proving of Verification Conditions (VCs) (Barnett et al., 2006): the logical
propositions that encode program correctness.

VC plays a central role in the conventional workflow of program verification (Cohen et al., 2009;
Leino, 2010) as shown in Fig. 1: the Verification Condition Generator (VCG) component aims to
generate VCs and the prover aims to prove them. Conventionally, VC proving is carried out by
Automated Theorem Provers (ATPs). However, ATPs excel only at specific domains of problems,
and require human intervention (e.g., manual proofs and annotations) when automatic proof attempts
fail or time out. Taking the widely-used industry tool Frama-C (Baudin et al., 2021) as an example,
existing ATPs’ insufficient capability necessitates ∼600 lines of annotations for a linked list library,
nearly matching the original C code length. Consequently, due to the central role of VC proving
and the inadequacy of current automated approaches, VC proving has become a key bottleneck in
automated program verification.

Large language models (LLMs) have opened the door to Neural Theorem Proving (NTP) (Minervini
et al., 2018), where models generate formal proofs to conduct theorem proving. While existing NTP
research has focused primarily on mathematical domains, proving competition problems (Zheng
et al., 2022; Tsoukalas et al., 2024) and formalizing mathematics (Xin et al., 2025), theorem proving
extends naturally to VC proving (Harrison et al., 2014).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Source Code

Property

Annotation

Program Verifier

Verification
Conditions

VCG Prover

Certificatesucceeds

the program is buggy OR
the prover is not strong enough

fails

conventionally, ATP Neural Theorem Proving

LLM VC succeedsProof Checker
(ITP)

proposes proof
candidates or fails

The prover can be either :

...

OR

Figure 1: The conventional and NTP-based workflow of program verification.

This motivates our central question: can NTP automate VC proving? To answer this, we intro-
duce Neural Theorem Proving for Verification Conditions (NTP4VC) — a task that applies
machine-learning-based proof generation to conduct the theorem proving of VCs.

To evaluate this task, we construct the first benchmark for NTP4VC, whose major features are com-
pared with prior works in Tab. 1. A challenge of this construction is that Lean (De Moura & Ullrich,
2021), a mainstream language in the NTP community, has relatively fewer mature program verifi-
cation frameworks built on top of it and large-scale industrial verification projects using it. Despite
our best efforts, we find no sufficient native VCs available in Lean for constructing a NTP4VC
benchmark.

We overcome this issue by translating the VCs generated from other industrial verification pipelines
(Why3 (Filliâtre & Paskevich, 2013) and Frama-C (Baudin et al., 2021)) into Lean. This approach
also allows us to translate VCs to Isabelle (Paulson, 1990), Rocq (Coquand & Huet, 1988) (which
are already implemented), and potentially other target languages, forming the first multi-language
benchmark in NTP-based program verification. More crucially, this approach further allows ex-
tracting VCs from existing verification projects for industrial software, such as the Linux kernel’s
scheduler and Contiki OS’s memory allocator and linked-list library.

Unlike LLM-based translation approaches that suffer from LLMs’ unreliability, our translation
pipeline is based on ∼800 expert-written translation rules for each of the three target languages
(so ∼3 × 800 in total). These rules are explicitly chosen to ensure semantic preservation from the
origins to the translations, thereby better ensuring the quality of the benchmark cases compared to
LLM-based translation approaches.

We further evaluate several existing provers and LLMs on NTP4VC. For language-specific fine-
tuned provers, the best model achieves only 2.08% pass@1, while general-purpose LLMs achieve
lower performance, with GPT-o4-mini-high achieving 1.19% pass@1. These results highlight the
substantial difficulty of VC proving and the need for progress in NTP and LLM reasoning.

To summarize, our contribution includes:

1. We define the task of NTP4VC (§ 1), which aims to attack the automated proving of VC, a
key bottleneck in program verification.

2. We propose a reliably automatic method for extracting corpora from real-world verification
projects (§ 3). The implementation is open-sourced.

3. We present the first real-world, multi-language benchmark for NTP4VC, with open-sourced
implementation and extensive evaluation of existing provers and LLMs (§ 5).

2 BACKGROUND

Theorem proving falls broadly into two categories: Automated Theorem Proving (ATP) and In-
teractive Theorem Proving (ITP). ATP achieves full automation within specific domains of proof

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison between our benchmark and previous ITP-based benchmarks for program ver-
ification. VC: the proportion of VC test cases. Industrial pipeline: whether the work uses industrial
program verification pipelines. Language: the proof language supported by the benchmark.

Benchmarks Focus VC Indstrial
Pipeline

Language

Lean Isabelle Rocq

Lin et al. (2024) verificatoin-
related lemmas

< 17% ✓ ✗ ✓ ✗
Thompson et al. (2025) < 20% ✓ ✗ ✗ ✓

Thakur et al. (2025) programming
puzzles in Lean

0% ✗ ✓ ✗ ✗
Dougherty & Mehta (2025) 0% ✗ ✓ ✗ ✗
Lohn & Welleck (2024a) 0% ✗ ✓ ✗ ✗

Ours VCs from puzzles &
industrial projects 100% ✓ ✓ ✓ ✓

Why3

Isabelle

Rocq

Frama-C

VCG frontend

of algorithms, data structures ...
Why3 programs for pearls

Source Spec. Annot.
Lean

Translator

cross-prover & real benchmark

VC

Why3 code

VCGC Programs
from real-world industrial projects

Source Spec. Annot.

VCG backend

Figure 2: Our pipeline for extracting benchmark cases.

problems. These domains are limited, and VCs in real-world verification projects often exceed these
domains, leading to proof failures and inevitable human intervention (e.g., manual proofs and an-
notations) in order to complete the proofs. By contrast, ITP provide highly expressive languages
that enable users to construct proofs across broad domains, capable of handling almost all program
verification problems. Mainstream ITP languages include Isabelle, Rocq, and Lean.

Program verification aims to verify that a program satisfies a given property. Ideally, a strong
enough verifier should be able to complete the verification solely given the source code and the
property. In practice, however, due to limitations in both VCG and VC provers, users often have
to provide manual proofs and annotations to guide the verifier in completing the verification. The
manual effort for these proofs and annotations constitutes a huge cost burden in program verification.

Why3 and Frama-C are famous program verifiers widely used in the industry. Why3 provides 1) a
language for both programming, annotation, and specifying functional correctness, 2) a VCG, and
3) powerful ATPs. A limitation is that Why3 can only verify programs written in its abstract specifi-
cation language. In order to verify programs written in industrial languages, Why3 is widely used as
the verification backend of well-known toolchains which translate their input language to the Why3
specification language — including Frama-C, Cameleer (Pereira & Ravara, 2021), Creusot (Denis
et al., 2022), and EasyCrypt (Barthe et al., 2011). Frama-C is an industrial verifier for the C lan-
guage. It provides a frontend to process C source code and then calls Why3 to complete the verifica-
tion. The input of Frama-C is C source code with properties and annotations provided as comments,
and the output is Why3 code that Why3 can continue to verify. Finally, Frama-C is widely used,
having verified enormous industrial programs, such as air traffic management algorithm (Dutle et al.,
2021), embedded operating system (Mangano et al., 2017; Blanchard et al., 2018), cryptographic
modules (Peyrard et al., 2018), Linux kernel scheduler (Lawall et al., 2025), and JavaCard virtual
machine (Djoudi et al., 2021).

3 A RELIABLE AND AUTOMATIC METHOD FOR CORPORA GENERATION

This section presents the method we use to extract real-world VCs that consitute our benchmark.
The key idea is to reuse existing industrial VCGs to extract VCs from existing verification projects,
and translate these VCs into the language of the target ITPs (§ 3.1). Since the projects have all

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Target ITP
Lanugage

Why3
Source

Translation Process §3.2

Complication
Process §3.1

Why3
VCG

De-annotated
Why3 Source

Constant
Mapping

AST
Rewrite

AST
Print

AST
VC

of VC of VC of VC

Figure 3: The generation process of the benchmark cases and potentially training corpora.

passed the verifiers’ checks, the VCs are guaranteed to be provable. However, this also makes them
too easy to serve as valuable benchmark cases, as they may already be within reach of existing
ATPs. To produce challenging benchmark cases, we introduce a novel complication process (§ 3.2)
to make VCs harder while keeping them provable. The complete process is illustrated in Fig. 3.

3.1 VC EXTRACTION & RULE-BASED TRANSLATION

Various VC languages are used in industry, such as Why3, TPTP (Sutcliffe, 2024), and SMT
Lib (Barrett et al., 2010). We adopt Why3 because its logic system is Simple Typed Theory (Church,
1940), a relatively high-level system that is close to and entailed by the logic of mainstream ITPs
like Lean, Isabelle, and Rocq, ensuring the feasibility of the translation.

The translation process begins with a given Why3 source code. It first runs Why3 VCG to gener-
ate VCs and calls our customized Why3 printer to dump the VCs into an XML representation of
their Abstract Syntax Trees (ASTs). These ASTs are processed by a Python translation framework
also written by us and finally mapped into the target ITPs’ languages. The details are provided in
appendix E.

While the above process enables the basic translation from Why3 to target ITP languages, our work
goes beyond this to strive for idiomatic translations that closely approximate native expressions
on the target ITP platforms. For this, our translation process incorporates enhancements from two
aspects: First, at the syntactic level, we use printing rules to map specific term structures to their
corresponding pretty syntax defined in the ITP, including prefix, infix annotations, and ad-hoc syntax
sugars like if-then-else, match-case, and list[index]. Second, we build a rewriting system to rewrite
specific combinations of terms into more idiomatic expressions. Examples include rewriting integer
operations into natural number operations that are more common in ITP.

The implementation of the pipeline is made of more than 2400 mapping & rewriting rules written
by human experts in ITP, in total for Isabelle, Lean, and Rocq. The correctness of the rules is
supported by syntax checking over the translation results on one hand, and cross-validation by other
experts (our first, second, and last authors) on the other hand. These expert-written rules form
the foundation of the translations’ correctness and quality. Once this foundation is built, the entire
translation process is automatic, constituting a reliably automatic method for extracting VC corpora.

3.2 COMPLICATION PROCESS: EXTRACTING CHALLENGING VCS

As mentioned at the beginning of this section, the VCs extracted from real-world projects are al-
ready provable by existing ATPs, thus providing insufficient challenge for benchmark evaluation.
However, these VCs are provable by the ATPs as human developers have already written sufficient
annotations to make them easy for ATPs to prove, rather than from inherent ATP strength. A direct
idea is to erase these auxiliary annotations and restore the verification tasks to what they should
ideally be in fully automated program verification.

Specifically, three sorts of annotations are dedicated to VC simplification: (1) assert annotation,
which introduces a subgoal to ask the prover to first prove this subgoal and then use the proven
subgoal as a lemma in the subsequent proofs; (2) lemma annotation, which explicitly introduces a
global lemma so that the prover can later reference it to prove subsequent propositions; (3) annota-
tion of lemma application, which explicitly instantiates (the free variables in) a lemma and advises
the prover to use it. All these annotations can be safely erased without affecting the VC’s provability
(by a strong enough prover) (Bobot et al., 2025; Correnson et al., 2025). In addition, they exhibit
clear syntactic patterns enabling us to identify and erase them. Indeed, the exact job of our compli-
cation process is erasing the annotations. The results show this process effectively reduces the pass

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

rate of Why3’s strongest ATP from ∼99% to ∼62% on Why3’s bundled examples by Toccata Team
(2025).

4 NTP4VC BENCHMARK

The method discussed in § 3 enables effective extraction of real-world VCs from existing verification
projects. By applying the method, we extract >5.3k VCs from various sources. From there, we
carefully select 672 VCs to constitute a benchmark, with consideration for breadth, diversity, and
the balance of difficulty levels as described below.

Table 2: Categories of the benchmark

Category Number ATP pass

pearls of programs
Algorithm 62 19.35%
Data Structure 83 20.48%
Calculation 74 20.27%
Engineering 65 20.00%
Competition 52 19.23%
real C verification
Function 87 16.09%
Loop 110 18.18%
Memory 70 21.43%
Invalid Arg. 69 20.29%

Total 672 19.35%

Breadth, Diversity, and the Difficulty Level. Real-world
industrial projects certainly possess high value in a verifi-
cation benchmark like ours, while at the same time, chal-
lenging algorithms and data structures are equally valu-
able verification targets due to their complexity. An is-
sue is that a conflict exists between them: challenging
algorithmic content is sparse in industrial project source
code. If a benchmark focused solely on VCs from indus-
trial projects, it would underrepresent algorithms and data
structures. In order to balance the breadth of the verifica-
tion scenarios involved, we divide our benchmark into two
equal parts (50% vs 50%). (1) Pearls of Programs con-
sists of minimal working programs that capture verifica-
tion pain points, including algorithms, data structures, and
well-known “hard nuts to crack”, such as Binomial Heap,
VerifyThis’24 competition, and Hillel challenge (Wayne,
2018). These programs are written in Why3’s abstract
specification language. (2) Real C Verification: VCs
from industrial C programs used in real-world projects, such as the memory allocator (Mangano
et al., 2017) and the linked-list library (Blanchard et al., 2018) from the Contiki Operating System.

Each category is further divided into sub-categories (Tab. 2), with roughly balanced numbers of
cases in each sub-category to maintain diversity. The pearl of programs consists of 1) Well-known
algorithms such as sorting, string operations, searching, shortest path, and graph; 2) Data struc-
tures, including (balanced) trees, heaps, hash, and arrays; 3) Numerical and other calculations, such
as arbitrary precision arithmetics, square root, exponentiation by squaring, and bitwise operations;
4) Engineering optimization tricks (e.g., in-place reversal of linked lists and N-queens by bitvector)
and common engineering tasks (e.g., string padding, list element removal, space-insensitive compar-
ison between strings, and the challenges by Wayne (2018)); 5) Cases from well-known verification
competitions, e.g., VerifyThis (Ernst et al., 2019) and VSCOMP (Klebanov et al., 2011).

While the pearl of programs is organized by source programs’ functionality, cases in the real C
verification are categorized by the properties that VCs validate: 1) Function category verifies that
programs’ logical behavior meets the desired functionalities from a big-picture view, assuming the
absence of runtime errors; 2) Loop category verifies loop termination, and loop invariants are estab-
lished and maintained; 3) Memory category rules out the runtime error of invalid memory access; 4)
Invalid Arg. checks that arguments and operands are valid. For example, the operands of multipli-
cation do not cause arithmetic overflow, and the dividend is not zero.

Beyond breadth, we design the benchmark to balance difficulty across categories. We measure
difficulty using the pass rate of Why3’s strongest predefined ATP tactic, Auto Level 3 (AL3).
AL3 is a hybrid tactic that combines sophisticated heuristics and five industrial cutting-edge ATPs,
Z3 (De Moura & Bjørner, 2008), CVC5 (Barbosa et al., 2022), SPASS (Weidenbach et al., 2009a),
Alt-Ergo (Conchon et al., 2018), and E-prover (Schulz, 2002), such that a goal is proved once any
of the ATPs proves the goal. The pass rate of AL3 then indicates the state-of-the-art of Why3 ATP
over the benchmark cases, denoted as ATP pass@n in Tab. 2. A VC is deemed hard if AL3 fails to
prove it, making its solution an open problem. Our design goal is to set each category’s composition
to target an AL3 pass rate of roughly 20% — a level that ensures sufficient open problems for
advancing NTP while still allowing effective evaluation of existing approaches.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: Sources of cases in real C verification. LoC = Lines of C Code (comments are excluded).

Project # of VCs LoC License

Linked List Library in Contiki OS (Blanchard et al., 2018) 167 833 BSD-3-Clause
Memory Allocator in Contiki OS (Blanchard et al., 2018) 16 145 BSD-3-Clause
X.509 Parser (Ebalard et al., 2019) 70 5044 GPLv2
Linux Kernel Scheduler’s SWB Routine (Lawall et al., 2025) 49 216 GPLv2
Selected Cases from C++ STL (Burghardt et al., 2015) 34 3263 MIT

Total 336 9501 -

Table 4: Statistics of involved operations. Format: average (25th − 75th percentile)

Operations # of cases # of operations # of distinct oprs Size Depth # of ∀∃
Integer Arith 645 60.1 (13− 68) 4.7 (4− 6) 665 (171− 772) 61.3 (29− 82) 11.9 (1− 15)
Non-Linear Arith 106 11.4 (2− 13) 1.2 (1− 1) 1391 (253.5− 1473) 79.8 (37− 116) 18.7 (3− 22)
List, Sequence 234 47.2 (8− 60.5) 4.0 (2− 6) 945 (216− 1151) 54.0 (25− 62) 18.3 (4− 23)
Set, Map, Bag 67 46.6 (9− 48) 3.5 (1− 5) 905 (288.5− 1171.5) 44.8 (28− 55.5) 26.3 (8− 39)
Tree, String, Matrix 33 53.5 (12− 84) 4.8 (4− 6) 695 (180− 921) 43.0 (25− 59) 27.8 (4− 31)
Memory 336 36.2 (13− 36) 7.9 (6− 9) 497 (172.5− 602) 72.2 (50− 88) 7.0 (0− 8)
Custom Datatype 242 96.0 (15− 102) 7.3 (3− 10) 912 (173− 1129.5) 58.1 (24− 83) 17.5 (3− 24)

All 672 320.0 (78− 371) 24.9 (20− 29) 653.5 (158− 754) 59.8 (28− 81) 11.7 (1− 15)

Diversity of VC Expressions While the previous subsection measures the diversity of the source
and the purpose of the VCs, this subsection discusses the arithmetic and data structure operations
involved in these VCs. We follow the taxonomic methodology conventionally used in the ATP
field (Barrett et al., 2010; SMT-LIB Initiative), and categorize the operations according to the notions
and the data types involved in their related reasoning. As listed in Tab. 4, the categories include
integer arithmetics, non-linear arithmetic, and various common data structures. Some cases may
define their custom datatypes beyond those provided in the standard libraries. This is captured by
the Custom datatype category. Further details about this classification are given in appendix H.

For each of the categories, we count the benchmark cases that involve at least one such operation, and
report the average, 25th, and 75th percentile of: # of operations, the total number of occurrences of
these operations; # of unique oprs, the number of distinct operation types in each case in each case;
size, the number of atomic terms; depth, the height of the abstract syntax tree of the VCs; # of ∀∃, the
number of quantifiers occurring in each case. As presented in Tab. 4, the result shows our benchmark
cases exhibit a wide distribution across different data structures and arithmetic operations, and also
span VCs of varying scales within each category.

Sources of the Benchmark Cases, and Their Licenses. All the VCs in the benchmark are drawn
from open-sourced verification projects. The pearls of programs come from the Gallery of Verified
Programs Toccata Team (2025), released under the LGPL v2.1 license alongside Why3’s source
code. For real C verification, VCs are collected from multiple projects, as summarized in Tab. 3.
The largest share comes from the Contiki OS linked-list library, which contributes most of the hard
VCs, since linked lists are notoriously difficult to verify with current industrial tools.

VC Selection Process. The 672 benchmark cases are selected from over 5.3k VCs. This subsection
elaborates on the selection process. The process consists of three rounds: The first round determines
the domain from which the benchmark cases will be selected; in the second round, one expert
performs an initial screening to identify ∼1.2k candidate cases; three experts then collaboratively
evaluate each candidate in the final round to finalize the benchmark set of 672 cases.

Recall that cases in Pearls of Programs are sourced from the Toccata Team (2025)’s collection of
224 individual projects. In the first round, we select 100 projects from which all Pearl benchmark
cases will be drawn, leaving the remaining 124 projects for potential use as training data. To collect
as many hard VCs as possible, we prioritize selecting projects rich in hard VCs. To measure if a VC
is hard, we run Why3’s AL3, and it is hard if and only if AL3 fails to solve it in 10 minutes on a
12-core workstation. For Real C Verification, we do not maintain such project-level separation, and
the 5 projects are all used for benchmark cases.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

In the second round, we first select all the hard VCs from the domain, totaling ∼900 cases. Since we
aim for the benchmark to have a 20–30% pass rate on the ATP baseline, we correspondingly select
∼300 cases from the easy VCs to balance the candidate set at this stage. When selecting each easy
VC, we check whether it is trivially provable (e.g., true ∧ true). To do this, we examine the VC’s
logical expression, the source program, related annotations, and the specifications to check that the
property verified by the VC is meaningful and commonly encountered in program verification tasks.

In the final round, we apply the same evaluation method above to assess each case and refine the can-
didate set while additionally considering balanced coverage across the categories shown in Tab. 2.
We also consider broad project coverage by selecting cases from different projects proportionally.

Format of the Benchmark Cases. Each benchmark case is a single VC (a single proof goal) placed
individually in a theory file, and each such file contains exactly one VC. Every VC originates from a
verification project and thus may contain project-specific concepts (e.g., the data type of binary tree),
resulting in VCs with library dependencies. Consequently, this requires benchmark participants to
be able to learn new concepts on-the-fly from the verification projects’ dependency libraries.

Dataset Contamination. Our benchmark is generally free of data contamination concerns, despite
all the source programs, properties, and annotations are public. This is because: (1) The transfor-
mation from program and property source code to VCs is complex. Even if LLMs were trained on
the original source code, they cannot trivially generate VC-level concepts. In typical program veri-
fication workflows, VCs are generated only transiently and are not persistently stored or published
unless done deliberately. (2) The VCs we use are derived from Why3 source code after a complica-
tion process, making most of them unprovable by existing ATPs, proofs for these VCs have never
existed. (3) Even if we assume the proof details of the VCs from the original Why3 source code can
leak information about the proofs of the complicated Why3 code, no leakage of the proof details is
discovered despite our best efforts. This is expected, since Why3 never stores detailed proofs, but
only records the ATP tools used, replaying them when proofs are needed. In fact, many ATPs do not
support dumping detailed proofs at all. In summary, the risk of meaningful data contamination in
our benchmark is extremely low.

5 EXPERIMENTS AND EVALUATION

To evaluate the challenges posed by NTP4VC, we assess seven models, covering both general-
purpose language models such as GPT-4o-mini (Achiam et al., 2023) and specialized models like
DeepSeek-Prover-V2 (Ren et al., 2025). We also include ITP hammers to provide a baseline for
comparison, including the hammers: Sledgehammer (Böhme & Nipkow, 2010) tool in Isabelle/HOL
and CoqHammer (Czajka & Kaliszyk, 2018) in Rocq.

Models We evaluate both proprietary models (GPT-o4-mini (Achiam et al., 2023)) and open-source
models (K2-Think (Cheng et al., 2025), DeepSeek-V3.1 (Liu et al., 2024), Qwen3 (Yang et al.,
2025), DeepSeek-Prover-V2 (Ren et al., 2025), Goedel-Prover (Lin et al., 2025), IsaMini (Xu et al.,
2025)). Among them, DeepSeek-Prover-V2 and Goedel-Prover and specialized for theorem proving
using Lean, while others are general-purpose reasoning models. We use 1.0 as the default tempera-
ture, and set the maximum number of tokens to 32, 000 during generation.

Metrics Our primary evaluation metric is the pass@n metric. NTP models are queried multiple
times for each problem, generating multiple proof attempts. A proof attempt is considered successful
if it can be verified by the corresponding ITP and does not contain any fake proofs such as admit
or sorry. Since hammers are mostly deterministic, we only report their pass@1 performance.
GPT-o4-mini is evaluated with a single attempt per problem due to its cost, while other models are
evaluated with 8 attempts per problem (n = 8).

Prompts We use zero-shot prompting for all models, providing only the problem statement and the
necessary context such as definitions and previously proved lemmas. The full prompt structures are
provided in Appendix F.

Proof Verification Our proof verification setup involves extracting the proof from the model’s output
and checking it within the corresponding ITP environment. We use the Lean 4.21.0, Rocq 8.20.1,
and Isabelle 2025. To prevent excessively long runtimes, we set a timeout of 10 minutes for each
verification attempt . Sledgehammer in Isabelle is configured to use its default ATPs and SMT

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Pass rates (Pass@1, Pass@4, Pass@8) of various NTP models and hammer-based auto-
mated theorem provers on the NTP4VC benchmark, evaluated across Lean, Rocq, and Isabelle. NTP
models consistently achieve pass rates below 4%, while hammer-based provers such as CoqHammer
and Sledgehammer obtain higher success rates, particularly on Rocq (4.61%) and Isabelle (15.33%).

Model Lean Rocq Isabelle

P@1 P@4 P@8 P@1 P@4 P@8 P@1 P@4 P@8

GPT-o4-mini-high 1.19 – – 1.34 – – 1.93 – –
K2-think 1.19 1.79 2.23 0.74 2.08 2.68 0.00 0.00 0.00
DeepSeek-V3.1 1.04 1.79 2.23 0.74 2.08 2.68 1.34 4.32 6.25
Qwen3-32B 0.60 0.60 0.74 0.74 1.34 1.49 0.74 2.53 3.42
Qwen3-235B-A22B 0.60 0.74 0.89 1.04 2.23 2.98 1.19 2.08 3.13
Goedel-Prover-V2-32B 1.19 2.83 2.98 – – – – – –
DeepSeek-Prover-V2-671B 2.08 2.83 3.12 – – – – – –
IsaMini – – – – – – 2.08 7.29 11.46
CoqHammer / Sledgehammer – – – 4.61 – – 15.33 – –

solvers, including CVC4 (Barrett et al., 2011), CVC5 (Barbosa et al., 2022), Z3 (De Moura &
Bjørner, 2008), E (Schulz, 2002), SPASS (Weidenbach et al., 2009b), Vampire (Kovács & Voronkov,
2013), veriT (Schurr et al., 2021), and Zipperosition (Vukmirović et al., 2021). CoqHammer is
configured to use all its supported ATPs, including E, Vampire, Z3, and CVC4. All proof verification
is performed on a machine with an AMD Ryzen 9 7900X CPU and 64GB RAM.

5.1 RESULTS

The results summarized in Tab. 5 highlight the difficulty of program verification for NTP models.
Across all three ITPs, our experiments demonstrate that all NTP models fail to achieve pass@8
scores above 4% when evaluated on Lean, Rocq, and Isabelle. This stands in sharp contrast to
their strong performance on mathematics benchmarks. For example, DeepSeek-Prover-V2 achieves
55.5% pass@1 on miniF2F, while Goedel-Prover-V2-32B achieves 88.1% pass@32. On a more
challenging baseline such as PutnamBench, these models obtain 7.15% and 13.09% pass rates, re-
spectively, with various attempts. This performance gap suggests that program verification requires
fundamentally different reasoning capabilities than complex mathematical benchmarks.

Table 6: Number of problems solved and corresponding pass
rates of NTP models and hammer-based provers on the NTP4VC
benchmark, broken down by problem category.

Category NTP Models Hammers

Pass / Total Pass Rate Pass / Total Pass Rate

Algorithm 6 / 62 9.68% 6 / 62 9.68%
Data Structure 8 / 83 9.64% 11 / 83 13.25%
Calculation 8 / 74 10.81% 13 / 74 17.57%
Engineering 20 / 65 30.77% 7 / 65 10.77%
Competition 1 / 52 1.92% 3 / 52 5.77%
Function 9 / 87 10.34% 18 / 87 20.69%
Loop 6 / 110 5.45% 18 / 110 16.36%
Memory 11 / 70 15.71% 15 / 70 21.43%
Invalid Arg. 7 / 69 10.14% 16 / 69 23.19%

Total 76 / 672 11.31% 107 / 672 15.92%

By comparison, hammer-based
provers show much stronger re-
sults on NTP4VC. Sledgeham-
mer achieves a 15.33% pass rate
on Isabelle, significantly outper-
forming all tested NTP models.
Similarly, CoqHammer achieves
4.61% on Rocq, outperforming
the best NTP model. These re-
sults indicate that current tradi-
tional automated reasoning tech-
niques employed by hammers
remain more effective than cur-
rent NTP approaches for pro-
gram verification.

To better understand perfor-
mance differences across prob-
lem types, we report the number
of problems solved per category
by NTP models and hammers in Table 6. The results show a clear discrepancy across categories.
For instance, both approaches perform relatively well on Engineering problems, with NTP models
even surpassing hammers (30.77% vs. 10.77%). In contrast, hammers consistently outperform NTP
models in most other categories, particularly in Function (20.69% vs. 10.34%), Loop (16.36% vs.
5.45%), and Invalid Argument (23.19% vs. 10.14%).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

lemma decompose_front_node’vc: removing the first element in an AVL tree is correctly implemented
proof

fix d2 res
assume pre: “case o1 of AEmpty ⇒ d2 = d ∧ res = r

| ANode l1 d21 r2 h s ⇒ ∃res1. node_model (seq (m1 l1)) d21 (seq (m1 r2)) = Cons d2 (seq (m1 res1)) ∧
(0 ≤ (1 + (if hgt (m1 l1) < hgt (m1 r2) then hgt (m1 r2) else hgt (m1 l1))) - hgt (m1 res1)) ∧
(1 + (if hgt (m1 l1) < hgt (m1 r2) then hgt (m1 r2) else hgt (m1 l1))) - hgt (m1 res1) ≤ 1) ∧

⋯
(-int balancing ≤ hgt (m1 res1) - hgt (m1 r) ∧ hgt (m1 res1) - hgt (m1 r) ≤ int balancing ⟶
(1 + (if hgt (m1 res1) < hgt (m1 r) then hgt (m1 r) else hgt (m1 res1))) = hgt (m1 res)))

Redundant parenthesis

Missing parenthesis

Figure 4: An Isabelle proof generated by DeepSeek-V3.1 for a VC in the benchmark. This proof
contains syntax errors, including a missing closing parenthesis and two redundant closing paren-
theses. The seq returns a tree’s elements as a sequence in order; the hgt gives a tree’s height;
balancing is the balancing factor of AVL tree. The full example is provided in Appendix G.

Table 6 also indicates performance disparities between language models and hammers. This dis-
parity is reasonable given the fundamental differences in the underlying mechanisms of models and
hammers. Language models analyze proof goals semantically based on their knowledge acquired
during training. In domains where they have been exposed to relevant knowledge during training,
they tend to perform better. This may explain their better performance in the Engineering category,
as the benchmark cases stem from common engineering tricks and implementation optimizations
that models have extensively encountered during pre-training. By contrast, hammers perform syn-
tactic analysis of proof goal expressions — analyzing structural relationships between atomic for-
mulas and logical connectives. For example, if we replace variable/constant names in proof goals
with random words, hammers’ behavior would remain unaffected because the logical structure is
unchanged; NTP models would be significantly impacted due to the loss of semantic information
embedded in the names. This may account for hammers’ sustained performance on general domains.

5.2 ERROR ANALYSIS OF NTP MODELS

To understand the limitations of current NTPs on verification tasks, our qualitative analysis of failure
cases reveals three recurring themes: syntactic errors, semantic confusion, and hallucination. More
details are available in Appendix G.

Syntactic Errors A primary hurdle for NTPs is generating syntactically correct terms. For instance,
a proof for an AVL tree VC (see Fig. 4) failed to parse due to mismatched parentheses. Correcting
these purely syntactic errors allowed the term to be successfully parsed. More than 24% of generated
Isabelle proofs contain syntactic errors. This highlights a key challenge of VCs: unlike typical math
problems that prioritize semantic insight, VCs are often long, deeply-nested, machine-generated for-
mulas. Their structure places extreme demands on a model’s ability to maintain long-range syntactic
coherence.

Semantic and Pragmatic Confusion A more profound failure is the model’s misunderstanding of
the proof paradigm itself. This is common in Lean, where models produce syntactically plausible
but pragmatically incorrect code, leading to type errors. For example, they often use imperative-
style assignments (e.g.,:= i1 + i2) instead of declarative, tactic-based reasoning. This confusion is
further evidenced by proof scripts degenerating into repetitive and meaningless tactic applications
(e.g., “have h16 := h0; have h17 := h1 ...”), which occurs in more than 64% of Lean proofs
generated by Goedel-Prover-V2-32B, one of the state-of-the-art NTP models. Even powerful mod-
els like DeepSeek-Prover-V2 exhibit this behavior, suggesting they become overwhelmed by VC
complexity and resort to semantically inappropriate code, fundamentally misinterpreting the task.

Hallucination of Non-Existent Entities Finally, models frequently hallucinate non-existent con-
stants, lemmas, or tactics. For instance, GPT-o4-mini often invokes a tactic called why3, which
does not exist in Rocq, as a standalone proof for an entire VC. Similarly, many models introduce
undefined constants or lemmas not found in the context or standard libraries. At least 9% of proof
attempts in Isabelle failed due to these undefined entities. This demonstrates a failure to ground the
generation process within the strict formal context provided by the prover.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 RELATED WORKS

Prior benchmarks by Mugnier et al. (2025); Loughridge et al. (2025); Sun et al. (2024); Yang et al.
(2024); Zhong et al. (2025) consider the synthesis of annotations: given source programs and prop-
erties, the task is to generate annotations that enable program verifiers to succeed. Like our work,
they operate directly with industrial verifiers (e.g., Dafny (Leino, 2010), Verus (Lattuada et al.,
2023)). Besides, they tackle the end-to-end automation problem, which offers direct practical value
by reducing the manual annotation burden. However, as mentioned in § 2, an ideal verifier should
not require annotations in the first place, and a stronger VC prover brings us closer to this ideal ver-
ifier. In terms of automated program verification, our NTP4VC task is complementary to annotation
synthesis approaches — we propose to tackle the VC proving bottleneck directly, while they ap-
proach the problem indirectly through annotation generation (e.g., generating assert annotations
that decompose hard VCs into simpler subgoals such that the provers can handle). Both of them are
effective ways to improve automation in program verification and can be applied orthogonally.

There are also NTP benchmarks (Lin et al., 2024; Thompson et al., 2025) discussing verification-
related theorem proving, typically consisting of proof goals collected from ITP projects about
program verification engines and their applications. However, much of their work focuses on aux-
iliary lemmas used by program verifiers and specifications — such as those for preliminaries (e.g.,
arithmetic of bounded integers), programming language models (e.g., memory models), and abstract
program models (e.g., binary tree algebra) — rather than VCs. In detail, no more than 17% of the test
cases by Lin et al. (2024) might be VCs, and no more than 20% for Thompson et al. (2025)’s work
(see appendix J for details). The gap between auxiliary lemmas and VCs is crucial because VCs
are the direct theorem-proving targets that arise from program verification workflow (§ 2), while
auxiliary lemmas cannot (completely) represent the theorem-proving tasks in program verification.

Besides, the Lean benchmarks by Thakur et al. (2025); Dougherty & Mehta (2025); Lohn & Welleck
(2024a) are also designed for program verification. These works suffer from a limitation — they do
not follow the mainstream program verification methodologies adopted in the real-world industry.
Lean is a specialized language with integrated verification capabilities, where the programming lan-
guage itself serves as a logical reasoning language. This enables users to write Lean programs and
directly verify them using the Lean system, without requiring a separate VCG for program analysis.
However, program verification tasks in the real-world industry typically have to face industrial pro-
gramming languages that differ substantially from logical reasoning languages. Typical industrial
programming languages feature complex constructs such as mutable references, memory models,
functions with side effects, and pointer arithmetics — none of which are involved in the program
verification tasks examined by these benchmarks This contrast further underscores the necessity of
employing industrial verification pipelines to extract VCs from real-world industrial projects for
benchmark construction.

Finally, we also want to mention other NTP benchmarks involving much wider domains in theorem
proving, such as the works by Yang & Deng (2019); Li et al. (2021); Lohn & Welleck (2024b); Yang
et al. (2023); Gauthier et al. (2021); Kaliszyk et al. (2017); Bansal et al. (2019); Huang et al. (2019),
which are also important benchmarks in NTP.

7 CONCLUSION

This work introduces Neural Theorem Proving for Verification Conditions (NTP4VC), presenting
the first real-world multi-language benchmark for automated VC proving — a critical bottleneck in
program verification. Alongside this benchmark, this work develops a reliable extraction method
using expert-written translation rules and industrial verification pipelines (Why3 and Frama-C) to
extract VC corpora from real-world verification projects and generate semantically equivalent VCs
across Isabelle, Lean, and Rocq. Our evaluation of 672 carefully selected VCs from industrial
projects reveals the substantial difficulty of this task: the strongest neural theorem provers achieve
only 2.08% pass@1. Our error analysis reveals that the lengthy, deeply nested structure of VCs
presents fundamentally different challenges to NTP models compared to mathematics competition
problems. The benchmark and the corpora extraction method establish a foundation for advancing
neural approaches to program verification, with the potential to achieve significant breakthroughs in
automated program verification.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made a comprehensive artifact to ensure the reproducibility of our results and to encourage
future research. The artifact contains the complete NTP4VC benchmark, the source code for our VC
extraction tool, and all scripts required to replicate our experiments. Our artifact is already submitted
as supplementary material.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. Holist: An
environment for machine learning of higher order logic theorem proving. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 454–463. PMLR, 2019. URL http://proceedings.
mlr.press/v97/bansal19a.html.

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Ab-
dalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Math-
ias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile
and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu (eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes
in Computer Science, pp. 415–442. Springer, 2022. doi: 10.1007/978-3-030-99524-9 24. URL
https://doi.org/10.1007/978-3-030-99524-9_24.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem-Paul de Roever (eds.), Formal Methods for Components
and Objects, pp. 364–387, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-
540-36750-5.

Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. In Proceedings
of the 8th international workshop on satisfiability modulo theories (Edinburgh, UK), volume 13,
pp. 14, 2010.

Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King,
Andrew Reynolds, and Cesare Tinelli. cvc4. In International Conference on Computer Aided
Verification, pp. 171–177. Springer, 2011.

Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin. Computer-aided
security proofs for the working cryptographer. In Phillip Rogaway (ed.), Advances in Cryptology
– CRYPTO 2011, pp. 71–90, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-
642-22792-9.

Patrick Baudin, François Bobot, David Bühler, Loı̈c Correnson, Florent Kirchner, Nikolai Kosmatov,
André Maroneze, Valentin Perrelle, Virgile Prevosto, Julien Signoles, and Nicky Williams. The
dogged pursuit of bug-free c programs: the frama-c software analysis platform. Commun. ACM,
64(8):56–68, July 2021. ISSN 0001-0782. doi: 10.1145/3470569. URL https://doi.org/
10.1145/3470569.

Allan Blanchard, Nikolai Kosmatov, and Frédéric Loulergue. Ghosts for lists: A critical module
of contiki verified in frama-c. In Aaron Dutle, César Muñoz, and Anthony Narkawicz (eds.),
NASA Formal Methods, pp. 37–53, Cham, 2018. Springer International Publishing. ISBN 978-3-
319-77935-5.

11

http://proceedings.mlr.press/v97/bansal19a.html
http://proceedings.mlr.press/v97/bansal19a.html
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1145/3470569
https://doi.org/10.1145/3470569

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jasmin Christian Blanchette, Fabian Meier, Andrei Popescu, and Dmitriy Traytel. Foundational
nonuniform (co)datatypes for higher-order logic. In 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pp. 1–12. IEEE
Computer Society, 2017. doi: 10.1109/LICS.2017.8005071. URL https://doi.org/10.
1109/LICS.2017.8005071.

François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond, and Andrei
Paskevich. The Why3 Platform. University Paris–Saclay, CNRS, Inria, version 1.8.2 edition,
September 2025. URL https://www.why3.org/doc/.

Sascha Böhme and Tobias Nipkow. Sledgehammer: judgement day. In International Joint Confer-
ence on Automated Reasoning, pp. 107–121. Springer, 2010.

Jochen Burghardt, Jens Gerlach, and Timon Lapawczyk. ACSL by example. Technical re-
port, Fraunhofer FOKUS, 2015. URL https://publica.fraunhofer.de/entities/
publication/beb926ba-c3d6-4570-acc6-dd50da41843f.

Zhoujun Cheng, Richard Fan, Shibo Hao, Taylor W Killian, Haonan Li, Suqi Sun, Hector Ren,
Alexander Moreno, Daqian Zhang, Tianjun Zhong, et al. K2-think: A parameter-efficient reason-
ing system. arXiv preprint arXiv:2509.07604, 2025.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5(2):
56–68, 1940. doi: 10.2307/2266170.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas San-
ten, Wolfram Schulte, and Stephan Tobies. Vcc: A practical system for verifying concurrent c. In
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel (eds.), Theorem Prov-
ing in Higher Order Logics, pp. 23–42, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
ISBN 978-3-642-03359-9.

Sylvain Conchon, Albin Coquereau, Mohamed Iguernlala, and Alain Mebsout. Alt-ergo 2.2. In
SMT Workshop: International Workshop on Satisfiability Modulo Theories, 2018.

Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Computation,
76(2–3):95–120, 1988. doi: 10.1016/0890-5401(88)90005-3.

Loı̈c Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Virgile Prevosto, Armand Puc-
cetti, Julien Signoles, and Boris Yakobowski. Frama-C User Manual, 2025. URL https:
//frama-c.com/download/frama-c-user-manual.pdf. Corresponds to Frama-C
31.0 (Gallium), released on 2025-06-24.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival. The astrée analyzer. In European Symposium on Programming, pp. 21–30.
Springer, 2005.

Łukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type theory.
Journal of automated reasoning, 61(1):423–453, 2018.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

Leonardo De Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In André Platzer and Geoff Sutcliffe (eds.), Automated Deduction – CADE 28, pp. 625–635,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-79876-5.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pp. 337–340.
Springer, 2008. doi: 10.1007/978-3-540-78800-3 24. URL https://doi.org/10.1007/
978-3-540-78800-3_24.

12

https://doi.org/10.1109/LICS.2017.8005071
https://doi.org/10.1109/LICS.2017.8005071
https://www.why3.org/doc/
https://publica.fraunhofer.de/entities/publication/beb926ba-c3d6-4570-acc6-dd50da41843f
https://publica.fraunhofer.de/entities/publication/beb926ba-c3d6-4570-acc6-dd50da41843f
https://frama-c.com/download/frama-c-user-manual.pdf
https://frama-c.com/download/frama-c-user-manual.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot: A foundry for the deductive
verification of rust programs. In Adrian Riesco and Min Zhang (eds.), Formal Methods and
Software Engineering, pp. 90–105, Cham, 2022. Springer International Publishing. ISBN 978-3-
031-17244-1.

Adel Djoudi, Martin Hána, and Nikolai Kosmatov. Formal verification of a javacard virtual machine
with frama-c. In Marieke Huisman, Corina Păsăreanu, and Naijun Zhan (eds.), Formal Methods,
pp. 427–444, Cham, 2021. Springer International Publishing. ISBN 978-3-030-90870-6.

Quinn Dougherty and Ronak Mehta. Proving the coding interview: A benchmark for for-
mally verified code generation. In 2025 IEEE/ACM 2nd International Workshop on Large
Language Models for Code (LLM4Code). IEEE, 2025. doi: 10.1109/LLM4Code66737.
2025.00033. URL https://www.computer.org/csdl/proceedings-article/
llm4code/2025/261500a072/27uerjxJuPC.

Aaron Dutle, Mariano Moscato, Laura Titolo, César Muñoz, Gregory Anderson, and François
Bobot. Formal analysis of the compact positionreporting algorithm. Formal Aspects of Com-
puting, 33(1):65–86, Jan 2021. ISSN 1433-299X. doi: 10.1007/s00165-019-00504-0. URL
https://doi.org/10.1007/s00165-019-00504-0.

Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila. Journey to a rte-free x.509 parser. In Sympo-
sium sur la sécurité des technologies de l’information et des communications (SSTIC 2019), pp.
1–50, Rennes, France, 2019. URL https://www.sstic.org/2019/presentation/
journey-to-a-rte-free-x509-parser/. Talk on 6 June 2019; paper PDF available
via the presentation page.

Gidon Ernst, Marieke Huisman, Wojciech Mostowski, and Mattias Ulbrich. Verifythis - verification
competition with a human factor. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard
Steffen (eds.), Tools and Algorithms for the Construction and Analysis of Systems - 25 Years
of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part III, volume 11429 of Lecture Notes in Computer Science, pp. 176–195.
Springer, 2019. doi: 10.1007/978-3-030-17502-3 12. URL https://doi.org/10.1007/
978-3-030-17502-3_12.

Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers. In Matthias
Felleisen and Philippa Gardner (eds.), Proceedings of the 22nd European Symposium on Pro-
gramming, volume 7792 of Lecture Notes in Computer Science, pp. 125–128. Springer, March
2013.

Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. The 2020 expert survey on formal
methods. In Maurice H. ter Beek and Dejan Ničković (eds.), Formal Methods for Industrial
Critical Systems, pp. 3–69, Cham, 2020. Springer International Publishing. ISBN 978-3-030-
58298-2.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Tac-
tictoe: Learning to prove with tactics. J. Autom. Reason., 65(2):257–286, February 2021.
ISSN 0168-7433. doi: 10.1007/s10817-020-09580-x. URL https://doi.org/10.1007/
s10817-020-09580-x.

John Harrison, Josef Urban, and Freek Wiedijk. History of interactive theorem prov-
ing. In Jörg H. Siekmann (ed.), Computational Logic, volume 9 of Handbook of
the History of Logic, pp. 135–214. North-Holland, 2014. doi: https://doi.org/10.1016/
B978-0-444-51624-4.50004-6. URL https://www.sciencedirect.com/science/
article/pii/B9780444516244500046.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580,
October 1969. ISSN 0001-0782. doi: 10.1145/363235.363259. URL https://doi.org/
10.1145/363235.363259.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning envi-
ronment for theorem proving. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=r1xwKoR9Y7.

13

https://www.computer.org/csdl/proceedings-article/llm4code/2025/261500a072/27uerjxJuPC
https://www.computer.org/csdl/proceedings-article/llm4code/2025/261500a072/27uerjxJuPC
https://doi.org/10.1007/s00165-019-00504-0
https://www.sstic.org/2019/presentation/journey-to-a-rte-free-x509-parser/
https://www.sstic.org/2019/presentation/journey-to-a-rte-free-x509-parser/
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/978-3-030-17502-3_12
https://doi.org/10.1007/s10817-020-09580-x
https://doi.org/10.1007/s10817-020-09580-x
https://www.sciencedirect.com/science/article/pii/B9780444516244500046
https://www.sciencedirect.com/science/article/pii/B9780444516244500046
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://openreview.net/forum?id=r1xwKoR9Y7
https://openreview.net/forum?id=r1xwKoR9Y7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Cezary Kaliszyk, François Chollet, and Christian Szegedy. Holstep: A machine learning dataset
for higher-order logic theorem proving. In 5th International Conference on Learning Represen-
tations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. URL https://openreview.net/forum?id=ryuxYmvel.

Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens, Valentin Wüstholz, Eyad
Alkassar, Rob Arthan, Derek Bronish, Rod Chapman, Ernie Cohen, Mark A. Hillebrand, Bart
Jacobs, K. Rustan M. Leino, Rosemary Monahan, Frank Piessens, Nadia Polikarpova, Tom Ridge,
Jan Smans, Stephan Tobies, Thomas Tuerk, Mattias Ulbrich, and Benjamin Weiß. The 1st verified
software competition: Experience report. In Michael J. Butler and Wolfram Schulte (eds.), FM
2011: Formal Methods - 17th International Symposium on Formal Methods, Limerick, Ireland,
June 20-24, 2011. Proceedings, volume 6664 of Lecture Notes in Computer Science, pp. 154–168.
Springer, 2011. doi: 10.1007/978-3-642-21437-0 14. URL https://doi.org/10.1007/
978-3-642-21437-0_14.

Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In International
Conference on Computer Aided Verification, pp. 1–35. Springer, 2013.

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon
Howell, Bryan Parno, and Chris Hawblitzel. Verus: Verifying rust programs using linear ghost
types. Proc. ACM Program. Lang., 7(OOPSLA1), April 2023. doi: 10.1145/3586037. URL
https://doi.org/10.1145/3586037.

Julia Lawall, Keisuke Nishimura, and Jean-Pierre Lozi. Should we balance? towards formal veri-
fication of the linux kernel scheduler. In Roberto Giacobazzi and Alessandra Gorla (eds.), Static
Analysis, pp. 194–215, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-74776-2.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Ed-
mund M. Clarke and Andrei Voronkov (eds.), Logic for Programming, Artificial Intelligence, and
Reasoning, pp. 348–370, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-
17511-4.

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C. Paulson. Isarstep: a benchmark for high-level
mathematical reasoning. In ICLR 2021, 2021. URL https://arxiv.org/abs/2006.
09265. OpenReview version.

Xiaohan Lin, Qingxing Cao, Yinya Huang, Haiming Wang, Jianqiao Lu, Zhengying Liu,
Linqi Song, and Xiaodan Liang. Fvel: Interactive formal verification environment with
large language models via theorem proving. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Informa-
tion Processing Systems, volume 37, pp. 54932–54946. Curran Associates, Inc., 2024.
URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
62c6d7893b13a13c659cb815852dd00d-Paper-Datasets_and_Benchmarks_
Track.pdf.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated
theorem proving. arXiv preprint arXiv:2502.07640, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Evan Lohn and Sean Welleck. minicodeprops: a minimal benchmark for proving code properties.
arXiv preprint, arXiv:2406.11915, 2024a. URL https://arxiv.org/abs/2406.11915.
submitted 16 June 2024; version v2.

Evan Lohn and Sean Welleck. minicodeprops: a minimal benchmark for proving code properties,
2024b. URL https://arxiv.org/abs/2406.11915.

Chloe R Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano, Chuyue Sun, Ying Sheng,
Anish Mudide, Md Rakib Hossain Misu, Nada Amin, and Max Tegmark. Dafnybench: A bench-
mark for formal software verification. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=yBgTVWccIx.

14

https://openreview.net/forum?id=ryuxYmvel
https://doi.org/10.1007/978-3-642-21437-0_14
https://doi.org/10.1007/978-3-642-21437-0_14
https://doi.org/10.1145/3586037
https://arxiv.org/abs/2006.09265
https://arxiv.org/abs/2006.09265
https://proceedings.neurips.cc/paper_files/paper/2024/file/62c6d7893b13a13c659cb815852dd00d-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/62c6d7893b13a13c659cb815852dd00d-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/62c6d7893b13a13c659cb815852dd00d-Paper-Datasets_and_Benchmarks_Track.pdf
https://arxiv.org/abs/2406.11915
https://arxiv.org/abs/2406.11915
https://openreview.net/forum?id=yBgTVWccIx

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Frédéric Mangano, Simon Duquennoy, and Nikolai Kosmatov. Formal verification of a memory
allocation module of contiki with frama-c: A case study. In Frédéric Cuppens, Nora Cuppens,
Jean-Louis Lanet, and Axel Legay (eds.), Risks and Security of Internet and Systems, pp. 114–
120, Cham, 2017. Springer International Publishing. ISBN 978-3-319-54876-0.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, and Sebastian Riedel. Towards neural theo-
rem proving at scale. arXiv preprint arXiv:1807.08204, 2018.

Eric Mugnier, Emmanuel Anaya Gonzalez, Nadia Polikarpova, Ranjit Jhala, and Zhou Yuanyuan.
Laurel: Unblocking automated verification with large language models. Proc. ACM Program.
Lang., 9(OOPSLA1), April 2025. doi: 10.1145/3720499. URL https://doi.org/10.
1145/3720499.

Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In Piergiorgio Odifreddi (ed.), Logic
and Computer Science, pp. 361–386. Academic Press, London, 1990.

Mário Pereira and António Ravara. Cameleer: A deductive verification tool for ocaml. In Alexandra
Silva and K. Rustan M. Leino (eds.), Computer Aided Verification, pp. 677–689, Cham, 2021.
Springer International Publishing. ISBN 978-3-030-81688-9.

Alexandre Peyrard, Nikolai Kosmatov, Simon Duquennoy, and Shahid Raza. Towards Formal Ver-
ification of Contiki: Analysis of the AES–CCM* Modules with Frama-C. In RED-IOT 2018 -
Workshop on Recent advances in secure management of data and resources in the IoT, Madrid,
Spain, February 2018. URL https://inria.hal.science/hal-01670119.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical rea-
soning via reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801,
2025.

John Rushby. Software verification and system assurance. In 2009 Seventh IEEE International
Conference on Software Engineering and Formal Methods, pp. 3–10. IEEE, 2009.

Stephan Schulz. E–a brainiac theorem prover. Ai Communications, 15(2-3):111–126, 2002.

Hans-Jörg Schurr, Mathias Fleury, and Martin Desharnais. Reliable reconstruction of fine-grained
proofs in a proof assistant. In CADE, volume 28, pp. 450–467, 2021.

SMT-LIB Initiative. SMT-LIB — logics. https://smt-lib.org/logics.shtml. Ac-
cessed: 2025-11-18.

Chuyue Sun, Ying Sheng, Oded Padon, and Clark W. Barrett. Clover: Closed-loop verifiable code
generation. In Guy Avni, Mirco Giacobbe, Taylor T. Johnson, Guy Katz, Anna Lukina, Nina
Narodytska, and Christian Schilling (eds.), AI Verification - First International Symposium, SAIV
2024, Montreal, QC, Canada, July 22-23, 2024, Proceedings, volume 14846 of Lecture Notes
in Computer Science, pp. 134–155. Springer, 2024. doi: 10.1007/978-3-031-65112-0\ 7. URL
https://doi.org/10.1007/978-3-031-65112-0_7.

G. Sutcliffe. Stepping Stones in the TPTP World. In C. Benzmüller, M. Heule, and R. Schmidt
(eds.), Proceedings of the 12th International Joint Conference on Automated Reasoning, number
14739 in Lecture Notes in Artificial Intelligence, pp. 30–50, 2024.

Amitayush Thakur, Jasper Lee, George Tsoukalas, Meghana Sistla, Matthew Zhao, Stefan Zetzsche,
Greg Durrett, Yisong Yue, and Swarat Chaudhuri. Clever: A curated benchmark for formally
verified code generation, 2025. URL https://arxiv.org/abs/2505.13938.

Kyle Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex Sanchez-Stern, Yuriy Brun,
João F. Ferreira, Sorin Lerner, and Emily First. Rango: Adaptive retrieval-augmented proving
for automated software verification. In 47th IEEE/ACM International Conference on Software
Engineering, ICSE 2025, Ottawa, ON, Canada, April 26 - May 6, 2025, pp. 347–359. IEEE, 2025.
doi: 10.1109/ICSE55347.2025.00161. URL https://doi.org/10.1109/ICSE55347.
2025.00161.

15

https://doi.org/10.1145/3720499
https://doi.org/10.1145/3720499
https://inria.hal.science/hal-01670119
https://smt-lib.org/logics.shtml
https://doi.org/10.1007/978-3-031-65112-0_7
https://arxiv.org/abs/2505.13938
https://doi.org/10.1109/ICSE55347.2025.00161
https://doi.org/10.1109/ICSE55347.2025.00161

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Toccata Team. Gallery of verified programs. https://toccata.gitlabpages.inria.
fr/toccata/gallery/index.en.html, 2025. Joint team of Inria, CNRS and University
of Paris-Saclay. Page generated on 2025-09-16. Accessed 2025-09-17.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jennings,
Amitayush Thakur, and Swarat Chaudhuri. Putnambench: Evaluating neural theorem-
provers on the putnam mathematical competition. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.),
Advances in Neural Information Processing Systems 38: Annual Conference on Neural In-
formation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10
- 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_
Benchmarks_Track.html.

Petar Vukmirović, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Nummelin, and
Sophie Tourret. Making higher-order superposition work. In Automated Deduction — CADE-
28, volume 12699 of Lecture Notes in Computer Science, pp. 415–432. Springer, 2021. doi:
10.1007/978-3-030-79876-5\ 24.

Hillel Wayne. The great theorem prover showdown, 2018. URL https://www.hillelwayne.
com/post/theorem-prover-showdown/. Blog post.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick
Wischnewski. SPASS version 3.5. In Renate A. Schmidt (ed.), Automated Deduction -
CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, Au-
gust 2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer Science, pp. 140–145.
Springer, 2009a. doi: 10.1007/978-3-642-02959-2 10. URL https://doi.org/10.1007/
978-3-642-02959-2_10.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and Patrick
Wischnewski. Spass version 3.5. In International Conference on Automated Deduction, pp. 140–
145. Springer, 2009b.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal methods: Practice
and experience. ACM computing surveys (CSUR), 41(4):1–36, 2009.

Huajian Xin, Luming Li, Xiaoran Jin, Jacques Fleuriot, and Wenda Li. Ape-bench i: Towards
file-level automated proof engineering of formal math libraries, 2025. URL https://arxiv.
org/abs/2504.19110.

Qiyuan Xu, Renxi Wang, Haonan Li, David Sanan, and Conrad Watt. Isamini: Redesigned is-
abelle proof language for machine learning, 2025. URL https://arxiv.org/abs/2507.
18885.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan Yao, Weidong Cui, Yeyun Gong, Chris
Hawblitzel, Shuvendu K. Lahiri, Jacob R. Lorch, Shuai Lu, Fan Yang, Ziqiao Zhou, and Shan Lu.
Autoverus: Automated proof generation for rust code. CoRR, abs/2409.13082, 2024. doi: 10.
48550/ARXIV.2409.13082. URL https://doi.org/10.48550/arXiv.2409.13082.

Kaiyu Yang and Jia Deng. Learning to prove theorems via interacting with proof assistants. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
6984–6994. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
yang19a.html.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), Datasets & Benchmarks
Track, 2023.

16

https://toccata.gitlabpages.inria.fr/toccata/gallery/index.en.html
https://toccata.gitlabpages.inria.fr/toccata/gallery/index.en.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/1582eaf9e0cf349e1e5a6ee453100aa1-Abstract-Datasets_and_Benchmarks_Track.html
https://www.hillelwayne.com/post/theorem-prover-showdown/
https://www.hillelwayne.com/post/theorem-prover-showdown/
https://doi.org/10.1007/978-3-642-02959-2_10
https://doi.org/10.1007/978-3-642-02959-2_10
https://arxiv.org/abs/2504.19110
https://arxiv.org/abs/2504.19110
https://arxiv.org/abs/2507.18885
https://arxiv.org/abs/2507.18885
https://doi.org/10.48550/arXiv.2409.13082
https://proceedings.mlr.press/v97/yang19a.html
https://proceedings.mlr.press/v97/yang19a.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Z3. Arithmetic — online Z3 guide, 2025. URL https://microsoft.github.io/
z3guide/docs/theories/Arithmetic. Accessed: 2025-11-19.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. minif2f: a cross-system benchmark
for formal olympiad-level mathematics. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=9ZPegFuFTFv.

Sicheng Zhong, Jiading Zhu, Yifang Tian, and Xujie Si. Rag-verus: Repository-level program ver-
ification with llms using retrieval augmented generation. CoRR, abs/2502.05344, 2025. doi: 10.
48550/ARXIV.2502.05344. URL https://doi.org/10.48550/arXiv.2502.05344.

A ADDITIONAL BACKGROUND

Although VC has been introduced in § 1, given its significance to our work, we provide a precise
definition as follows.
Definition 1. Given a program and a property, a Verification Condition (VC) is a mathematical
proposition that, when proven true, guarantees the program satisfies the desired property.

Additionally, another aspect that remains unspecified in the main text is the target property of the
program verification discussed in our work. Any program verification task always considers a target
property. The target property considered in our benchmark is Functional Correctness, which
guarantees a program correctly implements its desired function — for any allowed input, the output
of the program always satisfies a separately written logical specification of the program’s behaviour
(see appendix B for a concrete example). Functional correctness is a verification goal widely adopted
in real-world industrial practice (Garavel et al., 2020), and it is also a primary capability of our
toolchain components Why3 and Frama-C.

B AN EXAMPLE OF VC

This section presents an example Why3 program and its VC to provide readers with a concrete sense
of how VCs relate to traditional mathematical theorems.

The left side of Fig. 5 presents a Why3 program for binary search. Its functional correctness property
is given by the requires, ensures, and raises clauses. requires specifies the domain of
valid inputs, i.e., the given array a must be sorted. ensures and raises specify the expectation
of the output — conditions that the result has to satisfy, which are, 1) the result is a valid index (i.e.,
between 0 and the length) such that array a’s element at the index has a value of v, if no exception
raises, or 2), if exception NF raises, no element in the array has a value of v.

This program involves mutable references and an effectful loop, which makes direct reasoning with
ITPs extremely tedious. The mature academic and industrial solution is to apply a specialized pro-
gram reasoning engine, like Why3’s VCG, to first extract pure logical proof goals, so-called VCs.

The invariant and variant clauses are annotations that help the VCG to work. The
invariant clause declares a loop invariant, which is a formula that remains true throughout every
loop iteration, and is required by the VCG process. The variant clause declares a metric which is
strictly decreasing in each loop iteration. It helps to generate the VCs for ensuring loop termination.

The assert at line 13 is an annotation to ease the burden of VC prover. It introduces a subgoal
and instructs the verifier to first prove this subgoal and then use the proven subgoal as a premise (as
shown in pink in Fig. 5) in the subsequent proofs. Essentially, it helps the prover to decompose VCs
into simpler subgoals.

The right side of Fig. 5 is one of the generated VCs for the functional correctness, a mathematical
statement that encodes the logic behind the program’s behaviors. First, invariant I(l, u) represents
that l, u are valid boundaries of the indices of the elements of value v. Then, consider the case of
l ≤ u, where the VC verifies the loop iterations: if either a[m] < v or a[m] > v, the updated
boundary (m + 1, u) or (l,m − 1) must preserve the invariant, and the metric u − l must strictly
decrease; if the program exits and returns m at line 16, the VC judges whether the return value m

17

https://microsoft.github.io/z3guide/docs/theories/Arithmetic
https://microsoft.github.io/z3guide/docs/theories/Arithmetic
https://openreview.net/forum?id=9ZPegFuFTFv
https://doi.org/10.48550/arXiv.2502.05344

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Define I(l, u) ≜ 0 ≤ l ∧ u < length(a) ∧ (∀i. 0 ≤ i < length a ∧ a[i] = v −→ l ≤ i ≤ u)

1 exception NF (* standing for not found *)

2 let binary_search (a: array int) (v: int) : int
3 requires ∀i j. 0 ≤ i ≤ j < length(a) −→ a[i] ≤ a[j]
4 ensures 0 ≤ result < length(a) ∧ a[result] = v
5 raises NF −→ ∀i. 1 ≤ i < length(a) −→ a[i] ̸= v
6 = let ref l = 0 in
7 let ref u = length a - 1 in
8 while l <= u do
9 invariant I(l, u)

10 variant u − l
11 let m = l + div (u - l) 2 in
12 if a[m] < v then
13 assert ∀i. l ≤ i < m + 1 −→ a[i] < v
14 l := m + 1
15 else if a[m] > v then u := m - 1
16 else return m
17 done;
18 raise NF

∀u l.

I(l, u) ∧ sorted(a) −→
if l ≤ u then let m = l + (u − l)/2 in

0 ≤ m < length a ∧
(if a[m] < v

then (∀i. l ≤ i < m + 1 −→ a[i] < v) −→
0 ≤ u − l ∧ u − (m + 1) < u − l

∧ I(m + 1, u)

else if v < a[m]

then 0 ≤ u − l ∧ m − 1 − l < u − l

∧ I(l,m − 1)

else 0 ≤ m < length a ∧ a[m] = v)

else (∀i. 0 ≤ i ∧ i < length a −→ a[i] ̸= v)

Figure 5: (Left) A Why3 program for binary search, with the functional correctness property in
cyan and annotations in orange. (Right) One of the generated VCs for its functional correctness
(simplified).

1 exception Not_found
2
3 let binary_search (a: array int) (v: int) : int
4 requires ∀i j. 0 ≤ i ≤ j < length(a) −→ a[i] ≤ a[j]
5 ensures 0 ≤ result < length(a) ∧ a[result] = v
6 raises Not found ∧ ∀i. 0 ≤ i < length(a) −→ a[i] ̸= v
7 = let ref l = 0 in
8 let ref u = length a - 1 in
9 while l <= u do

10 invariant 0 ≤ l ∧ u < length(a)
11 invariant ∀i. 0 ≤ i < length(a) ∧ a[i] = v −→ l ≤ i ≤ u
12 variant u − l
13 let m = l + div (u - l) 2 in
14 if a[m] < v then
15 l := m + 1
16 else if a[m] > v then
17 u := m - 1
18 else
19 assert a[m] = v
20 return m
21 done;
22 raise Not_found

(∀i j. 0 ≤ i ≤ j < length a −→ a[i] ≤ a[j]) −→
let o1 = length a − 1 in

(0 ≤ 0 ∧ o1 < length a)

∧ (∀i. 0 ≤ i < length a −→ a[i] = v −→ 0 ≤ i ≤ o1)

∧ (((∀u l.

(0 ≤ l ∧ u < length a)

∧ (∀i. 0 ≤ i < length a −→ a[i] = v −→ l ≤ i ≤ u)

−→ if l ≤ u

then let m = l + (u − l)/2 in

(0 ≤ m ∧ m < length a) ∧
(if a[m] < v

then (0 ≤ u − l ∧ u − (m + 1) < u − l)

∧ (0 ≤ m + 1 ∧ u < length a)

∧ (∀i. 0 ≤ i < length a ∧ a[i] = v

−→ m + 1 ≤ i ∧ i ≤ u)

else (0 ≤ m ∧ m < length a)

∧ (if v < a[m]

then (0 ≤ u − l ∧ m − 1 − l < u − l)

∧ (0 ≤ l ∧ m − 1 < length a)

∧ (∀i. 0 ≤ i length a ∧ a[i] = v

−→ l ≤ i ∧ i ≤ m − 1)

else (0 ≤ m < length a) ∧ a[m] = v))

else (∀i. 0 ≤ i < length a −→ a[i] ̸= v))))

Figure 6: The original program and the original VC of Fig. 5, without simplification

satisfies the expectation as stated in the ensures clause, by replacing the result variable in the
ensures clause with m. At last, the last line in the VC corresponds to line 18, where the VC
checks value v does not appear in array a.

Finally, we must emphasize that this VC is simplified for better readability. The original VC is much
more complicated (as shown in Fig. 6), where the invariant I is not defined as a term, duplicated
terms abound, and ∧-connected terms are disordered. This binary search is also one of the simplest
cases in program verification, while other VCs can be much more complicated. This represents
a gap between competition-style mathematical theorems and VCs: the former are concise but re-
quire sophisticated mathematical skills to construct paths towards proofs, whereas VCs require less
intellectual creativity, but are complicated and require the prover to process enormous formulas, po-
tentially extracting key information from noise to simplify the proof goals and ultimately complete
the proofs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C LICENSING AND RULES OF ENGAGEMENT

Since the VCs in the benchmark are generated from existing projects, the license of our benchmark
must be at least the supremum of all their licenses, which is GPL v2, and we indeed choose it.

D LIMITATION & MITIGATION

From a methodological perspective, our VC extraction method ensures all obtained VCs are provable
by construction. However, implementation bugs may occur in Why3, Frama-C, or our translation
pipeline, potentially rendering some VCs unprovable. To address such potential invalidation, we
design the benchmark to be updatable: we will repair the VC extraction pipeline and refresh the
benchmark when invalidation occurs. Since the intended semantics of VCs are grounded in the
source verification projects, these updates primarily address representation issues while preserving
the essential semantics of the verification problems. However, should an invalid benchmark case
be irreparable in rare instances, we will eliminate it from the benchmark to guarantee all remaining
cases are provable.

E DETAILED EXTRACTON PIPELINE

This section provides further details on our extraction pipeline from two perspectives: approach and
implementation

E.1 METHODOLOGY DETAILS

The translation process begins with a given Why3 source code. The process first runs Why3 VCG to
generate VCs and calls our customized Why3 printer to dump the VCs into an XML representation
of their Abstract Syntax Trees (ASTs). These ASTs are processed by a Python translation framework
also written by us and finally mapped into the target ITPs’ languages.

A verification project typically contains multiple VCs that depend on shared Why3 theories consist-
ing of lemmas, axioms, functions, and datatype definitions. These theories may further depend on
others, forming a complex dependency graph across the project. To successfully translate the VCs,
we must translate all dependent theories. Our translation process, therefore, recursively handles
every theory in this dependency graph, mapping the entire verification project into the target ITPs.

In terms of structure, a Why3 theory is a sequence of declarative elements consisting of axioms,
definitions of functions, and algebraic data types. All three sorts of declarations have similar coun-
terparts in the target ITPs and can be mapped to them, despite two minor gaps. One is regrading the
non-uniform data type (Blanchette et al., 2017), which is not natively supported by Isabelle. There-
fore, we circumvent all VCs involving such data types. The other gap pertains to discharging the
termination check of recursive function definitions, a conventional requirement for ITPs to ensure
the soundness of their logics. Some ITPs’ termination checkers (Isabelle and Rocq) are not strong
enough to automatically prove the well-foundedness of certain complicated recursions, even though
Why3 has checked all the termination. Since the proof obligation of the termination is irrelevant to
the semantics of VCs’ proof obligation, we trust Why3’s termination check and axiomatiZe this in
the ITP translation in case ITP’s termination checker fails.

Having the theory dependencies and theory-level declarations translated, the last work is to translate
the term language. Both Why3’s and the ITPs’ term languages are based on the lambda calculus,
a core language involving only variables, constants, applications, and function abstractions. This
similarity simplifies a lot of the translation process. Overall, the process maps Why3 constants to
the target ITPs’ constants, and preserves all other variables, application, and function structures.
One exception unsupported by Isabelle is Why3’s add-on feature, the as-binding used in pattern
matching, which annotates a sub-pattern with a variable and binds the term captured by this sub-
pattern to the variable. We convert this into semantically equivalent let-bindings.

E.2 IMPLEMENTATION DETAILS

The implementation of the VC extraction and translation pipeline consists of six main components:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

1. A Why3 patch to export Why3’s internal Abstract Syntax Tree (AST) into an XML repre-
sentation (in ∼200 lines of OCaml).

2. A Python parser to read the XML representation into an S-expression representation of an
extended simply-typed lambda calculus (in ∼160 lines of Python).

3. Python library functions providing basic support for manipulating the lambda calculus,
such as substitution, variable deconfliction, rewriting, and folding over atomic terms (in
∼800 lines of Python).

4. A Python module for managing Why3 sessions, managing translation contexts (e.g., allo-
cated constant/variable names in the context), and chaining all the components together to
run them automatically (in ∼500 lines of Python).

5. Translation rules, rewriting rules, ad-hoc term rewriting procedures, package management,
and syntax check adapter, for each of the Isabelle, Lean, and Rocq (in ∼800/790/770 lines
of YAML, ∼930/780/970 lines of Python, for Isabelle, Lean, Rocq, respectively).

6. ITP libraries that map Why3 notions into the ITPs’ native builtins (in ∼500/160/200 lines
of Isabelle/Lean/Rocq, respectively)

The subsection elaborates on some of the nontrivial components as follows.

The Why3 patch is modified from Why3’s existing Isabelle printer, which exports Why3 AST
in XML format but with Isabelle-specific adaptations. We neutralize these adaptations to make
it output the raw Why3 internal AST. Specifically, we remove its mapping from Why3 terms to
Isabelle terms; add Rocq and Lean keywords to the blacklist of variable names; fix its escaping
of XML special characters; add support for the as-binding syntax in pattern matching; add type
annotations to definition exports.

The S-expression used in our internal process is a simply-typed (HOL style) lambda calculus ex-
tended with native AST nodes for finite Cartesian products, pattern matching (the case statement),
literal numbers and strings, and the as-bindings (which bind the sub-term that matches a sub-pattern
to a variable, in a usual pattern matching). Bound variables are represented in the same way as free
variables; we do not use De Bruijn indices, but instead maintain contextual variables and decon-
flict names of bound variables explicitly (because it simplifies our parsing and printing work, while
computational efficiency can be compromised in our context).

The substitution, variable deconfliction, and folding are all standard. We use Python’s func-
tional programming features to implement these operations. The rewriting system is simplified such
that 1) all reducible expression (redex) patterns have the form (contant arg1 · · · argn) where all
{arg i}1≤i≤n are free variables and the arity n is schematic; 2) no lambda abstraction is allowed
to appear in the contractum, so the contracta can only be atoms or (nested) function applications.
This simplification allows representing a rewriting rule as merely a tuple of the redex’s constant
name, the constant’s arity, and a list-represented S-expression for the contractum. We use YAML’s
dictionary datatype to represent a set of rewriting rules, e.g., (Why3.length, 1, [Int.int,
[Isabelle.length, arg0]]) rewrites (Why3.length l) into Int.int (Isabelle.length l), for
any l. This greatly simplifies the writing of rewriting rules. For more complex rewritings that re-
quire more complex redex patterns, we use hard-coded Python match-case to work over the
S-expression directly.

F PROMPTS

Our work employs two types of prompts: general prompts designed for broad-purpose LLMs and
specialiZed prompts tailored for particular fine-tuned models.

The templates of the general prompts are shown as follows.

General Prompt for Isabelle

Given the following Isabelle theories as context, prove the Isabelle proposition given at the
end.

File ‘NTP4Verif.thy‘:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

{content of the theory file}

And many other libraries · · · · · ·
File ‘imp SymStateSet.thy‘:
{content of the theory file}

Given the context above, consider the proposition in the following Isabelle code:
{the target proof goal together with its contextual theory}

Response the Isabelle proof only. Do not repeate any context nor the statement.

General Prompt for Lean

Given the following Lean 4 theories as context, prove the Lean 4 proposition given at the end.

File ‘Base.lean‘:
{content of the theory file}

And many other libraries · · · · · ·
File ‘SymStateSet.lean‘:
{content of the theory file}

Given the context above, consider the proposition in the following Lean 4 code:
{the target proof goal together with its contextual theory}

Response the Lean 4 proof only. Do not repeate any context nor the statement.

General Prompt for Rocq

Given the following Rocq theories as context, prove the Rocq proposition given at the end.

File ‘Base.v‘:
{content of the theory file}

And many other libraries · · · · · ·
File ‘SymStateSet.v‘:
{content of the theory file}

Given the context above, consider the proposition in the following Rocq code:
{content}

Response the Rocq proof only. Do not repeate any context nor the statement.

The templates specifically for Goedel-Prover and DeepSeek-Prover are as follows.

Prompt for SpecialiZed Models

Complete the following Lean 4 code:
{the target proof goal together with its contextual theory}

Before producing the Lean 4 code to formally prove the given theorem, provide a
detailed proof plan outlining the main proof steps and strategies.
The plan should highlight key ideas, intermediate lemmas, and proof structures that will
guide the construction of the final formal proof.

G FAILURE CASES

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1 lemma decompose_front_node'vc:
2 fixes l :: "'a t2"
3 fixes r :: "'a t2"
4 fixes o1 :: "'a view"
5 fixes d :: "'a t1"
6 assumes fact0: "-int balancing ≤ hgt (m1 l) - hgt (m1 r)"
7 assumes fact1: "hgt (m1 l) - hgt (m1 r) ≤ int balancing"
8 assumes fact2: "case o1 of (AEmpty :: 'a view) ⇒ hgt (m1 l) = (0 :: int) ∧ ..."
9 shows "case o1 of (AEmpty :: 'a view) ⇒ True

10 | ANode l1 d2 r2 _ _ ⇒(((0 :: int) ≤ hgt (m1 l) ∧ ...))"
11 and "∀(d2 :: 'a t1) (res :: 'a t2).
12 (case o1 of (AEmpty :: 'a view) ⇒ d2 = d ∧ res = r
13 | ANode l1 d21 r2 _ _ ⇒ (∃(res1 :: 'a t2). (node_model (seq (m1 l1)) ...)))"
14 proof -
15 {
16 fix d2 res
17 assume pre: "case o1 of AEmpty ⇒d2 = d ∧ res = r
18 | ANode l1 d21 r2 h s ⇒∃res1. node_model (seq (m1 l1)) d21 (seq (m1 r2)) = Cons d2 (seq (m1 res1)) ∧
19 (0 ≤ (1 + (if hgt (m1 l1) < hgt (m1 r2) then hgt (m1 r2) else hgt (m1 l1))) - hgt (m1 res1) ∧
20 (1 + (if hgt (m1 l1) < hgt (m1 r2) then hgt (m1 r2) else hgt (m1 l1))) - hgt (m1 res1) ≤ 1) ∧
21 seq (m1 res) = node_model (seq (m1 res1)) d (seq (m1 r)) ∧
22 (0 ≤ (1 + (if hgt (m1 res1) < hgt (m1 r) then hgt (m1 r) else hgt (m1 res1))) - hgt (m1 res) ∧
23 (1 + (if hgt (m1 res1) < hgt (m1 r) then hgt (m1 r) else hgt (m1 res1))) - hgt (m1 res) ≤ 1) ∧
24 (-int balancing ≤ hgt (m1 res1) - hgt (m1 r) ∧ hgt (m1 res1) - hgt (m1 r) ≤ int balancing −→
25 (1 + (if hgt (m1 res1) < hgt (m1 r) then hgt (m1 r) else hgt (m1 res1))) = hgt (m1 res)))"
26
27 show "node_model (seq (m1 l)) d (seq (m1 r)) = Cons d2 (seq (m1 res)) ∧
28 (0 ≤ (1 + (if hgt (m1 l) < hgt (m1 r) then hgt (m1 r) else hgt (m1 l))) - hgt (m1 res) ∧
29 (1 + (if hgt (m1 l) < hgt (m1 r) then hgt (m1 r) else hgt (m1 l))) - hgt (m1 res) ≤ 1)"
30 proof (cases o1)
31 case AEmpty
32 with pre have d2_def: "d2 = d" and res_def: "res = r" by simp_all
33 from fact2[unfolded AEmpty] have seq_l: "seq (m1 l) = []" and hgt_l: "hgt (m1 l) = 0" by simp_all
34
35 show ?thesis unfolding d2_def res_def
36 by (simp add: seq_l node_model_def, auto simp: hgt_l fact0 fact1)
37 next
38 case (ANode l1 d21 r2 h s)
39 with pre obtain res1 where
40 decomp: "node_model (seq (m1 l1)) d21 (seq (m1 r2)) = Cons d2 (seq (m1 res1))" and
41 res_seq: "seq (m1 res) = node_model (seq (m1 res1)) d (seq (m1 r))"
42 by auto
43
44 from fact2[unfolded ANode] have seq_l:
45 "seq (m1 l) = node_model (seq (m1 l1)) d21 (seq (m1 r2))"
46 by simp
47
48 show ?thesis
49 by (simp add: seq_l decomp res_seq node_model_def,
50 metis (mono_tags, lifting) fact2 ANode case_prod_conv)
51 qed
52 }
53 qed

Listing 1: The complete proof generated by DeepSeek-V3.1 for the correctness of the
decompose front node function on AVL trees.

To investigate the failure modes of NTP models on verification conditions, we analyzed the error
logs and proof scripts from our evaluation. We highlight three dominant categories of errors: syn-
tactic invalidity, semantic degeneration, and hallucination. It is important to note that the statistics
presented below represent conservative lower bounds. For syntax and hallucination errors, proof
assistants abort execution at the first error; thus, a single proof might contain multiple subsequent
errors that remain uncounted. Similarly, our detection of semantic degeneration relies on rigid reg-
ular expressions for some common cases, likely missing more subtle forms of degeneration.

Generating syntactically well-formed terms remains a primary hurdle, particularly for complex
nested expressions in VCs. In our analysis of Isabelle proof attempts, we found that at least
24% failed solely due to syntax errors. Listing 1 shows the complete erroneous proof generated
by DeepSeek-V3.1 for proving the correctness of the decompose front node function on AVL
trees. This function is responsible for decomposing the front node of an AVL tree, and its correctness
is specified by the corresponding VC. Specifically, the term seq (m1 l) represents the sequence
of elements in the left subtree l, d refers to the data element of the current node, and hgt (m1
r) denotes the height of the right subtree r. The generated proof attempts to first introduce the
universally quantified variables d2 and res, followed by a case analysis on o1, which represents
the structure of the AVL tree. However, the term cannot be parsed due to two subtle syntax errors:
(1) a missing closing parenthesis in a deeply nested arithmetic expression on line 16, and (2) two
extraneous closing parentheses on lines 18 and 25, respectively. In fact, if one only removes the last

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1 lemma goal10 (a : Memory.addr) (t_1 : Memory.addr -> Z) (t_4 : Memory.addr -> Memory.addr) (t : Z -> Z)
2 (t_3 : Memory.addr -> Z) (t_2 : Memory.addr -> Z) :
3 let a_1 : Memory.addr := Memory.shift a (1 : Z);
4 let x : Z := t_1 a_1;
5 let a_2 : Memory.addr := Memory.shift a (0 : Z);
6 let x_1 : Z := t_1 a_2;
7 let x_2 : Z := x * x_1;
8 let a_3 : Memory.addr := Memory.shift a (2 : Z);
9 let a_4 : Memory.addr := Memory.shift a (3 : Z);

10 let a_5 : Memory.addr := t_4 a_3;
11 Memory.region (Memory.addr.base a) <= (0 : Z) -> -(2147483648 : Z) <= x_2 -> x_2 <= (2147483647 : Z) ->
12 Memory.framed t_4 -> Memory.linked t -> Memory.sconst t_3 -> Cint.is_uint16 x -> Cint.is_uint16 x_1 ->
13 Axiomatic13.p_valid_memb t t_4 t_1 a -> Memory.valid_rd t a_3 (1 : Z) -> Memory.valid_rd t a_4 (1 : Z) ->
14 Memory.valid_rd t a_1 (1 : Z) -> Memory.valid_rd t a_2 (1 : Z) -> Axiomatic12.p_valid_or_empty t a_5 x ->
15 A_MemSet.l_memset (Memory.havoc t_2 t_3 (Memory.shift a_5 (0 : Z)) x) a_5 (0 : Z) x = true ->
16 Axiomatic12.p_valid_or_empty t (t_4 a_4) (Cint.to_uint32 x_2)
17 :=
18 intro a_1 x a_2 x_1 x_2 a_3 a_4 a_5 h_region h_x2_lower h_x2_upper h_framed t_4_linked t_3_sconst h_x_uint16
19 h_x1_uint16 h_p_valid_memb h_valid_rd_a3 h_valid_rd_a4 h_valid_rd_a1 h_valid_rd_a2 h_p_valid_or_empty_a5
20 h_memset
21 have h_main : Axiomatic12.p_valid_or_empty t (t_4 a_4) (Cint.to_uint32 x_2) := by
22 have h1 : Axiomatic12.p_valid_or_empty t (t_4 a_4) (Cint.to_uint32 x_2) := by
23 -- Use the assumption `h_framed` to deduce the required property
24 -- This step is hypothetical and depends on the actual definition of `Axiomatic12.p_valid_or_empty`
25 -- and how it interacts with `Memory.framed`.
26 -- In practice, we might need more specific information or lemmas to make this step rigorous.
27 -- For the sake of this example, we suppose that `h_framed` directly implies the conclusion.
28 exfalso
29 have h2 := h_framed
30 have h3 := t_4_linked
31 have h4 := t_3_sconst
32 have h5 := h_p_valid_memb
33 have h6 := h_valid_rd_a3
34 have h7 := h_valid_rd_a4
35 have h8 := h_valid_rd_a1
36 have h9 := h_valid_rd_a2
37 have h10 := h_p_valid_or_empty_a5
38 have h11 := h_memset
39 simp_all [Axiomatic12.p_valid_or_empty, Axiomatic13.p_valid_memb, Memory.framed,
40 Memory.linked, Memory.sconst]
41 <;>
42 (try contradiction) <;>
43 (try norm_num at *) <;>
44 (try aesop)
45 <;>
46 (try
47 {
48 simp_all [Cint.is_uint16]
49 <;>
50 norm_num at *
51 <;>
52 omega
53 })
54 exact h1
55 exact h_main

Listing 2: Example of semantic degeneration: Redundant variable renaming in a Lean proof.

extraneous closing parenthesis, the term can be parsed. However, it will result in a term in the form
of “· · · ∧ (0 ≤ (1 + expr)− hgt(m1 res1) ∧ · · · ”, which is syntactically valid but semantically
incorrect (the height of res1 is being conjoined with another inequality). What one would expect is
instead “· · ·∧ (0 ≤ (1+expr)−hgt(m1 res1))∧· · ·)”, which requires removing the extraneous
parenthesis on line 16 and adding a closing parenthesis after “res1”. The lengthy logical formulas
with deeply nested constructs is a common pattern in VCs, which poses significant challenges for
NTP models to maintain long-range syntactic coherence.

NTP models frequently lose track of the proof state, resulting in repetitive, meaningless steps.
We detected this behavior by matching patterns of continuous “renaming” (e.g., using have h1
:= h2 where both h1 and h2 are simple identifiers) repeated at least three times. In Lean,
more than 64% of proofs generated by Goedel-Prover-V2-32B exhibited this specific degenera-
tion pattern. Listing 2 exemplifies the generation of repetitive and meaningless tactic applications
in Lean. The model (Goedel-Prover-V2-32B) engages in a redundant “renaming ritual” (have h2
:= h framed, etc.), erroneously assuming that automated tactics like simp all require local
variable aliases to access the context. This behavior likely stems from domain shift, where the proof
context is more complex than the standard mathematical corpora used for training. Furthermore, the
comments (e.g., “assume that h framed directly implies the conclusion”) explicitly admit that the
logical step is hypothetical. This suggests its inability to derive the necessary lemmas to complete
the proof.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Models often invoke non-existent constants, lemmas, or tactics due to hallucinations. For instance,
GPT-o4-mini frequently attempts to solve Rocq VCs using a why3 tactic, which does not exist in
the language. In Isabelle, at least 9% of failures were triggered by references to undefined con-
stants or lemmas that are absent from the context. We identified these cases by explicitly matching
keywords such as “Undefined fact” or “Undefined constant” in the error logs. Crucially, since the
proof assistant terminates the checking process at the first encountered error, hallucinations present
in the latter parts of proof scripts — especially those already halted by syntax errors or earlier tactic
failures — remain uncounted. Consequently, this 9% figure represents a highly conservative lower
bound.

H CLASSIFICATION & METRIC DETAILS OF TABLE 4

The operation classification is conducted on the Isabelle version of our benchmark. We developed
Isabelle extensions to analyze the expressions of the obtained proof goals. We elaborate on the
constitution of each category in Tab. 4 as follows.

• Integer Arith consists of addition, subtraction, multiplication, division, exponentiation,
comparison, square root, and factorial operations whose operands are integers, natural num-
bers, or bounded integers (machine integers); and also bit-width conversions and bitwise
operations.

• Non-linear Arith consists of multiplication, division, and exponentiation between non-
constant expressions, following de Moura & Bjørner (2008) and Z3 (2025).

• List, Sequence consists of operations involving the list type and Why3’s sequence,
array31, array32, and array63.

• Set, Map, Bag consists of operations whose types involve finite map, multiset, finite set,
predicate-based set, and hash-table.

• Tree, String, Matrix consists of operations whose types involve Why3’s built-in binary tree,
string, and matrix.

• Memory consists of operations whose types involve Frama-C’s memory encoding.

• Custom Datatype consists of operations whose types involve any datatype not provided by
the system library but defined by the verification projects.

The metric depth is the height of the abstract syntax tree of the VCs, in the standard λ-calculus
representation with all arguments of every function application represented as siblings.

I INTERSECTION ANALYSIS OF NTP AND HAMMER CAPABILITIES

Table 7: The number of problems solved by both
hammers and NTP models, only by hammers, and
only by NTP models.

Category Common Hammer
only

NTP
only

Algorithm 2 4 4
Data Structure 5 6 3
Calculation 6 7 2
Engineering 6 1 14
Competition 0 3 1
Function 6 12 3
Memory 7 8 4
Loop 4 14 2
Invalid Arg. 6 10 1

To understand whether neural and symbolic ap-
proaches overlap or diverge in their capabilities,
we analyze the intersection between the union
of all problems solved by NTP models and the
union of all problems solved by hammers. Ta-
ble 7 presents the results. The results reveal a
strong complementarity: a significant number
of verification conditions are solved exclusively
by one method or the other. This confirms that
NTPs and hammers leverage distinct reasoning
mechanisms and that neither approach is a sub-
set of the other, highlighting the potential for
hybrid solutions.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

J IDENTIFYING VCS IN COQSTOP AND FVEL

In order to support the numbers given in Tab. 1, this section describes our approach to identifying
VCs in the CoqStoq benchmark (Thompson et al., 2025) and FVEL (Lin et al., 2024). CoqStop’s
test set contains 10,396 theorems from 12 Rocq projects; FVEL’s test set contains 1967 cases.

CoqStop CoqStop’s VCs are predominantly drawn from CompCert, which accounts for over
58% of the test set, while other verification-related projects constitute no more than 6%. There-
fore, we focus solely on CompCert. In CompCert, the tactics and other constructs that are rele-
vant to program analysis and VC generation are TransfInstr, UseTransfer, monadInv,
step simulation, exploit, and match states. Among the CompCert VCs in CoqStop,
only 1,325 cases involve these tactics, accounting for 12.7% of the total test set. Including other
projects that may involve VCs (at most 6%), the total proportion would not exceed 20%.

FVEL All of FVEL’s test cases are extracted from seL4. seL4’s VCs are generated using the
tactics vcg, wp, and wpsimp. Based on the test case list provided by FVEL, we analyzed cases
whose proofs contain these tactics and found only 328. Therefore, the proportion of VCs in FVEL
does not exceed 328/1967 < 17%.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

We have used LLM as a writing aid to assist with fluency and grammatical checking.

25

	Introduction
	Background
	A Reliable and Automatic Method for Corpora Generation
	VC Extraction & Rule-based Translation
	Complication Process: Extracting Challenging VCs

	NTP4VC Benchmark
	Experiments and Evaluation
	Results
	Error Analysis of NTP models

	Related Works
	Conclusion
	Additional Background
	An Example of VC
	Licensing and Rules of Engagement
	Limitation & Mitigation
	Detailed Extracton Pipeline
	Methodology Details
	Implementation Details

	Prompts
	Failure Cases
	Classification & Metric Details of Table 4
	blue Intersection Analysis of NTP and Hammer Capabilities
	Identifying VCs in CoqStop and FVEL
	The Use of Large Language Models (LLMs)

