
Unveiling and Mitigating Backdoor Vulnerabilities
based on Unlearning Weight Changes and Backdoor

Activeness

Weilin Lin1 Li Liu1∗ Shaokui Wei2 Jianze Li3,4,2 Hui Xiong1
1The Hong Kong University of Science and Technology (Guangzhou)

2The Chinese University of Hong Kong, Shenzhen
3Shenzhen International Center for Industrial and Applied Mathematics

4Shenzhen Research Institute of Big Data

Abstract

The security threat of backdoor attacks is a central concern for deep neural networks
(DNNs). Recently, without poisoned data, unlearning models with clean data and
then learning a pruning mask have contributed to backdoor defense. Additionally,
vanilla fine-tuning with those clean data can help recover the lost clean accuracy.
However, the behavior of clean unlearning is still under-explored, and vanilla
fine-tuning unintentionally induces back the backdoor effect. In this work, we
first investigate model unlearning from the perspective of weight changes and
gradient norms, and find two interesting observations in the backdoored model: 1)
the weight changes between poison and clean unlearning are positively correlated,
making it possible for us to identify the backdoored-related neurons without using
poisoned data; 2) the neurons of the backdoored model are more active (i.e., larger
gradient norm) than those in the clean model, suggesting the need to suppress
the gradient norm during fine-tuning. Then, we propose an effective two-stage
defense method. In the first stage, an efficient Neuron Weight Change (NWC)-based
Backdoor Reinitialization is proposed based on observation 1). In the second stage,
based on observation 2), we design an Activeness-Aware Fine-Tuning to replace
the vanilla fine-tuning. Extensive experiments, involving eight backdoor attacks on
three benchmark datasets, demonstrate the superior performance of our proposed
method compared to recent state-of-the-art backdoor defense approaches. The code
is available at https://github.com/linweiii/TSBD.git.

1 Introduction

Over the past few years, deep neural networks (DNNs) have achieved surprising success in several real-
world applications, such as face recognition [1–3], medical image processing [4, 5], and autonomous
driving [6, 7], etc. However, DNNs are susceptible to malicious attacks that can compromise their
security and reliability. One typical example is the backdoor attack [8–11], where the adversary
maliciously manipulates the training dataset or training process to produce a backdoored model,
which performs normally on clean data while predicting any sample with a particular trigger pattern
to a pre-defined target label. In this work, we focus on the post-training defense scenario where, given
a backdoored model and a small set of clean training samples, one aims to mitigate the backdoor
effect while maintaining the performance on clean data, thereby obtaining a benign model.

Up to now, several important methods have been developed for backdoor defense [14–18]. One
promising approach is poison unlearning, which involves updating a backdoored model by unlearning

∗Corresponds to Li Liu (avrillliu@hkust-gz.edu.cn)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/linweiii/TSBD.git
avrillliu@hkust-gz.edu.cn


Observation 1. Weight changes between poison and clean unlearning are positively correlated.

Observation 2. Neurons of backdoored model are more active than those in clean model.

Figure 1: Illustration of two observations. Figures for Observation 1 show distributions of neuron
weight changes during clean unlearning and poison unlearning. Figures for Observation 2 compare
the average gradient norm for each neuron on the backdoored model and clean model, which are
calculated with one-epoch clean unlearning. Being “more active” means a larger gradient norm.
Experiments are conducted on PreAct-ResNet18 [12] using CIFAR-10 [13] for the clean model, along
with additional attacks using 10% poisoning ratio for the backdoored model. The last convolutional
layers are chosen for illustration.

from poisoned data. This technique has been utilized in various backdoor defenses such as ABL [14],
D-BR [19], Neural Cleanse (NC) [20], and i-BAU [21], etc. To avoid approximating poisoned
data, another approach called clean unlearning was conducted by RNP [22]. This technique only
uses clean data for unlearning and then prunes the backdoored model, which has been proven to be
effective. Through relevant experiments, we find an interesting connection between poison unlearning
and clean unlearning, as illustrated in Observation 1 of Figure 1. Specifically, by calculating the
weight changes of each neuron during the two unlearning processes on the backdoored models2,
we find that they exhibit a strong positive correlation, i.e., the neurons exhibiting significant weight
changes during clean unlearning also tend to play crucial roles in poison unlearning, indicating a
stronger association with backdoor-related activities. Moreover, we further investigate the backdoor
activeness during learning processes3, i.e., comparing the average gradient norm for each neuron in
both the backdoored and clean models. The results are shown in Observation 2 of Figure 1, revealing
that neurons in the backdoored model are always more active compared to those in the clean model.

Inspired by the above two observations regarding the backdoored model , we propose Two-Stage
Backdoor Defense (TSBD), consisting of stage 1) Neuron Weight Change-based Backdoor Reinitial-
ization and stage 2) Activeness-Aware Fine-tuning. In the first stage, we first conduct clean unlearning
on the backdoored model, followed by the neuron weight change calculation, where both the changes
of each subweight4 and neuron are recorded. Then, we conduct zero reinitialization to mitigate the
backdoor effect by reinitializing the most-changed subweights among the top-n% most-changed
neurons as 0 in the original backdoored model. In the second stage, we adopt activeness-aware
fine-tuning with gradient-norm regulation to recover clean accuracy and suppress the reactivation
of the backdoor effect. Extensive experiments demonstrate the superior defense performance of the
proposed method compared to state-of-the-art (SOTA) backdoor defense methods.

To summarize, our main contributions are three-fold. (1) Novel Insight: We are the first to uncover the
strong positive correlation between neuron weight changes in clean unlearning and poison unlearning.
We also reveal the high backdoor activeness in the backdoored model during the learning process.
(2) Effective Defense Method: We further develop an effective two-stage defense method based

2Four attacked models on BadNets [8], Input-aware [23], SSBA [9], and WaNet [24], are used for illustration.
3Unlearning, as the opposite process of model learning, can also be considered as a kind of learning process.
4A subweight represents one learnable weight in a neuron weight matrix.

2



on unlearning weight changes and backdoor activeness, considering both backdoor mitigation and
clean-accuracy recovery, respectively. (3) SOTA Performance: Experimental results and analysis
show that our proposed method achieves SOTA performance in backdoor defense.

Backdoored Model

Clean Dataset

Reinitialized Model

1) Neuron Weight Change-based Backdoor Reinitialization 2) Activeness-aware 
Fine-tuning

c. Zero
Reinitialization

Unlearned Model

Weight Mask

a. Clean Unlearning

Neuron Weight Changes Subweight Changes

b. Neuron Weight Change Calculation

Clean Model

Fine-tuning with Gradient-Norm
Regulation

Figure 2: Overview of the proposed Two-Stage Backdoor Defense framework.

2 Related Work

2.1 Backdoor Attack

In the literature, various backdoor attacks on DNNs have been proposed, which can be categorized
into data poisoning attacks and training-controllable attacks. BadNets [8] is one of the earliest
data poisoning attacks in this field. In this attack, a small proportion of the original data is selected
and patched with a pre-defined pattern, known as a trigger. The labels of these patched data points
are then modified to a target label. The mixed dataset, containing both clean and poisoned data, is
used to train the DNNs, resulting in the implantation of the backdoor. Under a similar procedure,
Blended [25] was proposed as a stronger attack by blending an entire pre-defined image into the
original clean data with controllable transparency. Recently, more advanced and stealthy attacks have
been proposed to enhance the trigger, such as SIG [26], label consistent attacks [27, 28], SSBA [9],
etc. Another category is training-controllable attacks [23, 24, 29–31], where the attackers design
triggers with permission to control the training process. Two significant examples are WaNet [24]
and Input-aware [23], which generate unique triggers for different input data by incorporating an
injection function into the model training process. This approach makes these attacks more difficult
to detect compared to previous attacks with fixed triggers.

2.2 Backdoor Defense

According to the different stages of model training, backdoor defense methods can be classified into
two types: training-stage defenses and post-training defenses.

Training-stage Defenses. In training-stage defenses, defenders have access to a mixed training
dataset containing both clean data and poisoned data with triggers. ABL [14] discovers that the
loss-dropping speed of poisoned data during the early stages of model training is faster, and thus
isolates them for poison unlearning. DBD [32] splits the training process into three steps to separate
the training of feature extraction from that of the subsequent classifier to evade the learning of trigger-
label correlation. Similarly, D-ST/D-BR [19] observes that the transformations of poisoned-data
feature representations are more sensitive than clean ones, and thus proposes to modularize the
training process.

Post-training Defenses. In post-training defenses [33–36], defenders aim to erase the backdoor
effect in the learned DNNs using a small portion of clean data. FP [37] is one of the earliest defense
methods, which observes that poisoned data and clean data activate different neurons in a backdoored
DNN, and thus keeps pruning the less-activated neurons in response to clean data until a significant

3



drop in accuracy occurs. After that, vanilla fine-tuning is employed to recover the lost clean accuracy.
Using the pruning strategy [38–40], ANP [41] observes that the backdoor-related neurons exhibit
higher sensitivity to adversarial perturbations compared to others, and thus trains a pruning mask
using minimax optimization. Continuing along this line, AWM [42] and RNP [22] use a similar mask
training process with main modifications in neuron perturbations to data perturbations and clean
unlearning, respectively. Different strategies are also proposed for defense. For example, NC [20]
proposes to recover the trigger before the subsequent backdoor removal. NAD [43], for the first time,
adopts model distillation to guide the learning of a benign student model. Additionally, employing
unlearning techniques, SAU [44] treats backdoor triggers as a form of adversarial perturbation, and
generates poisoned data through optimization on clean data, which are then used in poison unlearning.

Unlearning for Backdoor Defense. Model unlearning can be considered as an opposite process
against learning, aiming to remove the impact of a training subset from a trained model [45]. In
the field of backdoor defense, unlearning the possible poisoned data (i.e., poison unlearning) is an
effective way to remove the learned backdoor. NC [20] and BTI-DBF [46] try to generate the possible
poisoned data with either trigger inversion or poison-data generator; ABL [14] and D-BR [19] focus
on filtering out the poisoned data from the training dataset according to their attributes during training;
i-BAU [21] and SAU [47] assume the adversarial perturbation as a type of trigger and generate
poisoned data with adversarial example. To avoid inducing bias, recent work tries to directly unlearn
the available clean data (i.e., clean unlearning) for defense. RNP [22] finds that a clean-unlearned
model can help expose the backdoor neurons for the subsequent pruning-mask learning.

However, there exist some limitations among those techniques, e.g., clean unlearning is still under-
explored, and the vanilla fine-tuning unintentionally increases the attack success rate. In this paper,
we propose a comprehensive two-stage defense method breaking through the two limitations.

3 Methods

3.1 Problem Formulation

Threat Model. We assume that the attacker has full access to the training data. Their goal is to poison
a portion of the dataset by injecting triggers into the data so that the trained model misclassifies the
poisoned data to the target class while still performing normally on clean data. The poisoning ratio
(e.g., 10%) is used to depict the proportion of poisoned data within the entire dataset. We denote
the parameters of the backdoored model as θbd = {θ(l)

bd }1≤l≤L satisfying θ
(l)
bd ∈ RK(l)×I(l)

, where
K = {K(l)}1≤l≤L and I = {I(l)}1≤l≤L represent the neuron numbers and learnable subweight
numbers, respectively. Specifically, for the lth ∈ {1, . . . , L} layer, there are K(l) neurons in total
and I(l) subweights for each neuron.

Defense Setting. The defender’s goal is to remove the backdoor effect, which causes poisoned data
to be misclassified to the target class, from the backdoored model while minimizing the impact on
the prediction accuracy for clean data. Following the previous defense setting [37, 41], we assume
that the defender knows nothing about the poisoned data and possesses only 5% of the total dataset
as clean data, denoted as Dc.

3.2 Neuron Weight Change & Suggestions Given by the Two Observations

In this subsection, we provide more details on the unlearning formulation and offer suggestions based
on the two observed observations.

Model Unlearning. Model Unlearning can be defined as the reverse process of model training [22],
which involves maximizing the loss value on a given dataset. Given a DNN model f parameterized
as θ and a dataset D for unlearning, the maximization problem can be formulated as:

max
θ

E(x,y)∈D [L(f(x;θ), y)] , (1)

where (x, y) ∈ D represents the images and their corresponding labels, and L denotes the loss
function used in this task, e.g., cross-entropy loss.

Intuitively, by maximizing the loss expectation, the unlearned model, parameterized as θul, is prone
to fail at the task specified in D. In this paper, we term the process as clean unlearning when all

4



0.0 0.5 1.0 1.5 2.0
NWC of Clean Unlearning

0.1

0.2

0.3

0.4

0.5

Ac
tiv

at
io

ns

Comparison of Activations on Clean Model

Clean Activations
Poison Activations

(a) Original clean model

0.0 0.5 1.0 1.5 2.0 2.5 3.0
NWC of Clean Unlearning

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ac
tiv

at
io

ns

Comparison of Activations on Backdoored Model
Clean Activations
Poison Activations

(b) Original backdoored model

0.0 0.5 1.0 1.5 2.0 2.5 3.0
NWC of Clean Unlearning

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ac
tiv

at
io

ns
 C

ha
ng

e

Comparison of Activation Changes
Poison-Activation Rise during Poison Unlearning
Poison-Activation Rise during Clean Unlearning
Clean-Activation Rise during Poison Unlearning
Clean-Activation Rise during Clean Unlearning

(c) Backdoored-model unlearning

Figure 3: Illustration of clean and poison activations of each neuron. (a) and (b) represent the
activations on the original clean and backdoored model, respectively. (c) shows the activation changes
during the clean and poison unlearning on backdoored model. Activations are captured from the last
convolutional layer with an additional Relu activation function on PreAct-ResNet18 [12].

the data in D are clean, denoted as Dc. On the other hand, poison unlearning refers to the scenario
where all the data in D are poisoned with a trigger. By default, both clean and poison unlearning are
terminated when the model performs poorly on the corresponding tasks, such as achieving only 10%
clean accuracy or attack success rate.

Neuron Weight Change. To comprehensively quantify the weight changes of a neuron during
the entire unlearning process, we define the Neuron Weight Change (NWC), where the L1 norm is
calculated on every neuron’s weight differences. The NWC for the kth ∈ {1, . . . ,K(l)} neuron in
layer l ∈ {1, . . . , L} can be formulated as:

NWC(l)k =

I(l)∑
i=0

∥θ(l)ki
ul − θ

(l)ki
bd ∥1, (2)

where
∑I(l)

i=0 ∥·∥1 is to calculate the L1 norm for the differences on a neuron with totally I(l)

subweights, θ(l)ki
ul and θ

(l)ki
bd denote the ith ∈ {1, . . . , I(l)} subweights of kth neuron after and

before the entire unlearning process, respectively. A larger NWCk indicates more significant
changes occurring in neuron k during the unlearning process. Similarly, in Equation (2), the term
∥θ(l)ki

ul − θ
(l)ki
bd ∥1 represents the changes in the ith subweight of neuron k in layer l, i.e., defined as

Subweight Change.

Suggestions Given by the Two Observations. As demonstrated in Section 1, we have two interesting
observations regarding the backdoored model. Observation 1 shows that the neurons exhibiting
significant weight changes during clean unlearning also tend to play crucial roles in poison unlearning.
It suggests that we can employ clean unlearning to identify and eliminate backdoor-related neurons
using NWC, at the expense of reducing clean accuracy. On the other hand, Observation 2 reveals
that neurons in the backdoored model are always more active compared to those in the clean model. It
suggests that we should suppress the gradient norm during the learning process if we want to recover
it to a clean model. These two suggestions act as the main supports to our proposed TSBD.

3.3 Further Investigations & Insights

Here, we offer insights from the perspective of neuron activations, trying to answer two important
questions: [Q1] What causes the clean unlearning NWCs to exhibit a positive correlation with those
in poison unlearning, and [Q2] What motivates the neurons more active in the backdoored model.

Neuron Activations & Activation Rise. The neuron activation is determined by computing the
average value of all inputs to the specific neuron, e.g., h(l)k ≈ σ(θ(l)kh(l−1)) for simplicity, where
σ(·) is the activation function. In line with the terminology used in FP [37], clean activation denotes
the scenario where all the input samples are clean while poison activation refers to the presence of
poisoned inputs. To better observe the changes in activation during unlearning, we calculate the
activation rise from the original model to the unlearned model, i.e., ∆h(l)k = h

(l)k
ul −h

(l)k
bd . A positive

value indicates an increase in activation, while a negative value signifies a decrease.

5



Relationship between NWC and Activation Change. Considering that a backdoored model has
learned two tasks from the clean and poisoned data [14], the main influence of NWC on a neuron
can be roughly attributed to its activation change on both clean and poisoned inputs. For neuron k in
layer l, we can formulate it as NWC(l)k ∝ |∆h

(l)k
c |+ |∆h

(l)k
p |, where ∆h

(l)k
c and ∆h

(l)k
p represent

the activation rise on clean and poisoned inputs, respectively.

Figure 3 illustrates the clean and poison activations in (a) the original clean model, (b) the original
backdoored model, and (c) the backdoored-model unlearning. We now try to answer the above
two questions from these observations. [A1] We can observe that poison activations are the main
factors affected during both clean unlearning (increase) and poison unlearning (decrease), while clean
activations are only slightly influenced (see Figure 3 (c)), i.e., NWC

(l)k
↑ → |∆h

(l)k
c |≈ + |∆h

(l)k
p |↑.

Also, the growing NWC during clean unlearning can indicate larger poison and clean activations
(where h

(l)k
p > h

(l)k
c ) to some extent (see Figure 3 (b)). Thus, we deduce that the co-function of

clean and poison activations dominates the performance on both tasks, while the higher values of
poison activation in the backdoored model make it an easier target for modification. In this case, the
neurons with higher poison activations tend to decrease their values during poison unlearning, thereby
reducing the attack success rate. Conversely, during clean unlearning, these neurons increase poison
activations, which suppresses the function of clean activations and reduces clean accuracy. [A2]
Similarly, the significantly lower values of mixed clean and poison activations (maximum: 0.5676)
on the clean model (see Figure 3 (a)) indicate that it is less active compared to the backdoored model
(maximum: 1.7053), where a similar pattern can also be seen on the bottom left of Figure 3 (b).

3.4 Two-Stage Backdoor Defense Framework

Based on the above observations, we now propose a defense framework incorporating Neuron Weight
Change-based Backdoor Reinitialization (including Clean Unlearning, Neuron Weight Change
Calculation and Zero Reinitialization), and Activeness-aware Fine-tuning. The detailed defense
process is illustrated in Figure 2 and Algorithm 1 (found in Appendix A).

Stage 1) Neuron Weight Change-based Backdoor Reinitialization. We aim to mitigate the
backdoor effect with acceptable clean-accuracy sacrificed in this stage. [a. Clean Unlearning.] To
identify the backdoor-related neurons, we first conduct a full clean unlearning using the available
clean data Dc on the backdoored model. [b. Neuron Weight Change Calculation.] Then, we record
the subweight changes and calculate the NWC for each neuron as described in Section 3.2. The
resulting sorted order of neurons reflects the backdoor strength. [c. Zero Reinitialization.] After that,
we can now eliminate the backdoor effect through zero reinitialization. Based on the NWC neuron
order, we identify the top-n% neurons as strongly backdoor-related. As suggested in Section 3.3,
high-NWC neurons may also contribute to clean accuracy to some extent. Therefore, we further
choose to reinitialize the subweights of the most-changing m% among the selected neurons to zero
in the backdoored model, while leaving the others unchanged. The reinitialized model parameter is
denoted as θ̂.

Stage 2) Activeness-Aware Fine-tuning. To further repair the reinitialized subweights and avoid
recovering the backdoor effect again, we conduct activeness-aware fine-tuning on the reinitialized
model (θ̂) using the clean dataset, Dc. This involves incorporating gradient-norm regulation into
the original loss function, such as the cross-entropy loss Lce, to penalize high gradient values. This
regulation serves to suppress neuron activity during fine-tuning. The final loss function is:

Lft(θ̂) = Lce(θ̂) + λ · ∥∇θ̂Lce(θ̂)∥2, (3)

where ∥∇θ̂Lce(θ̂)∥2 represents the L2 norm of gradients, and λ is the penalty coefficient controlling
its impact. Hence, the objective of fine-tuning is to minimize the loss function Lft(θ̂) using the
available clean data Dc:

min
θ̂

E(xc,yc)∈Dc
[Lft(f(xc; θ̂), yc)]. (4)

During practical optimization for computational efficiency, we adopt the approximation scheme in
[48], which can be formulated as:

∇θ̂Lft(θ̂) ≈ (1− α)∇θ̂Lce(θ̂) + α∇θ̂Lce(θ̂ + r
∇θ̂Lce(θ̂)

∥∇θ̂Lce(θ̂)∥2
). (5)

6



Table 1: Comparison with the SOTA defenses on CIFAR-10 dataset with PreAct-ResNet18 (%).
Backdoor
Attacks

No Defense FT FP [37] NAD [43] NC [20]
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 91.32 95.03 - 89.96 1.48 96.10 91.31 57.13 68.95 89.87 2.14 95.72 89.05 1.27 95.75
Blended [25] 93.47 99.92 - 92.78 96.11 51.56 93.17 99.26 50.18 92.17 97.69 50.47 93.47 99.92 50.00

Input-aware [23] 90.67 98.26 - 93.12 1.72 98.27 91.74 0.04 99.11 93.18 1.68 98.29 92.61 0.76 98.75
LF [49] 93.19 99.28 - 92.37 78.44 60.01 92.90 98.97 50.01 92.37 47.83 75.31 91.62 1.41 98.15
SIG [26] 84.48 98.27 - 90.80 2.37 97.95 89.10 26.20 86.03 90.02 10.66 93.81 84.48 98.27 50.00
SSBA [9] 92.88 97.86 - 92.14 74.79 61.16 92.54 83.50 57.01 91.91 77.40 59.74 90.99 0.58 97.69

Trojan [50] 93.42 100.00 - 92.42 5.99 96.51 92.46 71.17 63.94 91.88 3.73 97.36 91.76 8.22 95.06
WaNet [24] 91.25 89.73 - 93.48 17.10 86.32 91.46 1.09 94.32 93.17 22.98 83.38 91.80 7.53 91.10

Average 91.34 97.29 - 92.13 34.75 80.98 91.84 54.67 71.19 91.82 33.01 81.76 90.72 27.24 84.56
Backdoor
Attacks

ANP [41] CLP [38] i-BAU [21] RNP [22] TSBD (Ours)
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 90.94 5.91 94.37 90.06 77.50 58.14 89.15 1.21 95.83 89.81 24.97 84.28 90.72 1.31 96.53
Blended [25] 93.00 84.90 57.28 91.32 99.74 49.01 87.00 50.53 71.46 88.76 79.74 57.73 91.61 2.61 97.73

Input-aware [23] 91.04 1.32 98.47 90.30 2.17 97.86 89.17 27.08 84.84 90.52 1.84 98.13 93.06 1.94 98.16
LF [49] 92.83 54.99 71.96 92.84 99.18 49.88 84.36 44.96 72.75 88.43 7.02 93.75 91.20 2.64 97.32
SIG [26] 83.36 36.43 80.36 83.80 98.91 49.66 85.67 3.68 97.29 84.48 98.27 50.00 90.41 1.27 98.50
SSBA [9] 92.67 60.16 68.74 91.38 68.13 64.11 87.67 3.97 94.34 88.60 17.89 87.84 91.57 1.66 97.44

Trojan [50] 92.97 46.27 76.64 92.98 100.00 49.78 90.37 2.91 97.02 90.89 3.59 96.94 91.76 5.06 96.64
WaNet [24] 91.32 2.22 93.76 81.91 78.42 50.99 89.49 5.21 91.38 90.43 0.96 93.98 93.26 0.88 94.43

Average 91.02 36.53 80.20 89.32 78.01 58.68 87.86 17.44 88.11 88.99 29.28 82.83 91.70 2.18 97.09

Here, r is used for appropriating the Hessian multiplication operation, and α = λ
r is the balance coef-

ficient. Due to the space limit, the detailed derivation and algorithm are provided in Appendix B. After
the activeness-aware fine-tuning stage, we can obtain a repaired clean model, which demonstrates
outstanding performance in the experiments.

4 Experiments

4.1 Experimental Setup

Attack Setup. We consider 8 SOTA backdoor attacks in the main experiment. There are BadNets [8],
Blended [25], Input-aware [23], LF [49], SIG [26], SSBA [9], Trojan [50] and WaNet [24]. For a
fair comparison, we follow the default attack configuration as in BackdoorBench [51], including
the trigger pattern, trigger size, the target label (i.e., the 0th label), etc. We choose 10% poisoning
ratio as the default setting. To fully evaluate the effectiveness of our proposed framework, all the
attacks are implemented on three benchmark datasets, i.e., CIFAR-10 [13], Tiny ImageNet [52], and
GTSRB [53], over two popular DNNs, i.e., PreAct-ResNet18 [12] and VGG19-BN [54]. In particular,
SIG is only applied to CIFAR-10 since it cannot reach a 10% poisoning ratio on Tiny ImageNet and
GTSRB. Besides, we also evaluate the defense methods under 5% and 1% poisoning ratios to verify
the robustness of our proposed framework. Due to the space limit, we only exhibit parts of the main
results in this section. More implementation details can be found in Appendix C.

Defense Setup. We compare the proposed framework with 8 SOTA backdoor defense methods:
Fine-tuning (FT), Fine-pruning (FP) [37], NAD [43], NC [20], ANP [41], CLP [38], i-BAU [21],
and RNP [22]. We use the recommended configurations in BackdoorBench [51]. Since the defense
settings for training-stage defenses are different [14, 32], we only compare the post-training defenses,
where 5% clean data can be accessed following the previous settings [41]. For TSBD, we set
the learning rates for clean unlearning to 10−4 and fine-tuning to 10−2. The default neuron ratio
n and weight ratio m are set to 0.15 and 0.7, respectively. We follow the suggested settings of
hyper-parameters r = 0.05 and α = 0.7 for fine-tuning [48].

Evaluation Metrics. We use three metrics to evaluate the performance of each defense method:
Accuracy on clean data (ACC), Attack Success Rate (ASR), and Defense Effectiveness Rating
(DER) [55]. Specifically, ACC measures the proportion of clean data correctly predicted; ASR mea-
sures the proportion of poisoned data misclassified to the target label; DER ∈ [0, 1] evaluates the cost
of ACC for reducing ASR, which is defined as: DER = [max(0,∆ASR)−max(0,∆ACC)+1]/2,
where ∆ASR and ∆ACC are the drop in ASR and ACC after applying defense on the backdoored
model, respectively. Larger ACC, DER, and smaller ASR are desired for a successful defense. Note
that in the following result tables, “-” indicates that the value is inapplicable. The boldface values
indicate the best performance and the underline values denote the second-best result.

4.2 Main Results

We validate the effectiveness of our proposed framework on 8 SOTA backdoor attacks and compare it
with 8 defenses. In this section, we present the main results on CIFAR-10 and Tiny ImageNet with

7



Table 2: Comparison with the SOTA defenses on Tiny ImageNet dataset with PreAct-ResNet18 (%).
Backdoor
Attacks

No Defense FT FP [37] NAD [43] NC [20]
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 56.23 100.00 - 55.18 0.09 99.43 51.73 99.99 47.76 46.37 0.27 94.93 48.26 0.10 95.96
Blended [25] 56.03 99.71 - 55.04 97.73 50.49 51.89 95.94 49.81 46.89 95.00 47.79 52.55 93.21 51.51

Input-aware [23] 57.45 98.85 - 57.45 1.65 98.60 55.28 62.92 66.88 47.91 1.86 93.73 56.20 0.09 98.76
LF [49] 55.97 98.57 - 54.80 94.87 51.26 51.44 95.25 49.40 45.45 50.49 68.78 52.99 85.56 55.02

SSBA [9] 55.22 97.71 - 54.80 91.57 52.86 50.47 88.87 52.04 45.32 57.32 65.25 52.47 53.47 70.75
Trojan [50] 55.89 99.98 - 55.42 0.50 99.50 50.22 8.82 92.74 48.48 0.83 95.87 52.69 0.15 98.31
WaNet [24] 56.78 99.49 - 56.74 0.19 99.63 53.84 3.94 96.30 46.98 0.43 94.63 52.33 0.23 97.40

Average 56.22 99.19 - 55.63 40.94 78.83 52.12 65.11 64.99 46.77 29.46 80.14 52.50 33.26 81.10
Backdoor
Attacks

ANP [41] CLP [38] i-BAU [21] RNP [22] TSBD (Ours)
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 50.55 7.74 93.29 55.94 100.00 49.86 51.48 97.36 48.95 21.91 0.00 82.84 53.72 0.34 98.58
Blended [25] 54.99 84.61 57.03 55.70 99.68 49.85 53.03 91.90 52.40 34.60 0.11 89.08 53.62 2.30 97.50

Input-aware [23] 53.17 0.17 97.20 57.75 99.58 50.00 52.48 72.98 60.45 15.57 0.00 78.49 55.38 0.10 98.34
LF [49] 54.66 95.39 50.94 55.61 98.49 49.86 51.13 85.32 54.21 49.18 0.00 95.89 52.47 1.90 96.59

SSBA [9] 52.83 91.44 51.94 55.17 97.65 50.01 49.86 81.90 55.22 37.64 0.00 90.06 52.93 1.38 97.02
Trojan [50] 50.37 1.40 96.53 55.86 8.39 95.78 52.65 98.49 49.12 46.27 0.00 95.18 53.66 0.31 98.72
WaNet [24] 53.87 0.75 97.91 56.21 98.50 50.21 53.71 75.23 60.60 20.50 0.00 81.60 55.01 0.71 98.50

Average 52.92 40.21 77.83 56.03 86.04 56.51 52.05 86.17 54.42 32.24 0.02 87.59 53.83 1.01 97.89

a 10% poisoning ratio on PreAct-ResNet18 for illustration, which is shown in Table 1 and Table 2.
More results on GTSRB and VGG19-BN can be found in Appendix D and E, respectively.

Results on CIFAR-10. Table 1 shows the results on CIFAR-10. Results show that our TSBD
outperforms all the other SOTA defenses on the average of ASR (2.18%) and DER (97.09%), as
well as a promising ACC (91.70%) higher than the original “No Defense” models (91.34%), which
indicates its effectiveness in removing the backdoor effect with the least cost. Though most defenses
fail in strong attacks Blended, LF, or SSBA, e.g., FT, FP, NAD, ANP, CLP, i-BAU, and RNP, our
proposed TSBD success with the best ASR and DER on Blended and second best ASR and DER
on LF and SSBA. FT and NAD perform similarly on each attack with a promising ACC, but they
also fail on WaNet with a high ASR except for the mentioned strong attacks. FP and ANP perform
well in ACC among all the defenses, while the defense performances on ASR and DER are unstable,
which may be due to the unsuccessful backdoor-related neuron locating. CLP fails on most of the
attacks with high ASR and low DER, which may be due to the structure constraint of computing
channel Lipschitz only on the convolutional-batch normalization layer combination. i-BAU performs
the second best on average ASR and DER, with failures on three attacks. TSBD outperforms RNP on
almost all performances, which indicates that using clean unlearning with NWC is more effective
than the unlearn-recovery process in RNP.

Results on Tiny ImageNet. Table 2 presents the results on Tiny ImageNet with PreAct-ResNet18. We
observe that most defenses also fail on Blended, SSBA, and LF with high ASR. Similar performances
of other attacks are shown on most of the defenses compared to CIFAR-10, where FT and FP also
perform well in ACC and CLP fails on most attacks. Although i-BAU can successfully defend against
most of the attacks in CIFAR-10, it fails on all attacks here, indicating that its adversarial training fails
with large classification categories. For RNP, though it performs well in ASR on almost all attacks,
the ACC is sacrificed too much to be unacceptable, indicating an unbalanced defense performance.
In comparison, our TSBD can achieve SOTA on the average of DER, and perform second best on the
average of ASR, which validates its superior defense performance.

4.3 Ablation Studies

0 10 20 30 40 50 60
Neuron Ratio (%)

0

10

20

30

40

50

60

70

Co
ve

ra
ge

 R
at

io
 o

n 
TA

C 
(%

)

FP
CLP
ANP
RNP
NWC

Figure 4: Comparison of neu-
ron coverage ratio on TAC un-
der different neuron ratios.

Effectiveness of NWC order for Backdoor Strength. To verify the
effectiveness of employing clean-unlearning NWC order in gaug-
ing the backdoor strength, we borrow the Trigger-activated Change
(TAC) [38] order as the ground truth and compare the neuron cov-
erage ratio on TAC under different proportions, i.e., measuring the
overlap of the selected neurons on both metrics. Specifically, TAC
measures the change in neuron activation before and after the input
image is attached with a trigger, where the larger value indicates
a stronger backdoor effect. We select the following SOTA metrics
for comparison: 1) the average neuron activations in FP [37]; 2) the
channel Lipschitz in CLP [38]; 2) the perturb-recovery learned mask
in ANP [41]; 3) the unlearn-recovery learned mask in RNP [22].
The result is illustrated in Figure 4, where the x-axis represents the
(reinitializing/pruning) neuron ratio and the y-axis represents the neuron coverage ratio on TAC. The
higher values on the y-axis indicate a better matching of the current metric and the TAC metric,

8



1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNets

ACC
ASR

1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Blended

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNets

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Blended

ACC
ASR

Figure 5: Performance with different neuron ratios (two subfigures on the left) and weight ratios (two
subfigures on the right) under the attacks of BadNets and Blended.

i.e., more backdoor-related neurons are chosen. We can observe that NWC is always the best under
different neuron ratios compared to others. It validates the effectiveness of using NWC order as the
metric for neuron reinitialization/pruning. Moreover, we also test the performance of using NWC in
FP to show its superiority in assisting other defenses. The results can be found in Appendix F.

Table 3: Comparison of different reinitialization
schemes on CIFAR-10 with PreAct-ResNet18 (%).

Backdoor
Attacks

V1 V2 V3 (Ours)
ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓

BadNets [8] 69.53 0.00 68.20 0.00 80.94 0.00
Blended [25] 76.13 0.00 64.20 0.05 82.72 0.00

LF [49] 76.41 0.00 78.64 0.02 82.42 0.00
SSBA [9] 74.55 0.00 75.43 0.02 83.10 0.00

Effectiveness of Zero Reinitialization on Sub-
weight. We compare different combinations of
reinitializing neurons and weights to validate
the effectiveness of zero reinitialization on the
selected subweights. Specifically, three versions
are designed for comparison: (1) V1: all weights
on the selected top-NWC neurons are reinitial-
ized to zero. (2) V2: m% (70% is used as de-
fault) of the top weights on each selected top-NWC neuron are reinitialized to zero. (3) V3 (Ours):
our final version, where m% of the top weights among all selected top-NWC neurons are reinitialized
to zero. As the ACC and ASR drop monotonously with more neurons selected to be reinitialized,
we record the results when ASR first drops to almost zero (i.e., lower equal than 0.05%). Table 3
shows the performances on four attacks. It validates that reinitializing the top weights among the
selected neurons may help alleviate the hurt of clean accuracy. The failure of V2 may be blamed on
the different backdoor strength of each neuron, i.e., some strong backdoor-related neurons fail to be
removed thoroughly and thus more neurons are reinitialized to reach zero ASR.

Table 4: Comparison of different fine-tuning
schemes on CIFAR-10 with PreAct-ResNet18 (%).

Backdoor
Attacks

No-FT Vanilla-FT Aa-FT (Ours)
ACC ↑ ASR ↓ ACC ↑ ASR ↓ ACC ↑ ASR ↓

BadNets [8] 80.94 0.00 90.66 1.69 90.72 1.37
Blended [25] 82.72 0.00 91.40 6.39 91.61 2.61

LF [49] 82.42 0.00 91.51 5.57 91.20 2.64
SSBA [9] 83.10 0.00 91.12 7.6 91.57 1.66

Effectiveness of Gradient-norm Regulation
in Fine-tuning. To validate the essential role
of gradient-norm regulation in the fine-tuning
stage, we compare the performance on “no fine-
tuning” (No-FT), “vanilla fine-tuning” (Vanilla-
FT), and our “activeness-aware fine-tuning” (Aa-
FT). For a fair comparison, we follow the default
settings and choose to fine-tune the reinitialized
model after the second stage. The results are shown in Table 4. It shows that fine-tuning is effective
in improving clean accuracy, which is sacrificed to erase the backdoored effect in reinitialization,
though it is prone to bring back some extent of ASR. Furthermore, compared to vanilla fine-tuning,
our implemented activeness-aware fine-tuning can suppress the rise of ASR as well as improve ACC
to the same level.

4.4 Further Analysis

Table 5: Performance of hyper-
parameter tuning for stage 2.

r α ACC↑ ASR↓
Our Settings 0.05 0.70 90.72 1.31

Tuning r

0.01 0.70 90.68 1.30
0.02 0.70 91.03 1.50
0.10 0.70 90.90 1.30
0.20 0.70 89.64 1.04

Tuning α

0.05 0.10 91.32 1.40
0.05 0.30 91.24 1.59
0.05 0.50 91.00 1.63
0.05 0.90 90.68 1.26

Performance on Different Neuron Ratio and Weight Ratio.
To test the sensitivity of our method towards hyper-parameter
tuning, we record the performance of TSBD under a wide
range of neuron ratio (n%) and weight ratio (m%) tuning. The
experiments are conducted on CIFAR-10 with a 10% poisoning
ratio on PreAct-ResNet18. The neuron ratios are tuned from
1% to 90%, and weight ratios are tuned from 40% to 80%.
The results of BadNets and Blended attacks are depicted in
Figure 5. It shows that TSBD is insensitive to both neuron ratio
and weight ratio, where the ASR is kept at a very low level,
while ACC is maintained at a top level under a wide range of
tuning. The high consistency in the performances may come from the promising recovery ability of
the fine-tuning stage. More results on other attacks are shown in the Appendix G.

9



Performance on Different r and α for Activeness-Aware Fine-tuning. To test the hyper-parameters
sensitivity for stage 2, i.e., r and α in Activeness-Aware Fine-tuning, we follow the tuning range in
[48] under our experimental settings. The results are shown in Teble 5, which are obtained from a
BadNets-attacked PreAct-ResNet18. We observe that the performance is insensitive (Changes <2%
in ACC and <1% in ASR) across different hyper-parameter settings, maintaining a high level of
performance.

BadNets
Blended

Input-aware LF SIG
SSBA

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

ACC: 10% Poisoning Rate
ACC: 5% Poisoning Rate
ACC: 1% Poisoning Rate

ASR: 10% Poisoning Rate 
ASR: 5% Poisoning Rate 
ASR: 1% Poisoning Rate 

Figure 6: ACC and ASR on different
poisoning ratios.

Performance on Different Poisoning Ratio. We further
investigate the performance of TSBD on different poison-
ing ratios, e.g., 10%, 5%, and 1%. Note that a larger
poisoning ratio represents a stronger attack mode. We
test the performance with six attacks on these three ratios.
Figure 6 shows the performances of ACC and ASR. We
can observe that TSBD successfully defends all the attacks
on 10% and 5% with a low ASR and a high ACC while
performing less effectively on 1%. A possible reason is
that the unlearning weight changes of backdoor neurons
are less obvious in the weak attack mode compared to the
strong attack mode with 10% or 5% poisoning ratios.

More Experiments and Analysis. Due to the space limit,
we postpone the detailed discussion of the clean data ra-
tio and the fine-tuning learning rate to Appendix H and
Appendix I, respectively. We also evaluate the defense
performance on the clean model in Appendix J and on the ViT in Appendix K. Further, we provide
the computational overhead in terms of runtime in Appendix L.

5 Conclusion

In this work, we propose an effective two-stage backdoor defense method, TSBD, to eliminate the
backdoor effect in DNNs. Our research reveals two important observations regarding the backdoored
models to support our method. First, there is a positive correlation between weight changes during
poison and clean unlearning in backdoored models. This finding enables us to identify and eliminate
backdoor-related neurons through clean unlearning and zero reinitialization. Second, neurons in
backdoored models are more active compared to those in clean models , which suggests regulating the
gradient norm during fine-tuning. Furthermore, we also provide insights into these two observations
from the perspective of neuron activations, which may be a valuable contribution to the field of
backdoor defense. Extensive experiments demonstrate the superiority of our method over recent
defenses. One current challenge as well as promising future work involves defending against backdoor
attacks without any accessible clean data. The data generation techniques and data-free techniques
may be the potential solutions.

6 Acknowledgements

This work was supported in part by the Guangzhou Municipal Science and Technology Project: Basic
and Applied Basic research projects (No. 2024A04J4232), National Natural Science Foundation of
China (No. 62101351), Guangzhou-HKUST(GZ) Joint Funding Program (Grant No.2023A03J0008),
Education Bureau of Guangzhou Municipality, and Hetao Shenzhen-Hong Kong Science and Tech-
nology Innovation Cooperation Zone Project (No.HZQSWS-KCCYB-2024016).

References
[1] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to

human-level performance in face verification. In CVPR, 2014.

[2] Divyarajsinh N Parmar and Brijesh B Mehta. Face recognition methods applications. arXiv preprint
arXiv:1403.0485, 2014.

[3] Ratnawati Ibrahim and Zalhan Mohd Zin. Study of automated face recognition system for office door
access control application. In ICCSN, 2011.

10



[4] Yixiong Chen, Chunhui Zhang, Li Liu, Cheng Feng, Changfeng Dong, Yongfang Luo, and Xiang Wan.
Uscl: pretraining deep ultrasound image diagnosis model through video contrastive representation learning.
In MICCAI, 2021.

[5] Yixiong Chen, Li Liu, Jingxian Li, Hua Jiang, Chris Ding, and Zongwei Zhou. Metalr: Meta-tuning of
learning rates for transfer learning in medical imaging. In MICCAI, 2023.

[6] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, and Kazuya Takeda. A survey of autonomous driving:
Common practices and emerging technologies. IEEE access, 2020.

[7] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In CVPR, 2020.

[8] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring
attacks on deep neural networks. IEEE Access, 2019.

[9] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor attack with
sample-specific triggers. In ICCV, 2021.

[10] Baoyuan Wu, Li Liu, Zihao Zhu, Qingshan Liu, Zhaofeng He, and Siwei Lyu. Adversarial machine
learning: A systematic survey of backdoor attack, weight attack and adversarial example. arXiv preprint
arXiv:2302.09457, 2023.

[11] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Pre-activation distributions expose backdoor neurons.
In NeurIPS, 2022.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks.
In ECCV, 2016.

[13] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[14] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning:
Training clean models on poisoned data. In NeurIPS, 2021.

[15] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee,
Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by activation
clustering. arXiv preprint arXiv:1811.03728, 2018.

[16] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In NeurIPS, 2018.

[17] Xiangyu Qi, Tinghao Xie, Jiachen T Wang, Tong Wu, Saeed Mahloujifar, and Prateek Mittal. Towards a
proactive {ML} approach for detecting backdoor poison samples. In USENIX Security, 2023.

[18] Min Liu, Alberto Sangiovanni-Vincentelli, and Xiangyu Yue. Beating backdoor attack at its own game. In
ICCV, 2023.

[19] Weixin Chen, Baoyuan Wu, and Haoqian Wang. Effective backdoor defense by exploiting sensitivity of
poisoned samples. In NeurIPS, 2022.

[20] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In SP, 2019.

[21] Yi Zeng, Si Chen, Won Park, Zhuoqing Mao, Ming Jin, and Ruoxi Jia. Adversarial unlearning of backdoors
via implicit hypergradient. In International Conference on Learning Representations, 2021.

[22] Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang. Reconstruc-
tive neuron pruning for backdoor defense. arXiv preprint arXiv:2305.14876, 2023.

[23] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. In NeurIPS, 2020.

[24] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack. arXiv preprint
arXiv:2102.10369, 2021.

[25] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[26] Mauro Barni, Kassem Kallas, and Benedetta Tondi. A new backdoor attack in cnns by training set
corruption without label poisoning. In ICIP, 2019.

11



[27] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and Tom
Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. In NeurIPS, 2018.

[28] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang Jiang. Clean-label
backdoor attacks on video recognition models. In CVPR, 2020.

[29] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira: Learnable, imperceptible and robust backdoor
attacks. In ICCV, 2021.

[30] Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In USENIX Security,
2021.

[31] Khoa Doan, Yingjie Lao, and Ping Li. Backdoor attack with imperceptible input and latent modification.
In NeurIPS, 2021.

[32] Kunzhe Huang, Yiming Li, Baoyuan Wu, Zhan Qin, and Kui Ren. Backdoor defense via decoupling the
training process. In ICLR, 2022.

[33] Junfeng Guo, Ang Li, and Cong Liu. Aeva: Black-box backdoor detection using adversarial extreme value
analysis. arXiv preprint arXiv:2110.14880, 2021.

[34] Wei Jiang, Xiangyu Wen, Jinyu Zhan, Xupeng Wang, Ziwei Song, and Chen Bian. Critical path-based
backdoor detection for deep neural networks. TNNLS, 2022.

[35] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and Heiko Hoffmann. Universal litmus patterns:
Revealing backdoor attacks in cnns. In CVPR, 2020.

[36] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detecting ai trojans using
meta neural analysis. In SP, 2021.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against backdooring
attacks on deep neural networks. In RAID, 2018.

[38] Runkai Zheng, Rongjun Tang, Jianze Li, and Li Liu. Data-free backdoor removal based on channel
lipschitzness. In ECCV, 2022.

[39] Tianlong Chen, Zhenyu Zhang, Yihua Zhang, Shiyu Chang, Sijia Liu, and Zhangyang Wang. Quarantine:
Sparsity can uncover the trojan attack trigger for free. In CVPR, 2022.

[40] Jiyang Guan, Zhuozhuo Tu, Ran He, and Dacheng Tao. Few-shot backdoor defense using shapley
estimation. In CVPR, 2022.

[41] Dongxian Wu and Yisen Wang. Adversarial neuron pruning purifies backdoored deep models. In NeurIPS,
2021.

[42] Shuwen Chai and Jinghui Chen. One-shot neural backdoor erasing via adversarial weight masking. In
NeurIPS, 2022.

[43] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention distillation:
Erasing backdoor triggers from deep neural networks. arXiv preprint arXiv:2101.05930, 2021.

[44] Shaokui Wei, Mingda Zhang, Hongyuan Zha, and Baoyuan Wu. Shared adversarial unlearning: Backdoor
mitigation by unlearning shared adversarial examples. Advances in Neural Information Processing Systems,
36, 2024.

[45] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 141–159. IEEE, 2021.

[46] Xiong Xu, Kunzhe Huang, Yiming Li, Zhan Qin, and Kui Ren. Towards reliable and efficient backdoor
trigger inversion via decoupling benign features. In The Twelfth International Conference on Learning
Representations, 2024.

[47] Shaokui Wei, Mingda Zhang, Hongyuan Zha, and Baoyuan Wu. Shared adversarial unlearning: Backdoor
mitigation by unlearning shared adversarial examples. In NeurIPS, 2023.

[48] Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving generalization
in deep learning. In International Conference on Machine Learning, pages 26982–26992. PMLR, 2022.

12



[49] Yi Zeng, Won Park, Z Morley Mao, and Ruoxi Jia. Rethinking the backdoor attacks’ triggers: A frequency
perspective. In ICCV, 2021.

[50] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
Trojaning attack on neural networks. In NDSS Symposium, 2018.

[51] Baoyuan Wu, Hongrui Chen, Mingda Zhang, Zihao Zhu, Shaokui Wei, Danni Yuan, and Chao Shen.
Backdoorbench: A comprehensive benchmark of backdoor learning. In NeurIPS Datasets and Benchmarks
Track, 2022.

[52] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.

[53] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign recognition
benchmark: a multi-class classification competition. In IJCNN, 2011.

[54] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[55] Mingli Zhu, Shaokui Wei, Li Shen, Yanbo Fan, and Baoyuan Wu. Enhancing fine-tuning based backdoor
defense with sharpness-aware minimization. In ICCV, 2023.

13



Appendix Outline

This appendix is organized as follows:

• In Section A, we detail the algorithm of TSBD.
• In Section B, we detail the approximation process of the fine-tuning optimizations.
• In Section C, we introduce the implementation details, including the details of datasets,

models, attacks, and defenses with our proposed method.
• In Section D, we compare the defense results on the GTSRB dataset.
• In Section E, we compare the defense results on VGG19-BN structure.
• In Section F, we show the effectiveness of using NWC in other defense.
• In Section G, we show the comprehensive results with different neuron ratios and weight

ratios.
• In Section H, we discuss different clean data ratios on the defense performance.
• In Section I, we discuss different fine-tuning learning rates on the defense performance.
• In Section J, we evaluate the influence of using our method on the clean model.
• In Section K, we test the performance of scaled-up experiments on the ViT model.
• In Section L, we show the computational overhead in terms of runtime.

A Detailed Algorithm of TSBD

To clearly illustrate our proposed method, we provide the detailed algorithm of the entire process of
TSBD, which is shown in Algorithm 1.

B Details of the Approximated Fine-Tuning Optimizations

As illustrated in Section 3.4, our proposed Activaness-aware fine-tuning involves calculating an
additional gradient-norm regulation in the loss function, making it computationally inefficient.
Therefore, we adopt the approximation scheme from [48] during practical optimization. Here, we
provide the details of the approximated fine-tuning optimization. The approximation deviation is
shown in the following. Specifically, for each step of the gradient calculation, we formulate it as:

∇θ̂Lft(θ̂) = ∇θ̂Lce(θ̂) + λ · ∇2
θ̂
Lce(θ̂)

∇θ̂Lce(θ̂)

∥∇θ̂Lce(θ̂)∥2

≈ ∇θ̂Lce(θ̂) +
λ

r
· (∇θ̂Lce(θ̂ + r

∇θ̂Lce(θ̂)

∥∇θ̂Lce(θ̂)∥2
)−∇θ̂Lce(θ̂))

= (1− α)∇θ̂Lce(θ̂) + α∇θ̂Lce(θ̂ + r
∇θ̂Lce(θ̂)

∥∇θ̂Lce(θ̂)∥2
).

(6)

To avoid the Hessian computation, the second term is further approximated through an additional
parameter update:

∇θ̂Lce(θ̂ + r
∇θ̂Lce(θ̂)

∥∇θ̂Lce(θ̂)∥2
) ≈ ∇θ̂Lce(θ̂)|

θ̂=θ̂+r
∇

θ̂
Lce(θ̂)

∥∇
θ̂
Lce(θ̂)∥2

. (7)

Based on the approximation, the practical fine-tuning process is illustrated in Algorithm 2.

C More Implementation Details

We further illustrate the implementations here, covering the details of datasets, models, attacks, and
defenses.

Dataset Details. The experiments are conducted on CIFAR-10 [13], Tiny ImageNet [52], and
GTSRB [53].

14



BadNets Blended Input-aware LF SIG SSBA Trojan WaNet

Figure 7: Examples of 8 backdoor-attack triggers on the same image of CIFAR-10.

• CIFAR-10. It contains 60,000 32×32 colored images with 10 classes. Each class owns 6,000
images, consisting of 5,000 for training and 1,000 for testing.

• Tiny ImageNet. It is a subset of the full ImageNet, consisting of 100,000 training data and
10,000 testing data. There are 200 classes in total and 500 images per class for training. All
images are 64×64 with color.

• GTSRB. GTSRB (German Traffic Sign Recognition Benchmark) contains 39,209 images
for training and 12,630 images for testing with 43 classes. All images are 32×32 colored
images.

Models. We choose PreAct-ResNet18 [12] and VGG19-BN [54] as the target models to conduct
attacks and defenses following the default configurations in BackdoorBench [51]. Both of them
contain convolutional layers and batch normalization layers, which can be implemented with all
kinds of defense methods, e.g., FP [37] for the last convolutional layer and ANP [41] for the batch
normalization layers. The extensive experiments on ablation study and further analysis are conducted
on PreAct-ResNet18 by default.

Attack Details. We conduct 8 SOTA attacks for comprehensive testing, consisting of BadNets [8],
Blended [25], Input-aware [23], LF [49], SIG [26], SSBA [9], Trojan [50] and WaNet [24]. All the
attacks follow BackdoorBench’s default configurations. Figure 7 shows all 8 attack triggers with
the same example of CIFAR-10. Specifically, for BadNets, a 3×3 white square is patched at the
bottom-right corner of the images for CIFAR-10 and GTSRB, and a 6×6 white square is for Tiny
ImageNet. For Blended, a Hello-Ketty image is blended in the images with a 0.2 transparent ratio.
We choose the 10% poisoning ratio and 0th label as the default setting to conduct attacks and test all
defenses following the previous works [55, 47]. 5% and 1% poisoning ratios are conducted only for
testing our proposed method.

Defense Details. We conduct 8 SOTA defenses for a comprehensive comparison, containing Fine-
tuning (FT), Fine-pruning (FP) [37], NAD [43], NC [20], ANP [41], CLP [38], i-BAU [21], and
RNP [22]. The defenses also follow the BackdoorBench’s default configurations. Note that we
compare only the post-training defenses with 5% benign data provided. The learning rate for all
methods is set to 10−2, the batch size is set to 256. For RNP, the clean data ratio is set to 0.5% since
we found that it failed to defend well under the 5% setting. For our proposed method, we set the
default learning rates for unlearning as 10−4 and fine-tuning as 10−2. The unlearning is stopped when
clean accuracy drops to or below 10%. The default fine-tuning epoch is set to 20. The default neuron
ratio n and weight ratio m are set to 0.15 and 0.7, respectively. We follow the suggested settings of
hyper-parameters r = 0.05 and α = 0.7 for fine-tuning [48]. Other settings are set following the
default BackdoorBench configuration.

All experiments are conducted on a server with GPU RTX 3090 and CPU AMD EPYC 7543 32-Core
Processor. These experiments were successfully executed using less than 24G of memory on a single
GPU card.

D Evaluations on GTSRB dataset

We validate the effectiveness of our proposed method in the dataset GTSRB other than CIFAR-10
and Tiny ImageNet. Table 6 shows the corresponding performance on PreAct-ResNet18 with 10%
poisoning ratio and 5% clean data ratio. We can observe that TSBD performs consistently with the
lowest average ASR and the largest average DER as in CIFAR-10. Most of the defenses also fail
in the strong attacks Blended, LF, and Trojan, while NC performs the second best with comparable
average ASR and DER. Compared to the other two datasets, TSBD performs much superior with

15



Algorithm 1 Two-Stage Backdoor Defense
Input: Small clean set Dc, backdoored model with parameter θbd, max iteration number T , neuron
ratio n% and weight ratio m% for reinitialization
Output: Clean model with parameter θ∗

1: /* Neuron Weight Change-based Backdoor Reinitialization */
// a. Clean Unlearning

2: while Clean accuracy on θul > 10% do
3: Sample a mini-batch Bc from Dc

4: θul ← maxθbd
L (f (Bc;θbd))

5: end while
// b. Neuron Weight Change Calculation.

6: Record subweight changes and calculate NWC by Equation (2) w.r.t. θul and θbd

// c. Zero Reinitialization.
7: Obtain and sort the weight changes from the top-n% neurons w.r.t. NWC
8: θ̂ ← reinitialize m% of the most-changing weights into zero on θbd

9: /* Activeness-aware Fine-tuning */
10: for t = 1 to T do
11: Sample a mini-batch Bc from Dc

12: Update θ̂ by Equation (4) with the approximated Equation (6)
13: end for
14: θ∗ ← fine-tuned θ̂

Algorithm 2 The Approximated Optimization of Activeness-aware Fine-tuning

Input: Small clean set Dc, the reinitialized model with parameter θ̂, max iteration number T ,
approximation scalar r, balance coefficient α
Output: Clean model with parameter θ∗

1: /* Activeness-aware Fine-tuning */
2: for t = 1 to T do
3: Sample a mini-batch Bc from Dc

4: Calculate the gradient g1 = ∇θ̂Lce(θ̂) with Bc
5: Temporally update the current parameter θ̂

′
= θ̂ + r

∇θ̂Lce(θ̂)

∥∇θ̂Lce(θ̂)∥2

6: Calculate the gradient g2 = ∇
θ̂
′Lce(θ̂

′
) with Bc

7: Calculate the final gradient g = (1− α)g1 + αg2
8: Update the parameter θ̂ based on g
9: end for

10: θ∗ ← fine-tuned θ̂

most ASRs lower than 0.5% except for Blended attack. This suggests that TSBD might perform
better when the model is learned with the input images with similar characteristics.

E Performance on VGG19-BN model structure

Except for PreAct-ResNet18, we also test another model, VGG19-BN. The performance on CIFAR-
10 with 10% poisoning ratio and 5% clean data ratio is illustrated in Table 7. We follow similar
settings in PreAct-ResNet18 on CIFAR-10, conducting 8 attacks and comparing our method with 8
defenses. The performance is also evaluated by ACC, ASR, and DER. As shown in the table, TSBD
owns SOTA performance on VGG19-BN with the best average ACC and second-best average ASR
and DER. Most of the other performances are in a similar pattern as on PreAct-ResNet18. Although
ANP performs almost the best in ASR and DER for all attacks, it damages the corresponding ACC as
well, especially for the WaNet attacked model, where ACC decreases from 84.58% to 78.04%. On
the contrary, our methods succeed in most attacks with high ACC and comparable ASR.

16



Table 6: Comparison with the SOTA defenses on GTSRB dataset with PreAct-ResNet18 (%).
Backdoor
Attacks

No Defense FT FP [37] NAD [43] NC [20]
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 97.24 59.25 - 98.73 5.09 77.08 98.21 0.09 79.58 98.69 0.63 79.31 97.48 0.01 79.62
Blended [25] 98.58 99.99 - 98.57 100.00 50.00 98.38 100.00 49.90 98.61 100.00 50.00 97.76 8.03 95.57

Input-aware [23] 97.26 92.74 - 98.40 29.81 81.46 98.08 2.32 95.21 98.27 40.65 76.04 98.55 0.01 96.36
LF [49] 97.93 99.57 - 98.01 79.98 59.80 97.59 99.70 49.83 98.14 51.83 73.87 97.97 1.34 99.11

SSBA [9] 97.98 99.56 - 97.92 99.10 50.20 97.75 99.46 49.94 97.95 99.39 50.07 97.72 0.29 99.50
Trojan [50] 98.57 100.00 - 98.54 0.02 99.97 98.31 71.30 64.22 98.20 0.11 99.76 87.53 0.83 94.07
WaNet [24] 97.74 94.25 - 98.54 0.29 96.98 97.62 88.07 53.03 98.61 0.56 96.84 98.25 0.00 97.12

Average 97.90 92.19 - 98.39 44.90 73.64 97.99 65.85 63.10 98.35 41.88 75.13 96.47 1.50 94.48
Backdoor
Attacks

ANP [41] CLP [38] i-BAU [21] RNP [22] TSBD (Ours)
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 96.89 0.06 79.42 97.67 66.85 50.00 96.47 0.02 79.23 97.69 0.67 79.29 98.38 0.00 79.63
Blended [25] 98.75 99.82 50.09 98.48 100.00 49.95 92.35 86.35 53.71 98.84 99.64 50.18 95.57 5.94 95.52

Input-aware [23] 99.14 0.00 96.37 98.64 96.01 50.00 97.09 0.52 96.03 97.17 0.00 96.32 99.23 0.29 96.22
LF [49] 97.80 81.38 59.03 97.70 99.50 49.92 95.78 16.15 90.64 97.91 99.06 50.25 96.83 0.03 99.22

SSBA [9] 97.86 98.93 50.26 98.08 99.24 50.16 96.14 1.88 97.92 97.78 99.43 49.96 96.06 0.10 98.77
Trojan [50] 98.08 0.00 99.75 98.17 95.20 52.20 95.98 0.02 98.70 98.56 100.00 50.00 97.16 0.15 99.22
WaNet [24] 97.08 0.00 96.80 7.16 100.00 4.71 96.72 0.00 96.62 96.77 0.00 96.64 98.80 0.03 97.11

Average 97.94 40.03 75.96 85.13 93.83 43.85 95.79 14.99 87.55 97.81 56.97 67.52 97.43 0.93 95.10

Table 7: Comparison with the SOTA defenses on CIFAR-10 dataset with VGG19-BN(%).
Backdoor
Attacks

No Defense FT FP [37] NAD [43] NC [20]
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 90.42 94.43 - 88.19 27.59 82.31 88.96 10.23 91.37 86.48 5.47 92.51 89.21 11.31 90.96
Blended [25] 91.91 99.50 - 90.08 86.82 55.42 89.95 87.46 55.04 88.60 83.86 56.17 90.07 83.33 57.16

Input-aware [23] 88.66 94.58 - 91.56 13.08 90.75 91.35 6.08 94.25 91.00 14.11 90.23 89.70 97.02 50.00
LF [49] 83.28 13.83 - 87.67 1.82 56.01 88.31 1.23 56.30 83.72 1.14 56.34 86.64 1.36 56.24
SIG [26] 83.48 98.87 - 88.01 4.28 97.29 88.34 15.26 91.81 86.07 7.39 95.74 83.48 98.87 50.00
SSBA [9] 90.85 95.11 - 89.26 70.22 61.65 89.28 65.80 63.87 88.33 56.64 67.97 90.85 95.11 50.00

Trojan [50] 91.57 100.00 - 89.60 7.17 95.43 89.74 50.90 73.64 87.29 2.30 96.71 89.28 7.76 94.98
WaNet [24] 84.58 96.49 - 91.35 5.72 95.39 91.12 4.74 95.88 90.73 10.33 93.08 91.20 6.88 94.81

Average 88.09 86.60 - 89.47 27.09 79.28 89.63 30.21 77.77 87.78 22.65 81.10 88.80 50.20 68.02
Backdoor
Attacks

ANP [41] CLP [38] i-BAU [21] RNP [22] TSBD (Ours)
ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 88.39 0.48 95.96 89.38 6.61 93.39 86.01 2.28 93.87 79.90 0.12 91.90 88.76 3.58 94.60
Blended [25] 89.19 4.77 96.01 90.66 98.59 49.83 87.58 69.90 62.64 26.92 43.20 45.66 90.51 6.68 95.71

Input-aware [23] 86.56 0.71 95.88 87.54 2.66 95.40 88.29 69.56 62.33 60.76 87.33 39.67 91.52 13.29 90.64
LF [49] 84.33 0.08 56.88 81.99 14.61 49.36 87.68 1.47 56.18 79.89 0.00 55.22 88.71 1.77 56.03
SIG [26] 82.69 0.00 99.04 82.12 98.68 49.41 83.41 5.37 96.72 35.36 0.01 75.37 88.14 2.58 98.14
SSBA [9] 89.81 1.34 96.36 85.82 98.56 47.49 87.56 22.26 84.78 69.02 0.03 86.62 88.97 3.41 94.91

Trojan [50] 89.39 0.00 98.91 90.56 99.70 49.65 88.63 8.23 94.41 53.40 57.30 52.27 90.22 6.63 96.01
WaNet [24] 78.04 0.03 94.96 88.46 1.75 97.37 89.76 1.61 97.44 87.90 81.03 57.73 91.28 2.50 97.00

Average 86.05 0.93 91.75 87.07 52.64 66.49 87.37 22.58 81.05 61.64 33.63 63.05 89.76 5.06 90.38

F Effectiveness of using NWC in Other Defense

As illustrated in Section 4.3, it is effective to utilize NWC order in gauging the backdoor strength. To
further test its ability to improve other defenses, we substitute the average neuron activation in FP to
NWC (denoted as NWC-FP) and conduct the experiments on the default settings in PreAct-ResNet18
on CIFAR-10. Different from zero reinitialization, the pruned neurons will not be updated on the
following fine-tuning. The performances of 8 attacks are shown in Figure 8. We can investigate that,
by using NWC in FP, performances on ASR and DER are improved on most of the attacks, with few
effects on ACC. It exhibits the potential of using our NWC in more defense methods.

G Performance with Different Neuron Ratio and Weight Ratio

Section 4.4 shows some of the performances with different neuron ratios and weight ratios and verifies
the robustness of the hyper-parameter tuning in our method. Here, we exhibit the full results under all

BadNets
Blended

Input-aware LF SIG
SSBA

Tro
jan

WaNet
0

20

40

60

80

AC
C 

(%
)

FP
NWC-FP

BadNets
Blended

Input-aware LF SIG
SSBA

Tro
jan

WaNet
0

20

40

60

80

100

AS
R 

(%
)

FP
NWC-FP

BadNets
Blended

Input-aware LF SIG
SSBA

Tro
jan

WaNet
0

20

40

60

80

100

DE
R 

(%
)

FP
NWC-FP

Figure 8: Performance comparisons between the original FP and the FP with NWC (NWC-FP) under
8 attacks. Left: ACC; Middle: ASR; Right: DER.

17



1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNets

ACC
ASR

1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Blended

ACC
ASR

1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Input-aware

ACC
ASR

1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LF

ACC
ASR

1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SIG

ACC
ASR

1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SSBA

ACC
ASR

1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Trojan

ACC
ASR

1 5 1015202530 40 50 70 90
Neuron Ratio (n%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

WaNet

ACC
ASR

Figure 9: Performance with different neuron ratios under 8 attacks.

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNets

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Blended

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Input-aware

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

LF

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SIG

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SSBA

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Trojan

ACC
ASR

40 50 60 70 80
Weight Ratio (m%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

WaNet

ACC
ASR

Figure 10: Performance with different weight ratios under 8 attacks.

8 attacks in PreAct-ResNet18 on CIFAR-10 with 10% poisoning ratio. Figure 9 and Figure 10 exhibit
the tuning of neuron ratio and weight ratio, respectively. All performances are as good as expected.

H Evaluations with Different Clean Data Ratios

We are here to test the performance of TSBD under different clean data ratios. The performance
on CIFAR-10 and PreAct-ResNet18 with 10% poisoning ratio is illustrated in Table 8. Except
for the default 5% clean data ratio, we also test the performance under 10%, 1%, and 0.5%. We
can observe that a larger ratio of clean data can always bring better performance in ACC, e.g.,
92.18% > 91.70% > 89.63% > 86.42% on average values of the four ratios in decreasing order,
respectively. For the defense performance in ASR, all of them can successfully defend the attacks to
under 10%, and large clean data ratios can achieve promising DERs. Overall, TSBD is robust to the
clean data ratio, with only 0.5% clean data can also defend most tested defenses successfully.

I Evaluations with Different Learning Rates on Fine-tuning

We test the performance of our proposed method under different learning rates on fine-tuning. Table 9
illustrates the results. Specifically, with the same settings on CIFAR-10 and PreAct-ResNet18 with
10% poisoning ratio and 5% clean data ratio, we test the performance when the learning rate is set
to 0.1, 0.01, 0.001, and 0.0001, where 0.01 is our default setting in the previous experiments. We
can observe that the default learning rate of 0.01 is the most suitable one chosen for defense, which
can achieve SOTA ASR and DER on average with comparable average ACC. Besides, setting the
learning rate to 0.001 can perform the best in ACC, while making it fail on some strong attacks, e.g.,

18



Table 8: Performance with Different Clean Data Ratios on CIFAR-10 dataset with PreAct-ResNet18
(%).

Clean Data Ratio - (No Defense) 10% (TSBD) 5% (TSBD) 1% (TSBD) 0.5% (TSBD)
Attacks ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 91.32 95.03 - 91.44 0.82 97.11 90.72 1.37 96.53 87.42 2.00 94.57 81.13 1.18 91.83
Blended [25] 93.47 99.92 - 91.76 5.79 96.21 91.61 2.61 97.73 89.36 1.32 97.25 86.68 4.80 94.17

Input-aware [23] 90.67 98.26 - 93.65 1.56 98.35 93.06 1.94 98.16 91.54 2.62 97.82 89.51 1.43 97.83
LF [49] 93.19 99.28 - 92.24 4.62 96.85 91.20 2.64 97.32 89.58 8.41 93.63 88.49 5.00 94.79
SIG [26] 84.48 98.27 - 90.41 1.01 98.63 90.41 1.27 98.50 88.53 0.96 98.65 83.55 2.44 97.45
SSBA [9] 92.88 97.86 - 91.94 2.14 97.39 91.57 1.66 97.44 89.24 1.71 96.25 84.46 0.70 94.37

Trojan [50] 93.42 100.00 - 92.37 7.00 95.98 91.76 5.06 96.64 90.18 4.66 96.05 87.98 7.21 93.68
WaNet [24] 91.25 89.73 - 93.66 0.98 94.38 93.26 0.88 94.43 91.19 1.24 94.22 89.57 0.69 93.68

Average 91.34 97.29 - 92.18 2.99 96.86 91.70 2.18 97.09 89.63 2.87 96.05 86.42 2.93 94.72

Table 9: Performance with Different Learning Rates of Fine-tuning on CIFAR-10 dataset with
PreAct-ResNet18 (%).

Learning Rate - (No Defense) 0.1 (TSBD) 0.01 (TSBD) 0.001 (TSBD) 0.0001 (TSBD)
Attacks ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑ ACC ↑ ASR ↓ DER ↑

BadNets [8] 91.32 95.03 - 78.11 4.19 88.82 90.72 1.37 96.53 91.62 2.10 96.47 91.44 4.87 95.08
Blended [25] 93.47 99.92 - 74.79 0.57 90.34 91.61 2.61 97.73 92.85 15.19 92.06 92.88 29.33 85.00

Input-aware [23] 90.67 98.26 - 88.70 3.00 96.64 93.06 1.94 98.16 93.22 2.05 98.10 91.46 0.64 98.81
LF [49] 93.19 99.28 - 79.38 3.50 90.98 91.20 2.64 97.32 92.90 11.98 93.50 92.79 37.03 80.92
SIG [26] 84.48 98.27 - 73.15 3.68 91.63 90.41 1.27 98.50 90.87 4.81 96.73 89.23 14.47 91.90
SSBA [9] 92.88 97.86 - 79.90 4.21 90.33 91.57 1.66 97.44 92.64 9.26 94.18 92.72 15.27 91.21

Trojan [50] 93.42 100.00 - 73.83 32.87 73.77 91.76 5.06 96.64 92.75 10.76 94.29 92.73 21.07 89.12
WaNet [24] 91.25 89.73 - 87.61 1.48 92.31 93.26 0.88 94.43 93.11 0.79 94.47 91.36 0.31 94.71

Average 91.34 97.29 - 79.43 6.69 89.35 91.70 2.18 97.09 92.50 7.12 94.97 91.83 15.37 90.84

Blended and LF. On the contrary, setting the learning rate to 0.1 will hurt the ACC greatly, which
may imply that clean knowledge cannot be re-learned properly.

J Evaluations on Clean Model

To test whether our defense method will hurt the performance of the clean model if no backdoor
attack occurs, we compare it with several defense methods on CIFAR-10 and Tiny ImageNet datasets
on PreAct-ResNet18. Figure 11 illustrates the results, where the ACC and ASR on the original clean
model, ANP, and RNP, are used for comparison. We can observe that most of the defense methods
(including ours) will barely damage the clean model though there is no backdoor occurs, except for
RNP on Tiny ImageNet. It exhibits the potential to largely employ our defense methods in real-world
AI systems.

K Performance on Scaled-Up Experiments

To further verify the scalability of our method, we evaluate its performance on a ViT-b-16 model with
the CIFAR10 dataset following the basic settings in Section 4.1, e.g., the poisoning ratio is set to 10%
and the target label is set to 0. The results are shown in Table 10. The results demonstrate that TSBD
performs effectively on the scaled-up model, achieving a low ASR and acceptable ACC. In contrast,
CLP and ANP fail completely with ASR still at a high level, particularly for the WaNet attack.

L Computational Overhead

To show the computational overhead of TSBD, we record the average computational time of each
defense step and its practical runtime compared to other defense methods. Table 11 exhibits the
computational time of TSBD, including Clean Unlearning, NWC Calculation, Zero Reinitialization,
and Activeness-Aware Fine-Tuning. We observe that the main computational overhead lies in the fine-
tuning process. In contrast, the time required for clean unlearning does not increase proportionally
with dataset complexity. This means that TSBD is as efficient as other fine-tuning-based methods.
Moreover, we present a practical runtime comparison with other SOTA defenses in Table 12, including
the loading and testing time needed in practice. As we can see, TSBD is faster than most of the
existing methods.

19



Clean Model
ANP RNP

TSBD
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

(a) CIFAR-10

ACC
ASR

Clean Model
ANP RNP

TSBD
0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

(b) Tiny ImageNet

ACC
ASR

Figure 11: Performance of Defenses on Clean Model.

Table 10: Performance on CIFAR-10 with ViT-b-16 (%).

Attacks No Defense CLP [38] ANP [41] TSBD
ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓ ACC↑ ASR↓

Input-aware [23] 91.65 92.30 90.55 79.34 90.40 50.69 86.11 4.43
WaNet [24] 89.12 80.95 89.12 80.95 89.12 80.95 88.43 1.59

Table 11: Computational Time of Each Defense Step of TSBD
Defense Step CIFAR-10 Tiny ImageNet

Clean Unlearning 20.84s 17.90s
NWC Calculation 0.03s 0.03s

Zero Reinitialization 1.34s 1.29s
Activeness-Aware Fine-Tuning 21.08s 174.36s

Table 12: Practical Runtime Comparison on BackdoorBench
Datasets FT FP [37] ANP [41] NC [20] RNP [22] TSBD

CIFAR-10 358s 855s 505s 733s 123s 159s
Tiny-ImageNet 1649s 20429s 2578s 37101s 285s 269s

20



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope are accurately written in the Introduction Section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The last sentence of the Conclusion section clearly states the limitation and
potential solution.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

21



Justification: All the results are empirically illustrated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental settings are clearly illustrated in the Experiment section and
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22



Answer: [Yes]
Justification: All the data are open-sourced. The code is provided in Supplementary
Material, and will be publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All settings and details are provided in the Experiment section and Appendix
C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We strictly follow the basic settings in the open-sourced BackdoorBench [51],
which ensures the fairness of all the comparisons in the Experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources are included in Appendix C, and the official informa-
tion from BackdoorBench, since we follow their default settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly conform the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The experiment in Appendix K exhibits the positive societal impacts of
potentially employing our defense method without hurting the model performance in the
real-world AI system.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our defense method has only a positive impact on use.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All licenses are explicitly mentioned.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

25

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the documentation for the summit code in Supplementary Mate-
rial, and it will be publicly available.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26


	Introduction
	Related Work
	Backdoor Attack
	Backdoor Defense

	Methods
	Problem Formulation
	Neuron Weight Change & Suggestions Given by the Two Observations
	Further Investigations & Insights
	Two-Stage Backdoor Defense Framework

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Further Analysis

	Conclusion
	Acknowledgements
	Detailed Algorithm of TSBD
	Details of the Approximated Fine-Tuning Optimizations
	More Implementation Details
	Evaluations on GTSRB dataset
	Performance on VGG19-BN model structure
	Effectiveness of using NWC in Other Defense
	Performance with Different Neuron Ratio and Weight Ratio
	Evaluations with Different Clean Data Ratios
	Evaluations with Different Learning Rates on Fine-tuning
	Evaluations on Clean Model
	Performance on Scaled-Up Experiments
	Computational Overhead

