
CtRL-Sim: Reactive and Controllable Driving Agents
with Offline Reinforcement Learning

Luke Rowe∗1,2, Roger Girgis∗1,3,6, Anthony Gosselin1,3, Bruno Carrez1,
Florian Golemo1, Felix Heide4,6, Liam Paull1,2,5, Christopher Pal1,3,5

1Mila, 2Université de Montréal, 3Polytechnique Montréal, 4Princeton University,
5CIFAR AI Chair, 6Torc Robotics

https://montrealrobotics.ca/ctrlsim

Abstract: Evaluating autonomous vehicle stacks (AVs) in simulation typically
involves replaying driving logs from real-world recorded traffic. However, agents
replayed from offline data are not reactive and hard to intuitively control. Existing
approaches address these challenges by proposing methods that rely on heuristics
or generative models of real-world data but these approaches either lack realism
or necessitate costly iterative sampling procedures to control the generated be-
haviours. In this work, we take an alternative approach and propose CtRL-Sim,
a method that leverages return-conditioned offline reinforcement learning (RL) to
efficiently generate reactive and controllable traffic agents. Specifically, we pro-
cess real-world driving data through a physics-enhanced Nocturne simulator to
generate a diverse offline RL dataset, annotated with various rewards. With this
dataset, we train a return-conditioned multi-agent behaviour model that allows for
fine-grained manipulation of agent behaviours by modifying the desired returns
for the various reward components. This capability enables the generation of a
wide range of driving behaviours beyond the scope of the initial dataset, including
adversarial behaviours. We show that CtRL-Sim can generate realistic safety-
critical scenarios while providing fine-grained control over agent behaviours.

Keywords: Autonomous Driving, Simulation, Offline Reinforcement Learning

1 Introduction

Recent advances in autonomous driving has enhanced their ability to safely navigate the complex-
ities of urban driving [1]. Despite this progress, ensuring operational safety in long-tail scenarios,
such as unexpected pedestrian behaviours and distracted driving, remains a significant barrier to
widespread adoption. Simulation has emerged as a promising tool for efficiently validating the
safety of autonomous vehicles (AVs) in these long-tail scenarios. However, a core challenge in de-
veloping a simulator for AVs is the need for other agents within the simulation to exhibit realistic
and diverse behaviours that are reactive to the AV, while being easily controllable. The traditional
approach for evaluating AVs in simulation involves fixing the behaviour of agents to the behaviours
exhibited in pre-recorded driving data. However, this testing approach does not allow the other
agents to react to the AV, which yields unrealistic interactions between the AV and the other agents.

To address the issues inherent in non-reactive log-replay testing, prior work has proposed rule-based
methods [2, 3] to enable reactive agents. However, the behaviour of these rule-based agents often
lacks diversity and is unrealistic. More recently, generative models learned from real-world data
have been proposed to enhance the realism of simulated agent behaviours [4, 5, 6, 7, 8, 9]. While
these methods produce more realistic behaviours, they are either not easily controllable [4, 5, 9] or
require costly sampling procedures to control the agent behaviours [10, 8, 7, 11, 12].

∗Denotes equal contribution. Corresponding email: luke.rowe@mila.quebec

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://montrealrobotics.ca/ctrlsim
mailto:luke.rowe@mila.quebec

Figure 1: CtRL-Sim allows for con-
trollable agent behaviour from ex-
isting datasets. This allows users to
create interesting edge cases for test-
ing and evaluating AV planners.

In this paper, we propose CtRL-Sim to address these lim-
itations of prior work. The CtRL-Sim framework uti-
lizes return-conditioned offline reinforcement learning (RL)
to enable reactive, closed-loop, controllable, and prob-
abilistic behaviour simulation within a physics-enhanced
Nocturne [13] environment. We process scenes from the
Waymo Open Motion Dataset [14] through Nocturne to
curate an offline RL dataset for training that is annotated
with reward terms such as “vehicle-vehicle collision” and
“goal achieved”. We propose a return-conditioned multi-
agent autoregressive Transformer architecture [15] within
the CtRL-Sim framework to imitate the driving behaviours
in the curated dataset. We then leverage exponential tilt-
ing of the predicted return distribution [16] as a simple
yet effective mechanism to control the simulated agent be-
haviours. While [16] exponentially tilts towards more op-
timal outcomes for the task of reward-maximizing control,
we instead propose to tilt in either direction to provide con-
trol over both good and bad simulated driving behaviours.

We show examples of how CtRL-Sim can be used to generate counterfactual scenes when expo-
nentially tilting the different reward axes in Figure 1. For controllable generation, CtRL-Sim simply
requires specifying a tilting coefficient along each reward axis, which circumvents the costly iterative
sampling required by prior methods. CtRL-Sim scenarios are simulated within our physics-extended
Nocturne environment. We summarize our main contributions: 1. We propose CtRL-Sim, which is,
to the best of our knowledge, the first framework applying return-conditioned offline RL for con-
trollable and reactive behaviour simulation. Specifically, CtRL-Sim employs exponential tilting of
factorized reward-to-go to control different axes of agent behaviours. 2. We propose an autoregres-
sive multi-agent encoder-decoder Transformer architecture within the CtRL-Sim framework that is
tailored for controllable behaviour simulation. 3. We extend the Nocturne simulator [13] with a
Box2D physics engine, which facilitates realistic vehicle dynamics and collision interactions.

We demonstrate the effectiveness of CtRL-Sim at producing controllable and realistic agent be-
haviours compared to prior methods. We also show that finetuning our model in Nocturne with
simulated adversarial scenarios enhances control over adversarial behaviours. CtRL-Sim has the
potential to serve as a useful framework for enhancing the safety and robustness of AV planner
policies through simulation-based training and evaluation.

2 CtRL-Sim

In this section, we present the proposed CtRL-Sim framework for behaviour simulation. We first
introduce CtRL-Sim in the single-agent setting, and subsequently show how it extends to the multi-
agent setting. Given the state of an agent st at timestep t and additional context (e.g., the road struc-
ture, the agent’s goal), the behaviour simulation model employs a driving policy π(at|st,m, sG) and
a forward transition model P(st+1|st, at) to control the agent in the scene. Note that at is the ac-
tion, m is the map context, and sG is the prescribed goal state. Using the physics-extended Nocturne
simulator, we have access to a physically-realistic forward transition model P . In this work, we are
interested in modelling the policy π(at|st,m, sG) such that we can both imitate the real distribution
of driving behaviour and control the agent’s behavior to generate long-tail counterfactual scenes.

2.1 Our Approach to Controllable Simulation via Offline RL

We consider the common offline RL setup where we are given a dataset D of trajectories τi =
{. . . , st, at, rt, . . .}, with states st ∈ S, actions at ∈ A and rewards rt. These trajectories are
generated using a (suboptimal) behaviour policy πB(at|st) executed in a finite-horizon Markov

2

(a) Model Overview (b) Inference Time Forward Pass

Figure 2: 2a (left) The agent and map data at t = 0 are encoded and fed through a Transformer
encoder as context for the decoder, similar to [9]. Trajectories are arranged first by agents, then by
timesteps, embedded, and fed through the decoder. For each agent, we encode (st, Gt, at) (i.e. state,
return-to-go, action) and we predict from these (Gt, at, st+1, . . . , sT). 2b (right) At inference time,
the state predicts the return-to-go. The return-to-go is tilted (i.e., reweighed to encourage specific
behaviors) and is used to predict the action, which in turn is used to predict the next states.

decision process. The return-to-go at timestep t is defined as the cumulative sum of scalar rewards
obtained in the trajectory from timestep t, Gt =

∑T
t′=t rt′ . The objective of offline RL is to learn

policies that perform as well as or better than the best agent behaviours observed in D.

The primary insight of this work is the observation that offline RL can be an effective way to perform
controllable simulation. That is, the policy distribution over actions can be tilted at inference time
towards desirable or undesirable behaviors by specifying different values of return-to-go Gt. This re-
quires a different formulation of the policy such that it is conditioned on the return π(at|st, Gt, sG)

2.
In Table 3, we outline how different approaches in offline RL have learned return-conditioned poli-
cies. In this work, we adopt an approach that learns the joint distribution of returns and actions of
an agent in a given dataset. Specifically, pθ(at, Gt|st, sG) = πθ(at|st, sG, Gt)pθ(Gt|st, sG). We
note that [17] found it helpful to also utilize a model-based return-conditioned policy, whereby the
future state is modelled as part of the joint distribution being learned. This is shown to provide a
useful regularizing signal for the policy, even though the future state prediction is not directly used at
inference time. In this work, we also found it helpful to regularize the learned policy by predicting
the full sequence of future states. The final distribution we are aiming to model is thus given by
pθ(st+1:T , at, Gt|st, sG) = pθ(st+1:T |st, sG, Gt, at)πθ(at|st, sG, Gt)pθ(Gt|st, sG).

At inference time, we obtain actions by first sampling returns Gt ∼ pθ(Gt|st, sG) and then sam-
pling actions at ∼ πθ(at|st, sG, Gt). This sampling procedure corresponds to the imitative pol-
icy since the sampled returns are obtained from the learned density that models the data distri-
bution. Following prior work in offline RL [16, 17, 18], we can also sample actions from an
exponentially-tilted policy distribution. This is done by sampling the returns from the tilted distri-
bution G′

t ∼ pθ(Gt|st, sG) exp(κGt), with G′
t being the tilted return-to-go and where κ represents

the inverse temperature; higher values of κ concentrate more density around the best outcomes or
higher returns, while negative values of κ concentrate on less favourable outcomes or lower returns.

We are interested in modelling and controlling the individual components of the reward function
rather than maximizing their weighted sum. For example, we would like to model an agent’s ability
to reach its goal, drive on the road, and avoid collisions. In general, given C reward components, our
objective is to learn policies that are conditioned on all its factored dimensions as this would grant
us control over each one at test time. This entails modelling separate return components as Gc

t ∼
pθ(G

c
t |st, sG) for each return component c. Applying this factorization, we reformulate the learned

policy to explicitly account for the conditioning on all return components πθ(at|st, sG, G1
t , . . . G

C
t).

At test time, each return component will be accompanied by its own inverse temperature κc to

2Note that we omit the additional context m for brevity.

3

enable control over each return component, which enables sampling actions that adhere to different
behaviours specified by {κ1, . . . , κC}, as shown in Algorithm 2 in Appendix B.

To implement our framework for behaviour simulation, we extend the approach presented above to
the multi-agent setting. Across all agents we have sets for the joint states St, goal states SG, actions
At, and returns-to-go Gt. The final multi-agent joint distribution we model is:

pθ(St+1:T ,At,Gt|St,SG) = pθ(St+1:T |St,SG,Gt,At)πθ(At|St,SG,Gt)pθ(Gt|St,SG), (1)

where the returns and actions from the previous timesteps are shared across agents, while at the
present timestep they are masked out so one can only observe one’s own return and action.

2.2 Multi-Agent Behaviour Simulation Architecture

In this section, we introduce the proposed architecture for multi-agent behaviour simulation within
the CtRL-Sim framework that parameterizes the multi-agent joint distribution presented in Equation
(1). We propose an encoder-decoder Transformer architecture [19], as illustrated in Figure 2, where
the encoder encodes the initial scene and the decoder autoregressively generates the trajectory rollout
for all agents in the scene.

Encoder To encode the initial scene, we first process the initial agent states and goals (s0, sG) and
the map context m, where s0 is the joint initial state of all agents and sG is the joint goal state of
all agents. Each agent i’s initial state information si0, which includes the position, velocity, heading,
and agent type, is encoded with an MLP. Similarly, each agent’s goal siG, which is represented as the
ground-truth final position, velocity, and heading, is also encoded with an MLP. We then concatenate
the initial state and goal embedding of each agent and embed them with a linear layer to get per-
agent embeddings of size d. We additionally apply an additive learnable embedding to encode the
agents’ identities across the sequence of agent embeddings. The map context is encoded using a
polyline map encoder, detailed more fully in Appendix F, which yields L road segment embeddings
of size d. The initial agent embeddings and road segment embeddings are then concatenated into a
sequence of length N + L and processed by a sequence of E Transformer encoder blocks.

Decoder The proposed decoder architecture models the joint distribution in Equation (1) as a se-
quence modelling problem, where we model the probability of the next token in the sequence con-
ditioned on all previous tokens pθ(xt|x<t) [15]. In this work, we consider trajectory sequences
of the form: x = ⟨. . . , (s1t , s1G), (G

1,1
t , . . . , GC,1

t), a1t , ..., (s
N
t , sNG), (G1,N

t , . . . , GC,N
t), aNt , . . . ⟩.

These sequences are an extension of the sequences considered in the Multi-Game Decision Trans-
former [16] to the multi-agent goal-conditioned setting with factorized returns. Unlike Decision
Transformer [15], our model predicts the return distribution and samples from it at inference time,
which enables flexible control over the agent behaviours and circumvents the need to specify an
expert return-to-go. We obtain state-goal tuple (sit, s

i
G) embeddings in the same way that (s0, sG)

are processed in the encoder. Following recent work that tokenizes driving trajectories [20, 9], we
discretize the actions and return-to-gos into uniformly quantized bins. We then embed the action and
return-to-go tokens with a linear embedding. To each input token, we additionally add two learnable
embeddings representing the agent identity and timestep, respectively. The tokenized sequence is
then processed by D Transformer decoder layers with a temporally causal mask that is modified to
ensure that the model is permutation equivariant to the agent ordering (see Appendix F for details).

Training Given a dataset of offline trajectories (Section 3), we train our model by sampling se-
quences of length H × N × 3, where H is the number of timesteps in the context. The state,
return-to-go, and action token embeddings output by the decoder are used to predict the next return
token, action token, and future state sequence, respectively. We train the return-to-go and action
headers with the standard cross-entropy loss function and the future state sequence header with an
L2 regression loss function. The final loss function is of the form: L = Laction+Lreturn-to-go+αLstate.

4

Figure 3: Qualitative results of multi-agent simulation with CtRL-Sim. The teal agents are
controlled by CtRL-Sim, and other agents in pink are set to log-replay through physics.

ADE FDE Goal Success JSD Collision Off Road Per Scene
Method (m) ↓ (m) ↓ Rate (%) ↑ (×10−2) ↓ (%) ↓ (%) ↓ Gen. Time (s) ↓
Replay-Physics∗ 0.47 0.97 87.3 7.6 2.8 10.7 1.1

Actions-Only [9] 4.81±0.52 11.89±1.42 32.7±1.4 10.4±0.3 19.9±1.2 27.6±1.0 3.3
Imitation Learning 1.24±0.05 1.95±0.10 77.4±1.3 8.3±0.1 5.8±0.2 12.1±0.2 3.4
DT (Max Return) [15] 1.56±0.04 3.07±0.16 63.3±0.8 8.4±0.1 5.3±0.3 11.0±0.2 20.7
CTG++† [11] 1.73±0.10 4.02±0.32 38.8±5.4 7.4±0.2 5.9±0.4 15.0±1.5 44.0

CtRL-Sim (No State Prediction) 1.32±0.03 2.21±0.06 72.4±0.8 8.2±0.2 6.1±0.4 12.0±0.3

CtRL-Sim (Base) 1.29±0.04 2.13±0.08 73.0±1.3 8.1±0.2 5.8±0.4 11.8±0.2 8.2
CtRL-Sim (Positive Tilting) 1.25±0.03 2.04±0.08 72.9±1.5 7.9±0.1 5.3±0.2 11.0±0.2

DT∗ (GT Initial Return) 1.10±0.02 1.58±0.07 77.5±1.5 8.4±0.1 5.3±0.3 11.9±0.3
20.8CtRL-Sim∗ (GT Initial Return) 1.09±0.02 1.60±0.06 77.2±1.1 8.1±0.2 5.6±0.4 12.2±0.1

Table 1: Multi-agent simulation results over 1000 test scenes. We report mean±std across 5 seeds.
CtRL-Sim achieves a good balance between reconstruction performance, common sense, realism,
and efficiency. ∗ indicates privileged models requiring GT future. † indicates reimplementation.

3 Experiments

3.1 Experimental Setup

Offline RL Dataset We curate an offline RL dataset derived from the Waymo Open Motion Dataset
(WOMD) [14]. We extend Nocturne by integrating a physics engine based on the Box2D library
for enabling realistic vehicle dynamics and collisions, detailed in Appendix C.1. Each scene in the
Waymo dataset is fed through the physics-enhanced Nocturne simulator to compute the per-timestep
actions and factored rewards for each agent. The factored rewards comprise of a goal position,
vehicle-vehicle collision, and a vehicle-road-edge collision reward, detailed in Appendix C.2.

Evaluation We evaluate CtRL-Sim on its ability to replicate the driving behaviours found in the
Waymo Open Motion Dataset (imitation) and generate counterfactual scenes that are consistent
with specified tilting coefficients (controllability). For both modes of evaluation, we use 1 second
of history and simulate an 8 second future rollout. For imitation, we evaluate on up to 8 moving
agents per scene that we control with CtRL-Sim, where the remaining agents are set to log replay
through physics. We evaluate on 1000 random test scenes in both modes of evaluation. Following
recent work [7], we use three types of metrics for imitation evaluation: reconstruction metrics, such
as Final Displacement Error (FDE), Average Displacement Error (ADE), and Goal Success Rate; a
distributional realism metric (JSD) defined by the mean of the Jensen-Shannon Distances computed
on linear speed, angular speed, acceleration, and distance to nearest vehicle features between real
and simulated scenes; and common sense metrics measured by Collision and Offroad rate.

For controllability evaluation, we evaluate on 1 selected “interesting” interactive agent that is con-
trolled by CtRL-Sim, defined as an agent who is moving and whose goal is within 10 metres of
another moving agent. All agents except for the CtRL-Sim-controlled interesting agent are set to
log replay through physics. We evaluate the model’s controllability through metrics aligned with the
specified reward dimensions: we report the goal success rate for the goal reward control, collision
rate for the vehicle-vehicle reward control, and offroad rate for the vehicle-road-edge reward control.

5

Figure 4: Effects of exponential tilting. Comparison of CtRL-Sim base model (magenta) and
fine-tuned model (purple) across different reward dimensions. Rewards range from -25 to 25 for
vehicle-vehicle collision (left), vehicle-edge collision (middle), and goal reaching (right). Results
show smooth controllability, with fine-tuning enhancing this effect. We report mean±std over 5 seeds.

Methods under Comparison For imitation evaluation, we compare CtRL-Sim against several rel-
evant baselines: 1. Replay-Physics employs an inverse bicycle model to obtain the ground-truth
log-replay actions and executes through the simulator. 2. Actions-Only is an encoder-decoder model
inspired by [9] where the decoder trajectory sequences only contain actions. 3. Imitation Learning
(IL) is identical to the architecture in Section 2.2 except with the removal of returns and the future
state prediction. 4. Decision Transformer (DT): The GT Initial Return variant specifies the initial
ground-truth return-to-go from the offline RL dataset, with the goal of acting as an imitative policy.
Max Return follows the standard DT approach of selecting the maximum observable return in the
dataset. The DT architecture is identical to that of CtRL-Sim except the return token precedes the
state token, and the returns and future states are not predicted by the decoder. 4. CTG++ is a reim-
plementation of [11], a competitive Transformer-based diffusion model for behaviour simulation.

We evaluate the following variants of CtRL-Sim: 1. CtRL-Sim (Base) is the CtRL-Sim model trained
on the offline RL dataset. 2. CtRL-Sim (No State Prediction) is the base model trained without the
state prediction task. 3. CtRL-Sim (Positive Tilting) applies κc = 10 tilting to all components c of
the base model. 4. Instead of predicting the return-to-go at each timestep, CtRL-Sim (GT Initial
Return) uses the ground-truth initial return-to-go and, at each timestep, decrements the reward from
the initial return-to-go until the episode terminates. For controllability evaluation, we evaluate on the
base model and a finetuned CtRL-Sim model (CtRL-Sim FT). The finetuned model takes a trained
base model and finetunes it on a dataset of simulated long-tail scenarios that we collect using an
existing simulated collision generation method CAT [21]. This allows CtRL-Sim to be exposed to
more long-tail collision scenarios during training, as the WOMD mainly contains nominal driving.
We refer readers to Appendix H for details of CAT and our proposed finetuning procedure.

3.2 Results

Table 1 presents the multi-agent imitation results comparing the CtRL-Sim model and its variants
with imitation baselines. The CtRL-Sim models perform competitively with the imitation baselines,
with the CtRL-Sim (Positive Tilting) model achieving a good balance between distributional realism
(2nd in JSD), reconstruction performance (2nd in FDE, ADE), common sense (Tied 1st in Collision
and Offroad Rate), and efficiency (5.4× faster than CTG++). We note that while IL is faster than
CtRL-Sim due to fewer tokens to decode and offers similar performance, IL is not controllable.
Although DT (Max Return) attains equal collision and offroad rates as CtRL-Sim, the reconstruction
performance is substantially worse. We further validate the importance of the future state prediction
task, with CtRL-Sim (Base) outperforming CtRL-Sim (No State Prediction) across all metrics. The
CtRL-Sim (Positive Tilting) model attains the best collision rate and offroad rate, demonstrating the
effectiveness of exponential tilting for steering the model towards good driving behaviours.

A distinctive feature of CtRL-Sim is that it enables intuitive control over the agent behaviours
through exponential tilting of the return distribution. This contrasts with DT, which, although ca-
pable of generating suboptimal behaviours by specifying low initial return-to-gos, lacks intuitive

6

Planner Metrics Adversary Realism

Progress Coll. w/ Adv. JSD Coll. Speed
Adv. Method Tilt Reactive? Control? (m) ↓ (%) ↑ (×10−2) ↓ (m/s) ↓
CAT ✗ ✗ 53.3 61.4 18.7 6.9

CtRL-Sim −10
✓ ✓

57.5±0.1 10.0±0.5 10.8±0.3 7.4±0.5

10 57.7±0.1 8.7±0.5 10.3±0.5 8.3±0.6

−10 56.1±0.2 33.8±1.9 17.4±0.6 6.3±0.2

CtRL-Sim FT 10 ✓ ✓ 57.1±0.1 18.5±1.6 12.6±0.7 6.1±0.2

50 57.4±0.2 12.8±0.2 15.6±1.2 6.0±0.3

Table 2: Adversarial scenario generation results over 1000 test scenes. We report the mean±std

over 5 seeds for the CtRL-Sim models. Finetuning CtRL-Sim on CAT data improves ability to
generate adversarial scenarios compared with base CtRL-Sim model. Compared with CAT, CtRL-
Sim is reactive and controllable, while exhibiting better collision realism.

control due to the prerequisite knowledge about the return-to-go values and an absence of an in-
terpretable mechanism for behaviour modulation. By constrast, the exponential tilting employed in
CtRL-Sim has a clear interpretation: negative exponential tilting yields behaviours that are worse
than the average behaviours learned from the dataset, while positive exponential tilting yields better-
than-average behaviours. We show the results of our controllability evaluation in Figure 4. For each
reward dimension c, we exponentially tilt κc between -25 and 25 and observe how this affects the
corresponding metric of interest. We also show the results of DT when conditioning on the mini-
mum and maximum possible return. For both the base and finetuned CtRL-Sim models, we observe
a relatively monotonic change in each metric of interest as the tilting coefficient is increased. As
the finetuned model is exposed to collision scenarios during finetuning, it demonstrates significant
improvements over the base model in generating bad driving behaviours. Specifically, at -25 tilting,
the finetuned model is able to generate 2.1× as many collisions and 1.8× as many offroad violations
as the base model. Figure 5 (and 7, 8 in Appendix J) shows qualitatively the effects of tilting.

Table 2 evaluates CtRL-Sim’s ability to produce adversarial agents that collide with a data-driven
planner. We evaluate on a held-out test set of two-agent interactive scenarios from the Waymo
interactive dataset, where one interacting agent is controlled by the adversary and the other is con-
trolled by the planner. We use a positively-tilted CtRL-Sim base model as our planner, due to its
demonstrated ability to produce good driving behaviours in Table 1. For adversarial scenario gen-
eration, we compare the base CtRL-Sim model against the CtRL-Sim FT model. With -10 tilting
applied, the finetuned model generates 238 more collisions with the planner than the base model
over 1000 scenes, which we attribute to its exposure to simulated collision scenarios during fine-
tuning. Notably, CtRL-Sim FT was finetuned in only 30 minutes on 1 NVIDIA A100-Large GPU
and only 3500 CAT scenarios. This underscores CtRL-Sim’s capability to flexibly incorporate data
from various sources through finetuning, thereby enabling the generation of new kinds of driving
behaviours. Importantly, after finetuning, CtRL-Sim FT largely retains its ability to produce good
driving behaviours. This is evidenced by a 21.1 percentage point decrease in the planner’s collision
rate when using a +50 positively tilted finetuned model as the adversary. We also compare CtRL-
Sim against a state-of-the-art collision generation method, CAT [21], which uses a motion prediction
model to select plausible adversarial trajectories that overlap with the ego plan. Although CAT gen-
erates more collisions, CAT is not controllable as it can’t control how adversarial the agents are, and
CAT agents are non-reactive to the ego’s actions as the trajectory is fixed prior to the simulation,
limiting its realism. This is evidenced by a larger adversary collision speed than all finetuned CtRL-
Sim models and is also validated qualitatively in the supplementary video. We further conduct a user
study to confirm that CtRL-Sim adversarial scenarios are indeed more realistic than CAT adversarial
scenarios, with details and results reported in Appendix I.

4 Related Work

Agent behaviour simulation involves modelling the behaviour of other agents in simulation, such as
vehicles and pedestrians. Agent behaviour simulation methods can be categorized into rule-based

7

Vehicle-Vehicle Tilting

Positive TiltingNegative Tilting

Vehicle-Edge Tilting

Positive TiltingNegative Tilting

Figure 5: Qualitative results of vehicle-vehicle and vehicle-edge tilting. Two traffic scenes com-
paring positive tilting of the CtRL-Sim-controlled agent (shown in teal) with negative tilting for
the same agent. Bounding boxes in red indicate traffic violations. Other agents log-replay through
physics, with interacting agents in pink. Goals are marked by small circles.

and data-driven methods. Rule-based methods rely on human-specified rules to produce plausible
agent behaviours, such as adhering strictly to the center of the lane [2, 3]. These methods often
yield unrealistic behaviours that fail to capture the full spectrum of driving behaviours. To address
these limitations, prior work has proposed learning generative models that aim to replicate agent
behaviours found in real-world driving trajectory datasets [22, 23, 24, 4, 5, 25, 9]. These approaches
draw inspiration from methods for the task of joint motion prediction [26, 27, 28, 29, 30]; however,
it’s crucial to distinguish that, unlike the open-loop nature of joint motion prediction, behaviour sim-
ulation operates closed-loop [31]. To improve the realism of the learned behaviours, other work has
proposed using adversarial imitation learning [32] to minimize the behavioural discrepancy between
expert and model rollouts [33, 34, 6] or RL to improve traffic rule compliance [35, 36]. While such
methods demonstrate improved realism over rule-based methods, they lack the necessary control
over the behaviours to enable the generation of targeted simulation scenarios for AV testing.

More recent work has proposed more controllable behaviour simulation models by learning con-
ditional models [10, 37, 7, 38, 8, 11, 12] that enable conditioning on a high-level latent variables
[10, 37], route information [7], or differentiable constraints [8, 11, 39, 12, 40]. More recently,
[41] used retrieval augmented generation to generate controllable traffic scenarios. However, these
methods either lack interpretable control over the generated behaviours [37] or require costly test-
time optimization procedures to steer the generated behaviours, such as latent variable optimiza-
tion [10], Bayesian optimization [42, 43, 7], or the simulation of expensive diffusion processes
[8, 44, 11, 39, 12, 40]. In contrast, CtRL-Sim offers a more efficient alternative and learns a con-
ditional multi-agent behaviour model that conditions on interpretable factorized returns, thereby
eliminating the need for costly test-time optimization. By exponentially tilting the predicted return
distribution [16] at test time, CtRL-Sim enables efficient, interpretable, and fine-grained control
over agent behaviours while being grounded in real-world data.

5 Conclusion

We presented CtRL-Sim, a novel framework applying offline RL for controllable and reactive be-
haviour simulation. Our proposed multi-agent behaviour Transformer architecture allows CtRL-
Sim to employ exponential tilting at test time to simulate a wide range of agent behaviours. We
present experiments showing the effectiveness of CtRL-Sim at producing controllable and reactive
behaviours, while maintaining competitive performance on the imitation task compared to baselines.

Limitations The learned policies produced by CtRL-Sim in its current form may make large-scale
RL training on CtRL-Sim scenarios prohibitively expensive. However, we believe that further op-
timizations of the model and simulator such as exploring more compact models, utilizing model
quantization or Flash Attention [45], reducing the planning frequency, or making the simulator
GPU-accelerated can further improve the inference latency. We leave this for future work. Fur-
thermore, CtRL-Sim enables control over the behaviours, but not the initial agent placements. We
believe that a generative model that supports controlling both the initial agent placements and the
agent behaviours is promising future work to explore.

8

Acknowledgments

LP and CP are supported by CIFAR under the Canada CIFAR AI Chair program and by NSERC
under the Discovery Grants program.

References
[1] K. D. Kusano, J. M. Scanlon, Y. Chen, T. L. McMurry, R. Chen, T. Gode, and T. Victor.

Comparison of waymo rider-only crash data to human benchmarks at 7.1 million miles. arXiv
preprint arXiv.2312.12675, 2023.

[2] M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in empirical observations
and microscopic simulations. Physical review E, 62(2):1805, 2000.

[3] A. Kesting, M. Treiber, and D. Helbing. General lane-changing model mobil for car-following
models. Transportation Research Record, 1999(1):86–94, 2007.

[4] S. Suo, S. Regalado, S. Casas, and R. Urtasun. Trafficsim: Learning to simulate realistic multi-
agent behaviors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[5] D. Xu, Y. Chen, B. Ivanovic, and M. Pavone. BITS: bi-level imitation for traffic simulation. In
Proceedings of the International Conference on Robotics and Automation (ICRA), 2023.

[6] M. Igl, D. Kim, A. Kuefler, P. Mougin, P. Shah, K. Shiarlis, D. Anguelov, M. Palatucci,
B. White, and S. Whiteson. Symphony: Learning realistic and diverse agents for autonomous
driving simulation. In Proceedings of the International Conference on Robotics and Automa-
tion (ICRA), 2022.

[7] S. Suo, K. Wong, J. Xu, J. Tu, A. Cui, S. Casas, and R. Urtasun. MIXSIM: A hierarchical
framework for mixed reality traffic simulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.

[8] Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone. Guided
conditional diffusion for controllable traffic simulation. In Proceedings of the International
Conference on Robotics and Automation (ICRA), 2023.

[9] J. Philion, X. B. Peng, and S. Fidler. Trajeglish: Learning the language of driving scenarios.
arXiv preprint arXiv.2312.04535, 2023.

[10] D. Rempe, J. Philion, L. J. Guibas, S. Fidler, and O. Litany. Generating useful accident-prone
driving scenarios via a learned traffic prior. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

[11] Z. Zhong, D. Rempe, Y. Chen, B. Ivanovic, Y. Cao, D. Xu, M. Pavone, and B. Ray. Language-
guided traffic simulation via scene-level diffusion. arXiv preprint arXiv.2306.06344, 2023.

[12] W. Chang, F. Pittaluga, M. Tomizuka, W. Zhan, and M. Chandraker. Controllable safety-
critical closed-loop traffic simulation via guided diffusion. arXiv preprint arXiv.2401.00391,
2024.

[13] E. Vinitsky, N. Lichtlé, X. Yang, B. Amos, and J. Foerster. Nocturne: a scalable driving
benchmark for bringing multi-agent learning one step closer to the real world. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

[14] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai, B. Sapp, C. R. Qi,
Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam, V. Vasudevan, A. McCauley, J. Shlens, and
D. Anguelov. Large scale interactive motion forecasting for autonomous driving : The waymo
open motion dataset. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, (ICCV), 2021.

9

[15] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2021.

[16] K. Lee, O. Nachum, M. Yang, L. Lee, D. Freeman, S. Guadarrama, I. Fischer, W. Xu, E. Jang,
H. Michalewski, and I. Mordatch. Multi-game decision transformers. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[17] N. Gontier, P. R. López, I. H. Laradji, D. Vázquez, and C. J. Pal. Language decision transform-
ers with exponential tilt for interactive text environments. arXiv preprint arXiv.2302.05507,
2023.

[18] A. Piché, R. Pardinas, D. Vazquez, and C. Pal. A probabilistic perspective on reinforcement
learning via supervised learning. In ICLR 2022 Workshop on Generalizable Policy Learning
in Physical World, 2022.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[20] A. Seff, B. Cera, D. Chen, M. Ng, A. Zhou, N. Nayakanti, K. S. Refaat, R. Al-Rfou, and
B. Sapp. Motionlm: Multi-agent motion forecasting as language modeling. In IEEE/CVF
International Conference on Computer Vision (ICCV), 2023.

[21] L. Zhang, Z. Peng, Q. Li, and B. Zhou. CAT: closed-loop adversarial training for safe end-to-
end driving. In Conference on Robot Learning, CoRL 2023, 6-9 November 2023, Atlanta, GA,
USA, volume 229 of Proceedings of Machine Learning Research, pages 2357–2372. PMLR,
2023.

[22] L. Bergamini, Y. Ye, O. Scheel, L. Chen, C. Hu, L. D. Pero, B. Osinski, H. Grimmett, and
P. Ondruska. Simnet: Learning reactive self-driving simulations from real-world observations.
In Proceedings of the International Conference on Robotics and Automation (ICRA), 2021.

[23] A. Kamenev, L. Wang, O. B. Bohan, I. Kulkarni, B. Kartal, A. Molchanov, S. Birchfield,
D. Nistér, and N. Smolyanskiy. Predictionnet: Real-time joint probabilistic traffic predic-
tion for planning, control, and simulation. In Proceedings of the International Conference on
Robotics and Automation (ICRA), 2022.

[24] A. Ścibior, V. Lioutas, D. Reda, P. Bateni, and F. Wood. Imagining the road ahead: Multi-agent
trajectory prediction via differentiable simulation. In Proceedings of the IEEE International
Intelligent Transportation Systems Conference (ITSC), 2021.

[25] Y. Wang, T. Zhao, and F. Yi. Multiverse transformer: 1st place solution for waymo open sim
agents challenge 2023. arXiv preprint arXiv.2306.11868, 2023.

[26] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun. Implicit latent variable model for
scene-consistent motion forecasting. In Proceedings of the European Conference on Computer
Vision (ECCV), 2020.

[27] R. Girgis, F. Golemo, F. Codevilla, M. Weiss, J. A. D’Souza, S. E. Kahou, F. Heide, and
C. J. Pal. Latent variable sequential set transformers for joint multi-agent motion pre-
diction. In International Conference on Learning Representations, 2021. URL https:

//api.semanticscholar.org/CorpusID:246824069.

[28] J. Ngiam, V. Vasudevan, B. Caine, Z. Zhang, H. L. Chiang, J. Ling, R. Roelofs, A. Bewley,
C. Liu, A. Venugopal, D. J. Weiss, B. Sapp, Z. Chen, and J. Shlens. Scene transformer:
A unified architecture for predicting future trajectories of multiple agents. In International
Conference on Learning Representations (ICLR), 2022.

10

https://api.semanticscholar.org/CorpusID:246824069
https://api.semanticscholar.org/CorpusID:246824069

[29] Y. Chen, B. Ivanovic, and M. Pavone. Scept: Scene-consistent, policy-based trajectory pre-
dictions for planning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2022.

[30] L. Rowe, M. Ethier, E.-H. Dykhne, and K. Czarnecki. FJMP: factorized joint multi-agent
motion prediction over learned directed acyclic interaction graphs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[31] H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. M. Wolff, A. H. Lang, L. Fletcher, O. Beijbom,
and S. Omari. nuplan: A closed-loop ml-based planning benchmark for autonomous vehicles.
arXiv preprint arXiv.2106.11810, 2021.

[32] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2016.

[33] R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton, A. Kuefler, and M. J. Kochenderfer.
Multi-agent imitation learning for driving simulation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2018.

[34] G. Zheng, H. Liu, K. Xu, and Z. Li. Objective-aware traffic simulation via inverse reinforce-
ment learning. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2021.

[35] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, R. Roelofs, B. Sapp, B. White, A. Faust, S. White-
son, D. Anguelov, and S. Levine. Imitation is not enough: Robustifying imitation with rein-
forcement learning for challenging driving scenarios. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2023.

[36] C. Zhang, J. Tu, L. Zhang, K. Wong, S. Suo, and R. Urtasun. Learning realistic traffic agents
in closed-loop. In Conference on Robot Learning, CoRL 2023, 6-9 November 2023, Atlanta,
GA, USA, volume 229 of Proceedings of Machine Learning Research, pages 800–821. PMLR,
2023.

[37] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. V. Gool. Trafficbots: Towards world models for
autonomous driving simulation and motion prediction. In Proceedings of the International
Conference on Robotics and Automation (ICRA), 2023.

[38] W. Chang, C. Tang, C. Li, Y. Hu, M. Tomizuka, and W. Zhan. Editing driver character:
Socially-controllable behavior generation for interactive traffic simulation. IEEE Robotics Au-
tom. Lett., 2023.

[39] C. Xu, D. Zhao, A. Sangiovanni-Vincentelli, and B. Li. Diffscene: Diffusion-based safety-
critical scenario generation for autonomous vehicles. In The Second Workshop on New Fron-
tiers in Adversarial Machine Learning, 2023.

[40] Z. Guo, X. Gao, J. Zhou, X. Cai, and B. Shi. Scenedm: Scene-level multi-agent trajectory
generation with consistent diffusion models. arXiv preprint: arXiv.2311.15736, 2023.

[41] W. Ding, Y. Cao, D. Zhao, C. Xiao, and M. Pavone. Realgen: Retrieval augmented generation
for controllable traffic scenarios. arXiv preprint arXiv.2312.13303, 2023.

[42] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek. Generating adversarial driving scenarios
in high-fidelity simulators. In International Conference on Robotics and Automation (ICRA),
2019.

[43] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun. Advsim:
Generating safety-critical scenarios for self-driving vehicles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

11

[44] C. M. Jiang, A. Cornman, C. Park, B. Sapp, Y. Zhou, and D. Anguelov. Motiondiffuser:
Controllable multi-agent motion prediction using diffusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

[45] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[46] R. K. Srivastava, P. Shyam, F. W. Mutz, W. Jaśkowski, and J. Schmidhuber. Training agents
using upside-down reinforcement learning. ArXiv, abs/1912.02877, 2019. URL https://

api.semanticscholar.org/CorpusID:208857468.

[47] A. Kumar, X. B. Peng, and S. Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019.

[48] S. Emmons, B. Eysenbach, I. Kostrikov, and S. Levine. Rvs: What is essential for offline rl via
supervised learning? ArXiv, abs/2112.10751, 2021. URL https://api.semanticscholar.

org/CorpusID:245334837.

[49] L. Meng, M. Wen, Y. Yang, C. Le, X. Li, W. Zhang, Y. Wen, H. Zhang, J. Wang, and
B. Xu. Offline pre-trained multi-agent decision transformer: One big sequence model tack-
les all smac tasks. ArXiv, abs/2112.02845, 2021. URL https://api.semanticscholar.

org/CorpusID:245335360.

[50] J. Lee, Y. Lee, J. Kim, A. R. Kosiorek, S. Choi, and Y. W. Teh. Set transformer: A framework
for attention-based permutation-invariant neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), 2019.

[51] A. Ibrahim, B. Thérien, K. Gupta, M. L. Richter, Q. Anthony, T. Lesort, E. Belilovsky, and
I. Rish. Simple and scalable strategies to continually pre-train large language models. arXiv
preprint arXiv.2403.08763, 2024.

12

https://api.semanticscholar.org/CorpusID:208857468
https://api.semanticscholar.org/CorpusID:208857468
https://api.semanticscholar.org/CorpusID:245334837
https://api.semanticscholar.org/CorpusID:245334837
https://api.semanticscholar.org/CorpusID:245335360
https://api.semanticscholar.org/CorpusID:245335360

Approach Density Estimation Action Sampling Density

Decision Transformers (DTs) log pθ(at|ot, Gt) pθ(at|ot, Gt)
Reward Weighted Regression (RWR) exp(η−1Gt) log pθ(at|ot) pθ(at|ot)
Reward Conditioned Policies (RCPs) log pθ(at|ot, Gt)pθ(Gt|ot) pθ(at|ot, Gt)pθ(Gt|ot) exp(κGt − η(κ))
Reweighted Behavior Cloning (RBC) log pθ(Gt|ot, at)pθ(at|ot) pθ(Gt|ot, at)pθ(at|ot) exp(κGt − η(κ))
Implicit RL via SL (IRvS) log pθ(at, Gt|ot) pθ(at, Gt|ot) exp(κGt − η(κ))
Model-Based RCPs (MB-RCP) log pθ(ot+1|at, ot, Gt)pθ(at|ot, Gt)pθ(Gt|ot) pθ(at|ot, Gt)pθ(Gt|ot) exp(κGt − η(κ))

RCP with Future Rollout (CtRL-Sim) log pθ(st+1:T |at, st, Gt)pθ(at|st, Gt)pθ(Gt|st) pθ(at|st, Gt)pθ(Gt|st) exp(κGt − η(κ))

Table 3: Offline policy modelling approaches in prior work. We can see that methods differ in the
decomposition of the joint distribution over actions and returns, with some approaches utilizing state
prediction as a regularizer. We note that this table is adopted from prior work [18, 17].

A Offline RL Approaches

We position CtRL-Sim within the field of offline RL. Table 3 presents the different ways explored
in the literature for learning policies in offline RL, and how these methods can sample return-
maximizing actions at test time. Prior methods in offline RL differ in how the policy is modelled
during training and how inference is performed; we refer the reader to Table 3 in the Appendix A
for a breakdown of the different approaches. As CtRL-Sim employs a return-conditioned policy for
controllable simulation, we briefly present a class of related methods that learn return-conditioned
policies (RCPs) [15, 16, 46, 47, 48, 18, 49] for offline RL. RCPs are concerned with learning the
joint distribution of actions and returns, such that action sampling is conditioned on the return dis-
tribution. Instead of modelling the return distribution, the Decision Transformer [15] conditions the
learned policy on the maximum observed return, Gmax in the dataset. That is, at inference time,
the actions are sampled from at ∼ pθ(at|st, Gmax). Lee et al. [16] instead propose to employ the
learned return distribution, combined with exponential tilting, in order to sample high-return actions
while remaining close to the empirical distribution. CtRL-Sim adopts exponential tilting of the pre-
dicted return distribution for each agent to finely control agent behaviour. Additionally, CtRL-Sim
explicitly models the future sequences of states.

B Action Sampling Algorithm

Algorithm 2 describes the proposed action sampling procedure for controllable behaviour generation
with factorized exponential tilting.

Algorithm 2 The action sampling algorithm used by CtRL-Sim to allow for factorized tilting of the
exhibited behaviour.

1: Input: {κ1, . . . , κC} ▷ The specified inverse temperature for each return-to-go component.
2: for c = 1 to C do
3: G′c

t ∼ pθ(G
c
t |st, sG) exp(κcGc

t)
4: end for
5: at ∼ πθ(at|st, sG, G′1

t , . . . G
′C
t)

6: return at

C Nocturne Physics Simulator and Offline RL Dataset

C.1 Physics-based Nocturne Simulator

CtRL-Sim extends the Nocturne simulation environment [13]. Nocturne is a lightweight 2D driving
simulator that is built on real-world driving trajectory data from the Waymo Open Motion Dataset
[14]. A scene in Nocturne is represented by a set of dynamic objects – such as vehicles, pedestrians,
and cyclists – and the map context, which includes lane boundaries, lane markings, traffic signs, and
crosswalks. Each dynamic object is prescribed a goal state, which is defined as the final waypoint in
the ground-truth trajectory from the Waymo Open Motion Dataset. If there exist missing timesteps

13

in the ground-truth trajectory, we re-define the goal as the waypoint immediately preceding the first
missing timestep. By default, the dynamic objects track its 9 second trajectory from the Waymo
Open Motion Dataset at 10 Hz. The Nocturne Simulator is originally designed for the development
of RL driving policies, where the first 10 simulation steps (1s) of context is provided and the RL
agent must reach the prescribed goal within the next 80 simulation steps (8s).

We extend Nocturne by integrating a physics engine based on the Box2D library for enabling real-
istic vehicle dynamics and vehicle collisions. We model the vehicle’s dynamics using basic physics
principles, where forces applied to the vehicle are translated into acceleration, influencing its speed
and direction, and with frictional forces applied to simulate realistic sliding and adherence behav-
iors. This extension additionally ensures that an agent’s acceleration, braking, and turn radius are
bound by plausible limits and that vehicles can physically collide with each other. Such improve-
ments open the possibility of more accurately simulating complex conditions, such as emergency
braking maneuvers, slippery roads, and multi-vehicle collisions.

C.2 Offline RL Dataset Collection

The actions are defined by the acceleration and steering angle and the reward function is decom-
posed into three components: a goal position reward, a vehicle to vehicle collision reward, and a
vehicle to road edge collision reward. We confirm that the trajectory rollouts obtained by feeding
Waymo scenes through the simulator attain a reasonable reconstruction of the ground-truth Waymo
trajectories (see Table 1). Following Nocturne [13], we omit bicyclist and pedestrian trajectories
from the Waymo Open Motion Dataset and we omit scenes containing traffic lights. This yields a
training, validation, and test set containing 134150, 9678, and 2492 scenes.

For each agent, to obtain the action at at timestep t, we compute the acceleration and steering value
using an inverse bicycle model computed from the agent’s current state in the simulator ŝt and the
ground-truth next state from the trajectory driving log st+1. We clip accleration values between -10
and 10 and steering values between -0.7 and 0.7 radians. We then execute at with our proposed
forward physics dynamics model to obtain the agent’s updated state ŝt+1, and we repeat until the
agent has completed the full rollout. Table 1 confirms that this approach to offline RL trajectory data
collection yields a reasonable reconstruction of the ground-truth driving trajectories.

We compute rewards at each timestep, where our reward function is factored into three rewards
components: a goal position reward, vehicle-vehicle collision reward, and vehicle-road-edge col-
lision reward. We chose the reward functions based on the information provided by the Nocturne
simulator, which includes indicators for goal success, vehicle-vehicle collisions, and vehicle-edge
collisions. For each agent, their goal is set to the final state (i.e., position, heading, and velocity) of
the ground-truth logged trajectory. The goal position reward is defined by:

Rg(st, sG) = 1goal achieved(st, sG),

where goal achieved(·) is 1 if the agent ever reaches within 1 metre of the ground-truth goal, and 0
otherwise. The vehicle-vehicle collision reward is defined by:

Rv(st,St − {st}) = −10× 1vehicle-vehicle collision(st,St − {st})

+
min(dist-nearest-vehicle(st,St − {st}), 15)

15
,

where dist-nearest-vehicle(·) computes the distance between the agent of interest and its nearest
agent in the scene. Finally, the vehicle-road-edge collision reward is defined by:

Re(st,m) = −10× 1vehicle-road-edge collision(st,m) +
min(dist-nearest-road-edge(st,m), 5)

5
,

where dist-nearest-road-edge(·) computes the distance between the agent and the nearest road edge.

D Evaluation Metrics

The goal success rate is the proportion of evaluated agents across the evaluated test scenes that
get within 1 metre of the ground-truth goal position at any point during the trajectory rollout. The

14

JSD (×10−2)
Method Lin. Speed Ang. Speed Accel. Nearest Dist. Meta-JSD

Replay-Physics∗ 0.1 11.5 17.4 1.2 7.6

Actions-Only [9] 4.1 ± 0.7 16.8 ± 0.3 15.6 ± 0.5 5.1 ± 0.5 10.4 ± 0.3
Imitation Learning 1.0 ± 0.1 13.4 ± 0.3 16.9 ± 0.4 2.1 ± 0.2 8.3 ± 0.1
DT (Max Return) [15] 2.7 ± 0.1 13.4 ± 0.2 15.4 ± 0.5 2.2 ± 0.3 8.4 ± 0.1
CTG++ [11] 3.2 ± 0.9 11.9 ± 0.9 12.4 ± 0.4 2.2 ± 0.3 7.4 ± 0.2
CtRL-Sim (No State Prediction) 1.2 ± 0.1 13.7 ± 0.2 15.9 ± 0.7 2.0 ± 0.2 8.2 ± 0.2
CtRL-Sim (Base) 1.1 ± 0.2 13.8 ± 0.2 15.6 ± 0.5 2.0 ± 0.3 8.1 ± 0.2
CtRL-Sim (Positive Tilting) 1.4 ± 0.1 13.6 ± 0.2 14.8 ± 0.5 1.8 ± 0.2 7.9 ± 0.1

DT∗ (GT Initial Return) 1.1 ± 0.2 13.4 ± 0.2 16.8 ± 0.6 2.1 ± 0.2 8.4 ± 0.1
CtRL-Sim∗ (GT Initial Return) 1.1 ± 0.2 13.8 ± 0.3 15.3 ± 0.6 2.2 ± 0.2 8.1 ± 0.2

Table 4: Breakdown of Meta-JSD in Table 1. For each metric, the best unprivileged method is
bolded and second-best is underlined. ∗ denotes a privileged method requiring the ground-truth
future trajectory.

final and average displacement errors are calculated for all evaluated agents across the test scenes
and averaged. For a specific scene s, the collision rate and offroad rate of s are the proportion of
evaluated agents in s that collide with another agent or road edge, respectively. These rates are then
averaged across all tested scenes to define the overall collision and offroad rates.

We compute the Jensen Shannon Distance (JSD) between the distributions of features computed
from the real and simulated rollouts. The Jensen Shannon Distance between two normalized his-
tograms p and q is computed as: √

DKL(p||m) +DKL(q||m)

2
,

where m is the pointwise mean of p and q and DKL is the KL-divergence. Unlike prior works that
compute the Jensen Shannon Divergence [6, 7], we compute its square root – the Jensen Shannon
Distance – so that values are not too close to 0. We compute the JSD over the following feature
distributions: linear speed, angular speed, acceleration, and nearest distance. Since the acceleration
values are discrete, for the acceleration JSD, we define one histogram bin for each valid acceleration
value, yielding 21 evenly spaced bins between -10 and 10. For the linear speed histogram, we use
200 uniformly spaced bins between 0 and 30. For the angular speed JSD, we use 200 uniformly
spaced bins between -50 and 50. For the nearest distance JSD, we use 200 uniformly spaced bins
between 0 and 40.

E Individual JSD Results

In Table 4, we report the per-feature JSD results for Table 1.

F CtRL-Sim Training and Inference Details

Training: The CtRL-Sim behaviour simulation model is trained using randomly subsampled se-
quences of length of H × N × 3, where H = 32 and N = 24. For the actions, we discretize the
acceleration and steering into 20 and 50 uniformly quantized bins, respectively, yielding 1000 action
tokens. For the return-to-gos, we discretize each return-to-go component Gc,i

t into 350 uniformly
quantized bins. All agents and the map context are encoded in global frame as in [28, 9] where
we center and rotate the scene on a random agent during training. The map context is represented
as a set of road segments m := {rl}Ll=1, where each road segment is defined by a sequence of
points rl := (p1l , . . . p

P
l), where L is the number of road segments and P is the number of points

per road segment. We apply a per-point MLP to the points of each road segment rl. To produce
road segment-level embeddings, we then apply attention-based pooling [50] on the embeddings of
the points within each road segment, yielding L road segment embeddings of size d. We select the

15

L = 200 closest lane segments within 100 metres of the centered agent as the map context, and
select up to N = 24 closest agents within 60 metres of the centered agent as social context for the
model. For each lane segment, we subsample P = 100 points. We use a hidden dimension size
d = 256, where we use E = 2 Transformer encoder blocks and D = 4 Transformer decoder blocks,
and we set α = 1

100 in the loss function. We supervise our model only on the trajectories of moving
agents. We found it useful to employ goal dropout whereby the embeddings for 10% of agent goals
are randomly set to 0 to prevent the model from overrelying on the goal information. We found goal
dropout useful for learning an informative map representation. The state, return, and action embed-
dings for the missing timesteps are set to 0. To ensure that the model is permutation equivariant to
the agent ordering [28, 27], we modify the standard temporally causal mask by additionally enforc-
ing that each agent can only attend to its own action and return-to-go tokens at the present timestep
while allowing access to all agents’ state tokens at the present timestep and all agents’ tokens in the
past timesteps. The CtRL-Sim model is trained using a linear decaying learning rate schedule from
5e-4 for 200k steps using the AdamW optimizer and a batch size of 64. At inference, we sample
actions with a temperature of 1.5. The CtRL-Sim architecture comprises 8.3 million parameters that
we train in 20 hours with 4 NVIDIA A100 GPUs.

Inference: CtRL-Sim supports scenes with an arbitrary number of agents. As CtRL-Sim is trained
with up to N = 24 agents, when the number of CtRL-Sim-controlled agents at inference time
exceeds N = 24, we iteratively select 24-agent subsets at each timestep for processing until all
agents have been processed. We first randomly select a CtRL-Sim-controlled agent, we normalize
the scene to this agent and select the 23 closest context agents to the CtRL-Sim-controlled agent to
comprise the first set of 24 agents. We then iteratively continue centering on a CtRL-Sim-controlled
agent that has not been processed in the previous sets of 24 agents and select its 23 closest agents
for context until all CtRL-Sim-controlled agents have been included in a 24-agent subset. If an
agent belongs to multiple 24-agent subsets, we use the model’s first prediction of that agent. At
inference time, the context length is set to training context length H = 32. At each timestep, we
select H = 32 most recent timesteps as context and we found it useful to always center and rotate
the scene on the centered agent at the oldest timestep in the context. For the first 10 timesteps (1s) of
the simulated rollout, the states and actions are fixed to the ground-truth states and actions from the
offline RL dataset, whereas the return-to-go is predicted at every timestep of the simulated rollout.

G Baseline Details

In this section, we describe the design decision of each baseline employed in our work. We note
that for all models below, we scaled them in order for all models to have approximately the same
number of learnable parameters as CtRL-Sim’s architecture.

Actions Only The actions-only baseline is encoder-decoder architecture implemented in exactly the
same way as CtRL-Sim with a few ablations. These include removal of states and returns from the
decoder sequence, and no state rollout predictions. This model was inspired by [9] but differs in that
the model also has access to the agents’ goals.

Imitation Learning The imitation learning baseline is also based on the CtRL-Sim multi-agent
behaviour simulation architecture but lacks factorized return information. It is a step better than the
actions-only baseline since it considers the states in the decoder sequence, and this is corroborated
by its improved performance on multi-agent simulation results of Table 1.

DT The Decision Transformer baseline is based on the seminal work [15]. We adopt an identical
architecture to CtRL-Sim’s with some minor difference based on the algorithm. One such decision is
the lack of a return prediction based on states, and instead returns are chosen at inference time based
on domain knowledge. Returns are the first token fed to the decoder, followed by states in order to
predict actions. We make the strong argument that this is suboptimal for controllability (results in
Figure 4) and does not provide intuitive mechanism for selecting the return values to target.

16

ADE FDE Goal Success JSD Collision Off Road Per Scene
Method (m) ↓ (m) ↓ Rate (%) ↑ (×10−2) ↓ (%) ↓ (%) ↓ Gen. Time (s) ↓
CTG++† 1.72 3.97 41.7 7.7 6.4 17.4 44.0
CTG++ (128 hidden dim) 1.83 4.32 37.8 7.6 7.0 17.7 25.0
CTG++ (100 diffusion steps) 1.87 3.98 43.0 8.6 7.9 16.8 140.0

Table 5: Ablations of CTG++ on Multi-agent simulation results over 1000 test scenes. We report
the results across all metrics of different configurations of the CTG++ baseline [11]. † indicates the
original model results, with 256 hidden dimension and 50 diffusion steps at inference time.

CTG++ The CTG++ baseline is a diffusion model reimplementation of the recent work by [11].
We attempted to follow the architecture as closely as possible with a few minor differences. One
such difference is that we diffuse over both states and actions, rather than diffusing over only actions
and using an unicycle dynamics model to derive the states. We chose this approach because the
underlying dynamics of the physics-enhanced Nocturne simulator is not necessarily governed by a
unicycle dynamics model, and thus using a unicycle dynamics model would induce small errors in
the derived states during training. We further note that we cannot replace the unicycle dynamics
model with the Nocturne physics dynamics model as this forward model is not differentiable. We
also condition on the present timestep and goal, to ensure fair comparison with CtRL-Sim. We
note that at scene generation time, we diffuse over actions and states at a rate of 2 Hz which is
consistent with the original CTG++ model. In addition, although we train with 100 diffusion steps,
we run evaluations with 50 diffusion steps. As showing in Table 5, the difference in performance
is insignificant. As we do not have information on the size of the network used in the original
manuscript, we explored different hidden dimension sizes of the transformer architecture of the
diffusion model, also shown in Table 5. A final difference is the future relative encoding. While
CTG++ use the ground-truth to compute the relative encoding during training and a constant velocity
model at test time, we opted to use the final historical timestep’s relative encoding. We found this
approach to be more stable.

H CAT Simulated Data Collection and CtRL-Sim Finetuning

The Waymo Open Motion dataset largely contains nominal driving scenes. To enhance control over
the generation of safety-critical scenarios, we finetune CtRL-Sim on a simulated dataset of safety-
critical scenarios generated by CAT [21]. CAT is a state-of-the-art collision generation method that
involves fixing the agent’s future trajectory to a trajectory predicted by a DenseTNT trajectory pre-
dictor. CAT searches for a trajectory that has high likelihood of colliding with the log-replay future
trajectory of the ego vehicle, while having high probability under the behaviour prior (DenseTNT).
For more details, we refer readers to [21]. We note that a limitation of CAT is that the agent is non-
reactive to the ego as the agent’s trajectory is fixed at the beginning of the simulation. Moreover,
unlike CtRL-Sim, CAT does not have control over the degree to which the agent is adversarial.

To collect the simulated safety-critical dataset, we run CAT on a subset of the interactive validation
split of the Waymo Open Motion Dataset, which involves two interacting agents. Following CAT,
we select one of the two interacting agents to be the ego (whose trajectory is fixed to the log-replay
trajectory) and the other interacting agent to be the CAT adversary. In total, we collect 3577 CAT
scenarios for finetuning, of which around 60% contain ego-adversary collisions.

To encourage CtRL-Sim to learn how to generate safety-critical scenarios without forgetting how
to generate good driving behaviour, we adopt a continual pre-training strategy for finetuning [51]
where we randomly sample 3577 real training scenarios from the offline RL dataset in each training
epoch, or a 50% replay ratio. We rewarm the learning rate to the maximum learning rate of 5e-4
over 500 steps and follow a linear decay learning rate schedule to 0 over 20 epochs. We expect that
the finetuned CtRL-Sim model will be more capable of generating long-tail scenarios as it is more
exposed to such scenarios during finetuning. Finetuning takes roughly 30 minutes on 1 NVIDIA
A100-Large GPU.

17

I Adversarial Scenario Generation User Study

Method Times Preferred
CtRL-Sim 123
CAT 69
Tie 79

Table 6: The tally of votes for the
larger study. We show the breakdown
of the votes for the conducted larger
study. We observe that the results of this
study are less conclusive than the pilot
study.

We conduct a user study that contained a total of 24 par-
ticipants to evaluate which method (CtRL-Sim vs. CAT)
generates more plausible adversarial behaviours. We did
not record any identifying information of the partici-
pants, and participants were invited on a voluntary ba-
sis. The user study contained a total of 271 paired sce-
narios, where each paired scenario consisted of two inter-
acting agents, one controlled by a positively-tilted CtRL-
Sim planner and the other controlled by an adversary.
The scenario conditions of the paired scenarios are iden-
tical, except one scenario employed a CtRL-Sim adver-
sarial agent and the other employed a CAT adversarial
agent. The adversarial agent in each paired scenario is
highlighted in pink so that users can distinguish the adversarial agent from the remaining agents in
the scene. We do not identify the planner agent as we found this to detract users’ attention from the
behaviour of the adversarial agent. Each participant was tasked with evaluating a randomly selected
set of 30 paired scenarios from the pool of 271 paired scenarios. For each paired scenario, users
selected in which scenario the adversarial agent was more realistic, with the option to select “Tie”
if the two scenarios were sufficently similar. Users were presented with the user interface shown
in Figure 6, where we randomize the order between both videos. We use the same positively tilted
CtRL-Sim planner in both of the paired scenarios. Table 6 shows the tally of the user study. The
results indicate convincingly that CtRL-Sim produces more plausible adversarial behaviours than
CAT based on the participants’ preferences, as CtRL-Sim was preferred 54 more times than CAT
over the 271 paired scenarios.

J Additional Qualitative Results

Figure 7 shows more qualitative examples demonstrating the effects of positive exponential tilting
on each of the three reward components. In the left panels, CtRL-Sim with no tilting produces a
vehicle-vehicle collision between two interacting agents at a left-turn. With positive vehicle-vehicle
tilting, the CtRL-Sim-controlled agent moves more to the right-hand side of the lane to avoid the
collision. In the middle panels, CtRL-Sim with no tilting produces a vehicle-edge collision as the bus
pulls into the curb. With positive vehicle-edge tilting, the CtRL-Sim-controlled agent pulls into the
curb at a safer distance from the curb. In the right panels, CtRL-Sim with no tilting reaches the goal.
With positive goal tilting, the CtRL-Sim-controlled agent reaches the goal much faster and nearly
avoids collision with the turning vehicle. In Figure 8, we show two more examples of adversarial
collision scenarios generated with negative vehicle-vehicle tilting. We refer the interested reader to
the supplementary video for more examples.

K Multi-Agent Simulation Results with Higher Temperature Sampling

In Table 7, we report results from the same experiments as Table 1 except with a higher action
sampling temperature, set to 1.5.

L Fine-tuning CtRL-Sim on CtRL-Sim Scenarios

Instead of finetuning on CAT scenarios, we explore finetuning CtRL-Sim on adversarial scenar-
ios generated by CtRL-Sim. We first collect a simulated dataset of scenes either containing a
vehicle-vehicle collision or an offroad infraction. Specifically, we generate rollouts of a single
agent with the negatively tilted base CtRL-Sim model where the other agents are set to log re-
play through physics, and we save the scenario only if the generated rollout yields a vehicle-vehicle

18

Figure 6: User Study Example Scenario. We show an example of a pair of scenarios along with
the question users are asked to answer.

Reconstruction Distributional Realism Common Sense
Method FDE (m) ADE (m) Goal Suc. Rate (%) Meta JSD(×10−2) Collision (%) Off Road (%)

Replay-Physics∗ 0.97 0.47 87.3 7.6 2.8 10.7

Actions-Only [9] 11.70 ± 1.12 4.78 ± 0.42 34.4 ± 1.3 14.3 ± 0.3 22.8 ± 0.7 29.7 ± 1.7
Imitation Learning 2.42 ± 0.17 1.47 ± 0.07 73.8 ± 1.2 12.3 ± 0.5 7.3 ± 0.6 13.1 ± 0.4
DT (Max Return) [15] 3.25 ± 0.17 1.67 ± 0.05 60.5 ± 1.2 12.3 ± 0.4 6.1 ± 0.7 11.6 ± 0.3
CtRL-Sim (No State Prediction) 2.57 ± 0.16 1.52 ± 0.07 66.2 ± 1.0 12.3 ± 0.3 7.6 ± 0.7 13.1 ± 0.3
CtRL-Sim (Base) 2.49 ± 0.10 1.50 ± 0.04 67.9 ± 1.2 12.2 ± 0.2 7.6 ± 0.3 13.1 ± 0.5
CtRL-Sim (Positive Tilting) 2.38 ± 0.08 1.44 ± 0.03 67.2 ± 1.0 12.1 ± 0.1 6.7 ± 0.4 12.3 ± 0.3

DT∗ (GT Initial Return) 1.94 ± 0.07 1.28 ± 0.02 73.7 ± 1.5 12.2 ± 0.3 6.6 ± 0.4 12.6 ± 0.4
CtRL-Sim∗ (GT Initial Return) 1.97 ± 0.08 1.30 ± 0.03 71.1 ± 0.9 12.2 ± 0.1 7.2 ± 0.5 13.1 ± 0.3

Table 7: Multi-agent simulation results over 1000 test scenes with action temperature = 1.5
over 3 seeds. This table presents the results from the same experiments as Table 1, but with an
action sampling temperature of 1.5 instead of 1.0. This allows for a comparison of the impact of the
temperature hyperparameter. Overall, an action sampling temperature of 1.0 yields better results.

collision or vehicle-road-edge collision. For tilting, we uniformly sample κveh-veh ∼ U(−25, 0) and
κgoal ∼ U(−25, 0) when generating vehicle-vehicle collision scenarios, and we uniformly sample
κveh-edge ∼ U(−25, 0) and κgoal ∼ U(−25, 0) when generating vehicle-road-edge collision scenar-
ios. By additionally negatively tilting the goal, this grants the model more flexibility when generat-
ing traffic violations as the agents are not trying to reach its prescribed goal. We collect 5000 sce-
narios of each type of traffic violation derived from the training set, which comprises the simulated
dataset of safety-critical scenarios. To encourage CtRL-Sim to learn how to generate safety-critical
scenarios without forgetting how to generate good driving behaviour, we adopt the same finetuning
strategy as in Appendix H, except we randomly sample 90000 real training scenarios from the of-
fline RL dataset in each training epoch, or a 90% replay ratio. We find it useful to use a larger replay
ratio when finetuning on CtRL-Sim scenarios. The controllability results are shown in Figure 9,
demonstrating similar control over adversarial behaviours as the CAT-finetuned CtRL-Sim model.

19

Vehicle-Vehicle Tilting

N
o

Ti
lti

ng
Po

si
tiv

e
Ti

lti
ng

Vehicle-Edge Tilting Goal Tilting

Figure 7: Qualitative results of the effects of positive tilting. We show the evolution of three
traffic scenes with the top panels applying no exponential tilting to the CtRL-Sim-controlled agent
(shown in teal) and the bottom panels applying positive tilting to the same CtRL-Sim-controlled
agent. Bounding boxes outlined in red contain a traffic violation. All other agents are set to log-
replay through physics, with the agent interacting with the CtRL-Sim-controlled agent denoted in
pink. Goals are denoted by small circles.

Tilting Goal Success Rate (%)

0 69.0± 0.7
-10 (Late) 64.1± 1.3

10 63.1± 2.6

(a) Goal Tilting

Tilting Collision Rate (%)

0 14.5± 1.5
-10 (Late) 18.2± 2.3

10 28.9± 1.8

(b) Vehicle-Vehicle Tilting

Tilting Offroad Rate (%)

0 15.2± 0.9
-10 (Late) 17.4± 1.0

10 21.6± 0.6

(c) Vehicle-Edge Tilting

Table 8: We report the results of the CtRL-Sim FT model over 1000 test scenes applying (a) Goal
Tilting, (b) Vehicle-Vehicle Tilting, and (c) Vehicle-Edge Tilting. We either apply no tilting, -10
tilting, or 0 tilting for the first half of the rollout and -10 tilting for the second half of the rollout (i.e.,
Late). We report the mean ± std over 5 seeds.

M Dynamic Exponential Tilting

In this section, we experiment with dynamic exponential tilting, where the tilting value varies de-
pending on the simulation timestep. We specifically experiment with late tilting to test if tilting is
still effective at later timesteps. We applied a -10 tilting to the CtRL-Sim FT model only during the
last half (4 seconds) of the generated rollout. We evaluated over 5 seeds on 1000 scenes, as in Figure
4. We evaluate the tilting of each reward component independently. The results are shown in Table
8, where we report the mean±std over 5 seeds.

As expected, with late tilting, we observe a higher goal success rate and a lower collision/offroad
rate compared to the model that applies negative tilting at all timesteps. Conversely, we see a lower
goal success rate and a higher collision/offroad rate compared to the model with no tilting. This

20

Vehicle-Vehicle Tilting

Po
si

tiv
e

Ti
lti

ng
N

eg
at

iv
e

Ti
lti

ng

Figure 8: Qualitative results of vehicle-vehicle tilting. We show the evolution of two traffic scenes
with the top panels applying positive exponential tilting to the CtRL-Sim-controlled agent (shown
in teal) and the bottom panels applying negative tilting to the same CtRL-Sim-controlled agent.
Bounding boxes outlined in red contain a traffic violation. All other agents are set to log-replay
through physics, with the agent interacting with the CtRL-Sim-controlled agent denoted in pink.
Goals are denoted by small circles.

Figure 9: Effects of exponential tilting. Comparison of CtRL-Sim base model (magenta) and a
CtRL-Sim model fine-tuned on adversarial CtRL-Sim scenarios (purple). As opposed to Figure 4,
this fine-tuned model does not involve using CAT to select the adversarial scenarios. Rewards range
from -25 to 25 for vehicle-vehicle collision (left), vehicle-edge collision (middle), and goal reaching
(right). Results show smooth controllability, with fine-tuning enhancing this effect. Mean and std
are reported over 5 seeds.

shows that tilting remains effective at the later timesteps. An interesting observation is that late
tilting performs similarly to full tilting of the goal reward, likely because avoiding the goal can be
effectively achieved within the last 4 seconds of the rollout, even if the agent was initially traveling
towards the goal. On the other hand, it may be more difficult for the agent to collide with another
agent or a road edge in the last 4 seconds if it hasn’t planned for that in the first 4 seconds.

21

N Failure Cases

Figure 10: Failure cases. Visualization of two failure cases of CtRL-Sim. The agent controlled by
CtRL-Sim is depicted in teal. On the left, the agent drifts off the road, likely due to imitation drift.
On the right, the agent’s behaviour is erratic and implausible due to extreme tilting values (-50).

In Figure 10, we visualize two failure cases generated by CtRL-Sim. In the scenario on the left,
we control one agent using CtRL-Sim with zero tilting, indicated in green. However, the agent
drifts off the road, exhibiting a failure mode likely caused by imitation drift—a common issue in
imitation learning methods when rolled out over time. This drift likely results from the model’s lack
of exposure to sufficient examples of agents successfully recovering their position when approaching
the edge of the road. In the scenario on the right of Figure 10, we control one agent using CtRL-Sim
with -50 vehicle-vehicle tilting. The agent’s behaviour is erratic and implausible, which is caused by
selecting a large negative tilting value that pushes the model out of distribution. This failure mode
can be mitigated by choosing tilting values that are not too extreme. We find empirically that tilting
CtRL-Sim with values between -25 to 25 generally produce more plausible outputs.

22

	Introduction
	CtRL-Sim
	Our Approach to Controllable Simulation via Offline RL
	Multi-Agent Behaviour Simulation Architecture

	Experiments
	Experimental Setup
	Results

	Related Work
	Conclusion
	Offline RL Approaches
	Action Sampling Algorithm
	Nocturne Physics Simulator and Offline RL Dataset
	Physics-based Nocturne Simulator
	Offline RL Dataset Collection

	Evaluation Metrics
	Individual JSD Results
	CtRL-Sim Training and Inference Details
	Baseline Details
	CAT Simulated Data Collection and CtRL-Sim Finetuning
	Adversarial Scenario Generation User Study
	Additional Qualitative Results
	Multi-Agent Simulation Results with Higher Temperature Sampling
	Fine-tuning CtRL-Sim on CtRL-Sim Scenarios
	Dynamic Exponential Tilting
	Failure Cases

