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Abstract: Evaluating autonomous vehicle stacks (AVs) in simulation typically1

involves replaying driving logs from real-world recorded traffic. However, agents2

replayed from offline data are not reactive and hard to intuitively control. Existing3

approaches address these challenges by proposing methods that rely on heuristics4

or generative models of real-world data but these approaches either lack realism5

or necessitate costly iterative sampling procedures to control the generated be-6

haviours. In this work, we take an alternative approach and propose CtRL-Sim,7

a method that leverages return-conditioned offline reinforcement learning to effi-8

ciently generate reactive and controllable traffic agents. Specifically, we process9

real-world driving data through a physics-enhanced Nocturne simulator to gen-10

erate a diverse offline reinforcement learning dataset, annotated with various re-11

ward terms. With this dataset, we train a return-conditioned multi-agent behaviour12

model that allows for fine-grained manipulation of agent behaviours by modify-13

ing the desired returns for the various reward components. This capability enables14

the generation of a wide range of driving behaviours beyond the scope of the ini-15

tial dataset, including adversarial behaviours. We demonstrate that CtRL-Sim can16

generate diverse and realistic safety-critical scenarios while providing fine-grained17

control over agent behaviours.18

Keywords: Autonomous Driving, Simulation, Offline Reinforcement Learning19

1 Introduction20

Recent advances in autonomous driving has enhanced their ability to safely navigate the complex-21

ities of urban driving [1]. Despite this progress, ensuring operational safety in long-tail scenarios,22

such as unexpected pedestrian behaviours and distracted driving, remains a significant barrier to23

widespread adoption. Simulation has emerged as a promising tool for efficiently validating the24

safety of autonomous vehicles (AVs) in these long-tail scenarios. However, a core challenge in de-25

veloping a simulator for AVs is the need for other agents within the simulation to exhibit realistic26

and diverse behaviours that are reactive to the AV, while being easily controllable. The traditional27

approach for evaluating AVs in simulation involves fixing the behaviour of agents to the behaviours28

exhibited in pre-recorded driving data. However, this testing approach does not allow the other29

agents to react to the AV, which yields unrealistic interactions between the AV and the other agents.30

To address the issues inherent in non-reactive log-replay testing, prior work has proposed rule-based31

methods [2, 3] to enable reactive agents. However, the behaviour of these rule-based agents often32

lacks diversity and is unrealistic. More recently, generative models learned from real-world data33

have been proposed to enhance the realism of simulated agent behaviours [4, 5, 6, 7, 8, 9]. While34

these methods produce more realistic behaviours, they are either not easily controllable [4, 5, 9] or35

require costly sampling procedures to control the agent behaviours [10, 8, 7, 11, 12].36
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Figure 1: CtRL-Sim allows for con-
trollable agent behaviour from ex-
isting datasets. This allows users to
create interesting edge cases for test-
ing and evaluating AV planners.

In this paper, we propose CtRL-Sim to address these lim-37

itations of prior work. The CtRL-Sim framework uti-38

lizes return-conditioned offline reinforcement learning (RL)39

to enable reactive, closed-loop, controllable, and prob-40

abilistic behaviour simulation within a physics-enhanced41

Nocturne [13] environment. We process scenes from the42

Waymo Open Motion Dataset [14] through Nocturne to43

curate an offline RL dataset for training that is annotated44

with reward terms such as “vehicle-vehicle collision” and45

“goal achieved”. We propose a return-conditioned multi-46

agent autoregressive Transformer architecture [15] within47

the CtRL-Sim framework to imitate the driving behaviours48

in the curated dataset. We then leverage exponential tilt-49

ing of the predicted return distribution [16] as a simple50

yet effective mechanism to control the simulated agent be-51

haviours. While [16] exponentially tilts towards more op-52

timal outcomes for the task of reward-maximizing control,53

we instead propose to tilt in either direction to provide con-54

trol over both good and bad simulated driving behaviours.55

We show examples of how CtRL-Sim can be used to generate counterfactual scenes when expo-56

nentially tilting the different reward axes in Figure 1. For controllable generation, CtRL-Sim simply57

requires specifying a tilting coefficient along each reward axis, which circumvents the costly iterative58

sampling required by prior methods. CtRL-Sim scenarios are simulated within our physics-extended59

Nocturne environment. We summarize our main contributions: 1. We propose CtRL-Sim, which is,60

to the best of our knowledge, the first framework applying return-conditioned offline RL for con-61

trollable and reactive behaviour simulation. Specifically, CtRL-Sim employs exponential tilting of62

factorized reward-to-go to control different axes of agent behaviours. 2. We propose an autoregres-63

sive multi-agent encoder-decoder Transformer architecture within the CtRL-Sim framework that is64

tailored for controllable behaviour simulation. 3. We extend the Nocturne simulator [13] with a65

Box2D physics engine, which facilitates realistic vehicle dynamics and collision interactions.66

We demonstrate the effectiveness of CtRL-Sim at producing controllable and realistic agent be-67

haviours compared to prior methods. We also show that finetuning our model in Nocturne with68

simulated adversarial scenarios enhances control over adversarial behaviours. CtRL-Sim has the69

potential to serve as a useful framework for enhancing the safety and robustness of AV planner70

policies through simulation-based training and evaluation.71

2 CtRL-Sim72

In this section, we present the proposed CtRL-Sim framework for behaviour simulation. We first73

introduce CtRL-Sim in the single-agent setting, and subsequently show how it extends to the multi-74

agent setting. Given the state of an agent st at timestep t and additional context (e.g., the road struc-75

ture, the agent’s goal), the behaviour simulation model employs a driving policy π(at|st,m, sG) and76

a forward transition model P(st+1|st, at) to control the agent in the scene. Note that at is the ac-77

tion, m is the map context, and sG is the prescribed goal state. Using the physics-extended Nocturne78

simulator, we have access to a physically-realistic forward transition model P . In this work, we are79

interested in modelling the policy π(at|st,m, sG) such that we can both imitate the real distribution80

of driving behaviour and control the agent’s behavior to generate long-tail counterfactual scenes.81

2.1 Our Approach to Controllable Simulation via Offline RL82

We consider the common offline RL setup where we are given a dataset D of trajectories τi =83

{. . . , st, at, rt, . . .}, with states st ∈ S, actions at ∈ A and rewards rt. These trajectories are84

generated using a (suboptimal) behaviour policy πB(at|st) executed in a finite-horizon Markov85
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(a) Model Overview (b) Inference Time Forward Pass

Figure 2: 2a (left) The agent and map data at t = 0 are encoded and fed through a Transformer
encoder as context for the decoder, similar to [9]. Trajectories are arranged first by agents, then by
timesteps, embedded, and fed through the decoder. For each agent, we encode (st, Gt, at) (i.e. state,
return-to-go, action) and we predict from these (Gt, at, st+1, . . . , sT ). 2b (right) At inference time,
the state predicts the return-to-go. The return-to-go is tilted (i.e., reweighed to encourage specific
behaviors) and is used to predict the action, which in turn is used to predict the next states.

decision process. The return at timestep t is defined as the cumulative sum of scalar rewards obtained86

in the trajectory from timestep t, Gt =
∑T

t′=t rt′ . The objective of offline RL is to learn policies87

that perform as well as or better than the best agent behaviours observed in D.88

The primary insight of this work is the observation that offline RL can be an effective way to perform89

controllable simulation. That is, the policy distribution over actions can be tilted at inference time90

towards desirable or undesirable behaviors by specifying different values of return-to-go Gt. This re-91

quires a different formulation of the policy such that it is conditioned on the return π(at|st, Gt, sG)
1.92

In Table 3, we outline how different approaches in offline RL have learned return-conditioned poli-93

cies. In this work, we adopt an approach that learns the joint distribution of returns and actions of94

an agent in a given dataset. Specifically, pθ(at, Gt|st, sG) = πθ(at|st, sG, Gt)pθ(Gt|st, sG). We95

note that [17] found it helpful to also utilize a model-based return-conditioned policy, whereby the96

future state is modelled as part of the joint distribution being learned. This is shown to provide a97

useful regularizing signal for the policy, even though the future state prediction is not directly used at98

inference time. In this work, we also found it helpful to regularize the learned policy by predicting99

the full sequence of future states. The final distribution we are aiming to model is thus given by100

pθ(st+1:T , at, Gt|st, sG) = pθ(st+1:T |st, sG, Gt, at)πθ(at|st, sG, Gt)pθ(Gt|st, sG).101

At inference time, we obtain actions by first sampling returns Gt ∼ pθ(Gt|st, sG) and then sam-102

pling actions at ∼ πθ(at|st, sG, Gt). This sampling procedure corresponds to the imitative pol-103

icy since the sampled returns are obtained from the learned density that models the data distri-104

bution. Following prior work in offline RL [16, 17, 18], we can also sample actions from an105

exponentially-tilted policy distribution. This is done by sampling the returns from the tilted distri-106

bution G′
t ∼ pθ(Gt|st, sG) exp(κGt), with G′

t being the tilted return-to-go and where κ represents107

the inverse temperature; higher values of κ concentrate more density around the best outcomes or108

higher returns, while negative values of κ concentrate on less favourable outcomes or lower returns.109

We are interested in modelling and controlling the individual components of the reward function110

rather than maximizing their weighted sum. For example, we would like to model an agent’s ability111

to reach its goal, drive on the road, and avoid collisions. In general, given C reward components, our112

objective is to learn policies that are conditioned on all its factored dimensions as this would grant113

us control over each one at test time. This entails modelling separate return components as Gc
t ∼114

pθ(G
c
t |st, sG) for each return component c. Applying this factorization, we reformulate the learned115

policy to explicitly account for the conditioning on all return components πθ(at|st, sG, G1
t , . . . G

C
t ).116

At test time, each return component will be accompanied by its own inverse temperature κc to117

1Note that we omit the additional context m for brevity.
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enable control over each return component, which enables sampling actions that adhere to different118

behaviours specified by {κ1, . . . , κC}, as shown in Algorithm 2 in Appendix B.119

To implement our framework for behaviour simulation, we extend the approach presented above to120

the multi-agent setting. Across all agents we have sets for the joint states St, goal states SG, actions121

At, and returns-to-go Gt. The final multi-agent joint distribution we model is:122

pθ(St+1:T ,At,Gt|St,SG) = pθ(St+1:T |St,SG,Gt,At)πθ(At|St,SG,Gt)pθ(Gt|St,SG), (1)

where the returns and actions from the previous timesteps are shared across agents, while at the123

present timestep they are masked out so one can only observe one’s own return and action.124

2.2 Multi-Agent Behaviour Simulation Architecture125

In this section, we introduce the proposed architecture for multi-agent behaviour simulation within126

the CtRL-Sim framework that parameterizes the multi-agent joint distribution presented in Equation127

(1). We propose an encoder-decoder Transformer architecture [19], as illustrated in Figure 2, where128

the encoder encodes the initial scene and the decoder autoregressively generates the trajectory rollout129

for all agents in the scene.130

Encoder To encode the initial scene, we first process the initial agent states and goals (s0, sG) and131

the map context m, where s0 is the joint initial state of all agents and sG is the joint goal state of132

all agents. Each agent i’s initial state information si0, which includes the position, velocity, heading,133

and agent type, is encoded with an MLP. Similarly, each agent’s goal siG, which is represented as the134

ground-truth final position, velocity, and heading, is also encoded with an MLP. We then concatenate135

the initial state and goal embedding of each agent and embed them with a linear layer to get per-136

agent embeddings of size d. We additionally apply an additive learnable embedding to encode the137

agents’ identities across the sequence of agent embeddings. The map context is encoded using a138

polyline map encoder, detailed more fully in Appendix F, which yields L road segment embeddings139

of size d. The initial agent embeddings and road segment embeddings are then concatenated into a140

sequence of length N + L and processed by a sequence of E Transformer encoder blocks.141

Decoder The proposed decoder architecture models the joint distribution in Equation (1) as a se-142

quence modelling problem, where we model the probability of the next token in the sequence con-143

ditioned on all previous tokens pθ(xt|x<t) [15]. In this work, we consider trajectory sequences144

of the form: x = ⟨. . . , (s1t , s1G), (G
1,1
t , . . . , GC,1

t ), a1t , ..., (s
N
t , sNG ), (G1,N

t , . . . , GC,N
t ), aNt , . . . ⟩.145

These sequences are an extension of the sequences considered in the Multi-Game Decision Trans-146

former [16] to the multi-agent goal-conditioned setting with factorized returns. Unlike Decision147

Transformer [15], our model predicts the return distribution and samples from it at inference time,148

which enables flexible control over the agent behaviours and circumvents the need to specify an149

expert return-to-go. We obtain state-goal tuple (sit, s
i
G) embeddings in the same way that (s0, sG)150

are processed in the encoder. Following recent work that tokenizes driving trajectories [20, 9], we151

discretize the actions and return-to-gos into uniformly quantized bins. We then embed the action and152

return-to-go tokens with a linear embedding. To each input token, we additionally add two learnable153

embeddings representing the agent identity and timestep, respectively. The tokenized sequence is154

then processed by D Transformer decoder layers with a temporally causal mask that is modified to155

ensure that the model is permutation equivariant to the agent ordering (see Appendix F for details).156

Training Given a dataset of offline trajectories (Section 3), we train our model by sampling se-157

quences of length H × N × 3, where H is the number of timesteps in the context. The state,158

return-to-go, and action token embeddings output by the decoder are used to predict the next return159

token, action token, and future state sequence, respectively. We train the return-to-go and action160

headers with the standard cross-entropy loss function and the future state sequence header with an161

L2 regression loss function. The final loss function is of the form: L = Laction+Lreturn-to-go+αLstate.162
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Figure 3: Qualitative results of multi-agent simulation with CtRL-Sim. The teal agents are
controlled by CtRL-Sim, and other agents in pink are set to log-replay through physics.

ADE FDE Goal Success JSD Collision Off Road Per Scene
Method (m) ↓ (m) ↓ Rate (%) ↑ (×10−2) ↓ (%) ↓ (%) ↓ Gen. Time (s) ↓
Replay-Physics∗ 0.47 0.97 87.3 7.6 2.8 10.7 1.1

Actions-Only [9] 4.81±0.52 11.89±1.42 32.7±1.4 10.4±0.3 19.9±1.2 27.6±1.0 3.3
Imitation Learning 1.24±0.05 1.95±0.10 77.4±1.3 8.3±0.1 5.8±0.2 12.1±0.2 3.4
DT (Max Return) [15] 1.56±0.04 3.07±0.16 63.3±0.8 8.4±0.1 5.3±0.3 11.0±0.2 20.7
CTG++† [11] 1.73±0.10 4.02±0.32 38.8±5.4 7.4±0.2 5.9±0.4 15.0±1.5 44.0

CtRL-Sim (No State Prediction) 1.32±0.03 2.21±0.06 72.4±0.8 8.2±0.2 6.1±0.4 12.0±0.3

CtRL-Sim (Base) 1.29±0.04 2.13±0.08 73.0±1.3 8.1±0.2 5.8±0.4 11.8±0.2 8.2
CtRL-Sim (Positive Tilting) 1.25±0.03 2.04±0.08 72.9±1.5 7.9±0.1 5.3±0.2 11.0±0.2

DT∗ (GT Initial Return) 1.10±0.02 1.58±0.07 77.5±1.5 8.4±0.1 5.3±0.3 11.9±0.3
20.8CtRL-Sim∗ (GT Initial Return) 1.09±0.02 1.60±0.06 77.2±1.1 8.1±0.2 5.6±0.4 12.2±0.1

Table 1: Multi-agent simulation results over 1000 test scenes. We report mean±std across 5 seeds.
CtRL-Sim achieves a good balance between reconstruction performance, common sense, realism,
and efficiency. ∗ indicates privileged models requiring GT future. † indicates reimplementation.

3 Experiments163

3.1 Experimental Setup164

Offline Reinforcement Learning Dataset To train our model, we curate an offline reinforcement165

learning dataset derived from the Waymo Open Motion dataset [14]. We first extend Nocturne by166

integrating a physics engine based on the Box2D library for enabling realistic vehicle dynamics and167

collisions, detailed in Appendix B.1. Each scene in the Waymo dataset is fed through the physics-168

enhanced Nocturne simulator to compute the per-timestep actions and factored rewards for each169

agent. Refer to Appendix C for more details regarding the offline RL dataset collection.170

Evaluation We evaluate CtRL-Sim on its ability to replicate the driving behaviours found in the171

Waymo Open Motion Dataset (imitation) and generate counterfactual scenes that are consistent172

with specified tilting coefficients (controllability). For both modes of evaluation, we use 1 second173

of history and simulate an 8 second future rollout. For imitation, we evaluate on up to 8 moving174

agents per scene that we control with CtRL-Sim, where the remaining agents are set to log replay175

through physics. We evaluate on 1000 random test scenes in both modes of evaluation. Following176

recent work [7], we use three types of metrics for imitation evaluation: reconstruction metrics, such177

as Final Displacement Error (FDE), Average Displacement Error (ADE), and Goal Success Rate; a178

distributional realism metric (JSD) defined by the mean of the Jensen-Shannon Distances computed179

on linear speed, angular speed, acceleration, and distance to nearest vehicle features between real180

and simulated scenes; and common sense metrics measured by Collision and Offroad rate.181

For controllability evaluation, we evaluate on 1 selected “interesting” interactive agent that is con-182

trolled by CtRL-Sim, defined as an agent who is moving and whose goal is within 10 metres of183

another moving agent. All agents except for the CtRL-Sim-controlled interesting agent are set to184

log replay through physics. We evaluate the model’s controllability through metrics aligned with the185

specified reward dimensions: we report the goal success rate for the goal reward control, collision186

rate for the vehicle-vehicle reward control, and offroad rate for the vehicle-road-edge reward control.187
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Figure 4: Effects of exponential tilting. Comparison of CtRL-Sim base model (magenta) and
fine-tuned model (purple) across different reward dimensions. Rewards range from -25 to 25 for
vehicle-vehicle collision (left), vehicle-edge collision (middle), and goal reaching (right). Results
show smooth controllability, with fine-tuning enhancing this effect. We report mean±std over 5 seeds.

Methods under Comparison For imitation evaluation, we compare CtRL-Sim against several rel-188

evant baselines: 1. Replay-Physics employs an inverse bicycle model to obtain the ground-truth189

log-replay actions and executes through the simulator. 2. Actions-Only is an encoder-decoder model190

inspired by [9] where the decoder trajectory sequences only contain actions. 3. Imitation Learning191

(IL) is identical to the architecture in Section 2.2 except with the removal of returns and the future192

state prediction. 4. Decision Transformer (DT): The GT Initial Return variant specifies the initial193

ground-truth return-to-go from the offline RL dataset, with the goal of acting as an imitative policy.194

Max Return follows the standard DT approach of selecting the maximum observable return in the195

dataset. The DT architecture is identical to that of CtRL-Sim except the return token precedes the196

state token, and the returns and future states are not predicted by the decoder. 4. CTG++ is a reim-197

plementation of [11], a competitive Transformer-based diffusion model for behaviour simulation.198

We evaluate the following variants of the proposed CtRL-Sim model: 1. CtRL-Sim (Base) is the199

CtRL-Sim model trained on the offline RL dataset. 2. CtRL-Sim (No State Prediction) is the base200

model trained without the state prediction task. 3. CtRL-Sim (Positive Tilting) applies κc = 10201

tilting to all components c of the base model. 4. CtRL-Sim (GT Initial Return) is similar to DT202

(GT Initial Return). For controllability evaluation, we evaluate on the CtRL-Sim base model and203

a finetuned CtRL-Sim model (CtRL-Sim FT). The finetuned model takes a trained base model and204

finetunes it on a dataset of simulated long-tail scenarios that we collect using an existing simulated205

collision generation method CAT [21]. This allows CtRL-Sim to be exposed to more long-tail206

collision scenarios during training, as the Waymo Open Motion dataset mainly contains nominal207

driving. We refer readers to Appendix H for details of CAT and our proposed finetuning procedure.208

3.2 Results209

In Table 1, we present the multi-agent imitation results comparing the CtRL-Sim model and its210

variants with imitation baselines. The CtRL-Sim models perform competitively with the imitation211

baselines, with the CtRL-Sim (Positive Tilting) model achieving a good balance between distribu-212

tional realism (2nd in JSD), reconstruction performance (2nd in FDE, ADE), common sense (Tied213

1st in Collision and Offroad Rate), and efficiency (5.4× faster than CTG++). Although DT (Max214

Return) attains equal collision and offroad rates as CtRL-Sim, this comes at the cost of substantially215

worse reconstruction performance. We further validate the importance of the future state prediction216

task, with CtRL-Sim (Base) outperforming CtRL-Sim (No State Prediction) across all metrics. The217

CtRL-Sim (Positive Tilting) model attains the best collision rate and offroad rate, demonstrating the218

effectiveness of exponential tilting for steering the model towards good driving behaviours.219

We emphasize that a distinctive feature of CtRL-Sim that distinguishes it from the imitation base-220

lines in Table 1 is that it additionally enables intuitive control over the agent behaviours through ex-221

ponential tilting of the return distribution. This contrasts with DT, which, although capable of gener-222

ating suboptimal behaviours by specifying low initial return-to-gos, lacks intuitive control due to the223

prerequisite knowledge about the return-to-go values and an absence of an interpretable mechanism224
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Planner Metrics Adversary Realism

Progress Coll. w/ Adv. JSD Coll. Speed
Adv. Method Tilt Reactive? Control? (m) ↓ (%) ↑ (×10−2) ↓ (m/s) ↓
CAT ✗ ✗ 53.3 61.4 18.6 6.9

CtRL-Sim −10
✓ ✓

57.5±0.1 10±0.5 13.3±0.5 7.4±0.5

10 57.7±0.1 8.7±0.5 12.7±0.4 8.3±0.6

−10 56.1±0.2 33.8±1.9 19.6±0.4 6.3±0.2

CtRL-Sim FT 10 ✓ ✓ 57.1±0.1 18.5±1.6 14.9±0.2 6.1±0.2

50 57.4±0.2 14.6±1.8 15.6±1.2 6.0±0.3

Table 2: Adversarial scenario generation results over 1000 test scenes. We report the mean±std

over 5 seeds for the CtRL-Sim models. Finetuning CtRL-Sim on CAT data improves ability to
generate adversarial scenarios compared with base CtRL-Sim model. Compared with CAT, CtRL-
Sim is reactive and controllable, while exhibiting better collision realism.

for behaviour modulation. By constrast, the exponential tilting of the predicted return distribution225

employed in CtRL-Sim has a clear interpretation: negative exponential tilting yields behaviours that226

are worse than the average behaviours learned from the dataset, while positive exponential tilting227

yields better-than-average behaviours. This provides a more intuitive interface to a practitioner who228

may aim to produce behaviours that are either less or more optimal than nominal driving behaviours.229

We show the results of our controllability evaluation in Figure 4. For each reward dimension c, we230

exponentially tilt κc between -25 and 25 and observe how this affects the corresponding metric of231

interest. We also show the results of DT when conditioning on the minimum and maximum possible232

return. For both the base and finetuned CtRL-Sim models, we observe a relatively monotonic change233

in each metric of interest as the tilting coefficient is increased from -25 to 25. As the finetuned model234

is exposed to collision scenarios during finetuning, it demonstrates significant improvements over235

the base model in generating bad driving behaviours. Specifically, at -25 tilting, the finetuned model236

is able to generate 2.1× as many collisions and 1.8× as many offroad violations as the base model.237

Figure 5 (and 6, 7 in Appendix J) shows qualitatively the effects of tilting.238

Table 2 evaluates CtRL-Sim’s ability to produce adversarial agents that collide with a data-driven239

planner. We evaluate on a held-out test set of two-agent interactive scenarios from the Waymo240

dataset, where one interacting agent is controlled by the planner and the other is controlled by241

the adversary. We use a positively-tilted CtRL-Sim base model as our planner, due to its demon-242

strated ability to produce good driving behaviours in Table 1. For adversarial scenario generation,243

we compare the base CtRL-Sim model against the CtRL-Sim FT model. With -10 tilting applied,244

the finetuned model generates 238 more collisions with the planner than the base model over 1000245

scenes, which we attribute to its exposure to simulated collision scenarios during finetuning. No-246

tably, CtRL-Sim FT was finetuned in only 30 minutes on 1 NVIDIA A100-Large GPU and only 3500247

CAT scenarios. This underscores CtRL-Sim’s capability to flexibly incorporate data from various248

sources through finetuning, thereby enabling the generation of new kinds of driving behaviours.249

Importantly, after finetuning, CtRL-Sim FT largely retains its ability to produce good driving be-250

haviours. This is evidenced by a 21.1 percentage point decrease in the planner’s collision rate when251

using a +50 positively tilted finetuned model as the adversary.252

In Table 2, we also compare CtRL-Sim against a state-of-the-art collision generation method, CAT253

[21], which uses a goal-conditioned trajectory forecasting model to select plausible adversarial tra-254

jectories that overlap with the ego plan. Although CAT generates more collisions with the planner,255

CAT is not controllable in that it cannot control the degree to which the agents are adversarial,256

which is a distinguishing feature of CtRL-Sim. Furthermore, CAT agents are non-reactive to the257

ego’s actions as the trajectory is fixed at the beginning of the simulation, which severely limits the258

realism of agents controlled by CAT. This is evidenced by a larger adversary collision speed than259

all finetuned CtRL-Sim models and is also validated qualitatively in the attached supplementary260

videos. As collision realism is hard to quantitatively assess, we further conduct a user study to con-261

firm that CtRL-Sim adversarial scenarios are indeed more realistic than CAT adversarial scenarios,262

with details and results reported in Appendix I.263
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Vehicle-Vehicle Tilting

Positive TiltingNegative Tilting

Vehicle-Edge Tilting

Positive TiltingNegative Tilting

Figure 5: Qualitative results of vehicle-vehicle and vehicle-edge tilting. Two traffic scenes com-
paring positive tilting of the CtRL-Sim-controlled agent (shown in teal) with negative tilting for
the same agent. Bounding boxes in red indicate traffic violations. Other agents log-replay through
physics, with interacting agents in pink. Goals are marked by small circles.

4 Related Work264

Agent behaviour simulation involves modelling the behaviour of other agents in simulation, such as265

vehicles and pedestrians, to enable diverse and realistic interactions with the AV. Agent behaviour266

simulation methods can be categorized into rule-based and data-driven methods. Rule-based meth-267

ods rely on human-specified rules to produce plausible agent behaviours, such as adhering strictly268

to the center of the lane [2, 3]. These methods often yield unrealistic and rigid agent behaviours269

that fail to capture the full spectrum of driving behaviours. Moreover, we are most interested in270

modelling long-tail behaviours, which are difficult to model with rules alone.271

To address these limitations, prior work has proposed learning generative models that aim to repli-272

cate agent behaviours found in real-world driving trajectory datasets [22, 23, 24, 4, 5, 25, 9]. These273

approaches draw significant inspiration from the extensive array of methods proposed for the task274

of joint motion prediction [26, 27, 28, 29, 30]; however, it’s crucial to distinguish that, unlike the275

open-loop nature of joint motion prediction, behaviour simulation operates in a closed-loop manner276

[31]. To improve the realism of the learned behaviours, other work has proposed using adversarial277

imitation learning [32] to minimize the behavioural discrepancy between expert and model rollouts278

[33, 34, 6] or RL to improve traffic rule compliance [35, 36]. While such methods demonstrate279

improved realism over rule-based methods, they lack the necessary control over the behaviours to280

enable the generation of targeted simulation scenarios for AV testing.281

More recent work has proposed more controllable behaviour simulation models by learning con-282

ditional models [10, 37, 7, 38, 8, 11, 12] that enable conditioning on a high-level latent variables283

[10, 37], route information [7], or differentiable constraints [8, 11, 39, 12, 40]. More recently,284

[41] used retrieval augmented generation to generate controllable traffic scenarios. However, these285

methods either lack interpretable control over the generated behaviours [37] or require costly test-286

time optimization procedures to steer the generated behaviours, such as latent variable optimiza-287

tion [10], Bayesian optimization [42, 43, 7], or the simulation of expensive diffusion processes288

[8, 44, 11, 39, 12, 40]. CtRL-Sim takes an alternative approach and learns a conditional multi-289

agent behaviour model that conditions on interpretable factorized returns. By exponentially tilting290

the predicted return distribution [16] at test time, CtRL-Sim enables efficient, interpretable, and291

fine-grained control over agent behaviours while being grounded in real-world data.292

5 Conclusions293

We presented CtRL-Sim, a novel framework applying offline RL for controllable and reactive be-294

haviour simulation. Our proposed multi-agent behaviour Transformer architecture allows CtRL-Sim295

to employ exponential tilting at test time to simulate a wide range of interesting agent behaviours.296

We present experiments showing the effectiveness of CtRL-Sim at producing controllable and re-297

active behaviours, while maintaining competitive performance on the imitation task compared to298

baselines. We hope CtRL-Sim can be further explored in future work to handle more reward func-299

tion components, such as driving comfort and respecting traffic signalization, as well as explored in300

domains outside of autonomous driving.301
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