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ABSTRACT

This work provides a minimum requirement in terms of intuitive and reasonable
axioms under which an empirical risk minimization (ERM) is the only rational
learning algorithm when learning in heterogeneous environments. We provide
an axiomatization of any learning rule in terms of choice correspondences over
a hypothesis space and seemingly primitive properties. Then, we show that the
only feasible algorithm compatible with these properties is the standard ERM that
learns arbitrarily from a single environment. This impossibility result implies that
Collective Intelligence (CI), the ability of algorithms to successfully learn across
heterogeneous environments, cannot be achieved without sacrificing at least one
of these basic properties. More importantly, this work reveals an incomparability
of performance metrics across environments as one of the fundamental limits in
critical areas of machine learning such as out-of-distribution generalization, fed-
erated learning, algorithmic fairness, and multi-modal learning.

1 INTRODUCTION

In this work, we study the aggregation rule

F : (r1, r2, . . . , rn) 7→ (H ,B,Ar), n ∈ N, (1)

where r := (r1, . . . , rn) represents a risk profile and (H ,B,Ar) is called a learning structure. The
risk profile is an n-tuple of risk functionals evaluated on h ∈ H which provides the performance
measures for each hypothesis across n heterogeneous environments. The learning structure is com-
posed of a hypothesis space H , a collection B of non-empty subsets of H , and a learning rule Ar

which is a choice correspondence such that Ar(H) ⊆ H for all hypothesis class H ∈ B.1 In words,
Ar specifies for any feasible non-empty hypothesis class H ∈ B a non-empty subset A(H) ⊆ H
that consists of “optimal” solutions to the problem. All in all, the learning structure is an abstraction
of any conceivable learning algorithm, while equation 1 models the task of designing a learning
algorithm given data from n heterogeneous environments.

Equation 1 characterizes modern machine learning problems including out-of-distribution (OOD)
generalization (aka domain generalization) [6, 16, 2], federated learning (FL) [13, 15, 14, 11], algo-
rithmic fairness [8, 5, 26, 12, 24], and multi-modal learning [17, 19, 4]. In domain generalization,
the risk profile r corresponds to empirical risk functionals across n domains and the goal is to design
an algorithm Ar that chooses the hypothesis from H that generalizes well to the previously unseen
domains. In federated learning, the risk profile encodes the local empirical risk functionals based on
private data sets residing at n local nodes, e.g., mobile phones and hospitals. We then aim at design-
ing an efficient algorithm that can learn across these nodes without exchanging private information.
In algorithmic fairness, the risk profile encodes the model error rates across demographic groups and
we want a learning algorithm that cannot only achieve high overall accuracy but also satisfies some
fairness constraints. Lastly, the risk profile in multi-modal learning is composed of score functions,
e.g., negative log-likelihood functions, of different data modalities such as images, texts, and audio.
An effective algorithm should be able to leverage information across these modalities.

We seek to understand fundamentally the limit of the above problems by establishing a minimum
requirement in terms of intuitive and reasonable axioms, namely, Pareto Optimality (PO), Indepen-
dence of Irrelevant Hypotheses (IIH), and Invariance Restriction (IR), under which the empirical risk

1We assume throughout that ∅ /∈ B and that Ar(H) ̸= ∅ for all hypothesis class H ∈ B.
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minimization (ERM)2 is the only algorithm possible (cf. Theorem 1 and Corollary 1). Our impossi-
bility result is based on the novel characterization of learning algorithms as choice correspondences
on a hypothesis space (cf. Definition 1). This result suggests that Collective Intelligence (CI), the
ability of algorithms to learn across heterogeneous environments, cannot be achieved without sacri-
ficing at least one of these fundamental properties.

2 ALGORITHMIC CHOICE

Let H be a set of hypotheses from which the solutions can be chosen. A learning problem involves
choosing the best solutions from H via a learning rule. A learning rule A specifies for any feasible
non-empty subset H ⊂ H a non-empty subset A(H) ⊆ H.3 In what follows, the set of natural
numbers is denoted by N, and for n ∈ N, [n] := {1, 2, . . . , n}.

Definition 1 (Learning structure). A learning structure is a triple (H ,B,A) where H is a hypoth-
esis space, B is a collection of non-empty subsets of H , and A is a learning algorithm represented
as a choice correspondence from B to 2H such that A(H) ⊆ H for all H ∈ B.

The learning structure is a blueprint of any conceivable learning rule. For each feasible hypothesis
class H ∈ B, A(H) outputs the solutions that would be obtained by executing the learning rule. It
is instructive to note that (H ,B,A) can itself be an outcome of the extensive choice, e.g., model
selection procedures. For brevity, we omit the detail of model selection as it does not alter our main
result. What matters here is that for each (H ,B,A), A remains the same for all H in B.4

2.1 INTERNAL CONSISTENCY

Since not all learning structures implied by Definition 1 exhibits desirable properties, we argue that
any reasonable learning algorithm must satisfy an internal consistency property.

Definition 2 (Internal consistency). Given a learning structure (H ,B,A), the algorithm A is inter-
nally consistent if for F ,G ∈ B, the following two conditions hold. (i) If h ∈ A(F) and h ∈ G ⊆ F ,
then h ∈ A(G). (ii) If h ∈ G and, for G ⊆ F , h ∈ A(F), then A(G) ⊆ A(F).

These two conditions, known as Property α [7][20, Ch. 1∗] and Property β [21, pp. 320], are
together one of the interpretations of the rationality of choice in mainstream economic theory. In
this context, the former says that any hypothesis h that is chosen from F must also be chosen from
G, if it is a contraction of F that also contains h. For example, suppose that F is composed of all
polynomials of degree smaller than p and G consists of all polynomials of degree smaller than q
where q ≤ p, i.e., G ⊆ F . Then, if A chooses the polynomial of degree t < q ≤ p from F as
a solution, it must also be chosen again from G. The latter, albeit less intuitive, can be interpreted
as follows. If there is the hypothesis h that is chosen from G and subsequently from F , which is
an expansion of G, then all other hypotheses that are considered equally good5 to h in G must also
be chosen from F . For instance, let f, g ∈ G be polynomials of degree t with different values of
coefficients. If A chooses both f and g from G, and f from F , then it must also choose g from F .
That is, it characterizes the behavior of the algorithm under the expansion of the hypothesis class.

The following two results follow immediately from the internal consistency property.

Proposition 1. Let Ar be a risk minimization (RM) algorithm, i.e., Ar(H) = {h ∈ H : r(h) ≤
r(g),∀g ∈ H} for some real-valued function r : H → R. Then, Ar satisfies internal consistency.

A majority of learning algorithms including empirical risk minimization (ERM) [25], structural risk
minimization (SRM) [23], and invariant risk minimization (IRM) [2, 1] fall into this category.

2In this paper, ERM loosely refers to algorithms that minimize a risk function associated with a single
homogeneous environment.

3Further restriction can be made so that any A(H) must be a unit set, with only one hypothesis chosen from
H, but we stick to the more general setting throughout.

4In practice, both B and A can depend on some hyperparameters, e.g., kernel choice, neural architecture,
and regularization parameters, that render H ∈ B and A interdependent.

5In this work, h and g are considered by A as equally good if and only if h, g ∈ A(H).
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Proposition 2. Suppose that A satisfies the internal consistency property. For every pair f, g ∈ H ,
let f ⪰A g if f ∈ A({f, g}). Then, the binary relation ⪰A is complete and transitive.6 Moreover,
for every H ∈ B, A(H) = A⪰A(H) := {h ∈ H : h ⪰A g,∀g ∈ H}.

The binary relation ⪰A is known as a revealed preference of A and this proposition implies that as
long as A satisfies internal consistency, A(H) for any H ∈ B coincides with those obtained from
the learning algorith A⪰A defined in terms of preferences that are revealed by A operated on one-
and two-element subsets of hypotheses; see, e.g., Sen [22] for details on revealed preference.

More importantly, Proposition 2 highlights the essence of the internal consistency property as in-
consistent algorithms can exhibit incomplete or intransitive preference over the hypothesis space.

3 THE IMPOSSIBILITY RESULT

What we seek to understand is whether one can take the risk profile r = (r1, . . . , rn) computed
from data across n heterogeneous environments and create learning algorithms Ar that are internally
consistent; see equation 1. To answer this question, we argue that any of such mechanisms should
satisfy the following four primitive properties.

1. Pareto Optimality (PO): For all f, g ∈ H , ri(f) < ri(g) for all i ∈ [n] implies that {f} =
Ar({f, g}).

2. Independence of Irrelevant Hypotheses (IIH): For any pair of risk profiles r = (r1, . . . , rn),
r′ = (r′1, . . . , r

′
n) and any pair of hypotheses f, g ∈ H such that ri(f) = r′i(f) and ri(g) =

r′i(g), f ∈ Ar({f, g}) if and only if f ∈ Ar′({f, g}).
3. Invariance Restriction (IR): For any pair of risk profiles r = (r1, . . . , rn), r′ = (r′1, . . . , r

′
n)

for which there exists (a1, . . . , an) ∈ Rn and (b1, . . . , bn) ∈ Rn
+ such that ri(h) = ai+bir

′
i(h)

for all i ∈ [n], Ar(H) = Ar′(H) for all H ∈ B.

4. Collective Intelligence (CI): There exists no i ∈ [n] such that for all pair f, g ∈ H and for all
r in the domain of F , ri(f) < ri(g) implies that {f} = Ar({f, g}).

Firstly, PO simply requires that the algorithm chooses f over g if f is strictly better than g in all
environments. It is hard to argue against PO as a desirable property. If f is unanimously superior to
g, there is no reason for Ar to choose otherwise. Secondly, IIH requires that when choosing between
two hypotheses, the algorithm should not rely on any other information apart from the risk values of
these two hypotheses across environments. Thirdly, IR demands the algorithm to be invariant to any
transformation of the risk profile that is informationally identical to the original one. Most learning
algorithms in a single environment are invariant to the strictly increasing transformation of the risk
functional and IR simply generalizes this property to a set of n-tuples of risk functionals. Last but
not least, CI demands that the algorithm leverages information from multiple environments.

Nevertheless, we show that for a finite number of two or more environments, no aggregation rule F
can satisfy these four properties simultaneously.

Theorem 1. For a finite number of two or more environments and at least three distinct hypotheses,
there exists no aggregation rule F that produces an internally consistent structure (H ,B,A) and
satisfies PO, IIH, IR, and CI simultaneously.

The following corollary follows immediately from Theorem 1.

Corollary 1. For a finite number of two or more environments and at least three distinct hypotheses,
a unique algorithm that is internally consistent and is compatible with PO, IIH, and IR simultane-
ously is of the form: Ar(H) = {h ∈ H : ri(h) ≤ ri(g),∀g ∈ H}, H ∈ B for some i ∈ [n].

To summarize, if we treat PO, IIH, and IR as primitive properties that any learning algorithms in
heterogeneous environments should satisfy, the only possibility that can come out of equation 1 is
the algorithm that does not leverage information across environments. To move forward, we must
therefore give up at least one of these properties.

6The binary relation ⪰ on H is complete if for every pair f and g from H , either f ⪰ g or g ⪰ f (or
both). It is transitive if f ⪰ g and g ⪰ h implies f ⪰ h.
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It is instructive to understand intuitively how these assumptions respectively yield Theorem 1 and
Corollary 1. First, we consider all conceivable algorithms defined on H . The undesirable ones are
then eliminated by demanding that they satisfy some essential properties. By successively imposing
internal consistency, PO, IIH, and IR, the algorithm in Corollary 1 remains the only possibility.
Adding CI eliminates this only possibility, giving rise to the impossibility result in Theorem 1. The
detailed proofs of these two results can be found in Appendix A.

4 DISCUSSION

To sum up, our results imply that it is impossible to achieve collective intelligence without sacrific-
ing at least one of the above primitive properties. The first way out is to remove internal consistency,
which implies that the revealed preferences of learning algorithms may not be complete and tran-
sitive (see Proposition 2). The second way out is to restrict the domain of F . In fact, existing
assumptions such as task relatedness in multi-task learning and (causal) invariance in domain gener-
alization are domain restrictions in disguise. The drawback however is that it may be non-trivial to
check in practice. Pareto optimality [18] is a very simple and highly appealing criterion of compar-
ison of hypotheses in the multi-objective setting which generalizes the notion of “minimum risk”.
Therefore, the consequence of dropping PO as a necessary criterion must be immense. It also im-
plies that the information contained in the risk profile is not sufficient for learning and that some
“irrelevant” information must be used. Hence, a violation of PO requires some caution. Dropping
IIH also poses a similar concern regarding the use of irrelevant information.

What about the IR property? To answer this question, consider two hypotheses h and h′ from H and
risk functionals ri and rj from the same risk profile. Suppose that ri(h′)−ri(h) = rj(h

′)−rj(h) <
0, i.e., h′ is better than h in both environments i and j and by the same margin. Then, whether one
can drop the IR condition depends on whether or not one possesses enough information to claim
that “h′ leads to the same improvement over h in environment i as it does in environment j”. For
instance, will the COVID-19 AI diagnosis system h′ lead to the same improvement over the old
system h for Johns Hopkins Hospital in Baltimore as it does for Siriraj Hospital in Thailand? Will
the new autocorrection system h′ lead to the same improvement over the existing one h in terms of
satisfaction for users in Japan as it does for users in South Africa? and so on. When the answer to
these questions is yes, we can drop the IR property. In reality, however, such a detailed comparison
between environments may not be possible, a shortcoming we call informational incomparability.7

Informational incomparability What makes heterogeneous learning particularly challenging is
the fact that it requires a meaningful inter-environment comparison. In retrospect, while risk func-
tions and the like have been commonly used as a proxy for the performance of algorithmic models
in the real world and as a basis to compare them, the inter-environment comparison of risk func-
tions is harder than one might expect. The first challenge is a physical one. In federated learning,
for example, it is physically impossible to share all the data across a massive network of mobile
devices. Matters pertaining to privacy, security, and access rights will also limit data sharing across
environments. The second challenge is a cultural one. An algorithmic model might have varied
effects across different demographic groups simply because of cultural differences. It is difficult
to believe that there will be means for us to tell all the differences between any two cultures. In
algorithmic fairness, for example, there can be a mismatch between measurement modeling and
operationalization of social constructs, i.e., abstractions that describe phenomena of theoretical in-
terest such as socioeconomic status and risk of recidivism, which makes it difficult to meaningfully
compare different operationalizations [9]. The third challenge is a subjective matter. In multi-modal
learning, the relationship between modalities is often open-ended or subjective [19, 4]. Language is
often seen as symbolic, but audio and visual data are represented as signals. Moreover, likelihood
functions defined on different data types are generally incomparable [10]. Last but not least, the
obstacle can simply be a legal one. To protect its people, a government might regulate what kind of
and to what extent information can be shared. Well-known examples of this attempt are the EU’s
General Data Protection Regulation (GDPR) and its upcoming AI Act.8

7In case of cardinal utility functions, this problem is known in economics as an interpersonal incomparability
of utility; see, e.g., Sen [21, Ch. 7]. There has been a long debate on whether one can make a meaningful
comparison of the welfare of different individuals.

8https://digital-strategy.ec.europa.eu/en/policies/
european-approach-artificial-intelligence
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A PROOFS

A.1 PROOF OF PROPOSITION 1

Proof. (α Property): For any F ,G ∈ B such that G ⊆ F , let h ∈ Ar(F). Thus, r(h) ≤ r(g) for
all g ∈ F . Assume that h ∈ G but h /∈ Ar(G). This implies that there exists another hypothesis
f ∈ G for which r(f) < r(h). However, since f is also in F , it contradicts with r(h) ≤ r(g) for all
g ∈ F . Hence, h must also be in Ar(G). (β Property): For any h, g ∈ G, let h, g ∈ Ar(G). Assume
that h ∈ Ar(F) but g /∈ Ar(F). This implies that r(h) ≤ r(f) for all f ∈ F and r(g) > r(h),
which contradicts the fact that g ∈ Ar(G). Hence, g must also be in Ar(F). This implies that
Ar(G) ⊆ Ar(F).

A.2 PROOF OF PROPOSITION 2

Proof. Since A({f, g}) ̸= ∅, ⪰A is complete. If f ⪰A g and g ⪰A h, then f ∈ A({f, g}) and g ∈
A({g, h}). By β Property, if g ∈ A({f, g, h}), then f ∈ A({f, g, h}). Also, if h ∈ A({f, g, h}),
then g ∈ A({f, g, h}). Hence, we have f ∈ A({f, g, h}) in any case. By α Property, f ∈ A({f, h})
and f ⪰A h, which shows that ⪰A is transitive. Next, we show that A(H) = A⪰A(H) for every
H ∈ B. Assume that f ∈ A(H). By α Property, we have for every g ∈ H that f ∈ A({f, g}).
This implies that f ⪰A g and thus f ∈ A⪰A(H). Now, let us assume that f ̸= g, f ∈ A⪰A(H), and
g ∈ A(H). Then, f ∈ A({f, g}) and by β Property, f ∈ A(H), which completes the proof.

A.3 PROOF OF THEOREM 1 AND COROLLARY 1

This section provides a proof of Theorem 1, which relies heavily on the insights from the original
proof of Arrow’s General Possibility Theorem [3] and its simplification in Sen [21, pp. 286].

Let E be a set of environments. Crucial to the proof is the idea of a set E being “decisive”.

Definition 3 (Decisiveness). A set of environments E is said to be locally decisive over a pair of
hypotheses f, g if re(f) < re(g) for all e ∈ E implies that {f} = A({f, g}). It is said to be globally
decisive if it is locally decisive over every pairs of hypotheses.

The following two intermediate results provide basic properties of decisive set of environments E .

Lemma 1. If a set of environments E is decisive over any pair {f, g}, then E is globally decisive.

Proof. Let {p, q} be any other pair of hypotheses that is different from {f, g}. Assume that in every
environment e in E , re(p) < re(f), re(f) < re(g), and re(g) < re(q). For all other environments
e′ not in E , we assume that re′(p) < re′(f) and re′(g) < re′(q) and leave the remaining relations
unspecified. By PO condition, {p} = A({p, f}) and {g} = A({q, g}). By the decisiveness of E
over {f, g}, we have {f} = A({f, g}). Then, it follows from the transitivity implied by Proposition
2 that {p} = A({p, q}). By IIH condition, this must be related only to the relation between p and
q. Since we have only specified information in E , E must be decisive over {p, q} and for all other
pairs. Hence, E is globally decisive.

Lemma 2. If a set of environments E consists of more than one element and is decisive, then some
proper subset of E is also decisive.

Proof. Since there are at least two environments, we can partition E into two subsets E1 and E2.
Assume that re(f) < re(g) and re(f) < re(h) in every environment e ∈ E1 with the relation
between g and h unspecified. Let re′(f) < re′(g) and re′(h) < re′(g) in every environment
e′ ∈ E2. By the decisiveness of E , we have {f} = A({f, g}). Now, if h is at least as good as
f for some environments over {h, f}, then we must have {h} = A({h, g}) for that configuration.
Since we do not specify relation over {g, h} other than those in E2, and re′(h) < re′(g) in E2, E2 is
decisive over {g, h}. By Lemma 1, E2 must be globally decisive. That is, some proper subset of E
is indeed decisive for that particular case. To avoid this possibility, we must remove the assumption
that h is at least as good as f . But then f must be better than h. However, no environment has
this relation over {f, h} other than those in E1 where f is better than h. Clearly, E1 is decisive over
{f, h}. Thus, by Lemma 1, E1 is globally decisive. So either E1 or E2 must be decisive.
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An important observation from the proofs of Lemma 1 and Lemma 2 is that we rely only on the
relative rankings of hypotheses. We are now in a position to prove Theorem 1.

Proof of Theorem 1. Consider any two risk profiles r = (r1, . . . , rn) and r∗ = (r∗1 , . . . , r
∗
n) such

that for any f, g and for all i ∈ [n], ri(f) < ri(g) ⇔ r∗i (f) < r∗i (g). For every pair {f, g}, there
exists a positive affine transformation {φi} applied to r∗ such that

r′i(f) = φi(r
∗
i (f)) = ri(f) and r′i(g) = φi(r

∗
i (g)) = ri(g) for all i ∈ [n].

By IIH condition, {f} = Ar({f, g}) if and only if {f} = Ar′({f, g}) and by IR condition, {f} =
Ar′({f, g}) if and only if {f} = Ar∗({f, g}). Since this holds pair by pair, clearly Ar(H) =
Ar′(H) for all H ∈ B. As a result, what matters when comparing any two hypotheses is the relative
ranking between them. Next, by PO condition, the set of all environments E is decisive. By Lemma
2, some proper subset of E must also be decisive. Given that smaller subset of environments, some
proper subset of it must also be decisive, and so on. Since the number of environments is finite,
the set will eventually contain just a single environment that is decisive. However, this violates CI
condition, resulting in the impossibility.

Corollary 1 follows by omitting the last step in the proof of Theorem 1.
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