
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNLOCKING LONG-HORIZON AGENTIC SEARCH WITH
LARGE-SCALE END-TO-END RL

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in LLM-based agents have demonstrated remarkable capabil-
ities in handling knowledge-intensive tasks using external tools. One representative
example is search agent. Existing open-source search agents heavily rely on ad-
vanced commercial LLMs: they either collect trajectories from the larger, stronger
models for supervised fine-tuning or directly use them as specialized tools. In
this work, we develop ASearcher, a single-model search agent purely trained by
reinforcement learning (RL) without using any commercial APIs for data or tools.
Based on an RL-trained QwQ-32B model, ASearcher is capable of conducting com-
plex reasoning, such as uncertainty analysis and conflict verification, and achieves
comparable performances to commercial search agents. There are two key tech-
niques to unlock such long-horizon information-seeking abilities: first, we design a
two-staged agentic process to synthesize high-quality QA pairs as the training data
for RL; second, we conduct large-scale long-horizon RL, allowing the agent to
take up to 128 actions per rollout for sufficient exploration. In particular, after RL
training, ASearcher achieved scores of GAIA 58.1, xBench 51.1, and Frames 74.5
using only basic search tools. Furthermore, ASearcher also demonstrates strong
zero-shot transferability: ASearcher can be further augmented with an additional
summary tool, which is supported by DeepSeek-V3, and test-time scaling, which
aggregates the answer from 16 parallel rollouts. With both zero-shot enhancements,
the performances of ASearcher further rise to 71.8, 75.0, and 83.4, respectively,

outperforming OpenAI DeepResearch and Kimi-Researcher, suggesting the great
potential of RL scaling for agentic tasks. We release all the code and data at
anonymous link. The model will be released after the review process.

Figure 1: (Left) End-to-end RL brings substantial improvements to a simple agent: Through RL
training, our agent, ASearcher, obtains +15.0, +22.4, and +15.6 improvements on GAIA, xBench, and
Frames, respectively. (Middle) During RL training, ASearcher learns to conduct long-horizon
search, with tool calls progressing from an average of only 1.67 initially to over 20 tool calls in
latter training stages. (Right) Count of keywords during the training process reveals emergence of
complex search behaviors including reflective behaviors and referencing external information. Our
detailed case study in Appendix B also shows that the agent learns expert-level search strategies.

1 INTRODUCTION

Recent advances in LLM-based agents have demonstrated remarkable capabilities in solving complex,
knowledge-intensive problems by leveraging single or multiple external tools (Xi et al., 2025; Yao
et al., 2023; Wang et al., 2024a). Among the diverse capabilities, deep information retrieval using

1

https://anonymous.4open.science/r/ASearcher-7022

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tools stands out as a particularly critical aspect of advanced search agents (OpenAI, 2025; Google
Team, 2025; Perplexity Team, 2025). For a concrete example, a seemingly simple question like “How
many gold medals did China win at the 2012 London Olympics?” actually requires intricate reasoning.
At the time, China was credited with 38 golds, but a decade later, two doping disqualifications in
women’s race walking led to an additional gold medal to China, raising the total to 39. This illustrates
how search agents must reconcile historical records with noisy, sometimes conflicting, information
from diverse sources and identify the underlying causes for the conflicts to deliver accurate answers.

To equip agents with this deep retrieval capability, recent open-source approaches frequently depend
on commercial LLMs, either to generate expert data or to serve as specialized sub-modules within a
complex multi-model framework (Li et al., 2025a; Tao et al., 2025; Li et al., 2025b; Team, 2025a). For
instance, AFM (Li et al., 2025b) collects supervised fine-tuning data from a multi-agent framework
powered by multiple advanced commercial models such as Claude-Sonnet-4 (Anthropic, 2025) and
Gemini-2.5-Pro (Google Team, 2025). On the other hand, MiroThinker (Team, 2025a) employs
distinct commercial LLMs and VLMs for specialized tasks such as audio transcription, visual question
answering, and complex reasoning. This reliance on proprietary models raises a fundamental question:
can we achieve the performance of commercial systems without dependence on commercial models?

In this work, we present ASearcher, a search agent trained solely by Reinforcement Learning (RL),
and show that purely end-to-end RL can enable the emergence of advanced long-horizon search
strategies, despite that ASearcher is based on a single model using only search tools.Particularly,
two techniques are the key to the advanced information-seeking abilities in ASearcher. First, we
develop a scalable QA synthesis agent to generate a high-quality dataset of 25.6k challenging QA
pairs that necessitate multi-turn tool use. In training time, we employ a two-stage curriculum that
progressively focuses on challenging tasks. Specifically, the agent is initially trained over questions
spanning diverse difficulties, including those easy questions requiring only one or two tool calls.
After the agent learns preliminary search capabilities, we shift the training distribution to focus
on long-horizon tasks that require a minimum of five tool calls. Second, we train the agent with
large-scale long-horizon RL with a large turn limit of 128 per rollout trajectory. A large turn limit
encourages the exploration and discovery of sophisticated, long-horizon strategies. To ensure high
training efficiency, we employ fully asynchronous agentic RL training based on AReaL (Fu et al.,
2025) that decouples trajectory collection from weight updates for training efficiency.

We use a large reasoning model QwQ-32B (Team, 2025b) as the base model in our experiments.
During RL training, our agent, ASearcher, learns to conduct significantly more complex searches,
with an increasing average number of tool calls from only 1.67 calls at the beginning to more than 20
calls. A detailed case study and keyword analysis further reveal the emergence of complex search
behaviors, such as conducting uncertainty analysis and verification searches. Our finding on search
agents is akin to DeepSeek-R1 (DeepSeek-AI et al., 2025), where the emergent reasoning capabilities
can be fully incentivized by RL. We evaluate our agents on challenging benchmarks, including
GAIA (Mialon et al., 2023) , xBench-DeepSearch (Xbench-Team, 2025), and Frames (Krishna et al.,
2024). With only a single model and basic search tools, ASearcher achieves competitive scores
of 58.7, 51.1, and 74.5 (Avg@4) on GAIA, xBench, and Frames, respectively, demonstrating that
strong performance is attainable with a single-model design. Finally, ASearcher also demonstrates
strong zero-shot transfer ability to external summary tools. By employing an external summary
tool supported by DeepSeek-V3 and applying test-time scaling techniques, where we aggregate the
conclusions from 16 indepdent runs, the performance can be further enhanced, rising to 71.8, 75.0,
and 83.4, respectively, and achieving results competitive with commercial systems.

2 RELATED WORKS

Search Agents. Some works have investigated agent workflows to leverage tools for solving
complex tasks (Li et al., 2025c; Zhao et al., 2025). Prompt-based methods, though effective for
rapid development, are fundamentally limited by the capacity of the underlying LLMs. Some works
attempt to construct SFT trajectories for LLMs. For instance, Asai et al. (2023); Yu et al. (2024)
leverage LLMs to synthesize trajectories for SFT. Prior works investigate Reinforcement learning
(RL) methods to enhance the LLM-based agents, mostly focusing on multi-hop QA benchmarks. Jin
et al. (2025); Song et al. (2025); Chen et al. (2025); Zheng et al. (2025) perform RL training with
multi-hop QA data and observe an increasing amount of tool calls. More recently, researchers focus

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

on deep research tasks, by fine-tuning complex prompt-based agents through offline RL (Li et al.,
2025d), SFT on diverse trajectories (Sun* et al., 2025; Li et al., 2025a; Team, 2025a), adopting
multi-agent framework (Li et al., 2025b), and constructing challenging QAs for RL training. (Tao
et al., 2025). In this work, we focus on deep information retrieval, and show that RL alone can equip
a single-model agent with advanced long-horizon search capabilities.

Agentic Reinforcement Learning. Recent works have begun to improve the agentic capabilities of
LLMs and LRMs through online Reinforcement Learning. Prior works have investigated agentic RL
in various domains, such as search agents (Jin et al., 2025; Li et al., 2025a;d; Tao et al., 2025) and
coding (Luo et al., 2025a; Wei et al., 2025). A critical aspect of agentic RL is to activate and enhance
the tool-calling capability of the models. Wei et al. (2025) and Luo et al. (2025a) investigate training
coding agents for resolving real-world engineering questions. More recently, Li et al. (2025a); Tao
et al. (2025); Li et al. (2025b); Team (2025a) investigate training deep search agents by first running
Supervised Fine-Tuning to equip the agent with basic long-horizon search capability as cold-start
and then running Reinforcement Learning to further enhance the agent. In this work, we focus on
search agents and show that a simple agent can learn complex long-horizon search strategies through
reinforcement learning.

3 ASearcher

In this work, we present ASearcher, which unlocks search intelligence in search agents through
large-scale asynchronous RL training. In the subsequent sections, we present the agent design, the
training data as well as data synthesis agent, and fully asynchronous reinforcement learning training.

3.1 AGENT DESIGN: ONE SINGLE MODEL FOR ALL

Figure 2: ASearcher utilizes a simple agent design with two basic tools including search and browsing
tools, without relying on any external models. The agent is capable of both reasoning and summarizing
lengthy web contents.

We employ a simple agent design in ASearcher, as illustrated in Fig. 2.

Agent Input. In each turn, the search agent takes in the user query as well as the history of resolving
the user query. The history contains previous tool responses including search results and webpage
summaries, and also previous analysis and history actions.

Reasoning, Analysis, and Action. In each turn, given the user query and history context, the agent
generates three components to further conduct in-depth analysis and exploration,

• Reasoning: In this part, the agent conducts internal reasoning over the current situation.
Since we instantiate the agent with large reasoning models such as QwQ-32B, generating
reasoning process is naturally supported by the underlying model. In the reasoning process,
the agent analyzes available information, evaluates the query resolving progress, reflects over
previous results, determines the unresolved aspects, and deduces concrete plans for future

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Data Synthesis Agent. Starting from a seed QA, the data synthesis agent iteratively modifies
the question through two actions, Injection and Fuzz.

turns. Note that the reasoning part is only used for guiding the generation of subsequent
analysis and action. Since this reasoning part usually contain noisy and lengthy model-
generated texts, the reasoning part is not included in future history to ensure a clean history.

• Analysis: The analysis part is a summarization of the reasoning part, where the agent
extracts the key conclusions derived from the reasoning process and also makes a plan for
the subsequent step.

• Action: After thoroughly analyzing the current state with the reasoning and analysis parts,
the agent finally determines the next-step action. The agent could either answer the question
and terminate the execution process, or invoking external tools to obtain new information
from external sources.

Tools. When the agent determines to invoke external tools, two basic tools are available: a search
engine and a web browser. When the action is “<search>”, the search engine takes a query as input
and returns relevant snippets along with corresponding URLs. When the action is “<access>”, the
web browser accepts an URL and returns content of the webpage.

Webpage Summarization. Note that real-world webpages are usually very long, easily exceed
32K tokens. Therefore, we split the webpage into several chunks, with a maximum character count
of 10k per chunk. We employ the agent to summarize each chunk into a compact summary.

3.2 TRAINING DATA

Our training data are from two primary sources, including samples filtered from open-source datasets
and synthetic high-quality question-answer (QA) pairs.

Open-source Data. We begin with the training sets of HotpotQA (Yang et al., 2018) and 2Wiki-
MultiHopQA (Ho et al., 2020). We employ a model-based filtering process. We first train a model on
the full set of open-source data with RL fllowing Jin et al. (2025), and then generate 16 responses for
each question using the trained model. Finally, we filter out questions that are too hard for the model
or too easy for the model. Finally, from a total of 304k QA pairs, we retain 16k challenging samples.

Data Synthesis Agent. We further develop a data synthesis agent supported by QwQ-32B to create
high-quality question-answer pairs. As shown in Fig. 3, the data synthesis agent begins with a seed
question, and iteratively modifies the question to increase the complexity. To ensure the synthetic
question is strictly aligned with reliable sources, a list of supporting facts obtained during the question
synthesis process is continuously updated. At each step, the agent automatically selects between two
key actions,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Action 1: Injection aims to enrich the context of the question by inserting facts related to
the question. The agent first selects an entity in the question and then obtains one piece of
related fact about the selected entity from external sources such as Wikipedia. Then a new
question is proposed by injecting the fact into the question.

• Action 2: Fuzzing blurs certain details in the question to increase the uncertainty level of
the question. For example, "Catskill Mountain Railroad" could be replaced with "a historic
mountain railway".

To ensure that a synthetic question is of high quality and to precisely evaluate the difficulty, we
incorporate a rigorous quality verification phase for assessing synthetic questions. This verification
phase includes three steps: basic quality check that assess the clarity and resolvability of the question,
difficulty measurement by employing QwQ-32B to direct generate answers without tools, and answer
uniqueness check by evaluating whether any of the mismatched answers generated during the
Difficulty Measurement step could serve as alternative valid answers.

Through iterative injection and fuzzing, the data synthesis agent produces questions that involve
complex information and high uncertainty, requiring extensive search and reasoning to find the correct
answer. After completing the question synthesis process, we filter out questions that the LRM can
directly generate the correct answer without using tools.

Two-Stage Curriculum. During training time, we employ a two-stage training data scheme. In
the first stage, we apply RL training on the full training set, which include QAs spanning different
difficulties. This wide range of training distribution trains the agent to equip basic tool-calling and
reasoning capabilities. In the second stage, to further activate the long-horizon search capability of
the agent, we remove QAs that are solvable with less than 5 tool calls and use the rest data for the
second training stage.

3.3 ASYNCHRONOUS AGENTIC RL TRAINING

3.3.1 EFFICIENCY CHALLENGE OF LONG-HORIZON AGENTIC RL

Figure 4: Distribution of the out-
put lengths of trajectories generated
during RL training (recorded from
Step 290 to Step 310).

High Variance in Trajectory Execution Time. During RL
training, we use a large turn limit of 128. In practice, when
using a large turn limit at training time, long trajectories intro-
duce significant variance in execution time. We first analyze
the number of tool calls during RL training of our QwQ agent
(Fig. 1) and observe that the longest trajectories can span dozens
more tool calls than shorter ones. Second, we also report the
total number of output tokens per trajectory during training in
Fig. 4. As illustrated in the figure, the training process involves
extremely long trajectories. The data distribution reveals that
these lengthy trajectories constitute a very small proportion of
the samples. This disparity could lead to highly unpredictable
per-trajectory runtime, complicating training efficiency.

Efficiency Issues of Agentic RL Training. Both prolonged
execution and high runtime variance degrade RL training ef-
ficiency. We take one-step-off RL training system (Luo et al.,
2025b) as a representative example for batch generation RL
systems. As shown in Fig. 5, though this system overlaps trajectory rollouts with model training,
batch generation remains bottlenecked by the slowest trajectory (e.g., trajectory 7), causing GPU idle
time and under-utilization.

3.3.2 FULLY ASYNCHRONOUS RL TRAINING.

To ensure efficient agentic RL training, we adopt a fully asynchronous training paradigm. Notably,
our approach incorporates asynchornization at the two distinct aspects.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 5: One-Step-off RL v.s. Fully Asynchronous RL. In batch generation systems, a batch should
wait for the longest trajectory, leading to significant GPU idle time. In contrast, fully asynchronous
RL achieves faster training than batch generation RL by fully decoupling training and trajectory
generation, achieving near-full resource utilization for trajectory generation.

Asynchronous Trajectory Rollouts. Trajectory rollouts are collected in parallel and do not directly
interfere with each other. Each trajectory independently sends tool calling requests to corresponding
servers and LLM generation requests to the LLM inference engine. Concurrent requests from different
trajectories are automatically handled by the servers. Fully independent trajectory execution ensures
a trajectory does not need to wait for other trajectories when generating LLM responses and waiting
for tool calling responses, thereby improving training efficiency.

Decoupled Rollout and Training. Besides asynchronous rollout, trajectory rollouts and model
updates are also fully decoupled. In Fig. 5, we compare our fully asynchronous RL training with
one-step-off RL training, which utilizes asynchronous rollout within batches. In fully asynchronous
RL training, long trajectories do not block generation and can span multiple versions, significantly
reducing GPU idle time and achieving near-full GPU utilization during generation. On the training
side, a training step is launched as soon as sufficient trajectories are collected to form a batch.

3.4 TRAINING DETAILS

MDP Formulation. We follow the formulation of Markov Decision Process (MDP). Formally, an
MDP is defined by the tuple (S,A, T,R). Here S represents the state space, usually containing the
history, search results, and retrieved webpages. A denotes the action space and an action includes
tokens generated by the agent. Some tool calling could be extracted from the action through specific
tags, e.g. <search> search query </search>. T (s′|s, a) is the transition function. At each timestep,
the agent receives a state st and generates an action at with policy π : S → A. The goal of the agent

is to maximize the return J(π) = E
[∑∞

t=0 R(st, at)

∣∣∣∣at ∼ π(st)

]
.

GRPO Training. We employ the GRPO (Shao et al., 2024) algorithm to train search agents.
Specifically, for each input question x, G trajectories τ1, τ2, · · · , τG are generated where τi =
(si0, a

i
0, s

i
1, · · · , siTi

). To optimize the agent, we employ the following loss,

JGRPO(θ) = Ex∼D,{τi}G
i=1∼πθold

(·|x)

[
1

G

G∑
i=1

1∑Ti−1
t=0 |ait|

Ti−1∑
t=0

|ai
t|∑

j=1

min

(
πθ(a

i
t,j |st, ait,<j)

πθold(a
i
t,j |st, ait,<j)

Âi,

clip

(
πθ(a

i
t,j |st, ait,<j)

πθold(a
i
t,j |st, ait,<j)

, 1− ϵ, 1 + ϵ

)
Âi

)]
(1)

where ϵ is a hyperparameter, and Âi is the advantage for the i-th trajectory, computed based on the
relative rewards of all trajectories within each group.

Dynamic Filtering. To enhance training efficiency, we implement dynamic filtering to exclude
queries that lack meaningful training signals. Specifically, we remove queries where all responses
yield identical rewards (resulting in zero advantages).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Reward Function. We adopt a sparse-reward setting where rewards are computed at trajectory
completion. For reward function, we utilize LLM-as-Judge(Liu et al., 2023; Wang et al., 2024b) as
the reward function and omit format rewards, as large reasoning models such as QwQ-32B could
inherently maintain proper output formatting with high probability.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Benchmarks. We conduct evaluation on a suite of challenging benchmarks, including Frames (Kr-
ishna et al., 2024), GAIA (Mialon et al., 2023), xBench-DeepSearch (Xbench-Team, 2025), and
HLE(Li et al., 2025d). Frames contains 824 challenging questions for evaluating the ability of the
agent to synthesize accurate responses from multiple sources. GAIA contains real-world questions
that demand multi-turn tool calls and step-by-step problem solving. xBench-DeepSearch consists of
100 challenging Chinese questions constructed by human experts, evaluating the agent’s in-depth
planning and reasoning capabilities. HLE (Human’s Last Exam) features expert-level difficulty across
a wide range of disciplines, not only requiring the agent to search for related materials, but also
understanding and solving domain-specific questions. For GAIA, we use the 103 examples from the
text-only validation subset (Li et al., 2025c). For HLE, we use the 500-size subset following Li et al.
(2025d).

Baselines. We compare ASearcher against different sets of baselines:

• Commercial Deep Research Agents. We make a comparison with OpenAI DeepRe-
search (OpenAI, 2025) and Kimi-Researcher (MoonshotAI, 2025).

• General LLMs using Tools. We evaluates general LLMs equipped with external tools
including Qwen3-30B-A3B, Qwen3-235B-A22B (Yang et al., 2025), OpenAI-o3 (OpenAI,
2025), DeepSeek-R1 (DeepSeek-AI et al., 2025), and Claude-4-Sonnet (Anthropic, 2025).

• Open-source Search Agents. Finally, we make comparison with a set of 32B-scale
open-source search agents, including Search-o1(QwQ-32B) (Li et al., 2025c), Search-R1-
32B (Jin et al., 2025), WebThinker-QwQ (Li et al., 2025d),SimpleDeepSearcher-QwQ (Sun*
et al., 2025) and WebDancer-32B (Wu et al., 2025), WebSailor-32B (Li et al., 2025a), and
WebShaper-32B (Tao et al., 2025). We also include AFM-RL-32B (Li et al., 2025b), that
adopts a multi-agent design, and MiroThinker-32B-DPO (Team, 2025a), that utilizes more
tools beyond search tools, including tools for image and audio processing.

Evaluation Metrics. We adopt LLM-as-Judge (LasJ) as the main metric for evaluating the perfor-
mance. For LLM-as-Judge, an LLM (Qwen2.5-72B-Instruct) is prompted to assess the correctness of
outputs. For ASearcher, We report pass@1 score by evaluating 4 seeds. For baselines, we report the
scores reported in official reports if there are any.

Training Details of ASearcher. We set the turn limit as 128 and the batch size is set as 64 for
ASearcher. We use AdamW optimizer with a learning rate of 2e-6. Our training framework is built
up on AReaL (Fu et al., 2025). Training of ASearcher takes approximately 16k H800 GPU hours.

4.2 MAIN RESULTS

Benchmark Performance. Table 1 shows experiment results on challenging QA tasks that require
advanced and search strategies. Our agent, ASearcher, achieves competitive Pass@1 scores on GAIA,
Frames, and HLE, outperforming a wide range of previous 32B-scale agents. Notably, ASearcher
even achieves on-par performance as MiroTinker-32B-DPO that uses extra tools besides search tools.
These results further highlight the superiority in handling long-horizon and real-world tool use.

Zero-Shot Transfer with Summary Tool & Test-time Scaling. Although we adopt single-model
during training time, the agent design of ASearcher is generalizable. Specifically, the webpage
summarization process could be supported by external models. We here use DeepSeek-V3 as the
webpage summarization model. From Table 1, it is clear that using a more powerful model for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Pass@1 results of ASearcher and baselines. † indicates results are obtained from official
reports. For open-source search agents, we use “No Commercial LLM” to indicate that the agent does
not use commercial models as a component of agent design or for data collection, and “Non-Search
Tools” to indicate the tools used by the agent besides basic search tools. ASearcher outperforms a
wide range of 32B-scale open-source agents, with single model and no extra tools. When integrating
external models as summary tool and applying a test-time scaling approach, ASearcher is able to
achieve on-par performance with commercial systems.

Method No Commercial LLM Non-Search Tools GAIA xBench-DeepSearch Frames HLE

Commercial Deep Research Agents

Kimi-Researcher - - - 69.0† 78.8† 26.9†

OpenAI DeepResearch - - 67.0† - - 26.6†

General LLMs using Tools

OpenAI-o3 - - 70.5† 66.7 † 84.0† 20.2†

Qwen3-30B-A3B - - 35.9† 32.0† 56.4† 13.2†

Qwen3-235B-A22B - - 45.6† 46.0† - 20.0†

DeepSeek-R1 - - - 55.0† 82.0† 24.8†

Claude-4-Sonnet - - 68.3† 64.6† 80.7† 20.3†

Open-source Search Agents

Search-o1 (QwQ) ✓ - 48.1 40.3 63.6 -
Search-R1-32B ✓ - 28.6 19.5 44.1 -
WebThinker-QwQ ✓ - 48.5† 32.8 57.7 15.8†

Simple DS-QwQ ✓ - 50.5† 35.8 68.8† -
WebDancer-QwQ ✗ - 51.5† 40.0 63.8 -
WebSailor-32B ✓ - 53.2† 53.3† 69.8† -
WebShaper-32B ✓ - 53.3† - - -
AFM-RL-32B ✗ Code Sandbox 55.3† - - 18.0†

MiroThinker-32B-DPO ✗
Visual Question Answering,

Audio Transcription, Linux Sandbox 60.9† 56.0† 74.8† 20.6†

Ours (QwQ-32B)

ASearcher ✓ - 58.7 51.1 74.5 21.5
+ Summary=DeepSeek-V3 ✗ - 60.3 56.4 76.6 23.4
+ Test-time Search (K=16) ✗ - 71.8 75.0 83.4 24.6

summarization improves the performance of ASearcher. We further investigate test-time scaling.
Specifically, we run K = 16 independent runs for each problem in the test set and aggregate the
conclusions from these independent runs with DeepSeek-V3. As shown in Table 1, test-time scaling
approach leads to competitive performance with the commercial agents, including Kimi-Researcher,
OpenAI DeepResearch, and OpenAI o3. Please refer to Appendix. E for additional results and
implementation details of Test-time Scaling.

4.3 EMERGENT BEHAVIORS

Figure 6: Left: Word count of reflective keywords during training time. Right: Word count of
keywords indicating explicit reference of external information.

Keyword Analysis. In Fig. 6, we plot the word count of different keywords during the training
process. These keywords include words that indicate reflection behaviors of the agent, such as
“alternatively”, “however”, and “wait”, and also words indicating that the agent is referencing to
external information, such as “doc” and “mention”. From Fig. 6, it is clear that the agent learns to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

reflect over previous actions and conclusions. Interestingly, we also see that, in the second stage
of RL training where the training focuses on challenging tasks, the agent learns to refer to external
information, as evidenced by the increment in the word count of “doc” and “mention” after step 200.

Case Study In Fig. 7, we provide a detailed case study on an extremely challenging question from
GAIA (Mialon et al., 2023). Specifically, we analyze Search-R1-32B (Jin et al., 2025) and ASearcher.
The detailed trajectories are provided in Appendix B. In this question, to identify the correct answer,
the search agent should first find out the mentioned species according to condition “genus named
for Copenhagen”, identify the correct 2021 article based on the citation in the wikipedia page of the
species, and then find out the papers of the two mentioned persons.

In Fig. 7, Search-R1-32B is unable to decompose the complex query into individual components,
consequently only making ambiguous queries that involve too many unknown information. The agent
also has severe hallucinations, producing conclusions that are not supported by the search results.
Finally, it fails to resolve all unknown information. In contrast, ASearcher decomposes the complex
query into precise queries. ASearcher could also summarize all related information from a webpage
and analyze all candidate answers. Finally, after the correct answer “Mice” is found, the agent spends
further turns on verifying previous conclusions before reporting the final answer.

Figure 7: A case study on a complex query from GAIA. Search-R1-32B is unable to break down the
complex question and has severe hallucinations. It is also worth noting that, since the turn limit is
set as a small value, e.g. 4, during training, the model only exhibits a short tool-use horizon. Our
end-to-end RL agent, ASearcher, exhibits key behaviors featuring Search Intelligence: uncertainty-
aware reasoning (list and examine candidate answers), precise extraction from noisy contents, and
grounded verification.

4.4 ABLATION STUDY

We perform ablation studies over various key components of ASearcher. Specifically, we aim to
answer the following questions,

• Q1: How does the training-time turn limit influence the final performance and learned
behaviors?

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

• Q2: Is the two-stage curriculum necessary for activating the long-horizon search capabili-
ties?

• Q3: How does the training data of ASearcher compare with training data of baseline?

Experiment Setup. To carry out the ablation studies, we perform RL training starting from the
Stage 1 checkpoint of ASearcher. All ablation studies are trained for 200 steps to ensure the same
number of training steps as ASearcher. The ablation studies are evaluated on GAIA (Mialon et al.,
2023) and xBench-DeepSearch (Xbench-Team, 2025).

Table 2: Ablation Study on Training-time Turn Limit and Data Quality. The ablation studies reveal
that both a large turn limit and high-quality training data are the key to unlocking the long-horizon
search capability of the model.

of Tool Calls GAIA xBench-DeepSearch
at Training Time

ASearcher (Full) 26.59 58.7 51.1

Ablating Training-time Turn Limit
ASearcher w. Turn Limit=10 3.48 49.2 39.3

Ablating Training Data
ASearcher w. Stage 1 Data Only 5.40 51.6 43.0
ASearcher w. AFM Data 4.12 50.9 39.9

The results of ablation study is as shown in Table. 2. We highlight key conclusions derived from our
ablation analysis,

• (Q1) Training-time Turn Limit. A large turn limit is crucial for enabling the model’s
long-horizon search capability. Specifically, training with a large turn limit significantly
surpasses training with a small turn limit (e.g., Turn Limit = 10). With a large turn limit,
the agent is provided with a rich exploration space for complex search strategies.

• (Q2) Two-Stage Curriculum. Compared with continued training using only Stage 1 data,
the full training recipe incorporating a two-stage curriculum helps the agent to learn stable
long-horizon search by focusing on challenging queries that necessitate at least five tool
calls. This shows the importance of the progressive curriculum for mastering complex tasks.

• (Q3) Data Quality. We also compare our training data with that of a concurrent work,
AFM (Li et al., 2025b), by applying asynchronous RL training with a 128-turn limit using
the AFM training data. Training with AFM data is unable to incentivize complex search
capabilities and achieves sub-optimal benchmark performance, highlighting the high quality
and complexity of our synthesis data.

5 CONCLUSION

In this work, we present ASearcher, investigating large-scale RL training for search agents. Our
contribution includes a fully asynchronous agentic RL training system and a data synthesis agent for
large-scale high-quality QA construction. Through large-scale RL training, ASearcher demonstrates
emergent complex strategies using only a single model and basic search tools. We hope our work
could benefit future work on training advanced agents for a broader range of applications.

REFERENCES

Anthropic. Claude takes research to new places. https://www.anthropic.com/news/
research, April 2025. Accessed: 2025-04-01.

10

https://www.anthropic.com/news/research
https://www.anthropic.com/news/research

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Self-reflective
retrieval augmented generation. In NeurIPS 2023 workshop on instruction tuning and instruction
following, 2023.

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z
Pan, Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via
reinforcement learning. arXiv preprint arXiv:2503.19470, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
reinforcement learning system for language reasoning, 2025. URL https://arxiv.org/
abs/2505.24298.

Google Team. Introducing Gemini deep research, 2025. URL https://gemini.google/
overview/deep-research/. Accessed: 2025-04-06.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps, 2020. URL https://arxiv.org/
abs/2011.01060.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler, Shyam
Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of retrieval-
augmented generation, 2024. URL https://arxiv.org/abs/2409.12941.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
agent. arXiv preprint arXiv:2507.02592, 2025a.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2505.24298
https://arxiv.org/abs/2505.24298
https://gemini.google/overview/deep-research/
https://gemini.google/overview/deep-research/
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2011.01060
https://arxiv.org/abs/2409.12941

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weizhen Li, Jianbo Lin, Zhuosong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhenqiang Huang,
Qianben Chen, Weichen Sun, Qiexiang Wang, Hongxuan Lu, Tianrui Qin, Chenghao Zhu, Yi Yao,
Shuying Fan, Xiaowan Li, Tiannan Wang, Pai Liu, King Zhu, He Zhu, Dingfeng Shi, Piaohong
Wang, Yeyi Guan, Xiangru Tang, Minghao Liu, Yuchen Eleanor Jiang, Jian Yang, Jiaheng Liu,
Ge Zhang, and Wangchunshu Zhou. Chain-of-agents: End-to-end agent foundation models
via multi-agent distillation and agentic rl, 2025b. URL https://arxiv.org/abs/2508.
13167.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025c.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
arXiv preprint arXiv:2504.21776, 2025d.

Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, and Qi Zhang. Calibrating llm-based evaluator. arXiv preprint arXiv:2309.13308, 2023.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art
coding agent from scratch by scaling rl. https://pretty-radio-b75.notion.site/
DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33,
2025a. Notion Blog.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Er-
ran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
14b coder at o3-mini level. https://pretty-radio-b75.notion.site/
DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51,
2025b. Notion Blog.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

MoonshotAI. Kimi-researcher. https://moonshotai.github.io/Kimi-Researcher/,
2025.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025.

OpenAI. Introducing deep research, 2025. URL https://openai.com/index/
introducing-deep-research/. Accessed: 2025-04-06.

Perplexity Team. Introducing Perplexity deep research, 2025. URL https://www.perplexity.
ai/hub/blog/introducing-perplexity-deep-research. Accessed: 2025-04-06.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592, 2025.

Shuang Sun*, Huatong Song*, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Lei Fang,
Zhongyuan Wang, and Ji-Rong Wen Wayne Xin Zhao. Simpledeepsearcher: Deep information
seeking via web-powered reasoning trajectory synthesis. 2025. URL https://github.com/
RUCAIBox/SimpleDeepSearcher.

12

https://arxiv.org/abs/2508.13167
https://arxiv.org/abs/2508.13167
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://moonshotai.github.io/Kimi-Researcher/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/
https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research
https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research
https://github.com/RUCAIBox/SimpleDeepSearcher
https://github.com/RUCAIBox/SimpleDeepSearcher

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
Liwen Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webshaper:
Agentically data synthesizing via information-seeking formalization, 2025. URL https://
arxiv.org/abs/2507.15061.

MiroMind AI Team. Mirothinker: An open-source agentic model series trained for deep re-
search and complex, long-horizon problem solving. https://github.com/MiroMindAI/
MiroThinker, 2025a.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
https://qwenlm.github.io/blog/qwq-32b/.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024a.

Minzheng Wang, Longze Chen, Cheng Fu, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
Nan Xu, Lei Zhang, Run Luo, et al. Leave no document behind: Benchmarking long-context llms
with extended multi-doc qa. arXiv preprint arXiv:2406.17419, 2024b.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
reinforcement learning on open software evolution, 2025. URL https://arxiv.org/abs/
2502.18449.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information seeking
agency. arXiv preprint arXiv:2505.22648, 2025.

Xbench-Team. Xbench-deepsearch, 2025. URL https://xbench.org/agi/aisearch.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation for
large language models. arXiv preprint arXiv:2411.19443, 2024.

Xinjie Zhao, Fan Gao, Xingyu Song, Yingjian Chen, Rui Yang, Yanran Fu, Yuyang Wang, Yusuke
Iwasawa, Yutaka Matsuo, and Irene Li. Reagent: Reversible multi-agent reasoning for knowledge-
enhanced multi-hop qa. arXiv preprint arXiv:2503.06951, 2025.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
arXiv preprint arXiv:2504.03160, 2025.

13

https://arxiv.org/abs/2507.15061
https://arxiv.org/abs/2507.15061
https://github.com/MiroMindAI/MiroThinker
https://github.com/MiroMindAI/MiroThinker
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2502.18449
https://arxiv.org/abs/2502.18449
https://xbench.org/agi/aisearch
https://arxiv.org/abs/2505.09388

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE

In the development process of this work, LLM were used in the writing and polishing of the
manuscript. Specifically, we used an LLM to assist in refining the language, improving readability,
and ensuring clarity in various sections of the paper. The LLM helped with tasks such as sentence
rephrasing, latex formatting, and grammar checking.

B FULL CASE STUDY

In this section, we provide a detailed case study on an extremely challenging question from GAIA (Mi-
alon et al., 2023). Specifically, we analyze Search-R1-32B (Jin et al., 2025) and Search-o1 (QwQ) (Li
et al., 2025c) in Fig. 8.

Solution Path of the Sample Question. In Fig. 8, our case study is carried out on a question
requiring finding some specific animal given 2 conditions and 4 unknown variables. To identify the
correct answer, the search agent should first find out the mentioned species U1 according to condition
C1, identify the correct article U2 that satisfies condition C2, and then find out the papers listed in
U3.1 and U3.2. Finally, the correct answer should be determined by cross referencing the article U2
and the papers U3.1&U3.2. To summarize, this example is challenging for several main reasons,

• High Uncertainty: The question involves multiple unknown variables that could point to
many different entities. For example, the 2021 article U2 could point to any article published
in 2021 and could only be determined given the condition C2 and the alvei species U1.

• Requirement for Exact Information Extraction: To find the answer, the agent should list
all animals mentioned on the webpages and making cross-document comparison. This would
require the agent to precisely extract key information from the vast, noisy web contents,
instead of simply summarizing the webpages.

• Misleading Answers: During the process of solving this task, there could be multiple
misleading answers, such as "pigs". The agent should rigorously confirm its conclusions by
checking the intended answer in all related webpages and documents.

Existing Online RL Approaches Fail to Learn Complex Search Strategies. In Fig. 8, Search-
R1-32B is not able to decompose the complex query into individual components, consequently only
making redundant queries that involve too many unknown information. The agent also has severe
hallucinations, producing conclusions that are not supported by the search results. Finally, it fails
to resolve all unknown variables. This case study shows that existing online RL approaches only
incentivize elementary search strategies. It is also worth noting that, since the turn limit is set as a
small value, e.g. 4, during training, the model only exhibits a short tool-use horizon.

Prompt-based LLM Agents Could Fail Due to Insufficient Capability of the LLM. In Fig. 8,
Search-o1 (QwQ) can find the species name U1, as well as the 2021 article U2 and papers U3.1&U3.2
through a large amount of tool calls. However, when trying to find the answer, Search-o1 (QwQ)
would easily miss key information. Consequently, the agent makes incorrect conclusions. Notably,
even when the agent finds information that directly links to the correct answer, it is still misguided
by previous incorrect conclusions. Finally, the agent is unable to verify the correctness of previous
conclusions. This case study reveals that, though an open-source model that is not explicitly trained
on agentic tasks can perform extensive tool calls, it could not make expert-level reasoning based on
the retrieved contents and history contexts.

ASearcher-Web-QwQ. We also analyze the search strategy of our end-to-end RL agent, ASearcher-
Web-QwQ.As shown in Fig. 8, ASearcher-Web-QwQ decomposes the complex query into precise
and focused queries. Unlike Search-o1 (QwQ) that visits a large amount of websites after each search
query, ASearcher-Web-QwQ focuses on visiting the most relevant website. ASearcher-Web-QwQ
summarizes all related information from a website. Specifically, all candidate answers are listed and
carefully analyzed by the agent. When trying to search for related facts in the papers U3.1&U3.2,
the agent explicitly references the key information. When the search results do not directly point to
the desired target, e.g. when searching with “Olga Tapia (U3.2) Hafnia alvei (U1) animal studies”

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 8: A case study on a complex query from GAIA. Search-R1-32B is unable to break down
the complex question and has severe hallucinations. Search-o1 (QwQ) can identify the corrects
articles through extensive tool calls, but easily misses key information and fails to verify wrong
conclusions. Our end-to-end RL agent, ASearcher-Web-QwQ, exhibits key behaviors featuring
Search Intelligence: uncertainty-aware reasoning (list and examine candidate answers), precise
extraction from noisy contents, cross-document inference, and rigorous confirmation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

to find the animals related to Olga Tapia’s paper, the agent does not get a clear information but is
able to infer the correct answer by make connection with the other paper U3.1. After the correct
answer “Mice” is found, the agent spends further turns on confirming previous conclusions before
reporting the final answer. In summary, ASearcher successfully train a search agent that exhibits
complex behaviors that feature Search Intelligence,

• Uncertainty-aware reasoning: the agent exhaustively lists and examines all possibilities
for uncertain entities

• Price Key Information Extraction: the agent is able to identify the key information from
vast, noisy web contents.

• Cross-document Inference: the agent is able to infer critical conclusions by making
connections among multiple documents.

• Rigorous Confirmation: the agent verifies the correctness of previous conclusions with
additional tool calls.

C DATA SYNTHESIS AGENT

C.1 DETAILS OF DATA SYNTHESIS

We develop a data synthesis agent to create high-quality question-answer pairs. As shown in Fig. 3,
the data synthesis agent begins with a seed question, and iteratively modifies the question to increase
the complexity. To ensure the synthetic question is strictly aligned with reliable sources, a list of
supporting facts obtained during the question synthesis process is kept and continuously updated for
quality verification. At each step, given the current question and a list of supporting facts, the agent
automatically selects between two key actions,

• Action 1: Injection aims to enrich the context of the question by inserting facts related to
the question. The agent first selects an entity in the question and then obtains one piece of
related fact about the selected entity from external sources such as Wikipedia. Then a new
question is proposed by injecting the fact into the question. This injection action increases
complexity of the question.

• Action 2: Fuzzing blurs certain details in the question to increase the uncertainty level of
the question. For example, "Catskill Mountain Railroad" could be replaced with "a historic
mountain railway". Through fuzzing the question multiple times, both the uncertainty level
and difficulty of the question would gradually increase.

To ensure that a synthetic question is of high quality and to precisely evaluate the difficulty, we
incorporate a rigorous quality verification phase for assessing synthetic questions,

• Step 1. Basic Quality. We employ an LLM to assess the basic quality of each question.
This verification includes checking the clarity of the question and verifying whether the
question-answer pair is accurate based on the supporting facts. This quality control step
ensures that each question-answer pair is properly grounded in reliable sources.

• Step 2. Difficulty Measurement. We employ a cutting-edge LRM (e.g., QwQ-32B) to
generate multiple answers directly for the synthetic question, without using any external
tool. This verification process also serves as a measure of question difficulty.

• Step 3. Answer Uniqueness. The fuzzing action may loosen constraints excessively,
compromising the uniqueness of the answer. To prevent ambiguity resulting from multiple
correct answers, we evaluate whether any of the mismatched answers generated during the
Difficulty Measurement step could serve as alternative valid answers.

Through iterative injection and fuzzing, the data synthesis agent produces questions that involve
complex information and high uncertainty, requiring extensive search and reasoning to find the correct
answer. After completing the question synthesis process, we filter out questions that the LRM can
directly generate the correct answer without relying on search tools. Since these questions can be

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

answered solely based on the intrinsic knowledge of the model, they provide little value for enhancing
search capabilities.

Starting with 14,107 seed questions, we perform an average of 6.3 injections and 3.2 fuzzes per
question. From the synthetic pool, we select up to three high-quality variations per seed question.
This curation process produces a final dataset of 25,624 entries, with the selected questions averaging
4.27 injections and 2.10 fuzzes each.

C.2 EXAMPLE OF SYNTHETIC QA

Table 3: Examples of the synthetic questions, where red indicates injected facts and cyan represents
fuzzed content.

Round Action Question

Seed QA - When was Michael P. Hein born?

Round 1 Injection When was the Eckerd College alumnus who served as the first County Executive
of Ulster County, New York, and graduated with a Bachelor of Arts in Business
Administration born?

Round 2 Injection When was the individual born who, as County Executive of Ulster County, New
York, permitted the Catskill Mountain Railroad to continue operations between
Kingston and Hurley during the 2016 United States House of Representatives
elections and also held that position during the 2018 elections?

Round 3 Fuzzing When was the individual born who, as County Executive of Ulster County, New
York, permitted a historic mountain railway to continue operations between
Kingston and Hurley during the 2016 United States House of Representatives
elections and also held that position during the 2018 elections?

...

Seed QA - Where is the Riggs-Hamilton American Legion Post No. 20 located?

Round 1 Injection Where is the American Legion Post in Russellville, Arkansas, built in 1934 and
recognized as a notable example of WPA Rustic architecture and listed on the
National Register of Historic Places located?

Round 2 Fuzzing Where is the American Legion Post in Russellville, Arkansas, built in the early
1930s and recognized as a notable example of New Deal-era public works archi-
tecture and listed on the National Register of Historic Places located?

Round 3 Fuzzing Where is the veterans’ organization’s building in Russellville, Arkansas, built
in the early 1930s and recognized as a notable example of New Deal-era public
works architecture and listed on the National Register of Historic Places located?

...

We provide two illustrative examples in Tab. 3. Starting with a simple question, the injection action
replaces specific entities with related factual details. For instance, “Michael P. Hein” is expanded
to “who served as the first County Executive of Ulster County, New York...”. The fuzzing action
introduces ambiguity by generalizing precise information, replacing the exact year “1934” with “the
early 1930s” or substituting “Catskill Mountain Railroad” with “a historic mountain railway.”

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: Statistics from our data synthesis process. (Left) The distribution of the number of
supporting facts. (Middle) The distribution of the number of fuzz actions and injection actions.
(Right) The accuracy distribution of QwQ-32B in answering the generated questions without using
any tools.

C.3 SYNTEHTIC QA STATISTICS

D PROMPTS USED FOR DATA SYNTHESIS, JUDGE, AND TEST-TIME SEARCH

Prompt for Synthesis Agent Action Selection

You are an autonomous agent for constructing general-domain QAs. Now given the current
QA and relevant information. Choose one of the following action to make the question more
challenging.
The current question-answer pair:
{question}
You can choose one action from the following types:
{actions}

Prompt Description of SELECT (the First Step of Injection)

SELECT: select one entity from the relevant entity list. Once such an entity is selected, an
external tool will improve the difficulty of the question by replacing information about this
entity in the question with sub-questions that take this entity as the answer.

If you choose SELECT, the output should be in json format:
“‘json
{
"action": "SELECT",
"target": url of the selected entity. note that you should only select the entity from the relevant
entity list of the question and make sure the url exactly match the url in the relevant entity list.
"note": a short description of the rationale behind the selection
} “‘

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt Description of FUZZ (the Fuzzing Operation)

FUZZ: fuzz 1 places of information in the question to make the question more challenging.
Note that if you choose FUZZ, you should make sure the resulted question is still clear and
has an unique answer as the original one. You should choose FUZZ only when you find
certain pieces of information could clearly point to the correct answer without extensive
research to find relevant information.

If you choose FUZZ, the output should be in json format:
“‘json
{
"action": "FUZZ",
"question": the modified question after the FUZZ operation
"note": a short description of why and how the FUZZ operation happens
}
“‘

Prompt of Combining Two Questions (the Second Step of Injection)

You are an autonomous agent for constructing general-domain QAs. Now given two
questions, combine these questions into one. Specially, the answer to the second question is
related to some entity in the first question. To make the combined question challenging, you
need to remove information about the answer of the second question and ensure the answer
of the combined question remains the same as the answer of the first question. Please ensure
that the combined question is clear, solvable, and has an unique answer.

The first Question: “‘
{questionA}
“‘

The second Question:
“‘
{questionB}
“‘

Relevant statements:
“‘
{statements}
“‘

The output should be in json format:
“‘json
{
"question": the proposed question,
"answer": the answer
"note": one short description of how the two questions are combined
}
“‘

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt of Basic Quality Check

Check the validity of this question-answer pair given its relevant information.

The question is valid is and only if:
1. the question is not a simple concatenation of two or more questions
2. the provided answer is the only correct answer to the question
3. the question has an unique answer
4. the question can be solved based on the relevant statements

The question-answer pair and the relevant information:
{question}

You should reply "yes" or "no" indicating the validity of the question-answer pair.
You should think step-by-step first before the final judgement in json format:

Analysis

// your analysis

Final Judgement
“‘json
{
"judgement": "yes" or "no"
}
“‘

Prompt of Checking Whether an Answer Could be an Alternative Answer

Determine whether the predicted answer is also correct to the question. Specially, the
predicted answer is different from the ground-truth answer, and you should check whether
the predicted answer fits with all constraints in the question and is also a correct answer to
the question.

Question: {question}

Ground-truth answer: {gt_answer}

Facts supporting the ground-truth answer:
“‘txt
{statements}
“‘

Predicted answer: {pred_answer}

“‘json
{
"judgement": "yes" or "no"
}
“‘

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Prompt of LLM-as-Judge

You are an evaluation assistant. Please determine if the predicted answer is equivalent to the
labeled answer.

Question: {question}

Labeled Answer: {gt_answer}

Predicted Answer: {pred_answer}

Did the model give an answer **equivalent** to the labeled answer? Please re-
spond with "Correct" if they are equivalent, or "Incorrect" if they are not equivalent.

The output should in the following json format:
“‘json
{
"rationale": your rationale for the judgement, as a text,
"judgement": your judgement, can only be "Correct" or "Incorrect",
}
“‘

E ADDITIONAL RESULTS

Applying ASearcher Training on a Small Non-Reasoning Model. We apply our training recipe
on Qwen2.5-7B-Instruct, a non-reasoning model with much smaller scale. The results show that our
recipe is also able to enhance the search capability of a small, non-reasoning model.

Table 4: Results on Qwen2.5-7B-Instruct

GAIA xBench

Before RL 18.2 23.0
After RL 27.7 (+9.5) 27.8 (+4.8)

This demonstrates that,

• Our pipeline works effectively on smaller models. Pure RL training also works for non-
reasoning models.

• The significant performance improvement is not solely due to the choice of the base model,
QwQ, but comes from the full training recipe.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt for Aggregating K Independently Generated Trajectories in Test-time Search

Given a question and K independently generated results, please determine the most reliable
answer.

Question:
{question}

Result 1:
{result_1}

Result 2:
{result_2}

· · ·

Result K:
{result_K}

The output should in the following json format:
“‘json
{
"rationale": your rationale as a text,
"answer": the most reliable final answer,
}

Evaluating Baseline with Summary Tool & Test-time Scaling. We conduct a comparison with
WebSailor-32B (Li et al., 2025a) when using DeepSeek-V3 for summary and test-time search with
K = 16, under a turn limit of 128. Since WebSailor does not produce a comprehensive analysis at
the final step, we directly feed all the trajectories into DeepSeek-V3 to determine the most reliable
answer when performing Test-time Search. The results show that:

• The baseline, WebSailor-32B, only conducts short-horizon search, and does not show an
advanced capability of utilizing more tool calls for rigorous conclusion verification.

• When employing test-time augmentation approaches, ASearcher significantly outperforms
WebSailor-32B. We hypothesize that this is because WebSailor does not produce a compact
analysis, and, therefore, the most reliable answer could not be easily determined from a set
of noisy trajectories.

Method GAIA xBench
ASearcher (Ours) 58.7 51.1
+ Summary w. DeepSeek-V3 & Test-time Search (K = 16) 71.8 75.0
WebSailor-32B 53.2 53.3
+ Summary w. DeepSeek-V3 & Test-time Search (K = 16) 60.2 64.0

Table 5: WebSailor-32B with Test-Time Augmentations

Method GAIA xBench
ASearcher (Ours) 13.81 13.67
WebSailor-32B 4.24 5.17

Table 6: Number of Tool Calls of ASearcher & WebSailor-32B

22

	Introduction
	Related Works
	ASearcher
	Agent Design: One Single Model for All
	Training Data
	Asynchronous Agentic RL Training
	Efficiency Challenge of Long-Horizon Agentic RL
	Fully Asynchronous RL Training.

	Training Details

	Experiments
	Experiment Setup
	Main Results
	Emergent Behaviors
	Ablation Study

	Conclusion
	LLM Usage
	Full Case Study
	Data Synthesis Agent
	Details of Data Synthesis
	Example of Synthetic QA
	Syntehtic QA Statistics

	Prompts Used for Data Synthesis, Judge, and Test-time Search
	Additional Results

