

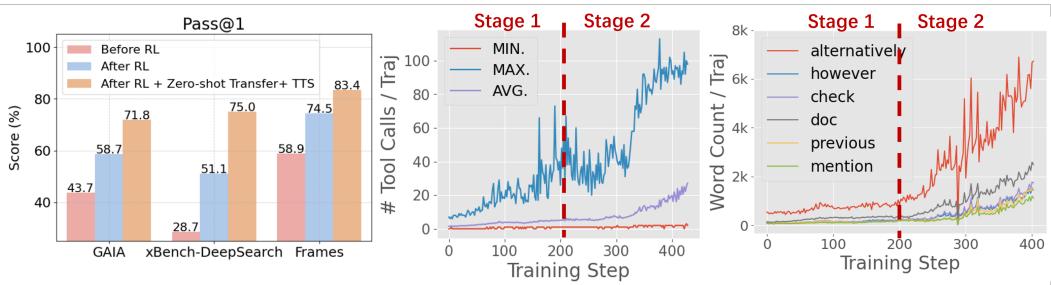
000 001 002 003 004 005 006 007 008 009 010 UNLOCKING LONG-HORIZON AGENTIC SEARCH WITH 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 LARGE-SCALE END-TO-END RL 032

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Recent advancements in LLM-based agents have demonstrated remarkable capabilities
012 in handling knowledge-intensive tasks using external tools. One representative
013 example is *search agent*. Existing open-source search agents heavily rely on ad-
014 vanced commercial LLMs: they either collect trajectories from the larger, stronger
015 models for supervised fine-tuning or directly use them as specialized tools. In
016 this work, we develop *ASearcher*, a *single-model* search agent purely trained by
017 reinforcement learning (RL) *without using any commercial APIs for data or tools*.
018 Based on an RL-trained QwQ-32B model, *ASearcher* is capable of conducting com-
019 plex reasoning, such as uncertainty analysis and conflict verification, and achieves
020 comparable performances to commercial search agents. There are two key tech-
021 niques to unlock such long-horizon information-seeking abilities: first, we design a
022 two-staged agentic process to synthesize high-quality QA pairs as the training data
023 for RL; second, we conduct large-scale *long-horizon* RL, allowing the agent to
024 take up to 128 actions per rollout for sufficient exploration. In particular, after RL
025 training, *ASearcher* achieved scores of GAIA 58.1, xBench 51.1, and Frames 74.5
026 using only basic search tools. Furthermore, *ASearcher* also demonstrates strong
027 zero-shot transferability: *ASearcher* can be further augmented with an additional
028 summary tool, which is supported by DeepSeek-V3, and test-time scaling, which
029 aggregates the answer from 16 parallel rollouts. With both zero-shot enhancements,
030 the performances of *ASearcher* further rise to 71.8, 75.0, and 83.4, respectively,
031 outperforming OpenAI DeepResearch and Kimi-Researcher, suggesting the great
032 potential of RL scaling for agentic tasks. We release all the code and data at
033 anonymous link. The model will be released after the review process.



042 **Figure 1: (Left) End-to-end RL brings substantial improvements to a simple agent:** Through RL
043 training, our agent, *ASearcher*, obtains +15.0, +22.4, and +15.6 improvements on GAIA, xBench, and
044 Frames, respectively. **(Middle) During RL training, *ASearcher* learns to conduct long-horizon**
045 **search**, with tool calls progressing from an average of only 1.67 initially to over 20 tool calls in
046 latter training stages. **(Right)** Count of keywords during the training process reveals **emergence of**
047 **complex search behaviors** including reflective behaviors and referencing external information. Our
048 detailed case study in Appendix B also shows that the agent **learns expert-level search strategies**.
049

050 1 INTRODUCTION

051 Recent advances in LLM-based agents have demonstrated remarkable capabilities in solving complex,
052 knowledge-intensive problems by leveraging single or multiple external tools (Xi et al., 2025; Yao
053 et al., 2023; Wang et al., 2024a). Among the diverse capabilities, **deep information retrieval** using

054 tools stands out as a particularly critical aspect of advanced search agents (OpenAI, 2025; Google
 055 Team, 2025; Perplexity Team, 2025). For a concrete example, a seemingly simple question like “*How*
 056 *many gold medals did China win at the 2012 London Olympics?*” actually requires intricate reasoning.
 057 At the time, China was credited with 38 golds, but a decade later, two doping disqualifications in
 058 women’s race walking led to an additional gold medal to China, raising the total to 39. This illustrates
 059 how search agents must reconcile historical records with noisy, sometimes conflicting, information
 060 from diverse sources and identify the underlying causes for the conflicts to deliver accurate answers.

061 To equip agents with this deep retrieval capability, recent open-source approaches frequently depend
 062 on commercial LLMs, either to generate expert data or to serve as specialized sub-modules within a
 063 complex multi-model framework (Li et al., 2025a; Tao et al., 2025; Li et al., 2025b; Team, 2025a). For
 064 instance, AFM (Li et al., 2025b) collects supervised fine-tuning data from a multi-agent framework
 065 powered by multiple advanced commercial models such as Claude-Sonnet-4 (Anthropic, 2025) and
 066 Gemini-2.5-Pro (Google Team, 2025). On the other hand, MiroThinker (Team, 2025a) employs
 067 distinct commercial LLMs and VLMs for specialized tasks such as audio transcription, visual question
 068 answering, and complex reasoning. This reliance on proprietary models raises a fundamental question:
 069 *can we achieve the performance of commercial systems without dependence on commercial models?*

070 In this work, we present *ASearcher*, a search agent trained solely by Reinforcement Learning (RL),
 071 and show that *purely end-to-end RL can enable the emergence of advanced long-horizon search*
 072 *strategies, despite that ASearcher is based on a single model using only search tools*. Particularly,
 073 two techniques are the key to the advanced information-seeking abilities in *ASearcher*. First, we
 074 develop a scalable QA synthesis agent to generate a high-quality dataset of 25.6k challenging QA
 075 pairs that necessitate multi-turn tool use. In training time, we employ a two-stage curriculum that
 076 progressively focuses on challenging tasks. Specifically, the agent is initially trained over questions
 077 spanning diverse difficulties, including those easy questions requiring only one or two tool calls.
 078 After the agent learns preliminary search capabilities, we shift the training distribution to focus
 079 on long-horizon tasks that require a minimum of five tool calls. Second, we train the agent with
 080 large-scale long-horizon RL with a large turn limit of 128 per rollout trajectory. A large turn limit
 081 encourages the exploration and discovery of sophisticated, long-horizon strategies. To ensure high
 082 training efficiency, we employ fully asynchronous agentic RL training based on AReaL (Fu et al.,
 083 2025) that decouples trajectory collection from weight updates for training efficiency.

084 We use a large reasoning model QwQ-32B (Team, 2025b) as the base model in our experiments.
 085 During RL training, our agent, *ASearcher*, learns to conduct significantly more complex searches,
 086 with an increasing average number of tool calls from only 1.67 calls at the beginning to more than 20
 087 calls. A detailed case study and keyword analysis further reveal the emergence of complex search
 088 behaviors, such as conducting uncertainty analysis and verification searches. [Our finding on search](#)
 089 [agents is akin to DeepSeek-R1 \(DeepSeek-AI et al., 2025\), where the emergent reasoning capabilities](#)
 090 [can be fully incentivized by RL](#). We evaluate our agents on challenging benchmarks, including
 091 GAIA (Mialon et al., 2023), xBench-DeepSearch (Xbench-Team, 2025), and Frames (Krishna et al.,
 092 2024). With only a single model and basic search tools, *ASearcher* achieves competitive scores
 093 of 58.7, 51.1, and 74.5 (Avg@4) on GAIA, xBench, and Frames, respectively, demonstrating that
 094 strong performance is attainable with a single-model design. Finally, *ASearcher* also demonstrates
 095 strong zero-shot transfer ability to external summary tools. By employing an external summary
 096 tool supported by DeepSeek-V3 and applying test-time scaling techniques, where we aggregate the
 097 conclusions from 16 independent runs, the performance can be further enhanced, rising to 71.8, 75.0,
 098 and 83.4, respectively, and achieving results competitive with commercial systems.

2 RELATED WORKS

101 **Search Agents.** Some works have investigated agent workflows to leverage tools for solving
 102 complex tasks (Li et al., 2025c; Zhao et al., 2025). Prompt-based methods, though effective for
 103 rapid development, are fundamentally limited by the capacity of the underlying LLMs. Some works
 104 attempt to construct SFT trajectories for LLMs. For instance, Asai et al. (2023); Yu et al. (2024)
 105 leverage LLMs to synthesize trajectories for SFT. Prior works investigate Reinforcement learning
 106 (RL) methods to enhance the LLM-based agents, mostly focusing on multi-hop QA benchmarks. Jin
 107 et al. (2025); Song et al. (2025); Chen et al. (2025); Zheng et al. (2025) perform RL training with
 108 multi-hop QA data and observe an increasing amount of tool calls. More recently, researchers focus

on deep research tasks, by fine-tuning complex prompt-based agents through offline RL (Li et al., 2025d), SFT on diverse trajectories (Sun* et al., 2025; Li et al., 2025a; Team, 2025a), adopting multi-agent framework (Li et al., 2025b), and constructing challenging QAs for RL training. (Tao et al., 2025). In this work, we focus on deep information retrieval, and show that RL alone can equip a single-model agent with advanced long-horizon search capabilities.

Agentic Reinforcement Learning. Recent works have begun to improve the agentic capabilities of LLMs and LRM through online Reinforcement Learning. Prior works have investigated agentic RL in various domains, such as search agents (Jin et al., 2025; Li et al., 2025a;d; Tao et al., 2025) and coding (Luo et al., 2025a; Wei et al., 2025). A critical aspect of agentic RL is to activate and enhance the tool-calling capability of the models. Wei et al. (2025) and Luo et al. (2025a) investigate training coding agents for resolving real-world engineering questions. More recently, Li et al. (2025a); Tao et al. (2025); Li et al. (2025b); Team (2025a) investigate training deep search agents by first running Supervised Fine-Tuning to equip the agent with basic long-horizon search capability as cold-start and then running Reinforcement Learning to further enhance the agent. In this work, we focus on search agents and show that a simple agent can learn complex long-horizon search strategies through reinforcement learning.

3 ASearcher

In this work, we present *ASearcher*, which unlocks search intelligence in search agents through large-scale asynchronous RL training. In the subsequent sections, we present the agent design, the training data as well as data synthesis agent, and fully asynchronous reinforcement learning training.

3.1 AGENT DESIGN: ONE SINGLE MODEL FOR ALL

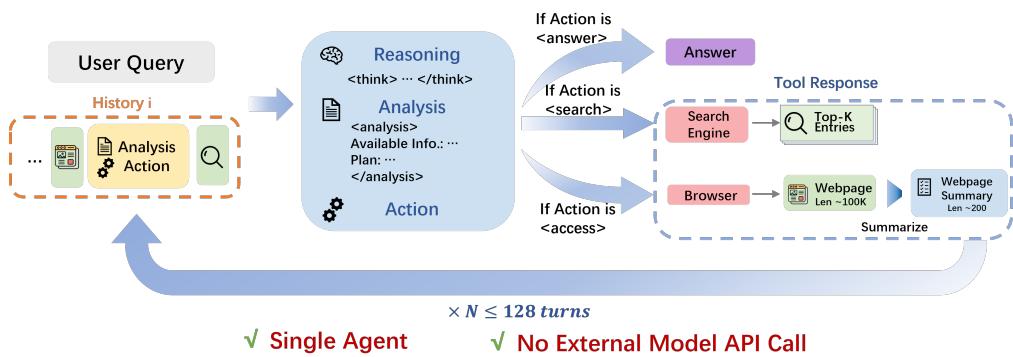


Figure 2: *ASearcher* utilizes a simple agent design with two basic tools including search and browsing tools, without relying on any external models. The agent is capable of both reasoning and summarizing lengthy web contents.

We employ a simple agent design in *ASearcher*, as illustrated in Fig. 2.

Agent Input. In each turn, the search agent takes in the user query as well as the history of resolving the user query. The history contains previous tool responses including search results and webpage summaries, and also previous analysis and history actions.

Reasoning, Analysis, and Action. In each turn, given the user query and history context, the agent generates three components to further conduct in-depth analysis and exploration,

- **Reasoning:** In this part, the agent conducts internal reasoning over the current situation. Since we instantiate the agent with large reasoning models such as QwQ-32B, generating reasoning process is naturally supported by the underlying model. In the reasoning process, the agent analyzes available information, evaluates the query resolving progress, reflects over previous results, determines the unresolved aspects, and deduces concrete plans for future

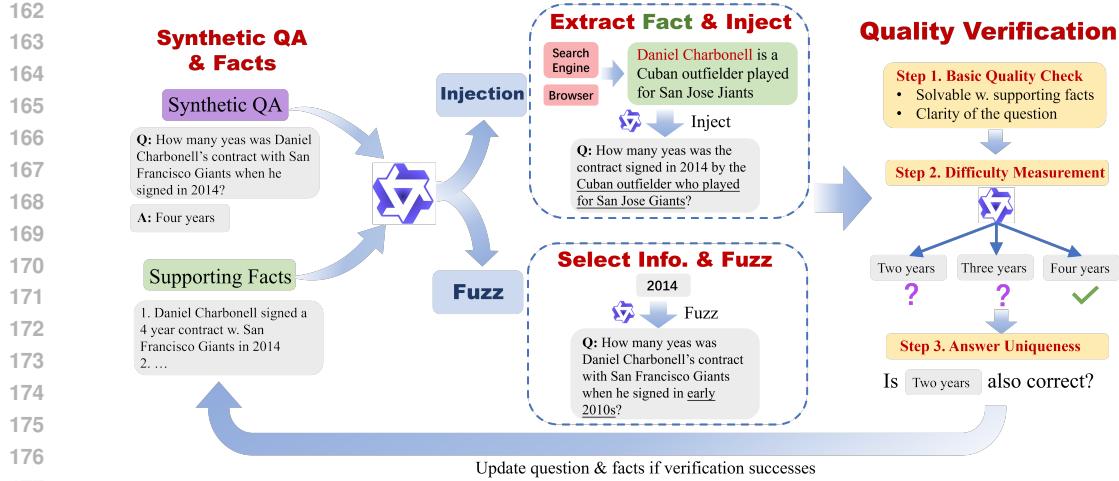


Figure 3: Data Synthesis Agent. Starting from a seed QA, the data synthesis agent iteratively modifies the question through two actions, *Injection* and *Fuzz*.

turns. Note that the reasoning part is only used for guiding the generation of subsequent analysis and action. Since this reasoning part usually contain noisy and lengthy model-generated texts, the reasoning part is not included in future history to ensure a clean history.

- **Analysis:** The analysis part is a summarization of the reasoning part, where the agent extracts the key conclusions derived from the reasoning process and also makes a plan for the subsequent step.
- **Action:** After thoroughly analyzing the current state with the reasoning and analysis parts, the agent finally determines the next-step action. The agent could either answer the question and terminate the execution process, or invoking external tools to obtain new information from external sources.

Tools. When the agent determines to invoke external tools, two basic tools are available: **a search engine** and **a web browser**. When the action is “<search>”, the search engine takes a query as input and returns relevant snippets along with corresponding URLs. When the action is “<access>”, the web browser accepts an URL and returns content of the webpage.

Webpage Summarization. Note that real-world webpages are usually very long, easily exceed 32K tokens. Therefore, we split the webpage into several chunks, with a maximum character count of 10k per chunk. We employ the agent to summarize each chunk into a compact summary.

3.2 TRAINING DATA

Our training data are from two primary sources, including samples filtered from open-source datasets and synthetic high-quality question-answer (QA) pairs.

Open-source Data. We begin with the training sets of HotpotQA (Yang et al., 2018) and 2WikiMultiHopQA (Ho et al., 2020). We employ a model-based filtering process. We first train a model on the full set of open-source data with RL flowing Jin et al. (2025), and then generate 16 responses for each question using the trained model. Finally, we filter out questions that are too hard for the model or too easy for the model. Finally, from a total of 304k QA pairs, we retain 16k challenging samples.

Data Synthesis Agent. We further develop a data synthesis agent supported by QwQ-32B to create high-quality question-answer pairs. As shown in Fig. 3, the data synthesis agent begins with a seed question, and iteratively modifies the question to increase the complexity. To ensure the synthetic question is strictly aligned with reliable sources, a list of *supporting facts* obtained during the question synthesis process is continuously updated. At each step, the agent automatically selects between two key actions,

216

- 217 • **Action 1: Injection** aims to enrich the context of the question by inserting facts related to
- 218 the question. The agent first selects an entity in the question and then obtains one piece of
- 219 related fact about the selected entity from external sources such as Wikipedia. Then a new
- 220 question is proposed by *injecting* the fact into the question.
- 221 • **Action 2: Fuzzing** blurs certain details in the question to increase the uncertainty level of
- 222 the question. For example, "Catskill Mountain Railroad" could be replaced with "a historic
- 223 mountain railway".

224 To ensure that a synthetic question is of high quality and to precisely evaluate the difficulty, we
 225 incorporate a rigorous *quality verification* phase for assessing synthetic questions. This verification
 226 phase includes three steps: *basic quality check* that assess the clarity and resolvability of the question,
 227 *difficulty measurement* by employing QwQ-32B to direct generate answers without tools, and *answer*
 228 *uniqueness check* by evaluating whether any of the mismatched answers generated during the
 229 Difficulty Measurement step could serve as alternative valid answers.

230 Through iterative injection and fuzzing, the data synthesis agent produces questions that involve
 231 complex information and high uncertainty, requiring extensive search and reasoning to find the correct
 232 answer. After completing the question synthesis process, we filter out questions that the LRM can
 233 directly generate the correct answer without using tools.

234

235 **Two-Stage Curriculum.** During training time, we employ a two-stage training data scheme. In
 236 the first stage, we apply RL training on the full training set, which include QAs spanning different
 237 difficulties. This wide range of training distribution trains the agent to equip basic tool-calling and
 238 reasoning capabilities. In the second stage, to further activate the long-horizon search capability of
 239 the agent, we remove QAs that are solvable with less than 5 tool calls and use the rest data for the
 240 second training stage.

242 3.3 ASYNCHRONOUS AGENTIC RL TRAINING

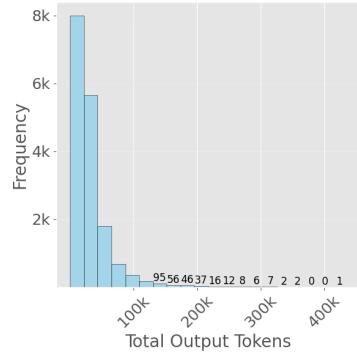
244 3.3.1 EFFICIENCY CHALLENGE OF LONG-HORIZON AGENTIC RL

246 **High Variance in Trajectory Execution Time.** During RL
 247 training, we use a large turn limit of 128. In practice, when
 248 using a large turn limit at training time, long trajectories intro-
 249 duce significant variance in execution time. We first analyze
 250 the number of tool calls during RL training of our QwQ agent
 251 (Fig. 1) and observe that the longest trajectories can span dozens
 252 more tool calls than shorter ones. Second, we also report the
 253 total number of output tokens per trajectory during training in
 254 Fig. 4. As illustrated in the figure, the training process involves
 255 extremely long trajectories. The data distribution reveals that
 256 these lengthy trajectories constitute a very small proportion of
 257 the samples. This disparity could lead to highly unpredictable
 258 per-trajectory runtime, complicating training efficiency.

259 **Efficiency Issues of Agentic RL Training.** Both prolonged
 260 execution and high runtime variance degrade RL training ef-
 261 ficiency. We take one-step-off RL training system (Luo et al.,
 262 2025b) as a representative example for batch generation RL
 263 systems. As shown in Fig. 5, though this system overlaps trajectory rollouts with model training,
 264 batch generation remains bottlenecked by the slowest trajectory (e.g., trajectory 7), causing GPU idle
 265 time and under-utilization.

266 3.3.2 FULLY ASYNCHRONOUS RL TRAINING.

267 To ensure efficient agentic RL training, we adopt a fully asynchronous training paradigm. Notably,
 268 our approach incorporates asynchronornization at the two distinct aspects.



269 Figure 4: Distribution of the out-
 270 put lengths of trajectories generated
 271 during RL training (recorded from
 272 Step 290 to Step 310).

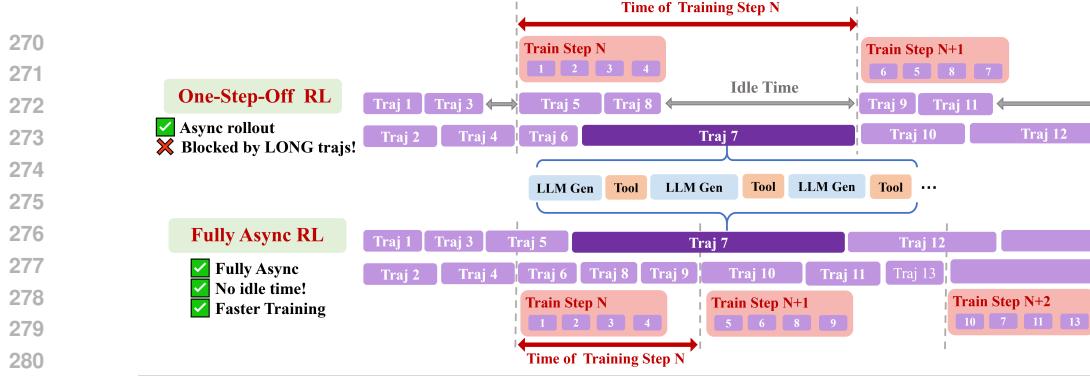


Figure 5: One-Step-off RL v.s. Fully Asynchronous RL. In batch generation systems, a batch should wait for the longest trajectory, leading to significant GPU idle time. In contrast, fully asynchronous RL achieves faster training than batch generation RL by fully decoupling training and trajectory generation, achieving near-full resource utilization for trajectory generation.

Asynchronous Trajectory Rollouts. Trajectory rollouts are collected in parallel and do not directly interfere with each other. Each trajectory independently sends tool calling requests to corresponding servers and LLM generation requests to the LLM inference engine. Concurrent requests from different trajectories are automatically handled by the servers. Fully independent trajectory execution ensures a trajectory does not need to wait for other trajectories when generating LLM responses and waiting for tool calling responses, thereby improving training efficiency.

Decoupled Rollout and Training. Besides asynchronous rollout, trajectory rollouts and model updates are also fully decoupled. In Fig. 5, we compare our fully asynchronous RL training with one-step-off RL training, which utilizes asynchronous rollout within batches. In fully asynchronous RL training, long trajectories do not block generation and can span multiple versions, significantly reducing GPU idle time and achieving near-full GPU utilization during generation. On the training side, a training step is launched as soon as sufficient trajectories are collected to form a batch.

3.4 TRAINING DETAILS

MDP Formulation. We follow the formulation of Markov Decision Process (MDP). Formally, an MDP is defined by the tuple (S, A, T, R) . Here S represents the state space, usually containing the history, search results, and retrieved webpages. A denotes the action space and an action includes tokens generated by the agent. Some tool calling could be extracted from the action through specific tags, e.g. `<search> search query </search>`. $T(s'|s, a)$ is the transition function. At each timestep, the agent receives a state s_t and generates an action a_t with policy $\pi : S \rightarrow A$. The goal of the agent is to maximize the return $J(\pi) = \mathbb{E} \left[\sum_{t=0}^{\infty} R(s_t, a_t) \middle| a_t \sim \pi(s_t) \right]$.

GRPO Training. We employ the GRPO (Shao et al., 2024) algorithm to train search agents. Specifically, for each input question x , G trajectories $\tau_1, \tau_2, \dots, \tau_G$ are generated where $\tau_i = (s_0^i, a_0^i, s_1^i, \dots, s_{T_i}^i)$. To optimize the agent, we employ the following loss,

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, \{\tau_i\}_{i=1}^G \sim \pi_{\theta_{old}}(\cdot|x)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{\sum_{t=0}^{T_i-1} |a_t^i|} \sum_{t=0}^{T_i-1} \sum_{j=1}^{|a_t^i|} \min \left(\frac{\pi_{\theta}(a_{t,j}^i | s_t, a_{t,<j}^i)}{\pi_{\theta_{old}}(a_{t,j}^i | s_t, a_{t,<j}^i)} \hat{A}_i, \right. \right. \\ \left. \left. \text{clip} \left(\frac{\pi_{\theta}(a_{t,j}^i | s_t, a_{t,<j}^i)}{\pi_{\theta_{old}}(a_{t,j}^i | s_t, a_{t,<j}^i)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_i \right) \right] \quad (1)$$

where ϵ is a hyperparameter, and \hat{A}_i is the advantage for the i -th trajectory, computed based on the relative rewards of all trajectories within each group.

Dynamic Filtering. To enhance training efficiency, we implement dynamic filtering to exclude queries that lack meaningful training signals. Specifically, we remove queries where all responses yield identical rewards (resulting in zero advantages).

324 **Reward Function.** We adopt a sparse-reward setting where rewards are computed at trajectory
 325 completion. For reward function, we utilize LLM-as-Judge(Liu et al., 2023; Wang et al., 2024b) as
 326 the reward function and omit format rewards, as large reasoning models such as QwQ-32B could
 327 inherently maintain proper output formatting with high probability.
 328

329 **4 EXPERIMENTS**
 330

331 **4.1 EXPERIMENT SETUP**
 332

333 **Benchmarks.** We conduct evaluation on a suite of challenging benchmarks, including Frames (Kr-
 334 ishna et al., 2024), GAIA (Mialon et al., 2023), xBench-DeepSearch (Xbench-Team, 2025), and
 335 HLE(Li et al., 2025d). Frames contains 824 challenging questions for evaluating the ability of the
 336 agent to synthesize accurate responses from multiple sources. GAIA contains real-world questions
 337 that demand multi-turn tool calls and step-by-step problem solving. xBench-DeepSearch consists of
 338 100 challenging Chinese questions constructed by human experts, evaluating the agent’s in-depth
 339 planning and reasoning capabilities. HLE (Human’s Last Exam) features expert-level difficulty across
 340 a wide range of disciplines, not only requiring the agent to search for related materials, but also
 341 understanding and solving domain-specific questions. For GAIA, we use the 103 examples from the
 342 text-only validation subset (Li et al., 2025c). For HLE, we use the 500-size subset following Li et al.
 343 (2025d).
 344

345 **Baselines.** We compare *ASearcher* against different sets of baselines:

- 346 • **Commercial Deep Research Agents.** We make a comparison with OpenAI DeepRe-
 347 search (OpenAI, 2025) and Kimi-Researcher (MoonshotAI, 2025).
- 348 • **General LLMs using Tools.** We evaluates general LLMs equipped with external tools
 349 including Qwen3-30B-A3B, Qwen3-235B-A22B (Yang et al., 2025), OpenAI-o3 (OpenAI,
 350 2025), DeepSeek-R1 (DeepSeek-AI et al., 2025), and Claude-4-Sonnet (Anthropic, 2025).
- 351 • **Open-source Search Agents.** Finally, we make comparison with a set of 32B-scale
 352 open-source search agents, including Search-o1(QwQ-32B) (Li et al., 2025c), Search-R1-
 353 32B (Jin et al., 2025), WebThinker-QwQ (Li et al., 2025d),SimpleDeepSearcher-QwQ (Sun*
 354 et al., 2025) and WebDancer-32B (Wu et al., 2025), WebSailor-32B (Li et al., 2025a), and
 355 WebShaper-32B (Tao et al., 2025). We also include AFM-RL-32B (Li et al., 2025b), that
 356 adopts a multi-agent design, and MiroThinker-32B-DPO (Team, 2025a), that utilizes more
 357 tools beyond search tools, including tools for image and audio processing.
 358

359 **Evaluation Metrics.** We adopt LLM-as-Judge (LasJ) as the main metric for evaluating the perfor-
 360 mance. For LLM-as-Judge, an LLM (Qwen2.5-72B-Instruct) is prompted to assess the correctness of
 361 outputs. For *ASearcher*, We report pass@1 score by evaluating 4 seeds. For baselines, we report the
 362 scores reported in official reports if there are any.

363 **Training Details of *ASearcher*.** We set the turn limit as 128 and the batch size is set as 64 for
 364 *ASearcher*. We use AdamW optimizer with a learning rate of 2e-6. Our training framework is built
 365 up on AReAL (Fu et al., 2025). Training of *ASearcher* takes approximately 16k H800 GPU hours.
 366

367 **4.2 MAIN RESULTS**
 368

369 **Benchmark Performance.** Table 1 shows experiment results on challenging QA tasks that require
 370 advanced and search strategies. Our agent, *ASearcher*, achieves competitive Pass@1 scores on GAIA,
 371 Frames, and HLE, outperforming a wide range of previous 32B-scale agents. Notably, *ASearcher*
 372 even achieves on-par performance as MiroTinker-32B-DPO that uses extra tools besides search tools.
 373 These results further highlight the superiority in handling long-horizon and real-world tool use.
 374

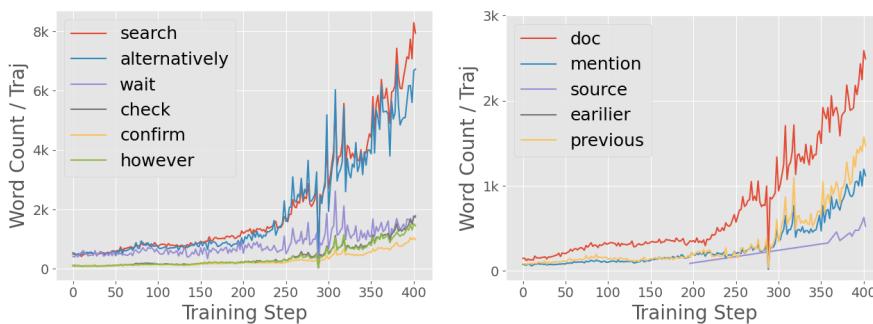
375 **Zero-Shot Transfer with Summary Tool & Test-time Scaling.** Although we adopt single-model
 376 during training time, the agent design of *ASearcher* is generalizable. Specifically, the webpage
 377 summarization process could be supported by external models. We here use DeepSeek-V3 as the
 webpage summarization model. From Table 1, it is clear that using a more powerful model for

378
 379 Table 1: Pass@1 results of *ASearcher* and baselines. \dagger indicates results are obtained from official
 380 reports. For open-source search agents, we use “No Commercial LLM” to indicate that the agent does
 381 not use commercial models as a component of agent design or for data collection, and “Non-Search
 382 Tools” to indicate the tools used by the agent besides basic search tools. *ASearcher* outperforms a
 383 wide range of 32B-scale open-source agents, with single model and no extra tools. When integrating
 384 external models as summary tool and applying a test-time scaling approach, *ASearcher* is able to
 385 achieve on-par performance with commercial systems.

Method	No Commercial LLM	Non-Search Tools	GAIA	xBench-DeepSearch	Frames	HLE
Commercial Deep Research Agents						
Kimi-Researcher	-	-	-	69.0 \dagger	78.8 \dagger	26.9 \dagger
OpenAI DeepResearch	-	-	67.0 \dagger	-	-	26.6 \dagger
General LLMs using Tools						
OpenAI-o3	-	-	70.5 \dagger	66.7 \dagger	84.0 \dagger	20.2 \dagger
Qwen3-30B-A3B	-	-	35.9 \dagger	32.0 \dagger	56.4 \dagger	13.2 \dagger
Qwen3-235B-A22B	-	-	45.6 \dagger	46.0 \dagger	-	20.0 \dagger
DeepSeek-R1	-	-	-	55.0 \dagger	82.0 \dagger	24.8 \dagger
Claude-4-Sonnet	-	-	68.3 \dagger	64.6 \dagger	80.7 \dagger	20.3 \dagger
Open-source Search Agents						
Search-o1 (QwQ)	✓	-	48.1	40.3	63.6	-
Search-R1-32B	✓	-	28.6	19.5	44.1	-
WebThinker-QwQ	✓	-	48.5 \dagger	32.8	57.7	15.8 \dagger
Simple DS-QwQ	✓	-	50.5 \dagger	35.8	68.8 \dagger	-
WebDancer-QwQ	✗	-	51.5 \dagger	40.0	63.8	-
WebSailor-32B	✓	-	53.2 \dagger	53.3 \dagger	69.8 \dagger	-
WebShaper-32B	✓	-	53.3 \dagger	-	-	-
AFM-RL-32B	✗	Code Sandbox	55.3 \dagger	-	-	18.0 \dagger
MiroThinker-32B-DPO	✗	Visual Question Answering, Audio Transcription, Linux Sandbox	60.9 \dagger	56.0 \dagger	74.8 \dagger	20.6 \dagger
Ours (QwQ-32B)						
<i>ASearcher</i>	✓	-	58.7	51.1	74.5	21.5
+ Summary=DeepSeek-V3	✗	-	60.3	56.4	76.6	23.4
+ Test-time Search (K=16)	✗	-	71.8	75.0	83.4	24.6

405
 406 summarization improves the performance of *ASearcher*. We further investigate test-time scaling.
 407 Specifically, we run $K = 16$ independent runs for each problem in the test set and aggregate the
 408 conclusions from these independent runs with DeepSeek-V3. As shown in Table 1, test-time scaling
 409 approach leads to competitive performance with the commercial agents, including Kimi-Researcher,
 410 OpenAI DeepResearch, and OpenAI o3. [Please refer to Appendix E for additional results and](#)
 411 [implementation details of Test-time Scaling](#).

4.3 EMERGENT BEHAVIORS



426 Figure 6: Left: Word count of reflective keywords during training time. Right: Word count of
 427 keywords indicating explicit reference of external information.

428
 429 **Keyword Analysis.** In Fig. 6, we plot the word count of different keywords during the training
 430 process. These keywords include words that indicate reflection behaviors of the agent, such as
 431 “alternatively”, “however”, and “wait”, and also words indicating that the agent is referencing to
 432 external information, such as “doc” and “mention”. From Fig. 6, it is clear that the agent learns to

reflect over previous actions and conclusions. Interestingly, we also see that, in the second stage of RL training where the training focuses on challenging tasks, the agent learns to refer to external information, as evidenced by the increment in the word count of “doc” and “mention” after step 200.

Case Study In Fig. 7, we provide a detailed case study on an extremely challenging question from GAIA (Mialon et al., 2023). Specifically, we analyze Search-R1-32B (Jin et al., 2025) and *ASearcher*. The detailed trajectories are provided in Appendix B. In this question, to identify the correct answer, the search agent should first find out the mentioned species according to condition “genus named for Copenhagen”, identify the correct 2021 article based on the citation in the wikipedia page of the species, and then find out the papers of the two mentioned persons.

In Fig. 7, Search-R1-32B is unable to decompose the complex query into individual components, consequently only making ambiguous queries that involve too many unknown information. The agent also has severe hallucinations, producing conclusions that are not supported by the search results. Finally, it fails to resolve all unknown information. In contrast, *ASearcher* decomposes the complex query into precise queries. *ASearcher* could also summarize all related information from a webpage and analyze all candidate answers. Finally, after the correct answer “Mice” is found, the agent spends further turns on verifying previous conclusions before reporting the final answer.

An Example Question from GAIA

Q: What animals that were mentioned in :
 • both Ilias Lagkouvardos’s and Olga Tapia’s papers on the alvei species of the genus named for Copenhagen outside the bibliographies
 • and also in the 2021 article cited on the alvei species’ Wikipedia page about a multicenter, randomized, double-blind study?
 A: Mice

Search-R1-32B

ASearcher-Web-QwQ (Ours)

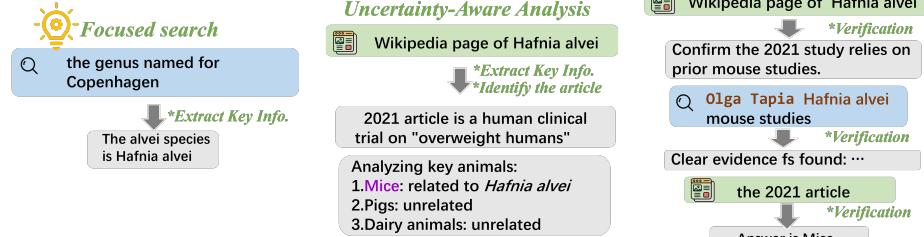


Figure 7: A case study on a complex query from GAIA. **Search-R1-32B** is unable to break down the complex question and has severe hallucinations. It is also worth noting that, since the turn limit is set as a small value, e.g. 4, during training, the model only exhibits a short tool-use horizon. Our end-to-end RL agent, ***ASearcher***, exhibits key behaviors featuring Search Intelligence: *uncertainty-aware reasoning* (list and examine candidate answers), *precise extraction* from noisy contents, and *grounded verification*.

4.4 ABLATION STUDY

We perform ablation studies over various key components of *ASearcher*. Specifically, we aim to answer the following questions,

- **Q1:** How does the training-time turn limit influence the final performance and learned behaviors?

- 486 • **Q2:** Is the two-stage curriculum necessary for activating the long-horizon search capabilities?
- 487
- 488 • **Q3:** How does the training data of *ASearcher* compare with training data of baseline?
- 489
- 490
- 491

492 **Experiment Setup.** To carry out the ablation studies, we perform RL training starting from the
 493 Stage 1 checkpoint of *ASearcher*. All ablation studies are trained for 200 steps to ensure the same
 494 number of training steps as *ASearcher*. The ablation studies are evaluated on GAIA (Mialon et al.,
 495 2023) and xBench-DeepSearch (Xbench-Team, 2025).

496
 497 Table 2: **Ablation Study on Training-time Turn Limit and Data Quality.** The ablation studies reveal
 498 that both *a large turn limit* and *high-quality* training data are the key to unlocking the long-horizon
 499 search capability of the model.

	# of Tool Calls at Training Time	GAIA	xBench-DeepSearch
ASearcher (Full)	26.59	58.7	51.1
Ablating Training-time Turn Limit			
ASearcher w. Turn Limit=10	3.48	49.2	39.3
Ablating Training Data			
ASearcher w. Stage 1 Data Only	5.40	51.6	43.0
ASearcher w. AFM Data	4.12	50.9	39.9

511
 512 The results of ablation study is as shown in Table. 2. We highlight key conclusions derived from our
 513 ablation analysis,

- 514 • **(Q1) Training-time Turn Limit.** A large turn limit is crucial for enabling the model’s
 515 long-horizon search capability. Specifically, training with a large turn limit significantly
 516 surpasses training with a small turn limit (e.g., Turn Limit = 10). With a large turn limit,
 517 the agent is provided with a rich exploration space for complex search strategies.
- 518 • **(Q2) Two-Stage Curriculum.** Compared with continued training using only Stage 1 data,
 519 the full training recipe incorporating a two-stage curriculum helps the agent to learn stable
 520 long-horizon search by focusing on challenging queries that necessitate at least five tool
 521 calls. This shows the importance of the progressive curriculum for mastering complex tasks.
- 522 • **(Q3) Data Quality.** We also compare our training data with that of a concurrent work,
 523 **AFM** (Li et al., 2025b), by applying asynchronous RL training with a 128-turn limit using
 524 the AFM training data. Training with AFM data is unable to incentivize complex search
 525 capabilities and achieves sub-optimal benchmark performance, highlighting the high quality
 526 and complexity of our synthesis data.

528 5 CONCLUSION

531 In this work, we present *ASearcher*, investigating large-scale RL training for search agents. Our
 532 contribution includes a fully asynchronous agentic RL training system and a data synthesis agent for
 533 large-scale high-quality QA construction. Through large-scale RL training, *ASearcher* demonstrates
 534 emergent complex strategies using only a single model and basic search tools. We hope our work
 535 could benefit future work on training advanced agents for a broader range of applications.

536 5 REFERENCES

537
 538 Anthropic. Claude takes research to new places. <https://www.anthropic.com/news/research>, April 2025. Accessed: 2025-04-01.

540 Akari Asai, Zequ Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Self-reflective
 541 retrieval augmented generation. In *NeurIPS 2023 workshop on instruction tuning and instruction*
 542 *following*, 2023.

543 Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou, Chenzheng Zhu, Haofen Wang, Jeff Z
 544 Pan, Wen Zhang, Huajun Chen, Fan Yang, et al. Learning to reason with search for llms via
 545 reinforcement learning. *arXiv preprint arXiv:2503.19470*, 2025.

546 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 547 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 548 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 549 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 550 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 551 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 552 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 553 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 554 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 555 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 556 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 557 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 558 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
 559 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 560 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanja Zhao, Wen Liu, Wenfeng
 561 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 562 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 563 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 564 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
 565 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 566 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 567 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
 568 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 569 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 570 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 571 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 572 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 573 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 574 URL <https://arxiv.org/abs/2501.12948>.

575 Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
 576 Mei, Jiašhu Wang, Tongkai Yang, Binhang Yuan, and Yi Wu. Areal: A large-scale asynchronous
 577 reinforcement learning system for language reasoning, 2025. URL <https://arxiv.org/abs/2505.24298>.

578 Google Team. Introducing Gemini deep research, 2025. URL <https://gemini.google/overview/deep-research/>. Accessed: 2025-04-06.

579 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 580 qa dataset for comprehensive evaluation of reasoning steps, 2020. URL <https://arxiv.org/abs/2011.01060>.

581 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 582 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
 583 learning. *arXiv preprint arXiv:2503.09516*, 2025.

584 Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler, Shyam
 585 Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of retrieval-
 586 augmented generation, 2024. URL <https://arxiv.org/abs/2409.12941>.

587 Kuan Li, Zhongwang Zhang, Hufeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
 588 Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
 589 agent. *arXiv preprint arXiv:2507.02592*, 2025a.

594 Weizhen Li, Jianbo Lin, Zhusong Jiang, Jingyi Cao, Xinpeng Liu, Jiayu Zhang, Zhenqiang Huang,
 595 Qianben Chen, Weichen Sun, Qiexiang Wang, Hongxuan Lu, Tianrui Qin, Chenghao Zhu, Yi Yao,
 596 Shuying Fan, Xiaowan Li, Tiannan Wang, Pai Liu, King Zhu, He Zhu, Dingfeng Shi, Piaohong
 597 Wang, Yeyi Guan, Xiangru Tang, Minghao Liu, Yuchen Eleanor Jiang, Jian Yang, Jiaheng Liu,
 598 Ge Zhang, and Wangchunshu Zhou. Chain-of-agents: End-to-end agent foundation models
 599 via multi-agent distillation and agentic rl, 2025b. URL <https://arxiv.org/abs/2508.13167>.

601 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 602 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint*
 603 *arXiv:2501.05366*, 2025c.

604 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 605 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 606 *arXiv preprint arXiv:2504.21776*, 2025d.

607 Yuxuan Liu, Tianchi Yang, Shaohan Huang, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
 608 Feng Sun, and Qi Zhang. Calibrating llm-based evaluator. *arXiv preprint arXiv:2309.13308*, 2023.

609 Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
 610 Colin Cai, Shang Zhu, Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
 611 Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. DeepSWE: Training a state-of-the-art
 612 coding agent from scratch by scaling rl. <https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-2025a>. Notion Blog.

613 Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang
 614 Wu, Xiaoxiang Shi, Rachel Xin, Colin Cai, Maurice Weber, Ce Zhang, Li Erran
 615 Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A fully open-source
 616 14b coder at o3-mini level. <https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349>
 617 2025b. Notion Blog.

618 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 619 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning
 620 Representations*, 2023.

621 MoonshotAI. Kimi-researcher. <https://moonshotai.github.io/Kimi-Researcher/>,
 622 2025.

623 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025.

624 OpenAI. Introducing deep research, 2025. URL <https://openai.com/index/introducing-deep-research/>. Accessed: 2025-04-06.

625 Perplexity Team. Introducing Perplexity deep research, 2025. URL <https://www.perplexity.ai/hub/blog/introducing-perplexity-deep-research>. Accessed: 2025-04-06.

626 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 627 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical
 628 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

629 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
 630 Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
 631 *arXiv preprint arXiv:2503.05592*, 2025.

632 Shuang Sun*, Huatong Song*, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Lei Fang,
 633 Zhongyuan Wang, and Ji-Rong Wen Wayne Xin Zhao. Simpledeepsearcher: Deep information
 634 seeking via web-powered reasoning trajectory synthesis. 2025. URL <https://github.com/RUCAIBox/SimpleDeepSearcher>.

648 Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
 649 Liwen Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webshaper:
 650 Agentically data synthesizing via information-seeking formalization, 2025. URL <https://arxiv.org/abs/2507.15061>.
 651

652 MiroMind AI Team. Mirothinker: An open-source agentic model series trained for deep re-
 653 search and complex, long-horizon problem solving. <https://github.com/MiroMindAI/MiroThinker>, 2025a.
 654

655 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025b. URL
 656 <https://qwenlm.github.io/blog/qwq-32b/>.
 657

658 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 659 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
 660 *Frontiers of Computer Science*, 18(6):186345, 2024a.
 661

662 Minzheng Wang, Longze Chen, Cheng Fu, Shengyi Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu,
 663 Nan Xu, Lei Zhang, Run Luo, et al. Leave no document behind: Benchmarking long-context llms
 664 with extended multi-doc qa. *arXiv preprint arXiv:2406.17419*, 2024b.
 665

666 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 667 Gabriel Synnaeve, Rishabh Singh, and Sida I. Wang. Swe-rl: Advancing llm reasoning via
 668 reinforcement learning on open software evolution, 2025. URL <https://arxiv.org/abs/2502.18449>.
 669

670 Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
 671 Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information seeking
 672 agency. *arXiv preprint arXiv:2505.22648*, 2025.
 673

674 Xbench-Team. Xbench-deepsearch, 2025. URL <https://xbench.org/agi/aisearch>.
 675

676 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
 677 Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
 678 A survey. *Science China Information Sciences*, 68(2):121101, 2025.
 679

680 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 681 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 682 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 683 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 684 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 685 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 686 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 687 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 688 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 689

690 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 691 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 692 answering. *arXiv preprint arXiv:1809.09600*, 2018.
 693

694 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 695 React: Synergizing reasoning and acting in language models. In *International Conference on
 696 Learning Representations (ICLR)*, 2023.
 697

698 Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation for
 699 large language models. *arXiv preprint arXiv:2411.19443*, 2024.
 700

701 Xinjie Zhao, Fan Gao, Xingyu Song, Yingjian Chen, Rui Yang, Yanran Fu, Yuyang Wang, Yusuke
 702 Iwasawa, Yutaka Matsuo, and Irene Li. Reagent: Reversible multi-agent reasoning for knowledge-
 703 enhanced multi-hop qa. *arXiv preprint arXiv:2503.06951*, 2025.
 704

705 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 706 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
 707 *arXiv preprint arXiv:2504.03160*, 2025.
 708

702 **A LLM USAGE**
703704 In the development process of this work, LLM were used in the writing and polishing of the
705 manuscript. Specifically, we used an LLM to assist in refining the language, improving readability,
706 and ensuring clarity in various sections of the paper. The LLM helped with tasks such as sentence
707 rephrasing, latex formatting, and grammar checking.
708709 **B FULL CASE STUDY**
710711 In this section, we provide a detailed case study on an extremely challenging question from GAIA (Mi-
712 alon et al., 2023). Specifically, we analyze Search-R1-32B (Jin et al., 2025) and Search-o1 (QwQ) (Li
713 et al., 2025c) in Fig. 8.
714715 **Solution Path of the Sample Question.** In Fig. 8, our case study is carried out on a question
716 requiring finding some specific animal given 2 **conditions** and 4 **unknown variables**. To identify the
717 correct answer, the search agent should first find out the mentioned species **U1** according to condition
718 **C1**, identify the correct article **U2** that satisfies condition **C2**, and then find out the papers listed in
719 **U3.1** and **U3.2**. Finally, the correct answer should be determined by cross referencing the article **U2**
720 and the papers **U3.1&U3.2**. To summarize, this example is challenging for several main reasons,
721722

- **High Uncertainty:** The question involves multiple unknown variables that could point to
723 many different entities. For example, the 2021 article **U2** could point to any article published
724 in 2021 and could only be determined given the condition **C2** and the alvei species **U1**.
- **Requirement for Exact Information Extraction:** To find the answer, the agent should list
725 all animals mentioned on the webpages and making cross-document comparison. This would
726 require the agent to precisely extract key information from the vast, noisy web contents,
727 instead of simply summarizing the webpages.
- **Misleading Answers:** During the process of solving this task, there could be multiple
728 misleading answers, such as "pigs". The agent should rigorously confirm its conclusions by
729 checking the intended answer in all related webpages and documents.

730732 **Existing Online RL Approaches Fail to Learn Complex Search Strategies.** In Fig. 8, Search-
733 R1-32B is not able to decompose the complex query into individual components, consequently only
734 making redundant queries that involve too many unknown information. The agent also has severe
735 hallucinations, producing conclusions that are not supported by the search results. Finally, it fails
736 to resolve all unknown variables. This case study shows that existing online RL approaches only
737 incentivize elementary search strategies. It is also worth noting that, since the turn limit is set as a
738 small value, e.g. 4, during training, the model only exhibits a short tool-use horizon.
739740 **Prompt-based LLM Agents Could Fail Due to Insufficient Capability of the LLM.** In Fig. 8,
741 Search-o1 (QwQ) can find the species name **U1**, as well as the 2021 article **U2** and papers **U3.1&U3.2**
742 through a large amount of tool calls. However, when trying to find the answer, Search-o1 (QwQ)
743 would easily miss key information. Consequently, the agent makes incorrect conclusions. Notably,
744 even when the agent finds information that directly links to the correct answer, it is still misguided
745 by previous incorrect conclusions. Finally, the agent is unable to verify the correctness of previous
746 conclusions. This case study reveals that, though an open-source model that is not explicitly trained
747 on agentic tasks can perform extensive tool calls, it could not make expert-level reasoning based on
748 the retrieved contents and history contexts.
749750 **ASearcher-Web-QwQ.** We also analyze the search strategy of our end-to-end RL agent, **ASearcher-**
751 **Web-QwQ**. As shown in Fig. 8, **ASearcher-Web-QwQ** decomposes the complex query into precise
752 and focused queries. Unlike Search-o1 (QwQ) that visits a large amount of websites after each search
753 query, **ASearcher-Web-QwQ** focuses on visiting the most relevant website. **ASearcher-Web-QwQ**
754 summarizes all related information from a website. Specifically, all candidate answers are listed and
755 carefully analyzed by the agent. When trying to search for related facts in the papers **U3.1&U3.2**,
the agent explicitly references the key information. When the search results do not directly point to
the desired target, e.g. when searching with "**Olga Tapia (U3.2) Hafnia alvei (U1)** animal studies"

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

An Example Question from GAIA

Q: What animals that were mentioned in both U3.1 Ilias Lagkouvardos's and U3.1 Olga Tapia's papers on U1 the alvei species of the C1 genus named for Copenhagen outside the bibliographies were also present in the U2 2021 article cited on the U1 alvei species' Wikipedia page about C2 a multicenter, randomized, double-blind study?

A: Mice

Question Structure

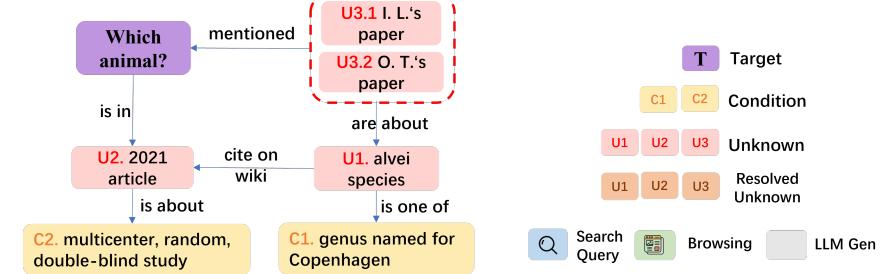
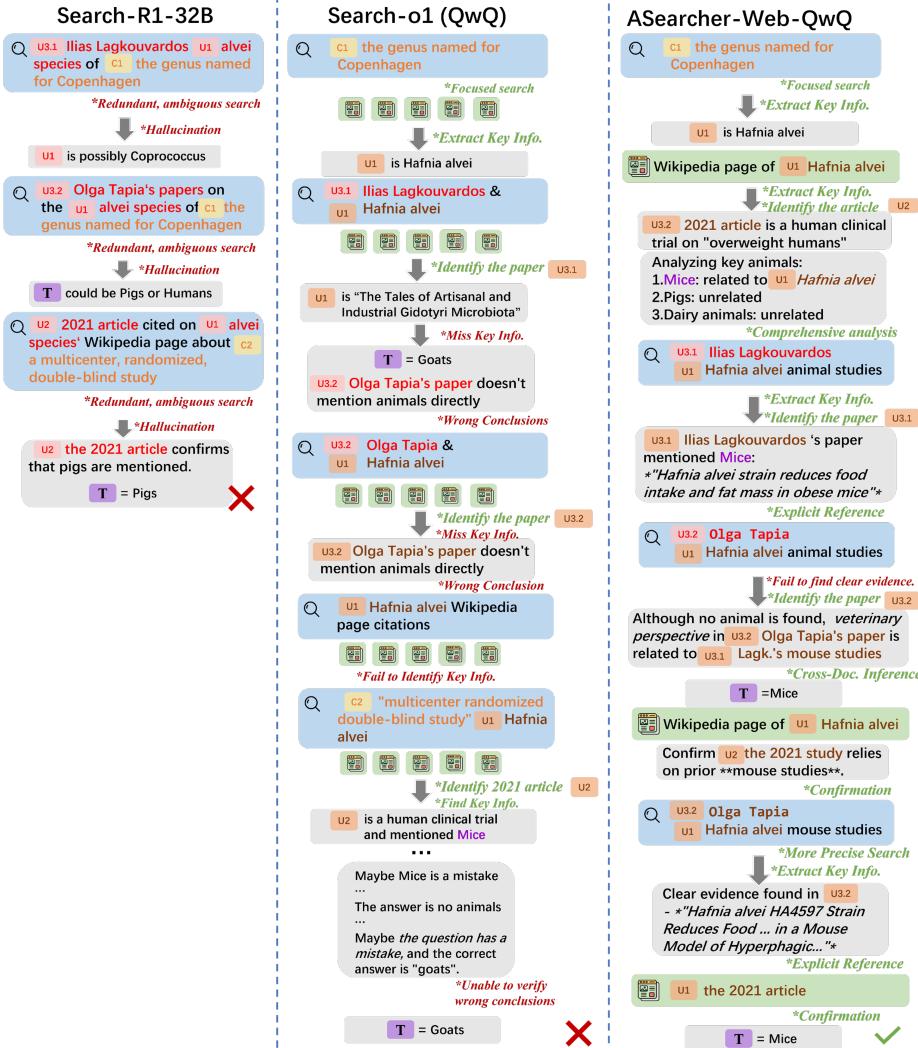
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

Figure 8: A case study on a complex query from GAIA. **Search-R1-32B** is unable to break down the complex question and has severe hallucinations. **Search-o1 (QwQ)** can identify the correct articles through extensive tool calls, but easily misses key information and fails to verify wrong conclusions. Our end-to-end RL agent, **ASearcher-Web-QwQ**, exhibits key behaviors featuring Search Intelligence: *uncertainty-aware reasoning* (list and examine candidate answers), *precise extraction* from noisy contents, *cross-document inference*, and *rigorous confirmation*.

810 to find the animals related to Olga Tapia’s paper, the agent does not get a clear information but is
 811 able to infer the correct answer by make connection with the other paper **U3.1**. After the correct
 812 answer “Mice” is found, the agent spends further turns on confirming previous conclusions before
 813 reporting the final answer. In summary, *ASearcher* successfully train a search agent that exhibits
 814 complex behaviors that feature Search Intelligence,

- 816 • **Uncertainty-aware reasoning:** the agent exhaustively lists and examines all possibilities
 817 for uncertain entities
- 818 • **Price Key Information Extraction:** the agent is able to identify the key information from
 819 vast, noisy web contents.
- 820 • **Cross-document Inference:** the agent is able to infer critical conclusions by making
 821 connections among multiple documents.
- 822 • **Rigorous Confirmation:** the agent verifies the correctness of previous conclusions with
 823 additional tool calls.

825 C DATA SYNTHESIS AGENT

826 C.1 DETAILS OF DATA SYNTHESIS

830 We develop a data synthesis agent to create high-quality question-answer pairs. As shown in Fig. 3,
 831 the data synthesis agent begins with a seed question, and iteratively modifies the question to increase
 832 the complexity. To ensure the synthetic question is strictly aligned with reliable sources, a list of
 833 *supporting facts* obtained during the question synthesis process is kept and continuously updated for
 834 quality verification. At each step, given the current question and a list of supporting facts, the agent
 835 automatically selects between two key actions,

- 836 • **Action 1: Injection** aims to enrich the context of the question by inserting facts related to
 837 the question. The agent first selects an entity in the question and then obtains one piece of
 838 related fact about the selected entity from external sources such as Wikipedia. Then a new
 839 question is proposed by *injecting* the fact into the question. This injection action increases
 840 complexity of the question.
- 841 • **Action 2: Fuzzing** blurs certain details in the question to increase the uncertainty level of
 842 the question. For example, “Catskill Mountain Railroad” could be replaced with “a historic
 843 mountain railway”. Through fuzzing the question multiple times, both the uncertainty level
 844 and difficulty of the question would gradually increase.

846 To ensure that a synthetic question is of high quality and to precisely evaluate the difficulty, we
 847 incorporate a rigorous *quality verification* phase for assessing synthetic questions,

- 849 • **Step 1. Basic Quality.** We employ an LLM to assess the basic quality of each question.
 850 This verification includes checking the clarity of the question and verifying whether the
 851 question-answer pair is accurate based on the supporting facts. This quality control step
 852 ensures that each question-answer pair is properly grounded in reliable sources.
- 853 • **Step 2. Difficulty Measurement.** We employ a cutting-edge LRM (e.g., QwQ-32B) to
 854 generate multiple answers directly for the synthetic question, without using any external
 855 tool. This verification process also serves as a measure of question difficulty.
- 856 • **Step 3. Answer Uniqueness.** The fuzzing action may loosen constraints excessively,
 857 compromising the uniqueness of the answer. To prevent ambiguity resulting from multiple
 858 correct answers, we evaluate whether any of the mismatched answers generated during the
 859 Difficulty Measurement step could serve as alternative valid answers.

861 Through iterative injection and fuzzing, the data synthesis agent produces questions that involve
 862 complex information and high uncertainty, requiring extensive search and reasoning to find the correct
 863 answer. After completing the question synthesis process, we filter out questions that the LRM can
 864 directly generate the correct answer without relying on search tools. Since these questions can be

864 answered solely based on the intrinsic knowledge of the model, they provide little value for enhancing
 865 search capabilities.
 866

867 Starting with 14,107 seed questions, we perform an average of 6.3 injections and 3.2 fuzzes per
 868 question. From the synthetic pool, we select up to three high-quality variations per seed question.
 869 This curation process produces a final dataset of 25,624 entries, with the selected questions averaging
 870 4.27 injections and 2.10 fuzzes each.
 871
 872
 873
 874

875 C.2 EXAMPLE OF SYNTHETIC QA

881 Table 3: Examples of the synthetic questions, where **red** indicates injected facts and **cyan** represents
 882 fuzzed content.
 883

884 Round	885 Action	886 Question
887 Seed QA	888 -	889 When was Michael P. Hein born?
890 Round 1	891 Injection	892 When was the Eckerd College alumnus who served as the first County Executive of Ulster County, New York, and graduated with a Bachelor of Arts in Business Administration born?
893 Round 2	894 Injection	895 When was the individual born who, as County Executive of Ulster County, New York, permitted the Catskill Mountain Railroad to continue operations between Kingston and Hurley during the 2016 United States House of Representatives elections and also held that position during the 2018 elections ?
896 Round 3	897 Fuzzing	898 When was the individual born who, as County Executive of Ulster County, New York, permitted a historic mountain railway to continue operations between Kingston and Hurley during the 2016 United States House of Representatives elections and also held that position during the 2018 elections ?
899 ...	900 ...	901 ...
902 Seed QA	903 -	904 Where is the Riggs-Hamilton American Legion Post No. 20 located?
905 Round 1	906 Injection	907 Where is the American Legion Post in Russellville, Arkansas, built in 1934 and recognized as a notable example of WPA Rustic architecture and listed on the National Register of Historic Places located?
908 Round 2	909 Fuzzing	910 Where is the American Legion Post in Russellville, Arkansas, built in the early 1930s and recognized as a notable example of New Deal-era public works architecture and listed on the National Register of Historic Places located?
911 Round 3	912 Fuzzing	913 Where is the veterans' organization's building in Russellville, Arkansas, built in the early 1930s and recognized as a notable example of New Deal-era public works architecture and listed on the National Register of Historic Places located?
914 ...	915 ...	916 ...

917 We provide two illustrative examples in Tab. 3. Starting with a simple question, the injection action
 918 replaces specific entities with related factual details. For instance, “Michael P. Hein” is expanded
 919 to “who served as the first County Executive of Ulster County, New York...”. The fuzzing action
 920 introduces ambiguity by generalizing precise information, replacing the exact year “1934” with “the
 921 early 1930s” or substituting “Catskill Mountain Railroad” with “a historic mountain railway.”

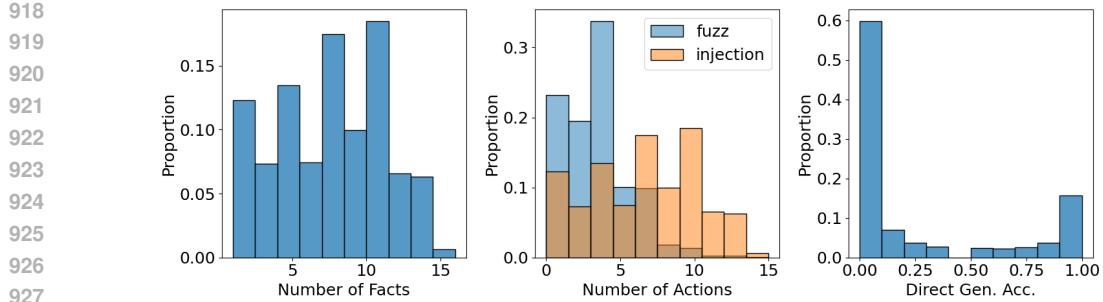


Figure 9: Statistics from our data synthesis process. (Left) The distribution of the number of supporting facts. (Middle) The distribution of the number of fuzz actions and injection actions. (Right) The accuracy distribution of QwQ-32B in answering the generated questions without using any tools.

C.3 SYNTEHTIC QA STATISTICS

D PROMPTS USED FOR DATA SYNTHESIS, JUDGE, AND TEST-TIME SEARCH

Prompt for Synthesis Agent Action Selection

You are an autonomous agent for constructing general-domain QAs. Now given the current QA and relevant information. Choose one of the following action to make the question more challenging.

The current question-answer pair:

{question}

You can choose one action from the following types:

{actions}

Prompt Description of SELECT (the First Step of Injection)

SELECT: select one entity from the relevant entity list. Once such an entity is selected, an external tool will improve the difficulty of the question by replacing information about this entity in the question with sub-questions that take this entity as the answer.

If you choose SELECT, the output should be in json format:

““json

{

““action”: “SELECT”,

““target”: url of the selected entity. note that you should only select the entity from the relevant entity list of the question and make sure the url exactly match the url in the relevant entity list.

““note”: a short description of the rationale behind the selection

} ““

972
973

Prompt Description of FUZZ (the Fuzzing Operation)

974
975
976
977
978

FUZZ: fuzz 1 places of information in the question to make the question more challenging. Note that if you choose FUZZ, you should make sure the resulted question is still clear and has an unique answer as the original one. You should choose FUZZ only when you find certain pieces of information could clearly point to the correct answer without extensive research to find relevant information.

979
980
981
982
983
984
985
986
987

If you choose FUZZ, the output should be in json format:

```
““json
{
  ““action”: ““FUZZ”“,
  ““question”: the modified question after the FUZZ operation
  ““note”: a short description of why and how the FUZZ operation happens
}
““
```

988
989
990
991
992
993
994
995

Prompt of Combining Two Questions (the Second Step of Injection)

996
997
998
999
1000
1001
1002
1003

You are an autonomous agent for constructing general-domain QAs. Now given two questions, combine these questions into one. Specially, the answer to the second question is related to some entity in the first question. To make the combined question challenging, you need to remove information about the answer of the second question and ensure the answer of the combined question remains the same as the answer of the first question. Please ensure that the combined question is clear, solvable, and has an unique answer.

1004
1005
1006
1007

The first Question: ““
{questionA}
““

1008
1009

The second Question:
““
{questionB}
““

1010
1011
1012

Relevant statements:
““
{statements}
““

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

The output should be in json format:
““json
{
 ““question”: the proposed question,
 ““answer”: the answer
 ““note”: one short description of how the two questions are combined
}
““

1026
1027

Prompt of Basic Quality Check

1028
1029

Check the validity of this question-answer pair given its relevant information.

1030

The question is valid if and only if:

1031

1. the question is not a simple concatenation of two or more questions
2. the provided answer is the only correct answer to the question
3. the question has a unique answer
4. the question can be solved based on the relevant statements

1034

The question-answer pair and the relevant information:

1035

{question}

1036

You should reply "yes" or "no" indicating the validity of the question-answer pair.
You should think step-by-step first before the final judgement in json format:

1037

Analysis

1042

// your analysis

1044

Final Judgement

1046

```
““json
{
  "judgement": "yes" or "no"
}
““
```

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

Prompt of Checking Whether an Answer Could be an Alternative Answer

1060

Determine whether the predicted answer is also correct to the question. Specially, the predicted answer is different from the ground-truth answer, and you should check whether the predicted answer fits with all constraints in the question and is also a correct answer to the question.

1064

Question: {question}

1066

Ground-truth answer: {gt_answer}

1068

Facts supporting the ground-truth answer:

1069

```
““txt
{
  "statements"
}
““
```

1072

1073

Predicted answer: {pred_answer}

1074

1075

```
““json
{
  "judgement": "yes" or "no"
}
““
```

1076

1077

1078

1079

1080
1081 Prompt of LLM-as-Judge
1082
1083 You are an evaluation assistant. Please determine if the predicted answer is equivalent to the
1084 labeled answer.
1085
1086 Question: {question}
1087
1088 Labeled Answer: {gt_answer}
1089
1090 Predicted Answer: {pred_answer}
1091
1092 Did the model give an answer **equivalent** to the labeled answer? Please re-
1093 spond with "Correct" if they are equivalent, or "Incorrect" if they are not equivalent.
1094
1095 The output should in the following json format:
1096 {"json
1097 {
1098 "rationale": your rationale for the judgement, as a text,
1099 "judgement": your judgement, can only be "Correct" or "Incorrect",
1100 }
1101 ""

E ADDITIONAL RESULTS

Applying A Searcher Training on a Small Non-Reasoning Model. We apply our training recipe on **Qwen2.5-7B-Instruct**, a non-reasoning model with much smaller scale. The results show that our recipe is also able to enhance the search capability of a small, non-reasoning model.

Table 4: Results on Qwen2.5-7B-Instruct

	GAIA	xBench
Before RL	18.2	23.0
After RL	27.7 (+9.5)	27.8 (+4.8)

This demonstrates that,

- Our pipeline works effectively on smaller models. Pure RL training also works for non-reasoning models.
- The significant performance improvement is not solely due to the choice of the base model, QwQ, but comes from the full training recipe.

1134 Prompt for Aggregating K Independently Generated Trajectories in Test-time Search
1135
1136 Given a question and K independently generated results, please determine the most reliable
1137 answer.
1138
1139 Question:
1140 {question}
1141
1142 Result 1:
1143 {result_1}
1144
1145 Result 2:
1146 {result_2}
1147
1148 ...
1149
1150 Result K:
1151 {result_K}
1152
1153 The output should in the following json format:
1154 {"json
1155 {
1156 "rationale": your rationale as a text,
1157 "answer": the most reliable final answer,
1158 }
1159

1161 **Evaluating Baseline with Summary Tool & Test-time Scaling.** We conduct a comparison with
 1162 WebSailor-32B (Li et al., 2025a) when using DeepSeek-V3 for summary and test-time search with
 1163 $K = 16$, under a turn limit of 128. Since WebSailor does not produce a comprehensive analysis at
 1164 the final step, we directly feed all the trajectories into DeepSeek-V3 to determine the most reliable
 1165 answer when performing Test-time Search. The results show that:

- The baseline, WebSailor-32B, only conducts short-horizon search, and does not show an advanced capability of utilizing more tool calls for rigorous conclusion verification.
- When employing test-time augmentation approaches, ASearcher significantly outperforms WebSailor-32B. We hypothesize that this is because WebSailor does not produce a compact analysis, and, therefore, the most reliable answer could not be easily determined from a set of noisy trajectories.

Method	GAIA	xBench
ASearcher (Ours)	58.7	51.1
+ Summary w. DeepSeek-V3 & Test-time Search ($K = 16$)	71.8	75.0
WebSailor-32B	53.2	53.3
+ Summary w. DeepSeek-V3 & Test-time Search ($K = 16$)	60.2	64.0

Table 5: WebSailor-32B with Test-Time Augmentations

Method	GAIA	xBench
ASearcher (Ours)	13.81	13.67
WebSailor-32B	4.24	5.17

Table 6: Number of Tool Calls of ASearcher & WebSailor-32B