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ABSTRACT

We posit and demonstrate that while the current approaches for language model
(LM) watermarking are effective for open-ended generation, they are inadequate
at watermarking LM outputs for constrained generation tasks like machine trans-
lation and abstractive summarization due to the lower entropy of the output space.
We investigate the reasons for such shortcomings in a variety of prominent wa-
termarking approaches, and propose an effective solution based on sequence-level
watermarking with semantic differentiation to watermark LLM outputs for con-
strained generation tasks that balances the output quality, watermark detectabil-
ity, and imperceptibility of the watermark. Specifically, we show that token-level
watermarking algorithms that modify logits over vocabulary during autoregres-
sive generation, fail because they under-utilize the sequence entropy of the LM
available for watermarking constrained generation outputs. While sequence-level
semantic watermarking algorithms are promising alternatives for exploiting the
higher sequence entropy compared to the low-levels of token-wise entropy, we
identify a different fundamental drawback termed region collapse in the opera-
tionalization of current approaches that causes poor watermarking performance.
Current approaches pseudorandomly partition the sequence-level representation
space into valid and invalid regions for watermarking, but their operationaliza-
tion encourages most high-quality output embeddings to all collapse into a single
region causing a trade-off in output quality and watermarking effectiveness. To
mitigate this, we devise a scheme SeqMark to differentiate the high quality output
subspace and partition it into valid and invalid regions for watermarking, ensur-
ing the even spread of high quality outputs among all the regions for effective
watermarking without compromising the output quality. SeqMark substantially
improves watermark detection accuracy (up to 28% increase in F1) while main-
taining high generation quality in constrained generation settings.

1 INTRODUCTION

As progress in language modeling leads to increasingly human-like automatic text generation, de-
mand for tracing the provenance and life-cycle of digital text on the internet has soared. Questions
around plagiarism (Sullivan et al., 2023), copyright infringement (Zhong et al., 2023), veracity of
text (Augenstein et al., 2024), misinformation (Gravel et al., 2023), multi-agentic communication,
and many other legal and contractual frameworks require the ability to attribute text to its source.
Language model watermarking – embedding a traceable digital marker in the language model’s dis-
tribution over language – has emerged as a potential solution to address this need. Seminal work on
watermarking Kirchenbauer et al. (2023) modifies the logits produced over the vocabulary at each
generation step from a language model to prefer or disprefer certain tokens. Much of the follow-up
work (Fernandez et al., 2023; Zhao et al., 2023; Takezawa et al., 2025) on this token-level water-
marking framework has focused on improved robustness to edits, generation quality, detectability
and other desiderata for watermarking. While effective for open-ended long-form generation, LLM
watermarking has remained to be a challenging problem in low-entropy setups like factual question-
answering and code generation. While some work (Lee et al., 2024; Lu et al., 2024) addresses
this problem for code generation via selective token-entropy based watermarking, we posit that in
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general, all token-level watermarking schemes struggle in task settings with limited entropy. For ex-
ample, tasks like machine translation and summarization, although lower entropy than open-ended
generation, still admit multiple feasible responses with sufficient sequence level entropy to embed a
watermark, but token-level watermarking approaches fail to utilize this sequence-entropy effectively.

An appealing alternative paradigm of sequence-level watermarking was explored in recent work Hou
et al. (2024a;b): instead of randomly partitioning the token space at each generation step, they focus
on partitioning the manifold of entire sentences via hyperplanes into red/green regions, and then
perform rejection sampling to watermark the generation by sampling from the green regions. While
promising, we identify a common issue of red/green region collapse with these approaches that
prevents low-entropy watermarking. The operationalization of these algorithms via locality sensitive
hashing or k-means clustering leads to assignment of semantically similar sentences to the same
red/green partition. Due to semantic diversity, this is not a problem for open-ended generation tasks,
but for constrained generation tasks, most of the admissible outputs tend to be semantically close
to one another and mostly collapse to a single region. This imposes a challenging tradeoff between
output quality and watermark verifiability for watermarking in constrained generation tasks.

Therefore, we propose a novel sequence-level watermarking approach SeqMark that utilizes the
limited sequence entropy effectively to watermark constrained generation tasks. This approach first
identifies the semantic manifold of high quality admissible outputs for the task at hand, and then se-
mantically differentiates between the elements of this manifold to propose pseudorandom red/green
partitions in a manner such that the potential high-quality responses are evenly spread across the
partitions, enabling successful watermarking in low-entropy settings. In this work, we empirically
support our claims and observations on watermarking previously underexplored constrained gen-
eration tasks like machine translation and summarization. We demonstrate the issues with various
token-level watermarking algorithms and sequence-level algorithms in the prior work and find that
our proposed watermarking approach is more effective in constrained generation settings, while
maintaining high watermarking capabilities in open-ended generation settings.

2 PRELIMINARIES

Watermarking, much like steganography, is inherently a problem of incorporating a digital marker
into the (ideally noise-tolerant) carrier signal. Typically, two desiderata characterize watermarking:
imperceptibility and robustness. Robustness refers to the difficulty of tampering with the watermark
by altering the signal and imperceptibility refers to preserving the quality and perception of the
signal. We are primarily interested in approaches that incorporate the digital marker into the lan-
guage model’s distribution and thus perform watermarking while generating text from the language
model. We consider autoregressive language models parametrized by θ that estimate a probability
distribution of the next token following a prefix pθ(wt | w<t), and use it to generate sequences
token-by-token in a left-to-right manner.

Token-level logit Watermarking Kirchenbauer et al. (2023) introduced a seminal token-level
watermarking algorithm dubbed KGW that used the logits produced over vocabulary for each token
during generation to embed the digital marker. Many following attempts (Liu et al., 2024; Fernan-
dez et al., 2023) proposed variations to improve robustness and undetectability of the watermarking
scheme. All of these approaches modify the token-level distribution for watermarking and generate
accordingly. At an abstract level, during generation at each time step t, such approaches pseudo-
randomly partition the vocabulary V into a green list of size γ|V| and red list size (1 − γ)|V| for a
hyperparameter γ ∈ (0, 1), using a hash from the previous token wt−1 as random seed. The gen-
eration procedure is then modified to prefer the green-list partition over the red-list partition, thus
embedding the watermark. Typically detection involves counting the number of green-list tokens
in the query text and performing hypothesis testing to decide whether the presence of the green-list
tokens is by chance or not.

Sequence-level Watermarking To improve the robustness of the watermarking method to para-
phrase attacks, a different line of approach dubbed as semantic watermarking (Hou et al., 2024a;b)
focuses on using sequence-level distribution induced by the language model instead of token-level
distributions to embed the watermark. In addition to robustness, this general approach is more
well-suited for watermarking low-entropy constrained generation tasks. In general, the sentence-
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embedding space (instead of the vocabulary) is pseudorandomly partitioned into green and red re-
gions. Then a sentence is generated from the language modeling via rejection sampling until the
resulting sentence embeddings falls in the green region or the budget for resampling is exhausted.
For generating another sentence, another round of pseudorandom partitioning of the embeddings
space using the hash based on the previously generated sentence is performed followed by rejection
sampling for the next sentence. Prior work SemStamp (Hou et al., 2024a) uses locality-sensitive
hashing (LSH) to pseudorandomly partition the embeddings space: LSH first samples n random
vectors from a normal Gaussian distribution to specify n hyperplanes and thus 2n regions. Given
a hyperparameter ratio γ and the hash of the previous sentence, the regions are partitioned into
γ2n green regions and (1 − γ)2n red regions. A sentence with embedding v ∈ Rd would receive
an n-bit binary LSH signature c, where each bit specifies the location of v with respect to each
hyperplane – thus c identifies the region assignment for v. In contrast, k-SemStamp (Hou et al.,
2024b) uses k-means clustering for partitioning instead of LSH: it first estimates K centroids for a
general semantic manifold via pretraining, and then during the generation step it randomly assigns
each of these centroids either a red/green tag. During sampling, each generated sentence is assigned
red/green tag according to its closest centroid. For both SemStamp and k-SemStamp, detection is
done in a similar manner as token-level watermarking detection – it hinges on the membership of
the query’s sentences in the green region.

3 ENTROPY CONSIDERATIONS FOR IMPERCEPTIBLE WATERMARKING
CONSTRAINED GENERATION: TOKEN-LEVEL VS. SEQUENCE-LEVEL

While we consider both imperceptibility and robustness to be important criteria for watermarking,
imperceptibility of the watermark is very important for most textual applications in which the flow,
tone, and naturalness of the text determine the experience of the reader. Imperceptibility requires
redundancy in the signal, which for our purposes indicates the need for the distribution over text
induced by the language model to have high entropy. From this perspective, constrained generation
tasks are more difficult to watermark because the entropy over the desired text distribution is much
lower than the case of open-ended generation.

Consider constrained generation tasks like machine translation and summarization: given an input,
there is a small set of acceptable outputs that convey similar meaning but differ greatly in terms of
style, syntax, coverage etc. This set is much smaller than open-ended generation but still larger and
more varied than some low-entropy tasks like factual question-answering or even code-generation.
Therefore, we posit and empirically observe with our proposed approach (§ 7), that these seeming
low-entropy constrained generation tasks have enough sequence-level entropy to enable impercepti-
ble watermarking. Assuming max-length of sequences (denoted by r.v. y) is T , we can compute this
entropy over T random variables (tokens) under our model (parametrized by θ) via chain rule for
entropy: Hθ(y) =

∑T
i=1 Hθ(yi|y<i) where crucially the conditional entropy involves summation

over all the possible assignments of the prefix context y<i i.e. H(s | t) = −
∑

s,t p(s, t) log p(s |
t). This entropy is typically intractable to compute and is estimated (Kuhn et al., 2023) via sampling.
In a sharp contrast, token-level entropy that is often used to characterize uncertainty (Duan et al.,
2023) of language models is tractable to compute because instead of summing over all the possible
prefixes, it commits to a single sampled prefix and computes the entropy over the possible tokens
at the next step: Hθ(yt|y<t) = −

∑
w∈Y p(w | y<t) log p(w | y<t). The sequence entropy that

is typically computed using token-level entropy computation for a sequence w = w1, , wT given by
Hθ(w) =

∑T
i=1 H(wi | w<i) is one-sequence approximation to the full intractable sequence-level

entropy. Therefore, while tractable and unattractive, common approaches of using token-level en-
tropy to characterize sequence entropy tend to underestimate the true entropy over the sequences
under the language model.

This observation has crucial ramifications for watermarking algorithms in low-entropy settings. The
prevalent entropy-sensitive watermarking algorithms in prior work (Lee et al., 2024; Lu et al., 2024)
only consider token-level entropy while embedding watermark in tokens during generation. For
example, during tokenwise generation, Lee et al. (2024) only chooses to mark the tokens that have
high entropy under the language model. As we show in our experiments (§ 7), this approach does
not perform well for constrained generation tasks because it underutilizes the sequence-level en-
tropy for embeddings watermark. It is interesting to note that token-entropy based watermarking
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approaches Lee et al. (2024) perform favorably for code generation but fail at other constrained gen-
eration tasks. This is possibly due to code generation tasks having low sequence-level entropy that
is well approximated by individual token-level entropy. But for tasks like machine translation and
summarization, the need for exploiting higher sequence entropy becomes apparent. In Figure 1, we
compare the KGW Kirchenbauer et al. (2023) token-level watermarking algorithm (blue) against
two sequence-level watermarking algorithms, SemStamp Hou et al. (2024a)(orange) and our Se-
qMark approach (green) on the machine translation and summarization tasks. By sweeping over
hyperparameters for these algorithms, we obtain a pareto curve for each approach. It is clear that
the the token-level watermarking approach is inferior to both sequence-level approaches – we see a
severe drop-off in watermark detection accuracy as the output quality increases for both the tasks.
As a token-level approach commits to a sequence during left-to-right generation, it ignores all other
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Figure 1: Pareto frontiers of token-level (Blue) watermarking, and two sequence-level watermarking
approaches (Green and Orange) for machine translation (left) and summarization (right).

prefixes and potential paths that could lead to feasible outputs which drastically limits the entropy
it can exploit for watermarking. Sequence-level semantic watermarking on the other hand consid-
ers sequence-level distribution via rejection sampling and is more amenable to exploit the sequence
entropy afforded by constrained generation tasks.

4 REGION COLLAPSE: PITFALL OF STANDARD SEQUENCE-LEVEL
WATERMARKING FOR CONSTRAINED GENERATION

SemStamp

correct generations LSH / K-means 

Region Boundaries

valid regions

invalid regionsincorrect generations

k-semStamp Ideal Semantic Space 

Figure 2: Semantic Space illustration for different sequence watermarking algorithms. Both Sem-
Stamp (Left) and K-SemStamp (Middle) suffer from region collapse. (Right) Ideally, we would
like to isolate the high-quality output manifold and partition it.
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We observe in Figure 1 that sequence-level algorithm SemStamp behaves better than the token-level
algorithm KGW, but still is inferior to our approach described later. We identify a crucial property
of existing sequence-level watermarking algorithms like SemStamp that render them unsuitable for
constrained generation watermarking. We call this property region collapse which refers to the
effect that all viable outputs for a constrained generation task either randomly fall in the invalid red
region or the valid green region. Consider the task of translation: If all the good translations of the
prompt fall in the red region, then the sequence level watermarking algorithms will either generate
a bad translation from the green region hurting the translation quality or exhaust it’s resampling
budget and output a translation from the red region hurting the watermarking effectiveness. Below
we describe how region collapse is manifested in existing sequence-level watermarking algorithms:
SemStamp (Hou et al., 2024a) and k-SemStamp (Hou et al., 2024b).

A well-trained language model induces a high probability on the correct responses for a
constrained generation prompt and samples them more frequently. Also, because of se-
mantic similarity of the high quality responses, the embeddings for these responses tend
to have high similarity. An ideal sequence-level watermarking algorithms would produce
red/green regions that separate these nearby responses to prevent region collapse as depicted
in figure 2. However, SemStamp’s partitioning behaves in a manner opposite to this de-
sired behavior as it employs locality sensitive hashing (LSH) to determine the partitions.

Approach Translation Summary Open-ended

SemStamp 0.190 / 0.973 0.392 / 0.916 0 714 / 0.587
k-SemStamp 0.246 / 0.973 0.106 / 0.942 0.872 / 0.309
SeqMark 0.812 / 0.007 0.916 / 0.027 0.957 / 0.006

Table 1: Region entropy/average pairwise cosine
similarity across different tasks (columns) and wa-
termarking approaches (rows).

Under LSH (Charikar, 2002; Indyk & Mot-
wani, 1998), given two vectors xi, xj ∈
Rd with angle θij ∈ [0, π], the probability
that they lie in the same region (LSH sig-
nature) is: Pr[region(xi) = region(xj)] =(
1− θij

π

)d

. LSH determines partitioning hy-
perplanes such that similar points share the
same partition, thereby accelerating region
collapse. k-SemStamp, while shown to be
more robust than SemStamp, unfortunately exacerbates the region collapse issue for constrained
generation. As described in §2, this method explicitly focuses on assigning the same centroid/color
to the semantically similar points with low embeddings distances, thus exacerbating region collapse.

As described later, we specifically address the issue of region collapse with our approach, SeqMark.
In Table 1, we empirically demonstrate the issue of region collapse on the tasks of translation and
summarization. We sample 100 high-quality (and high-probability) generations for each setting and
report average pairwise cosine similarity and the estimated region entropy – a quantity that charac-
terizes how evenly the high-quality points are spread across the partitions . While all three methods
behave well for open-ended generation, for constrained generation tasks we observe low region en-
tropy and high semantic similarity for SemStamp and k-SemStamp indicating region collapse, but
high region entropy and low semantic similarity (explained below) for our SeqMark approach that
explicitly fixes the issue of region collapse.

5 SEQMARK: AMELIORATING REGION COLLAPSE

As mentioned above, we devise a sequence-level watermarking approach that doesn’t suffer from
region collapse. We propose SeqMark, an approach that shares many similarities with other se-
mantic watermarking approaches in that it pseudorandomly partitions the representation space into
accept/reject regions and performs rejection sampling for watermarking, it differs significantly in
how it operationalizes the partitioning procedure. As shown in figure 3, we first focus on isolat-
ing the subspace manifold (purple) containing high quality responses for the constrained generation
prompt. We estimate this manifold by sampling highly-likely generations using low-temperature
sampling assuming that high likelihood correlated well with response quality for well-trained LMs.
Once isolated, we partition this manifold such that the high quality points are evenly distributed
among the regions. To perform this partitioning, we still use LSH, but crucially we transform the
isolated manifold such that its members (high-quality responses) are distant from one another, caus-
ing LSH to evenly spread them across the random partitions. Concretely, for an input prompt p (and
t − 1 generated sentences), we generate the response (t-th sentence st) as follows: We first sample
n high likelihood responses (with embeddings ci) under low temperature to estimate high-quality
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Isolate 
 via Sampling
High-Quality 


Subspace
Repartition the  


using LSH
Subspace1 2

Figure 3: Depiction of SeqMark: Standard LSH in the first panel collapses the high quality output
subspace(blue) to a small number of regions (red here). First, we identify the high-quality output
subspace by sampling with low temperature; then we repartition by performing LSH on a trans-
formed subspace designed to evenly spread it across multiple regions.

subspace C = {c1, c2, ..., cn} Let f(·; C) be the function that transforms its members ci into a rep-
resentation ui: ui = f(ci; C), that would be used to assign an LSH partition to ci. To prevent region
collapse, we aim to minimize the pairwise cosine similarity between the transformed members of
C while preserving their relative proximity. This is difficult to estimate in general and could be ap-
proximated by learning such a function via a neural network. We opt for a much simpler choice of
approximately but effectively estimating f : we simply subtract the sample mean is subtracted from
each member of C: f(ci; C) = ci − 1

n

∑n
j=1 cj . We empirically observe that our mean-centering

approach increases the distance between high-quality points in the desired manner (Table 1).

6 EXPERIMENTAL SETUP

Tasks and Datasets We evaluate our approach on several constrained text generation settings:
sentence translation with WMT19 German-English dataset (Bojar et al.), paragraph translation with
WMT23 German-English (Kocmi et al., 2023), and abstractive summarization with XSum (Narayan
et al., 2018). For unconstrained open-ended generation, we follow previous work and complete
sentences from C4 RealNews dataset (Raffel et al., 2020). Table 8 presents the dataset details.

Language Models and Embeddings For machine translation on WMT19, we use ALMA-7B (Xu
et al., 2023) and LABSE (Feng et al., 2022) as the primary language model and sentence encoder,
respectively. For paragraph translation, we use Gemma-2-4B-it (Gemma Team, 2024) due to its long
context window. For other settings, we use Llama-2-7B-Chat (Touvron et al., 2023) language model
and SBERT encoder (Reimers & Gurevych, 2019).

Baselines We compare our approach against token-level watermarking approaches KGW Kirchen-
bauer et al. (2023), and SWEET Lee et al. (2024), and sequence-level watermarking approaches
SemStamp Hou et al. (2024a), and k-SemStamp Hou et al. (2024b). As described above SWEET is
a token-level approach specifically designed to address low-entropy watermarking. Given different
sets of hyperparameters for each algorithm, we first sweep for the best hyperparameters over 100
samples to find the most promising configurations, then run them on the full evaluation sets (§A.1).

Evaluation Two important dimensions for evaluating watermark algorithms are text quality and
watermark detectablity. Text quality metrics often depend on the specific tasks and are thus de-
scribed in the corresponding sections below. For evaluating watermark detection performance, we
treat each query as a binary classification problem: either it was detected as a watermark or not.
We then compute precision, recall, and F1 based on detection prediction under various watermark
algorithms. We report detection results for two types of negative examples: a) human (h) to evaluate
differentiation between watermarked LM and human generated text, and b) non-watermarked LM
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Translation (WMT19 De-En) Summarization (XSum)

COMET ↑ P / R / F1(h) P / R / F1(nw) R-L ↑ / COMET ↑ P / R / F1(h) P / R / F1(nw)

No Watermark 87.4 - - 20.5 / 69.0 - -
KGW 87.4 57.2 / 36.6 / 45.7 58.8 / 40.0 / 47.6 20.1 / 68.8 85.2 / 30.1 / 44.9 79.8 / 30.4 / 44.0
SWEET 87.2 57.5 / 30.0 / 39.5 58.1 / 30.1 / 39.6 18.5 / 68.7 52.4 / 49.9 / 51.1 53.0 / 40.0 / 45.6
SemStamp 87.4 59.5 / 73.7 / 65.9 58.7 / 74.0 / 65.5 20.0 / 68.7 70.6 / 52.8 / 60.4 67.8 / 59.0 / 63.1
k-SemStamp 87.5 63.3 / 33.0 / 43.4 62.2 / 33.0 / 43.1 20.7 / 68.9 54.2 / 22.0 / 31.3 61.6 / 22.0 / 32.4
SeqMark 87.1 76.9 / 77.3 / 77.1 75.5 / 83.0 / 79.0 21.6 / 68.5 81.3 / 100 / 89.7 85.3 / 85.3 / 85.3

Table 2: Watermarking results for sentence translation and summarization. Best results are bold.
↑ denotes the higher the better. For detection, (h) and (nw) denote the negative examples from
human and non-watermarked LM, respectively. SeqMark substantially improves detection while
maintaining competitive text quality.

(nw), to evalaute differentiation between watermarked generation and non-watermarked generation
from the same language model.

7 MAIN RESULTS

Sentence translation and summarization For these tasks, we primarily use COMET, a neural,
semantic-based translation metric (Rei et al., 2020). Since COMET is not specifically trained for
summarization, we also include ROUGE-L (Lin, 2004) for summarization results. Table 2 demon-
strates that SeqMark substantially improves detection results while maintaining competitive text
quality for constrained text generation. This result is congruent with Table 1, where the high cluster
entropy score and low cosine similarity indicates that SeqMark correctly defines the high-quality
output space and partitions it more uniformly for more effective watermarking. We observe that
SWEET, a baseline explicitly designed to handle low token-level entropy performs very poorly on
the constrained generation tasks highlighting the inability of token-level approaches to utilize the
sequence entropy effectively. While SemStamp improves over token level approaches, we confirm
our hypothesis that k-SemStamp exacerbates the region collapse issue by observing that it performs
even worse than the token-level KGW approach. Finally, the trends are similar for both the types
of negatives, human and non-watermarked LM, indicating that our watermarking approach success-
fully differentiates against texts from other sources.

Approach BLEU ↑/ COMET ↑ P / R / F1(h)

No Watermark 39.2 / 87.1 -
KGW 40.7 / 87.7 70.4 / 38.0 / 49.4
SemStamp 42.8 / 87.5 55.6 / 100.0 / 71.4
SeqMark 39.8 / 87.7 90.9 / 100.0 / 95.2

Table 3: Paragraph translation watermarking.

Paragraph translation We also evaluate our
approach on paragraph translation, where the LM
is tasked with translating multiple sentences. For
this task, we concatenate 8-10 sentences from
the same article in WMT23 dataset such that the
input prompt fits within the context window of
Gemma-2-4B-it. Since COMET is not specifi-
cally trained for paragraph evaluation, we also re-
port BLEU (Papineni et al., 2002). Results in Ta-
ble 3 shows a similar trend as Table 2: SeqMark has significantly higher detection score than KGW
and SemStamp, while maintaining similar text quality.

Approach PPL ↓ P / R / F1(h) P / R / F1(nw)

No Watermark 3.4 - -
KGW 3.6 100 / 92.0 / 95.8 94.1 / 95.0 / 94.5
SemStamp 3.6 98.9 / 94.9 / 96.9 98.9 / 93.9 / 96.3
k-SemStamp 3.6 96.4 / 95.0 / 95.7 97.6 / 93.9 / 95.7
SeqMark 3.4 98.9 / 94.0 / 96.4 98.9 / 92.0 / 95.3

Table 4: Open-ended generation with C4 RealNews

Open-ended generation Similar to pre-
vious work, we evaluate watermarking al-
gorithms with open-ended generations us-
ing C4 RealNews subset and report the re-
sults in Table 4. Expectedly, all water-
markign algorithms perform well in this
high-entropy settings. Importantly, Seq-
Mark performs on par with other water-
mark baselines without causing significant
degradation in either text quality or text de-
tection.
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Approach COMET ↑ Human ALMA-7B Gemma-2-4B-it Llama-2-7B-Chat

KGW 85.5 67.2 / 37.0 / 47.8 58.8 / 40.0 / 47.6 68.9 / 31.0 / 42.8 56.5 / 35.0 / 43.2
SemStamp 85.2 58.7 / 74.0 / 65.5 58.7 / 74.0 / 65.5 60.7 / 74.0 / 66.7 62.2 / 74.0 / 67.6
SeqMark 85.0 75.9 / 85.0 / 80.2 75.5 / 83.0 / 79.0 74.8 / 83.0 / 78.7 80.6 / 83.0 / 81.8

Table 5: Watermarking results on WMT19 translation tasks testing detection against negative exam-
ples from various sources: human and other non-watermarked LLMs.

Detecting Watermarked LLM Against Other Language Models In addition to testing the abil-
ity of watermarking schemes to differentiate between watermarked texts and texts generated either
by humans or non-watermarked LM, we also report results on the ability to differentiate between
watermarked texts and texts generated from other (non-watermarked) language models. Using 100
samples from WMT-19 German-English as test bed, we compare different watermarking methods on
ALMA-7B with unwatermarked completions from ALMA-7B, Gemma-2-4B instruct, and Llama-
2-7B-Chat. Results from Table 5 indicate that SeqMark differentiates the watermarked text of a
particular LM from other text sequences, be it human-generated or other LM-generated equally well.

8 FURTHER ANALYSIS AND DISCUSSION

8.1 EFFECT OF DIFFERENT TRANSFORMATIONS f IN SEQMARK

Approach COMET ↑ P / R / F1(h)

KGW 85.5 67.2 / 37.0 / 47.8
SemStamp 85.2 58.7 / 74.0 / 65.5
Sample mean 85.0 75.9 / 85.0 / 80.2

Random embedding 85.4 51.3 / 19.0 / 27.7
Sample closest-to-mean 85.4 75.0 / 87.0 / 80.6
Single sample 85.3 71.1 / 59.0 / 64.5
Source embedding 84.9 67.9 / 53.0 / 59.6
Target embedding 85.4 64.8 / 59.0 / 61.8

Table 6: Results with different transforma-
tions (rows) in § 5, on WMT19.

The goal of the transformation f in SeqMark
is to reduce cosine similarity between high-
quality generations. We propose a transforma-
tion that modifies sentence embedding by sub-
tracting the sample mean i.e. f(ci;C) = ci−z,
where z = 1/n

∑
c∈C c. In Table 6, we inves-

tigate other transformations obtained by sub-
tracting vectors z other than mean from the
embeddings: random embedding, the sample
closest to the mean, a single sample embed-
ding c, the source sentence embedding, and the
ground truth target translation embedding. We
observe that all the transformations performed
better than subtracting a random embedding in-
dicating the need for preservation of relative relationships among the samples. Importantly, aggre-
gated representations such as sample mean and point closest-to-the-mean perform the best, while
single point embedding alternatives did not outperform SemStamp baseline.

8.2 FAST-SEQMARK

Approach COMET ↑ P / R / F1(h)

KGW 85.5 67.2 / 37.0 / 47.8
SemStamp 85.2 58.7 / 74.0 / 65.5
SeqMark 85.0 75.9 / 85.0 / 80.2
Fast-SeqMark 84.4 68.1 / 75.0 / 71.4

Table 7: Fast-SeqMark results on WMT19.

During generation, SeqMark needs to com-
pute the sample high-quality outputs to estimate
the sample mean for the transformation Conse-
quently during detection, SeqMark computes the
mean embedding via sampling requiring compu-
tation and access to the language model for de-
tection. To avoid this, we propose a lightweight
solution where a neural network is trained to map
the input prompt to the sample mean embedding
z to subtract. We experiment with this Fast-SeqMark solution on the WMT19 German-English
dataset. For training data generation, we use ALMA-7B to generate 50 samples each for 100,000
input prompts with a fixed temperature of 1.2. We then finetune the LABSE encoder on this dataset
for mean prediction. Table 7 reports the result: compared to using the actual mean embeddings with
SeqMark, Fast-SeqMark results in a drop in the detection score. Nonetheless, Fast-SeqMark still
outperforms KGW and Semstamp.
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8.3 PRACTICALITY OF SEQMARK

As discussed above, watermark detection for a query text requires access to the language model
for sample generation to compute mean embeddings. While Fast-SeqMark is a viable alternative
that alleviates this requirement, we posit that requiring such access for detection while not ideal, is
not unreasonable. For example, prior work (Lee et al., 2024; Lu et al., 2024) also requires access
to the LM during detection for computing token-level entropy. This access is readily available for
open-weights models and could also be requested for realistic auditing purposes.

8.4 IMPERCEPTIBILITY WHEN WATERMARKING TRANSLATION OUTPUTS

Takezawa et al. (2025) recently showed that watermarking with minimal intervention is possible
for machine translation tasks via their token-level NS-Watermarking method. When compared to
our approach, we observed that this method achieves near perfect watermark detection performance
but suffers in terms of quality measured by COMET with ∼ 6% absolute decrease (see Table 2).
Additionally, they acknowledge that by design thier approach is not imperceptible – it is easy to
tell if the output has been watermarked. Looking at Table 11, it is easy to notice the minimal yet
awkward token choices for watermarked translation. Concerningly, this imperceptibility makes this
approach susceptible to simple post-editing attacks. On the other hand, our approach results in
imperceptible watermarked generation making it robust to simple attacks.

9 RELATED WORK

Language Model Watermarking Since its introduction, LM Watermarking has become an im-
portant technique to combat LLM-related security concerns (Suvra et al., 2023; Srinivasan, 2024).
Most algorithms propose to add imperceptible statistical signals to different stages of text genera-
tion, including logit generation (Kirchenbauer et al., 2023; Zhao et al., 2023; Hu et al., 2023; Liu
et al., 2024), token sampling (Christ et al., 2024; Kuditipudi et al., 2023), or even embed into the
model weights during training (Sun et al., 2023; Gu et al., 2023). Orthogonally, several work pro-
pose sequence-level watermarking Hou et al. (2024a;b). The majority of work in LM watermarking
concerns with open-ended text generation which affords high-entropy thus enabling highly effective
watermarking (Ajith et al., 2024).

Watermarking Low-Entropy Sequences Watermarking for constrained text generation tasks
such as machine translation and summarization remains underexplored, despite these use cases con-
stituting a non-trivial proportion of LLM usage. Most previous work on watermarking low-entropy
sequences focuses on code generation: SWEET (Lee et al., 2024) extends KGW by selecting and
watermarking high-entropy tokens, EWD (Lu et al., 2024) modifies the detection algorithm to in-
clude token entropy as weights in the final score, and Gu et al. (2025) effectively reduces watermark-
ing efficiency without major loss in performance. For translation, NS-Watermark (Takezawa et al.,
2025) extends KGW by observing the minimal number of watermarked tokens needed. In addition
to superior empirical performance of our approach, our work also differs from the above works by
focusing more on sequence-level watermarking paradigm instead of token-level watermarking.

10 CONCLUSION

In this work, we demonstrate the inadequacy of current watermarking algorithms for constrained
generation tasks. We posit that all token-level algorithms perform poorly because they fail to uti-
lize the semantic entropy induced by the LMs on these tasks. While sequence level watermarking
algorithms are a better paradigm, we identify a different issue of region collapse in the operational-
ization of exiting semantic watermarking algorithms resulting in poor performance at watermarking
constrained generation tasks. To overcome these limitations, we propose SeqMark, a sequence-
level watermarking algorithm that ameliorates the region collapse issue by carefully partitioning the
space for watermarking so as to ensure even spread of high-qualioty outputs among the partitions.
We observe that our proposed scheme results in imperceptible watermarks that are reliably verifiable
(detectable) while generating high-quality outputs for constrained generation tasks.

9
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A APPENDIX

A.1 WATERMARK HYPERPARAMETER SWEEP FOR TRANSLATION AND SUMMARIZATION

Given different sets of hyperparameters for each watermark methods, to ensure apple-to-apple com-
parisons we sweep over a range of values of each method’s relevant hyperparameters (Table 10).
For each task, we sample 100 evaluation samples and run these watermark hyperparameter configs
on these subset to obtain the Pareto curves in Figure 1. The best configs are then used to run the full
evaluation set reported in Tables 2 and 4.

A.2 DISCUSSION ON PARAPHRASING ATTACKS

A potential limitation of our approach is that, unlike SemStamp / k-SemStamp, it might be sus-
ceptible to paraphrasing attacks. By design, SeqMark spreads similar generations more evenly in
the semantic space; thus a strong paraphraser can potentially evade the watermark by transform-
ing the generation into another semantic region. However, in our experiments we observe that the
paraphrasing outputs often have low text-quality, indicating that current paraphrasing models are not
strong enough to maintain text quality, especially for low-entropy tasks like translations. In addition,
existing sentence-level algorithms e.g. SemStamp does not have strong watermarking performance
on these tasks, even without paraphrasing attacks (Table 2).

Dataset Task Language #Data LLM Sentence Encoder Text Quality Metric

WMT19 De-En Machine Translation German-English 3000 ALMA-7B LABSE COMET
XSum Abstractive Summarization English 1000 Llama-2-7B all-mpnet-base-v1 ROUGE-L / COMET
C4 RealNews Open-ended Generation English 100 Llama-2-7B all-mpnet-base-v1 Perplexity
WMT23 De-En Long-form MT German-English 100 Gemma-2-4B LABSE BLEU / COMET

Table 8: Datasets, tasks, models, and evaluation metrics used in our experiments.

Translation Prompt
Translate the following text from German to English:
German: München 1856: Vier Karten, die Ihren Blick auf die Stadt verändern
English:

Summarization Prompt
For the following article, write a one-sentence summary: “‘The ex-Reading defender denied fraudulent trading charges
relating to the Sodje Sports Foundation - a charity to raise money for Nigerian sport. Mr Sodje, 37, is jointly charged
with elder brothers Efe, 44, Bright, 50 and Stephen, 42. Appearing at the Old Bailey earlier, all four denied the offence.
The charge relates to offences which allegedly took place between 2008 and 2014. Sam, from Kent, Efe and Bright, of
Greater Manchester, and Stephen, from Bexley, are due to stand trial in July. They were all released on bail.
Summary:

Table 9: Examples of prompt templates used in this work.
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Hyperparmeter Methods Values

Text generation temperature t KGW , SemStamp , k-SemStamp , SeqMark [0.7, 0.85, 1.0, 1.2, 1.5]
Green/red list and regions ratio γ KGW , SemStamp , k-SemStamp , SeqMark [0.1, 0.25, 0.5, 0.75]

Logit bias δ KGW [0.1, 0.5, 1.0, 2.0, 4.0]
LSH dimension n SemStamp , k-SemStamp , SeqMark [2, 3, 4, 5]

High-quality cluster samples c SeqMark [50]

Table 10: Relevant hyperparameter for watermark methods

Source: München 1856: Vier Karten, die Ihren Blick auf die Stadt verändern
Target: Munich 1856: Four maps that will change your view of the city
NS-Watermark: Munich 1856: Four Engravings that Change Your View of the City
SeqMark : Munich 1856: Four maps that change your view of the city

Source: Kleingärtner bewirtschaften den einstigen Grund von Bauern.
Target: Allotment holders cultivate the soil of former farmers.
NS-Watermark: Allotment gardeners cultivate the former from of farmers.
SeqMark : Allotment holders cultivate the former fields of farmers.

Source: Es nervt, wenn Landkarten nicht aktuell sind.
Target: It is annoying when geographical maps are not up-to-date.
NS-Watermark: It’s annoying when maps being out of date.
SeqMark : It annoys me when maps are not up-to-date.

Table 11: Three qualitative examples from WMT19. We include the source sentence, tar-
get sentence, NS-Watermark and SeqMark translations. We use underline to denote the
watermarked tokens. Interestingly, the watermarked tokens in NS-Watermark are often the odd
ones out in the translation (highlighted in red). We further note that NS-Watermark only uses beam
search for decoding, which is fundamentally different from other approaches (including ours) that
utilize token sampling.
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