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ABSTRACT

Graph invariant learning (GIL) has been extensively studied to discover the in-
variant relationships between graph data and its labels for different graph learning
tasks under various distribution shifts. Many recent endeavors of GIL focus on
discovering invariant features to improve the generalization performance of graph
learning. However, existing methods often have limitations in obtaining invari-
ant features expressive enough in the solution space. In this paper, we analyze
the limitations of previous works and briefly summarize the design principles of
the invariant feature for GIL as 3 aspects: 1) the sparsity, to filter out the variant
features, 2) the softness, for a broader solution space, and 3) the differentiabil-
ity, for a soundly end-to-end optimization. To meet these principles in one shot,
we leverage the Optimal Transport (OT) theory and propose a novel graph atten-
tion mechanism: Graph Sinkhorn Attention (GSINA) as a powerful regularization
method for GIL tasks, by which we could obtain meaningful differentiable graph
invariant features with controllable sparsity and softness. Moreover, GSINA as a
general graph representation learning framework could handle GIL tasks of mul-
tiple data grain levels. Experiments on both synthetic and real-world datasets
validate the superiority of our GSINA, which outperforms the state-of-the-art GIL
methods (GSAT, CIGA, EERM) by large margins on graph-level tasks and node-
level tasks. The PyTorch source code is provided in supplementary materials and
will be publicly available on GitHub.

1 INTRODUCTION

Graph data is ubiquitous in real-world applications, e.g. social networks (1), supply chain net-
works (2), and chemical molecules (3). Graph machine learning, especially graph neural networks
(GNNs), has shown promising results in various graph-related tasks (4; 5; 6). Despite their success,
existing approaches often rely on the I.I.D. assumption, assuming the train and test graph data are
drawn from the same distribution. However, distribution shifts, i.e., the mismatches between dif-
ferent data domains widely exist especially for complex graph data. The out-of-distribution (OOD)
generalization has become a main obstacle and hot topic in graph representation learning.

In particular, graph invariant learning (GIL), which aims to capture the invariant relationships be-
tween graph data and labels for graph OOD generalization, has been extensively studied in various
generalization tasks such as graph-level (7; 8; 9; 10; 11; 12) and node-level (13; 14; 15) tasks. GIL
can be roughly divided into two research lines, namely explicit representation alignment and invari-
ance optimization (16). The main idea of the explicit representation alignment methods is to align
graph representations among multiple environments. These methods are designed to minimize the
difference across various environments with the regularization strategies (14; 8; 15). The invariance
optimization methods are based on the principle of invariance, which assumes the invariant property
inside data or the invariant features under distribution shifts. Many of the invariance optimization
methods are aimed at handling graph OOD generalization by discovering graph invariant features
(e.g. crucial nodes and edges) under distribution shifts (9; 10; 11). As empirical collateral evi-
dence, crucial graph information usually exists in a few edges and nodes in real-world scenarios.
For instance, in the chemical field, key functional groups in a molecule yield a certain property
like solubility (17). In the financial risk management field, the risk level of a community is often
determined by a few key members (18).
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Figure 1: Subgraph sparsity of GSAT (10) and our GSINA (r = 0.3) on a batch of data in SPMotif
(b = 0.5) dataset. Fig. 1a, 1b demonstrate the learned edge importances (attention values) by GSAT
and our GSINA for each edge of the graphs in the batch, the bottom right black regions are non-edge
padding. The X-axis represents edges (sorted by attention values), and the Y-axis represents graphs.
Fig. 1c, 1d are the PDF plots of edge attention distributions generated by GSAT and our GSINA for
the edges in Background (label-independent) part and Explanation (label-related) part.

Table 1: Comparison with SOTA invariance
optimization GIL methods.

Sparse Soft Differentiable

GSAT (10) (IB) No Yes Fully
CIGA (11) (top-k) Yes No Partially
Ours Yes Yes Fully

The invariance optimization methods (10; 9; 11)
have made considerable efforts for the sound gen-
eralizability and inherent interpretability of their in-
variant feature discovery, and there are two main-
stream schemes: 1) the Information Bottleneck
(IB) (19) scheme (20; 10) exploits IB principle to
extract label-relevant graph invariant features with information constraint, 2) the top-k (Subgraph
Selection) scheme (9; 11) intuitively chooses the top-k most influential edges as the ‘invariant sub-
graph’. Despite the success of those studies, there are still limitations that need to be stated and
addressed for the expressiveness of their methods. Firstly, The IB based methods might not proac-
tively guarantee the sparsity of subgraphs (10). As shown in Fig. 1, we provide a demonstration with
the latest IB based GIL SOTA: Graph Stochastic Attention (GSAT) (10), which evaluates the impor-
tance of each edge by assigning edge attention, and as shown in Fig. 1a, 1c, GSAT lacks sparsity:
the edge attention for the Background part and the Explanation part are similar, making it difficult
to make a prediction based on the most valuable invariant features, which are supposed to be more
distinguishable. Secondly, the top-k based methods capture the invariant subgraph in a ‘hard’ way,
i.e. only the top-k part is kept for training and prediction, and the other part is neglected, as only
restricted information is utilized, hard subgraph extraction results in a restricted solution space to
find the optimal invariant subgraph, and problematically, an ill-posed optimization: the top-k selec-
tion operation itself is not differentiable (it does not provide gradients for model backward pass),
to make them trainable, these methods are ‘partially differentiable’ for learning after assigning the
differentiable weighting scores output from their subgraph extractors for top-k selection to the ex-
tracted subgraph (as the practices in (9; 11)). Moreover, as the top-k selection discards part of the
graph structure, these methods could only be used for the tasks of graph level, for a grainer task
level, e.g. node level, these methods are not applicable as the graph structure is incomplete (part of
the nodes have been discarded), and there is no way to learn complete node representations.

To address the above-mentioned issues of invariance optimization GIL, we first summarize 3 princi-
ples for a graph invariant feature extractor: 1) sparsity (as shown in Fig. 1b, 1d) to effectively filter
out the variant features, and the invariant subgraph should be sufficiently distinguishable to avoid
confusion with the variant part, 2) softness (compared with the ‘hard selection’ ways) to enlarge
the subgraph solution space, to numerically evaluate the graph feature importances, and no graph
information omissions, and 3) differentiability (also based on softness) for a soundly end-to-end op-
timization, and to ensure the invariant subgraph extractor could be learned to generate sparse and soft
subgraphs. Then, besides their (9; 10; 11) limitations, their effectiveness also has inspired our work
from various aspects, as summarized in Tab. 1, GSAT (10) is soft and differentiable as it is based on
graph attention mechanism, DIR (9) and CIGA (11) are sparse as their top-k operations explicitly
constrain the proportion of their subgraphs to their input graphs. Additionally inspired by the recent
advances in cardinality-constrained combinatorial optimization (21; 22), the top-k problem could
be addressed by a series of soft and differentiable iterative numerical calculations of the Optimal
Transport (OT) (23) theoretic Sinkhorn algorithm (24), resulting in bounded constraint violations.
Based on these endeavors, we propose a novel and general graph attention mechanism (25; 10):
Graph Sinkhorn Attention (GSINA) for improving GIL tasks of multiple levels, GSINA evaluates
the graph features (nodes and edges) importance by assigning sparse and soft graph attention values.
As an invariance optimization method, GSINA defines its invariant subgraph in the manner of graph
attention, which serves as a powerful regularization to improve GIL.
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Therefore, our contributions are as follows successively:

1] To the best of our knowledge, we are the first to point out the necessity of sparsity, softness, and
differentiability in subgraph extracting for GIL, lacking in previous IB and top-k based methods.

2] We propose Graph Sinkhorn Attention (GSINA), a GIL framework by learning fully differentiable
invariant subgraphs with controllable sparsity and softness to improve multiple levels of graph gen-
eralization tasks.

3] Extensive experiments validate the superiority of our GSINA, which could outperform the state-
of-the-art GIL methods GSAT (10), CIGA (11), and EERM (15) by large margins.

The related works cover different aspects of our work, including the problem formulation of graph
out-of-distribution (OOD) generalization and Graph Invariant Learning (GIL), the inductive bias
behind invariant subgraph extraction, and the cardinality-constrained combinatorial optimization
for a fully differentiable top-k operation, which we leave to Appendix A.1 due to page limit.

2 APPROACH

In this section, we will first introduce the learning objective of our Graph Sinkhorn Attention
(GSINA) for Graph Invariant Learning (GIL) at a high level, then the implementation details of
GSINA: the utilization of the Sinkhorn algorithm to obtain the sparse, soft, and differentiable invari-
ant subgraph as a kind of graph attention mechanism, and the general representation learning frame-
work for GIL of multiple level tasks. More detailedly derivations and implementation of GSINA
can be found in Appendix A and C.

2.1 GRAPH SINKHORN ATTENTION: LEARNING OBJECTIVE

Aiming at finding the invariant subgraph GS with a stable relationship to the label Y , we formulate
it as a mutual information I(GS ;Y ) maximization problem like the practices in (20; 10; 11). On
the other hand, constraints should be applied on the invariant subgraph GS to ensure its informative
conciseness (i.e., the information of the variant or redundant part of the input graph G should be
damped), the constraints act as regularizations and improve the generalization of graph learning
tasks. As we discussed in Sec. 1, the information bottleneck (IB) based methods (20; 10)might
hardly guarantee the subgraph conciseness (lack of sparsity), and the partially differentiable top-k
selection based methods (9; 11) generate hard subgraphs and shrink the subgraph solution space.
Differently, we leverage a subgraph extractor gϕ(G, r, τ) generating softly cardinality-constrained
subgraph GS , the subgraph ratio r is the cardinality constraint controlling the sparsity of GS , and τ
is a temperature hyperparameter controlling the softness of GS , which will be detailedly discussed
in Sec. 2.2.

Our subgraph extractor gϕ(G, r, τ) acts as a sparsity and softness regularization of GS , and the
mutual information maximization problem can be formulated as:

max
ϕ

I (GS ;Y ) , s.t. GS ∼ gϕ(G, r, τ). (1)

As the direct estimation of mutual information I(GS ;Y ) is intractable, we derive its lower bound
with the help of a variational approximation distribution Pθ(Y |GS) parameterized by θ, which also
acts as the predictor of label Y given the invariant subgraph GS :

I (GS ;Y ) ≥ EGS ,Y [logPθ(Y |GS)] +H(Y ), (2)

where H(Y ) is a constant entropy of the label distribution P (Y ) and can be omitted in the optimiza-
tion, the problem in Eq. 1 can be optimized by maximizing the lower bound item in Eq. 2 and the
final learning objective of GSINA is:

max
θ,ϕ

EGS ,Y [logPθ(Y |GS)] , s.t. GS ∼ gϕ(G, r, τ). (3)

It results in a two-stage forward pipeline: first extracting the invariant subgraph GS from the input
graph G, then making prediction Y based on GS . Although sharing similarities, GSINA is unlike
the IB based methods (20; 10): the subgraph information of GSINA is constrained by our sub-
graph extractor gϕ(G, r, τ), which explicitly controls the sparsity r and softness τ of the invariant
subgraph.

3



Under review as a conference paper at ICLR 2024

2.2 GRAPH SINKHORN ATTENTION: IMPLEMENTATION

To extract a sparse, soft, and differentiable invariant subgraph GS from the input graph G, we lever-
age a softly cardinality-constrained subgraph extractor gϕ(G, r, τ) based on the Sinkhorn Algorithm.

The goal of graph attention mechanisms (25; 10) is to assign attention coefficients to different parts
of the input graph structure, evaluating their respective importance for the prediction of the target
label Y . Beyond the graph attention mechanisms designed in (25; 10), we take the sparsity and
softness of the attention distribution into consideration by applying differentiable top-k (26; 22)
to evaluate the importance of edges. According to Sec. A.1.2, it has a corresponding popular OT-
theoretic solution of the Sinkhorn algorithm (24), and the Gumbel re-parameterization trick could
be adopted to enhance the performance according to the practice in (22). For edge attention, GSINA
softly highlights the top-r ratio most influential edges and ‘filters out’ other edges by assigning
sparse edge attention to the input graph G (as shown in Fig. 1, 2) and provides soft attention distri-
bution. Based on GSINA edge attention, sparse and soft GSINA node attention could be designed
based on graph neighborhood aggregation to evaluate the importance of nodes.

We will start by describing the implementation of edge and node attention in GSINA, and then the
general framework for multiple-level GIL tasks via GSINA.

Edge Attention. As an initial step, a composition of GNNϕ and MLPϕ is leveraged to obtain
learnable node features {hi|i ∈ V} and edge scores s = {se|e ∈ E} of the input graph G = (V, E):

{hi} = GNNϕ(G), i ∈ V, se = MLPϕ(hi,hj), e = (i, j). (4)

Softly selecting the top-r scored edges as the invariant subgraph could be interpreted as a relaxed OT
problem, whose setting is to move rNe items to the destination of the invariant part, and the other
(1− r)Ne elements to the other destination of the variant part, where Ne is the number of the edges.
During the training phase, the Gumbel re-parameterization trick s̃e = se − σ log(− log ue), ue ∼
U(0, 1) (27; 22), where σ is the factor of Gumbel noise and σ = 0 in validation and testing phases,
could be adopted to enlarge the sampling space and to improve the generalization performances,
i.e. the Gumbel trick allows less important edges to participate in training (without being poorly
trained due to low attention, resulting in underfitting), and remains the sampling accuracy. Defining
D as the distance matrix of the OT problem, R and C as the marginal distributions, and T as the
transportation plan moving rNe items to max(s) (invariant) and (1−r)Ne items to min(s) (variant),
the OT problem for GSINA edge attention can be formulated as follows:

D =

[
s̃1 −min(s), s̃2 −min(s), . . . , s̃Ne

−min(s)
max(s)− s̃1, max(s)− s̃2, . . . , max(s)− s̃Ne

]
,

R = [(1− r)Ne, rNe]
⊤, C = [1, 1, . . . , 1]⊤ ∈ RNe×1,

min
T

tr(T⊤D)e−τH(T), s.t. T ∈ [0, 1]2×Ne , T1 = R, T⊤1 = C,

(5)

which is relaxed by the entropic regularizer (28) of τH(T), the softness of the transportation plan T
could be regularized by setting the temperature hyperparameter τ . The transportation plan T could
be iteratively solved by the Sinkhorn algorithm:

T0 = exp

(
−D

τ

)
, Tk = diag (Tk−11⊘R)

−1
Tk−1, Tk = Tk−1 diag(T

⊤
k−11⊘C)−1, (6)

where T0 is the initialization, the equations of Tk are alternative iterations of row- and column-wise
normalizations to satisfy the two constraints T1 = R and T⊤1 = C, ⊘ is element-wise division.

Eventually, the edge attention αE = {αE
e |e ∈ E} could be obtained from the procedure above:[

αE
1 , α

E
2 , . . . , α

E
Ne

]
= T[1, :]. (7)

Node Attention. Given the sparse, soft, and differentiable edge attention αE , a natural consideration
is to evaluate the importance of nodes. Hence, the node attention αV = {αV

i |i ∈ V} in our GSINA
is proposed, which could be obtained by an aggregation of the edge attention in the neighborhood
of each node i:

αV
i = AGG({αE

e |e = (i, j) ∧ e ∈ E}). (8)
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For the ‘hard’ top-k based GIL methods (9; 11), only the selected part is kept to be the invariant
subgraph GS and the other part GS is just discarded. In other words, the node importance is 1 for
nodes in GS and 0 for nodes in GS . Our node attention is a soft and fully differentiable version to
mimic their invariant subgraph extractions.

Figure 2: Example of the invariant sub-
graph GS weighted by GSINA from
SPMotif dataset. The ground truth of
the invariant subgraph is colored red,
and the other part is yellow. The edge
widths and node sizes are given by
GSINA original outputs (we do not ap-
ply attention scaling tricks for visualiza-
tions like GSAT (10) and CIGA (29)). It
is shown our GSINA assigns sparse and
soft attention {αV , αE} to the nodes
and edges of the input graph G. Inter-
pretability analysis and more visualiza-
tion results can be found in Appendix D.

General Graph Invariant Learning. Our invariant sub-
graph extraction results in a graph weighted by the Graph
Sinkhorn (Edge and Node) Attention, with the properties
of sparsity, softness, and differentiability, the mathemati-
cal definition of the invariant subgraph GS of our GSINA
is in the manner of graph attention:

GS = {G,αV , αE} ∼ gϕ(G, r, τ) (9)

Based on the definition of our invariant subgraph in Eq. 9,
the prediction process (the predictor Pθ(Y |GS) in Eq. 3)
could be regularized by our GSINA message passing
mechanism in Eq. 10. For the l-th GNN message passing
layer, GSINA weights each message mθ(h

(l)
i ,h

(l)
j ,h

(l)
ij )

by edge attention αE
ij , h(l)

ij is the representation of edge
(i, j) (if applicable),

⊕
is any permutation invariant ag-

gregation function, γθ is the GNN update function, and
h
(l+1)
i is updated representation. If the graph representa-

tion hG is obtained from a readout fθ of node representa-
tions output from the L-th (final) GNN layer {h(L)

i |i ∈
V}, each node representation h

(L)
i is weighted by our

node attention αV
i in our GSINA, GSINA is general due

to its applicability to multiple-level (i.e. graph-level and
node-level) GIL tasks:

h
(l+1)
i = γθ

h
(l)
i ,

⊕
j∈Ni

αE
ij ∗mθ(h

(l)
i ,h

(l)
j ,h

(l)
ij )

 , hG = fθ

(
{αV

i ∗ h(L)
i |i ∈ V}

)
. (10)

3 EXPERIMENTS

Experiments are conducted on various benchmarks following GSAT (10), CIGA (11), and
EERM (15) to evaluate GSINA’s effectiveness for different graph learning tasks, including graph-
level OOD generalization and node-level. In this section, we introduce the datasets, baselines, evalu-
ation metrics, and experiment settings and provide results analysis. More experiment settings can be
found in Appendix B, and more analysis including model selection and interpretation performance
analysis can be found in Appendix D. All experiments are conducted for 5 runs on RTX-2080Ti
(11GB) GPUs, and the average and standard deviation are reported.

3.1 ON GRAPH-LEVEL GRAPH INVARIANT LEARNING TASKS

For direct and fair comparisons with the two GIL SOTAs, GSAT (10) and CIGA (11), each respec-
tively using different datasets and GNN backbones, we perform evaluations strictly in line with their
original corresponding settings and the results are given in Tab. 2, 3 and Tab. 4, 5 respectively. To
compare with GSAT, the hyperparameter r for GSINA is chosen according to the validation per-
formances. For CIGA, as CIGA also performs top-r subgraph extractions, r follows the settings of
CIGA on the datasets in Tab. 4, 5.

Datasets. To compare with GSAT, we use the synthetic Spurious-Motif (SPMotif) datasets from
DIR (9), where each graph is constructed by a combination of a motif graph directly determining the
graph label, and a base graph providing spurious correlation to graph label, and we use datasets with
spurious correlation degree b = 0.5, 0.7 and 0.9. For real-world datasets, we use MNIST-75sp (30),
where each image in MNIST is converted to a superpixel graph, Graph-SST2 (31; 32), which is a
sentiment analysis dataset, and each text sequence in SST2 is converted to a graph, following the
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Table 2: Graph-level OOD generalization performances (GSAT (10) benchmark).

MOLHIV (AUC) GRAPH-SST2 MNIST-75SP
SPURIOUS-MOTIF

b = 0.5 b = 0.7 b = 0.9

GIB (20) 76.43±2.65 82.99±0.67 93.10±1.32 54.36±7.09 48.51±5.76 46.19±5.63

DIR (9) 76.34±1.01 82.32±0.85 88.51±2.57 45.49±3.81 41.13±2.62 37.61±2.02

GIN (6) 76.69±1.25 82.73±0.77 95.74±0.36 39.87±1.30 39.04±1.62 38.57±2.31

GIN+GSAT (10) 76.47±1.53 82.95±0.58 96.24±0.17 52.74±4.08 49.12±3.29 44.22±5.57

GIN+OURS 77.99±0.97 83.66±0.37 96.73±0.16 55.16±5.69 56.83±6.32 49.86±6.10

PNA (39) 78.91±1.04 79.87±1.02 87.20±5.61 68.15±2.39 66.35±3.34 61.40±3.56

PNA+GSAT (10) 80.24±0.73 80.92±0.66 93.96±0.92 68.74±2.24 64.38±3.20 57.01±2.95

PNA+OURS 80.55±0.97 82.18±1.01 95.48±0.37 76.39±1.85 73.96±2.87 62.51±5.86

Table 3: Graph-level OOD generalization performances (other OGBG-Mol datasets in GSAT (10)
benchmark).

MOLBACE MOLBBBP MOLCLINTOX MOLTOX21 MOLSIDER

PNA (39) 73.52±3.02 67.21±1.34 86.72±2.33 75.08±0.64 56.51±1.90

GSAT (10) 77.41±2.42 69.17±1.12 87.80±2.36 74.96±0.66 57.58±1.23

OURS 79.57±1.38 67.86±0.91 90.08±2.06 75.47±0.55 58.61±1.09

splits in DIR (9), Graph-SST2 contains degree shifts, and molecular property prediction datasets
from the OGBG (33; 34) benchmark (molhiv, molbace, molbbbp, molclintox, moltox21, molsider).

To compare with CIGA (11), we also use the synthetic SPMotif datasets from DIR, with structural
shift degrees b = 0.33, 0.6 and 0.9, denoted as SPMotif (-struc). Besides, we use the SPMotif (-
mixed) from CIGA (11), whose distribution shifts are additionally mixed with attribute shifts. For
real-world datasets, in line with CIGA, to validate the generalization performance with more com-
plicated relationships under distribution shifts, we use sentiment analysis datasets Graph-SST5 (32)
and Twitter (35) with degree shifts, DrugOOD datasets (36), which is from AI-aided Drug Discov-
ery, the split schemes including assay, scaffold and size, and the datasets from TU (37) benchmarks
(nci1, nci109, proteins, dd) to examine the OOD generalization under graph size shifts.

Metrics. We test the classification accuracy (ACC) for SPMotif datasets, MNIST-75sp, Graph-
SST2, Graph-SST5, Twitter, ROC-AUC for OGBG and DrugOOD datasets, and Matthews correla-
tion coefficient (MCC) for TU datasets following (38; 10; 11).

Baselines. Following GSAT (10)’s settings, we compare with interpretable GNNs GIB (20) and
DIR (9), and we use GIN (6) and PNA (39) as backbones for GSAT and GSINA. Follow-
ing CIGA (11), in addition to ERM (40), we also compare with interpretable GNNs GIB, DIR,
ASAP Pooling (41), as well as the invariant learning methods IRM (42), V-Rex (43), IB-IRM (44),
EIIL (45) and CNC (46), and the Oracle (IID) performances on the datasets without distribution
shifts are also reported, we use the GNN architectures in line with CIGA to test GSINA.

Performances Analysis. Tab. 2 reports the graph classification performances on GSAT benchmark,
GSINA achieves better performances than the baselines of interpretable GNNs GIB, DIR, and GSAT.
GSINA outperforms GSAT by large margins on all 6 datasets for both GNN backbones GIN and
PNA. Tab. 3 reports the graph classification performances for another 5 OGBG-Mol datasets with
smaller sizes than those in Tab. 2. Following GSAT, we compare with PNA backboned baselines,
and GSINA mostly outperforms.

Tab. 4, 5 report the OOD generalization performances on CIGA benchmark. Our GSINA outper-
forms all the baselines of interpretable GNNs (ASAP, GIB, and DIR) by large margins. For the
invariant learning baselines, our GSINA also achieve better performances. Comparing with CIGA,
GSINA achieves the best performances on SPMotif (except for -struct, b = 0.33), Graph-SST5,
Twitter, proteins and dd. On nci1, nci109, and DrugOOD datasets, GSINA produces results com-
parable to CIGA, indicating the difficulties of these OOD generalization tasks, meanwhile, the im-
provements of CIGA compared to ERM on DrugOOD datasets are also by little margins.

These improvements demonstrate the effectiveness of our sparsity compared with GSAT (based on
IB constraint) and softness compared with CIGA (based on top-k). Especially, we observe relatively
big improvements on SPMotif datasets. Respectively, there are about 10% and 15% improvements
than GSAT and CIGA in classification accuracy on SPMotif (b = 0.7) in Tab. 2 and SPMotif (-
mixed, b = 0.9) in Tab. 4, which indicates the superiority of our GSINA on the datasets with more
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Figure 3: Node-level OOD generalization performances for ‘Artificial Transformation’.
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Figure 4: Graph-level OOD generalization performances for different hyperparameter r in GSINA.

Table 4: Graph-level OOD generalization performances (synthetic datasets in CIGA benchmark).

SPMOTIF-STRUC SPMOTIF-MIXED
BIAS=0.33 BIAS=0.60 BIAS=0.90 BIAS=0.33 BIAS=0.60 BIAS=0.90

ERM (40) 59.49±3.50 55.48±4.84 49.64±4.63 58.18±4.30 49.29±8.17 41.36±3.29

IRM (42) 57.15±3.98 61.74±1.32 45.68±4.88 58.20±1.97 49.29±3.67 40.73±1.93

V-REX (43) 54.64±3.05 53.60±3.74 48.86±9.69 57.82±5.93 48.25±2.79 43.27±1.32

EIIL (45) 56.48±2.56 60.07±4.47 55.79±6.54 53.91±3.15 48.41±5.53 41.75±4.97

IB-IRM (44) 58.30±6.37 54.37±7.35 45.14±4.07 57.70±2.11 50.83±1.51 40.27±3.68

CNC (46) 70.44±2.55 66.79±9.42 50.25±10.7 65.75±4.35 59.27±5.29 41.58±1.90

ASAP (41) 64.87±13.8 64.85±10.6 57.29±14.5 66.88±15.0 59.78±6.78 50.45±4.90

DIR (9) 58.73±11.9 48.72±14.8 41.90±9.39 67.28±4.06 51.66±14.1 38.58±5.88

CIGAV1 (11) 71.07±3.60 63.23±9.61 51.78±7.29 74.35±1.85 64.54±8.19 49.01±9.92

CIGAV2 (11) 77.33±9.13 69.29±3.06 63.41±7.38 72.42±4.80 70.83±7.54 54.25±5.38

OURS 75.49±4.26 74.25±2.53 73.54 ±5.54 82.70 ±6.28 77.03 ±2.66 68.89 ±8.17

ORACLE (IID) 88.70±0.17 88.70±0.17 88.70±0.17 88.73±0.25 88.73±0.25 88.73±0.25

distinguishable subgraph properties, such as the SPMotif datasets, where the invariant subgraphs
can be clearly separable due to their data generation processes.

Hyperparameter Studies. As shown in Fig. 4, for the 6 datasets used in the GSAT benchmark
and reported in Tab. 2, there are rough ‘increasing-decreasing’ patterns in the curve of predictive
performance and subgraph ratio (i.e. sparsity) r, which reflects our GSINA is sensible to the hy-
perparameter r. The patterns of the curves in Fig. 4 show that a too-small or a too-large r results
in worse generalization. When r is too small, it is more likely that the extracted subgraph GS is
too sparse and lacks information; when r is too large, it also results in a GS lack of information,
as more redundant parts of the input graph G would be selected, which results in a GS with little
difference with G, and when r = 1.0, GSINA degenerates to ERM with all edge attention set to 1.
The hyperparameters of Sinkhorn temperature τ and Gumbel noise factor σ are not-tuned and both
are set to 1 in all experiments, we show the reasonability of their settings in Appendix D.
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Table 5: Graph-level OOD generalization performances (real-world datasets in CIGA (11) bench-
mark), bold font for the best performance on each dataset and underline for the second.

GRAPH-SST5 TWITTER DRUG-ASSAY DRUG-SCA DRUG-SIZE NCI1 NCI109 PROT DD

ERM (40) 43.89±1.73 60.81±2.05 71.79±0.27 68.85±0.62 66.70±1.08 0.15±0.05 0.16±0.02 0.22±0.09 0.27±0.09

IRM (42) 43.69±1.26 63.50±1.23 72.12±0.49 68.69±0.65 66.54±0.42 0.17±0.02 0.14±0.01 0.21±0.09 0.22±0.08

V-REX (43) 43.28±0.52 63.21±1.57 72.05±1.25 68.92±0.98 66.33±0.74 0.15±0.04 0.15±0.04 0.22±0.06 0.21±0.07

EIIL (45) 42.98±1.03 62.76±1.72 72.60±0.47 68.45±0.53 66.38±0.66 0.14±0.03 0.16±0.02 0.20±0.05 0.23±0.10

IB-IRM (44) 40.85±2.08 61.26±1.20 72.50±0.49 68.50±0.40 66.64±0.28 0.12±0.04 0.15±0.06 0.21±0.06 0.15±0.13

CNC (46) 42.78±1.53 61.03±2.49 72.40±0.46 67.24±0.90 65.79±0.80 0.16±0.04 0.16±0.04 0.19±0.08 0.27±0.13

ASAP (41) 44.16±1.36 60.68±2.10 70.51±1.93 66.19±0.94 64.12±0.67 0.16±0.10 0.15±0.07 0.22±0.16 0.21±0.08

GIB (20) 38.64±4.52 48.08±2.27 63.01±1.16 62.01±1.41 55.50±1.42 0.13±0.10 0.16±0.02 0.19±0.08 0.01±0.18

DIR (9) 41.12±1.96 59.85±2.98 68.25±1.40 63.91±1.36 60.40±1.42 0.21±0.06 0.13±0.05 0.25±0.14 0.20±0.10

CIGAV1 (11) 44.71±1.14 63.66±0.84 72.71±0.52 69.04±0.86 67.24±0.88 0.22±0.07 0.23±0.09 0.40±0.06 0.29±0.08

CIGAV2 (11) 45.25±1.27 64.45±1.99 73.17±0.39 69.70±0.27 67.78±0.76 0.27±0.07 0.22±0.05 0.31±0.12 0.26±0.08

OURS 45.84±0.52 64.64±1.71 72.84±0.50 69.57±0.39 67.48±0.33 0.28±0.07 0.21±0.04 0.41±0.07 0.29±0.07

ORACLE (IID) 48.18±1.00 64.21±1.77 85.56±1.44 84.71±1.60 85.83±1.31 0.32±0.05 0.37±0.06 0.39±0.09 0.33±0.05
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Figure 5: Node-level OOD generalization performances for ‘Cross-Domain Transfers’.

3.2 ON NODE-LEVEL GRAPH INVARIANT LEARNING TASKS

Datasets. We follow the datasets and protocols used in EERM (15), which involve 3 types of
distribution shifts: 1) “Artificial Transformation”: synthetic spurious features are added to Cora
and Amazon-Photo, and there are 8 testing graphs (T1 ∼ T8) for both datasets, 2) “Cross-Domain
Transfers”: each graph in Twitch-explicit and Facebook-100 corresponds to distinct domains; for
Twitch-explicit, DE is used for training, ENGB for validation and 5 graphs ES, FR, PTBR, RU,
TW for testing; for Facebook-100, 3 different training sets are used, we denote them as A = (Johns
Hopkins, Caltech, Amherst), B = (Bingham, Duke, Princeton), C = (WashU, Brandeis, Carnegie),
the validation set is (Cornell, Yale), and the testing set is (Penn, Brown, Texas), 3) “Temporal Evo-
lution”: train/val/test splits for Elliptic and OGB-Arxiv are made by time, Elliptic provides 9 test
graphs (T1 ∼ T9), and OGB-Arxiv provides 3 time windows (14-16, 16-18, 18-20).

Baselines. We compare our GSINA with ERM (40) and EERM (15), following the settings in
EERM, we use GCN (47) as backbone subgraph extractors, predictors and spurious features gen-
erators (if applicable) for Cora, Amazon-Photo, Twitch-explicit and Facebook-100, SAGE (48) for
Elliptic and OGB-Arxiv. According to the hyperparameter studies in Sec. 3.1, we regard r = 0.5 as
a reasonable choice and set it for all node classification experiments with our GSINA.

Metrics. We test the node classification accuracy (ACC) on Cora, Amazon-Photo, Facebook-100,
OGB-Arxiv, ROC-AUC for Twitch-explicit, and F1-score for Elliptic.

Performances Analysis. Fig. 3, 5, 6 reports the generalization performance for the distribution
shifts of ‘Artificial Transformation’, ‘Cross-Domain Transfers’, and ‘Temporal Evolution’, respec-
tively. Under most testing scenarios, our GSINA outperforms ERM for node classification. We
achieve better results than EERM on Cora, Amazon-Photo, Elliptic, and comparable results to
EERM on Twitch-explicit, Facebook-100, and OGB-Arxiv. Especially, our GSINA achieves an
improvement of about 20% for classification accuracy on Cora.

3.3 ABLATION STUDIES

Here we provide our ablation studies on both graph and node classification tasks. Tab. 6 reports
detailed experiment results on SPMotif datasets in GSAT benchmark, the ablation versions of our
GSINA are without (w/o) the Gumbel noise, Node Attention, or both (denoted as G & N), while
the hyperparameter r remain unchanged. As GSINA does not consider the Node Attention for node
classification tasks, the ablation studies in Fig. 3, 5, 6 only provide the version without the Gumbel
noise.
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Figure 6: Node-level OOD generalization performances for ‘Temporal Evolution’.Table 6: Ablation studies on SPMotif datasets.

SPURIOUS-MOTIF
b = 0.5 b = 0.7 b = 0.9

GIN+OURS 55.16±5.69 56.83±6.32 49.86±6.10

W/O GUMBEL 48.27±4.80 45.25±7.15 50.28±2.83

W/O NODEATTN 47.34±7.99 54.63±6.99 48.41±1.16

W/O G&N 46.28±5.67 45.40±3.22 44.44±6.56

GIN+GSAT 52.74±4.08 49.12±3.29 44.22±5.57

PNA+OURS 76.39±1.85 73.96±2.87 62.51±5.86

W/O GUMBEL 69.95±2.76 69.67±3.44 62.14±4.64

W/O NODEATTN 71.60±1.89 58.70±3.82 58.20±2.70

W/O G&N 71.75±2.42 67.50±4.51 61.34±1.72

PNA+GSAT 68.74±2.24 64.38±3.20 57.01±2.95

From the ablation studies, we observe perfor-
mance degradations for graph and node level
tasks when learning GSINA without Gumbel
noise, Node Attention, or both, demonstrating
the effectiveness of the proposed components
of GSINA. Moreover, in the node classifica-
tion tasks, the ablation versions provide higher
variances on Cora, Amazon-Photo, and OGB-
Arxiv, which demonstrate the Gumbel trick
could stabilize the learning of GSINA.

4 CONCLUSION

In this paper, we have proposed Graph Sinkhorn Attention (GSINA), a general invariance optimiza-
tion framework for Graph Invariant Learning (GIL) to improve the generalization for both graph
and node level tasks by extracting the sparse, soft, and differentiable invariant subgraphs in the man-
ner of graph attention. Extensive experiments have shown the superiority of GSINA against the
state-of-the-arts on both graph and node level GIL tasks.
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Yoshua Bengio. Graph attention networks, 2018.

[26] Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, and Tomas
Pfister. Differentiable top-k operator with optimal transport, 2020.

10



Under review as a conference paper at ICLR 2024

[27] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations, 2017.

[28] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[29] Yongqiang Chen, Yonggang Zhang, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu, Bo Han,
and James Cheng. Invariance principle meets out-of-distribution generalization on graphs.
arXiv preprint arXiv:2202.05441, 2022.

[30] Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and gener-
alization in graph neural networks. In Advances in Neural Information Processing Systems,
pages 4204–4214, 2019.

[31] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sen-
timent treebank. In Proceedings of the conference on empirical methods in natural language
processing, pages 1631–1642, 2013.

[32] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:
A taxonomic survey. arXiv preprint arXiv:2012.15445, 2020.

[33] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018.

[34] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Advances in Neural Information Processing Systems, pages 22118–22133, 2020.

[35] Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. Adaptive recursive
neural network for target-dependent twitter sentiment classification. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
Jun 2015.

[36] Yuanfeng Ji, Lu Zhang, Jiaxiang Wu, Bingzhe Wu, Long-Kai Huang, Tingyang Xu, Yu Rong,
Lanqing Li, Jie Ren, Ding Xue, et al. Drugood: Out-of-distribution (ood) dataset curator
and benchmark for ai-aided drug discovery–a focus on affinity prediction problems with noise
annotations. arXiv preprint arXiv:2201.09637, 2022.

[37] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020.

[38] Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations
for graph classification extrapolations. In International Conference on Machine Learning,
pages 837–851. PMLR, 2021.

[39] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
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APPENDIX

A THEORETIC DETAILS

A.1 BACKGROUND AND RELATED WORKS

A.1.1 GRAPH INVARIANT LEARNING

The concept of invariant learning involves utilizing the invariant relationships between features and
labels across various distributions while disregarding any spurious correlations that may arise (7).
Through this approach, it is possible to attain a high level of out-of-distribution (OOD) generaliza-
tion in the presence of distribution shifts.

Graph OOD problem considers a series of graph datasets G = {Ge}e collected from multiple en-
vironments Eall. For each dataset Ge = {(Ge

i , Y
e
i )}N

e

i=1 collected from environment e, (Ge
i , Y

e
i ) is

a graph-label pair sampled from it and Ne is the number of such pairs in Ge. In the graph OOD
settings, the environments of the training and testing datasets, i.e. Etr and Ete are always differ-
ent, leading to the problem of distribution shift and the demand for model generalizability. The
environment label e for graphs is always unobserved since it is expensive to collect for most scenar-
ios. Therefore, methods that impose requirements on environmental labels also limit their practical
application.

Graph Invariant Learning (GIL) is aimed at learning an environment-agnostic function f :
⋃

G → Y
to predict the label Y for downstream tasks. The goal of GIL is to train an optimal f∗ that it
generalizes well on all environments, we can formulate the problem as:

f∗ = argmin
f

max
e∈Eall

R(f |e), (11)

where R(f |e) = E(G,Y )∈Ge [l(f(G), Y )] is the risk of the predictor f on the environment e and
l : Y × Y → R is the loss function.

The problem in Eq. 11 is difficult to solve since the environment variable e is always unobserved.
Recently, a new line of research has emerged that focuses on subgraphs, with the goal of identi-
fying an invariant subgraph of the input, which has a stable relationship to the label; and filtering
out the other part of the input, which is environment-relevant or spurious. These approaches are
based on GNNs that aim to explicitly extract invariant subgraphs (with various definitions), guided
by the information bottleneck (IB) principle (20; 10) or top-k extraction based on causality (9; 11).
In particular, (10) introduces Graph Stochastic Attention (GSAT), a novel attention mechanism that
constructs inherently interpretable and generalizable GNNs. The attention is formulated as an infor-
mation bottleneck by introducing stochasticity into the attention mechanism, which constrains the
information flow from the input graph to the prediction. By penalizing the amount of information
from the input data, GSAT is expected to be more generalizable. (11) proposes a Causality Inspired
Invariant Graph LeArning (CIGA) framework to capture the invariance of graphs under various dis-
tribution shifts. Specifically, they characterize potential distribution shifts on graphs with causal
models, which focus only on subgraphs containing the most information regarding the causes of
labels. Overall, these new approaches provide exciting opportunities for achieving interpretability
and generalizability in GNNs without requiring expensive domain labels.

A.1.2 CARDINALITY-CONSTRAINED COMBINATORIAL OPTIMIZATION

Combinatorial optimization (CO) is a fundamental problem of computer science and operations
research (49). Particularly, cardinality-constraint optimization is a permutation-based CO problem
that exists widely in real-world applications (50; 51), whose final solution includes at most k non-
zero entries, i.e., the cardinality constraint ∥x∥0 ≤ k. Choosing the top-k most influential edges for
the invariant subgraph, which is a constraint-critical scenario, could also be regarded as a cardinality-
constraint CO problem. Handling the constraint violation is the core of the cardinality-constraint CO
problem as a tighter constraint violation leads to better performance (22). Erdos Goes Neural (52)
places a penalty term for a constraint violation in the loss, but the constraint violation is unbounded.
(26) develops a soft algorithm by recasting the top-k selection as an optimal transport problem (53)
with the Sinkhorn algorithm (24). Although the upper limit of constraint violation is provided,
in the worst situation, the bound might diverge. (22) further addresses the issue and proposes a
method with a tighter upper bound by introducing the Gumbel trick, making the constraint violation
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arbitrarily controlled. These studies provide us with a fresh perspective and theoretical basis for
invariance optimization for GIL in graph OOD.

A.2 LEARNING OBJECTIVE DETAILS

Here we provide the detailed derivation of the lower bound of the mutual information term I(GS ;Y )
for our learning objective in Sec. 2.1, which includes a variational approximation distribution
Pθ(Y |GS) for tractability:

I(GS ;Y ) =

∫∫
GS ,Y

P (GS , Y ) log
P (GS , Y )

P (GS)P (Y )
G. SY. (12)

=

∫∫
GS ,Y

P (GS , Y ) log
P (Y |GS)

P (Y )
G. SY. (13)

=

∫∫
GS ,Y

P (GS , Y ) logP (Y |GS)G. SY. (14)

−
∫∫

GS ,Y

P (GS , Y ) logP (Y )G. SY. (15)

=

∫∫
GS ,Y

P (GS , Y ) logP (Y |GS)G. SY. +H(Y ) (16)

=

∫∫
GS ,Y

P (GS)P (Y |GS) logP (Y |GS)G. SY. +H(Y ) (17)

=

∫
GS

P (GS)

∫
Y

P (Y |GS) logP (Y |GS)Y. G. S +H(Y ) (18)

=

∫
GS

P (GS)

∫
Y

P (Y |GS) log
P (Y |GS)Pθ(Y |GS)

Pθ(Y |GS)
Y. G. S +H(Y ) (19)

=

∫
GS

P (GS)

(∫
Y

P (Y |GS) logPθ(Y |GS)Y. +KL[P (Y |GS)∥Pθ(Y |GS)]

)
G. S

(20)
+H(Y ) (21)

≥
∫
GS

P (GS)

∫
Y

P (Y |GS) logPθ(Y |GS)Y. G. S +H(Y ) (22)

=

∫∫
GS ,Y

P (GS)P (Y |GS) logPθ(Y |GS)Y. G. S +H(Y ) (23)

=

∫∫
GS ,Y

P (GS , Y ) logPθ(Y |GS)Y. G. S +H(Y ) (24)

=EGS ,Y [logPθ(Y |GS)] +H(Y ). (25)

A.3 SINKHORN ALGORITHM DETAILS

To solve the entropic regularized OT problem in Sec. 2.2:

min
T

tr(T⊤D)− τH(T), s.t. T ∈ [0, 1]2×Ne , T1 = R, T⊤1 = C, (26)

where the discrete entropy item H(T) =
∑

ij −Tij(logTij − 1), by introducing Lagrangian mul-
tipliers α ∈ R2×1,β ∈ RNe×1, the Lagrangian of the problem above is:

min
T

max
α,β

L, where L = tr(T⊤D)− τH(T)−α⊤(T1−R)− β⊤(T⊤1−C), (27)
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the first order conditions are:
∂L
∂T

= D+ τ logT−α11×Ne
− 12×1β

⊤ = 0, (28)

⇔ T = exp(−D−α11×Ne
− 12×1β

⊤

τ
), (29)

∂L
∂α

= 0 ⇔ T1 = R,
∂L
∂β

= 0 ⇔ T⊤1 = C, (30)

the numerical analysis community provides an iterative solution as ‘matrix scaling problem’ (54):

T0 = exp

(
−D

τ

)
, Tk = diag (Tk−11⊘R)

−1
Tk−1, Tk = Tk−1 diag(T

⊤
k−11⊘C)−1,

(31)

where T0 is the initialization, corresponding to the solution of ∂L
∂T = 0 while α = 0 and β = 0, the

other two equations of Tk are iterations alternatively performed row- and column-wise normaliza-
tions corresponding to ∂L

∂α = 0 and ∂L
∂β = 0, and ⊘ is element-wise division.

Log-domain Sinkhorn. For numerical stability, the Sinkhorn algorithm can be performed and
implemented in the log domain to avoid the overflow problem caused by exp computations, instead
of iterating T, Log-domain Sinkhorn iterates logT:

logT0 = −D

τ
, (32)

logTk = logTk−1 − log(Tk−11) + logR, (33)

logTk = logTk−1 − log(T⊤
k−11) + logC = logTk−1 − log(T⊤

k−11), (34)

where the items log(Tk−11) and log(T⊤
k−11) can be calculated by applying the ‘logsumexp’ op-

eration on the first (row) and the second (column) dimension of logTk−1. After the iterations of
Log-domain Sinkhorn, the desired result T could be obtained by applying an exp operation on
logT.

A.4 TRAINING ALGORITHM DETAILS

Here we provide the procedure of GSINA training algorithm.

Algorithm 1 The training procedure.
Parameters: the number of training epoch E; the number of batch size B; the sparsity r.
Input: training dataset G = {Gi, Yi}Ni .
Output: the trained parameters θ and ϕ in Sec. 2.1.

1: Initialize parameters θ and ϕ;
2: for i = 1, . . . , E do
3: Sample data batches B = {G1,G2, . . . ,Gk} from G with batch size B;
4: for j = 1, . . . , k do
5: G = {Gm|(Gm, Ym) ∈ Gj}, Y = {Ym|(Gm, Ym) ∈ Gj};
6: Get inferred GS ∼ gϕ(G, r, τ = 1) according to Eq. 9;
7: Compute the gradients of the learning objective logPθ(Y |GS) according to Eq. 3 and 10;
8: Optimize parameters θ and ϕ;
9: end for

10: end for
11: Output the parameters θ and ϕ;

B DATASET DETAILS

We follow the datasets used in the experiments of GSAT (10), CIGA (11) to test the generalizability
of our GSINA on graph classification tasks, and datasets of EERM (15) on node classification tasks.
Here we provide the details of these datasets in Tab. 7, 8, 9, 10.
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Table 7: Statistics of graph classification datasets of GSAT benchmark used in Tab. 2, following the
datasets used in DIR (9).

Spurious-Motif MNIST-75sp (reduced) Graph-SST2 OGBG-Molhiv
Train Val Test Train Val Test Train Val Test Train Val Test

Classes# 3 10 2 2
Graphs# 9,000 3,000 6,000 20,000 5,000 10,000 28,327 3,147 12,305 32,901 4,113 4,113
Avg. N# 25.4 26.1 88.7 66.8 67.3 67.0 17.7 17.3 3.45 25.3 27.79 25.3
Avg. E# 35.4 36.2 131.1 539.3 545.9 540.4 33.3 33.5 4.89 54.1 61.1 55.6
Metrics ACC ACC ACC ROC-AUC

Table 8: Summary of ogbg-mol* datasets of GSAT benchmark used for (multi-task) binary classi-
fication in Tab. 3. For all the datasets, we use the scaffold split with the split ratio of 80/10/10.

Name #Graphs Average Average #Tasks Task Metric#Nodes #Edges Type
bace 1,513 34.1 36.9 1 Binary class. ROC-AUC
bbbp 2,039 24.1 26.0 1 Binary class. ROC-AUC
clintox 1,477 26.2 27.9 2 Binary class. ROC-AUC
tox21 7,831 18.6 19.3 12 Binary class. ROC-AUC
sider 1,427 33.6 35.4 27 Binary class. ROC-AUC

Table 9: Statistics of the datasets of CIGA benchmark used in experiments.

DATASETS # TRAINING # VALIDATION # TESTING # CLASSES # NODES # EDGES METRICS

SPMOTIF 9, 000 3, 000 3, 000 3 44.96 65.67 ACC
SST5 6, 090 1, 186 2, 240 5 19.85 37.70 ACC
TWITTER 3, 238 694 1, 509 3 21.10 40.20 ACC
DRUGOOD-ASSAY 34, 179 19, 028 19, 032 2 32.27 70.25 ROC-AUC
DRUGOOD-SCAFFOLD 21, 519 19, 041 19, 048 2 29.95 64.86 ROC-AUC
DRUGOOD-SIZE 36, 597 17, 660 16, 415 2 30.73 66.90 ROC-AUC
PROTEINS 511 56 112 2 39.06 145.63 MCC
DD 533 59 118 2 284.32 1, 431.32 MCC
NCI1 1, 942 215 412 2 29.87 64.6 MCC
NCI109 1, 872 207 421 2 29.68 64.26 MCC

Table 10: Statistics of the datasets of EERM benchmark used in experiments.

Dataset Distribution Shift #Nodes #Edges #Classes Train/Val/Test Split Metric Adapted From

Cora 2,703 5,278 10 by graphs Accuracy (55)
Amazon-Photo Artificial Transformation 7,650 119,081 10 by graphs Accuracy (56)
Twitch-explicit 1,912 - 9,498 31,299 - 153,138 2 by graphs ROC-AUC (57)
Facebook-100 Cross-Domain Transfers 769 - 41,536 16,656 - 1,590,655 2 by graphs Accuracy (58)

Elliptic 203,769 234,355 2 by time F1 Score (59)1

OGB-Arxiv Temporal Evolution 169,343 1,166,243 40 by time Accuracy (60)

C IMPLEMENTATION DETAILS

C.1 GNN BACKBONES

For GSINA with GIN and PNA backbones for the experiments on GSAT benchmark (reported in
Tab. 2, 3), our GNN backbone settings of GIN and PNA are strictly in line with those in GSAT
settings. We use 2 layers GIN with 64 hidden dimensions and 0.3 dropout ratio. We use 4 layers
PNA with 80 hidden dimensions, 0.3 dropout ratio, and no scalars are used. We directly follow PNA
and GSAT using (mean, min, max, std) aggregators for OGBG datasets, and (mean, min, max, std,
sum) aggregators for all other datasets.

For GSINA with GCN or GIN layers for the experiments on CIGA benchmark (reported in Tab. 4, 5),
our GNN backbone settings are also strictly in line with those in CIGA settings. We use 3-layer GNN
with Batch Normalization between layers and JK residual connections at last layer. We use GCN
with mean readout for all datasets except Proteins and DrugOOD datasets. For Proteins, we use
GIN and max readout. For DrugOOD datasets, we use 4-layer GIN with sum readout. The hidden
dimensions are fixed as 32 for SPMotif, TU datasets, and 128 for SST5, Twitter, and DrugOOD
datasets.
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For GSINA with GCN and SAGE backbones for the experiments on EERM benchmark (reported
in Fig. 3, 5, 6), our GNN backbone settings of GCN and SAGE are strictly in line with those in
EERM settings, where we use ReLU as the activation, add self-loops and use batch normalization
for graph convolution in each layer. We use 2 layers GCN with hidden size 32 for Cora, Amazon-
Photo, Twitch-explicit, and Facebook-100; and 5 layers SAGE with hidden size 32 for Elliptic and
OGB-Arxiv.

C.2 TRAINING DETAILS

All experiments are conducted for 5 runs on RTX-2080Ti (11GB) GPUs, and the average and stan-
dard deviation are reported.

Optimization. We use Adam optimizers for graph classification experiments reported in
Tab. 2, 3, 4, 5 strictly in line with the settings of GSAT and CIGA. For the experiments on the
GSAT benchmark, our GSINA with GIN backbone uses 0.003 learning rate for Spurious-Motifs and
0.001 for all other datasets. Our GSINA with PNA backbone uses 0.003 learning rate for Graph-
SST2 and Spurious-Motifs, and 0.001 learning rate for all other datasets. For the experiments on
the CIGA benchmark, we use 0.001 learning rate for all datasets. For the experiments on the EERM
benchmark, for all datasets, we follow the AdamW optimizers used in EERM. To reproduce EERM
results, we strictly follow the original settings of EERM. For the setting of our GSINA, we use the
same settings with the experiments of ERM, where we use 0.01 learning rate for Cora, Amazon-
Photo, and Twitch-explicit, 0.001 for Facebook-100, and 0.0002 for Elliptic.

Batch Size. For the experiments on the GSAT benchmark, we use a batch size of 128 for all datasets.
For the experiments on the CIGA benchmark, strictly in line with CIGA, we use a batch size of 32
for all datasets, except for DrugOOD datasets, where we use 128.

Epoch. For graph classification experiments on GSAT and CIGA benchmarks, we perform early
stopping to avoid overfitting. Based on the difficulty of fitting the dataset, we set the early stopping
patience to 10 for the SPMotif (both GSAT and CIGA benchmarks) datasets, DrugOOD-Size and TU
datasets, 3 for Graph-SST2 and Graph-SST5, 5 for Twitter, 20 for DrugOOD-Assay/Scaffold and
30 for MNIST-75sp. We do not use early stopping for OGBG datasets (molhiv, molbace, molbbbp,
molclintox, moltox21, molsider), and simply train them to the end of epochs (200 epochs for GIN +
GSINA, 100 for PNA + GSINA) to achieve better performances. For TU datasets, like the practices
of pre-training in CIGA, we pretrain them for 30 epochs to avoid underfitting. For EERM bench-
mark, we do not perform early stoppings or pre-trainings, we follow the epochs used in EERM work
and train to the end, which is 200 epochs for all datasets except for 500 epochs for OGB-Arxiv.

C.3 BASELINES

The baseline settings of GSAT, CIGA, other interpretable GNNs (ASAP, GIB, and DIR), EERM,
and invariant learning methods (ERM, IRM, V-Rex, EIIL, IB-IRM, CNC) are strictly in line with
the settings reported in GSAT, CIGA, and EERM, and we strictly cite their experimental results for
fair comparisons.

D MORE EXPERIMENTS AND EXPERIMENTAL DETAILS

D.1 MODEL SELECTION

Fig. 7, 8 provide the validation performances of GSINA on GSAT benchmark (experiments in
Tab. 2, 3), which guide the selection of the sparsity hyperparameter r in our GIL framework GSINA.

Hyperparameter Setting of Sparsity r. As described in Sec. 3, we perform r selection on the
GSAT benchmark based on the validation performances. For GIN backboned GSINA, we set r = 0.9
for OGBG-Molhiv, 0.2 for Graph-SST2, 0.5 for MNIST-75sp, 0.6 for SPMotif-0.5, 0.6 for SPMotif-
0.7, and 0.4 for SPMotif-0.9. For PNA backboned GSINA, we set r = 0.7 for OGBG-Molhiv, 0.5
for OGBG-Molbace, 0.8 for OGBG-Molbbbp, 0.7 for OGBG-Molclintox, 0.7 for OGBG-Moltox21,
0.8 for OGBG-Molsider, 0.8 for Graph-SST2, 0.6 for MNIST-75sp, 0.1 for SPMotif-0.5, 0.3 for
SPMotif-0.7, and 0.5 for SPMotif-0.9.
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Figure 7: Validation performances for different r in GSINA.
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Figure 8: Validation as well as testing performances for different r on OGBG-Mol* datasets.

For the experiments on the CIGA benchmark, as CIGA also performs top-r selection and provides its
setting of sparsity hyperparameter r, we strictly follow its setting of r, which are 0.25 for SPMotif,
0.3 for Proteins and DD, 0.6 for NCI1, 0.7 for NCI109, 0.5 for SST5 and Twitter, and 0.8 for
DrugOOD datasets, respectively.

For the experiments on the EERM benchmark, as described in Sec. 3, we uniformly set r = 0.5.

Batch Computing and Complexity analysis. Our GSINA has two different settings for subgraph
extraction in a batch (we selected the better one for experiments). The first (denoted as micro)
setting is to compute soft top-r for each graph in the batch, which is slower, we use it on Spmo-
tif, TU-PROT, TU-DD, Graph-SST2, MNIST-75sp, OGBG-Molbbbp, OGBG-Molclintox, OGBG-
Moltox21, OGBG-Molsider. The second (denoted as macro) setting is to compute soft top-r just
once for the entire batch (which can be considered as a large graph composed of several smaller
graphs), which is faster, we use it on Graph-SST5, Twitter, Drug-Assay, Drug-Sca, Drug-Size, TU-
NCI1, TU-NCI109, OGBG-Molhiv, OGBG-Molbace. The macro setting computes the top-r for the
whole graph and relaxes the constraint of top-r on each individual graph, which is useful when the
distribution shifts are complicated, and in that case, it is difficult to find reasonable r for each graph.
Therefore, the macro vs micro model selection in GSINA is highly dependent on the characteristics
of the dataset, and we select the one with better performance for each dataset. On the other hand,
CIGA uses hard top-k selection for subgraph extraction for each graph (similar to the micro set-
ting) in the batch. And we have implemented GSAT (without hyperparameter tuning) on the CIGA
benchmark for training time comparison, GSAT is similar to the macro setting, GSAT models the
probability p of each edge belonging to the invariant part, which does not consider how many graphs
are in the batch.

We conducted experiments on the training time of the models on all datasets of the CIGA benchmark
(Statistics of the benchmark datasets can be found in Appendix B). In Tab. 11, we report experimen-
tal results of training time comparison on CIGA benchmark, ERM is always the fastest, and our
second setting (GSINA-macro) is often much faster than CIGA and a bit slower than GSAT due to
iterative computations (Eq. 6); while the first setting (GSINA-micro), also due to iterative computa-
tions (Eq. 6) in subgraph extraction, is slower than CIGA’s hard top-k selection. However, since we
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Table 11: Training time comparison on CIGA benchmark, we record the mean ± std training time
(in terms of ms/epoch).

ERM GSAT GSINA-macro CIGA GSINA-micro

Spmotif 5797.0464 ± 215.3673 11084.8443 ± 290.5553 14799.7564 ± 315.1995 21658.0957 ± 908.5341 34576.2656 ± 628.3021
Graph-SST5 3993.3391 ± 99.6189 7737.8888 ± 84.9996 9503.5158 ± 234.1883 14344.7820 ± 246.2677 24521.2875 ± 369.2448
Twitter 2123.6215 ± 289.1412 4129.1175 ± 138.3962 5214.8427 ± 125.0164 7958.9061 ± 208.1967 13038.0312 ± 214.8203
Drug-Assay 9771.7190 ± 2122.2238 17026.1180 ± 657.9675 19833.7992 ± 1240.6085 54833.6117 ± 1221.3473 97431.7109 ± 3121.8496
Drug-Sca 6704.2010 ± 658.8927 10845.3604 ± 597.7060 12675.0961 ± 670.9245 33741.7516 ± 615.7502 59474.7531 ± 689.3121
Drug-Size 10814.6467 ± 1104.6025 17952.6367 ± 1071.1815 23152.3664 ± 1540.6074 58453.0594 ± 924.8912 101284.0609 ± 751.5329
TU-NCI1 1258.8495 ± 71.3337 2450.3426 ± 98.2116 3141.5663 ± 116.0735 5014.3386 ± 126.6357 7429.4210 ± 113.3016
TU-NCI109 1217.0766 ± 77.9733 2394.2303 ± 81.2618 2995.5683 ± 90.5246 4481.9476 ± 54.5312 7373.4569 ± 125.3487
TU-PROT 400.4288 ± 80.5055 714.7085 ± 79.7937 891.0935 ± 74.9539 1190.0512 ± 82.4018 1929.6349 ± 94.4660
TU-DD 369.0103 ± 92.8588 717.2253 ± 89.7630 1035.9521 ± 63.5705 1361.7259 ± 113.0401 2141.5195 ± 109.6949

can set the number of iterations to a relatively small value (we uniformly used 10), GSINA does not
introduce a significant computing overhead and is always within 2 × CIGA’s complexity.

More Settings. In our GSINA framework, we fix the Sinkhorn temperature τ (for softness) and
Gumbel noise factor σ (for randomness) to 1, and the Sinkhorn iteration numbers to 10. As shown in
Fig. 9, we analyze the hyperparameter sensitivity of the Sinkhorn temperature τ ∈ {0.2, 0.5, 1, 2, 5}
on the SPMotif datasets (of GSAT benchmark, with both GIN and PNA backboned GSINA), which
demonstrates τ = 1 is a reasonable and effective choice. When τ is too small, the model lacks
softness and generates too ‘hard’ subgraphs; when τ is too large, the model is too soft and generates
subgraphs that are too smooth and lacks information. Both cases lead to reduced performances.

Moreover, we demonstrate the expressiveness of the settings in Fig. 10, where Fig. 10a is randomly
generated edge scores (we sort them by values, each row is a graph and each column is an edge
score) to mimic the distributions of the edge scores output from MLPϕ, the bottom lower region is
non-edge padding; Fig. 10b is the ground truth of top-r (r = 0.3) on the edge scores in Fig. 10a;
Fig. 10c, 10d are edge attention values output from GSINA (r = 0.3) computations, for 1 run result
and 10 runs average, respectively. Fig. 10 demonstrate that the settings are sensitive to the edge
scores output from MLPϕ, and could generate distinguishable GSINA edge attention results, thus
expressive enough for the learning of GSA.

The MLPϕ in our subgraph extractor gϕ is a 2-layer MLP, MLPϕ(hi,hj) is implemented by in-
putting concatenated [hi,hj ], and outputting a 1-dim edge score sij , then a batch normalization
layer (s := s−mean(s)

std(s) ) is applied to normalize the edge scores to a stable value range.

The aggregator of GSINA node attention to aggregate the edge attention values in node neighbor-
hood is uniformly set as the ‘max’ aggregator for all cases.
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Figure 9: Performances of different Sinkhorn temperature τ (for softness) on SPMotif datasets.
More Discussions. Our GSINA’s model selection procedure is simpler than CIGA (the ‘hard’ top-k
based GIL SOTA), with other settings fixed, what is required to tune to achieve SOTA performances
in GSINA is just the sparsity r, while CIGA has additional loss balancing hyperparameters (2 losses
corresponding to CIGAv1 and CIGAv2) to tune. Besides, the ‘hard’ top-k methods could not be
utilized to improve node-level tasks, as part of nodes would be simply discarded and their represen-
tations naturally could not be learned in ‘hard’ top-k methods (e.g. DIR, CIGA).

D.2 INTERPRETATION PERFORMANCES AND FURTHER DISCUSSIONS

In addition to generalizability detailedly discussed in our paper, here we report the interpretability of
our GSINA. The interpretability is evaluated based on SPMotif datasets, which have labeled ground
truths of explanation subgraphs (a.k.a invariant subgraphs GS). The interpretability evaluation met-
rics are following previous studies DIR (9) and GSAT (10) for the performance of explanation
subgraph recognition, which is a problem of binary classification for each edge. Following DIR
and GSAT, we perform edge binary classifications, for metrics, we evaluate ROC-AUC (with GIN
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(a) (Sorted) edge scores output from MLPϕ
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(b) Top-r ground truth (r=0.3)
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(c) GSINA (edge) outputs, 1 run
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(d) GSINA (edge) outputs, averaged over 10 runs

Figure 10: Demonstration of the expressiveness of the fixed settings in our GSINA.

Table 12: Interpretation Performance (AUC).

SPURIOUS-MOTIF
b = 0.5 b = 0.7 b = 0.9

GNNEXPLAINER 62.62±1.35 62.25±3.61 58.86±1.93

PGEXPLAINER 69.54±5.64 72.33±9.18 72.34±2.91

GRAPHMASK 72.06±5.58 73.06±4.91 66.68±6.96

GIB (20) 57.29±14.35 62.89±15.59 47.29±13.39

DIR (9) 78.15±1.32 77.68±1.22 49.08±3.66

GIN+GSAT 78.45±3.12 74.07±5.28 71.97±4.41

GIN+OURS 65.13±10.00 60.78±8.09 55.86±3.56

PNA+GSAT 83.34±2.17 86.94±4.05 88.66±2.44

PNA+OURS 75.66±1.56 80.47±1.06 80.10±2.04

Table 13: Interpretation precision@5 of with the GNN backbone ‘SPMotifNet’ in DIR (9).

SPURIOUS-MOTIF
b = 0.5 b = 0.7 b = 0.9

GNNEXPLAINER 0.203±0.019 0.167±0.039 0.066±0.007

DIR (9) 0.255±0.016 0.247±0.012 0.192±0.044

GSAT (10) 0.519±0.022 0.503±0.034 0.416±0.081

OURS 0.419±0.030 0.401±0.046 0.429±0.040

and PNA backbones, following the setting of GSAT) and precision@5 (with the GNN backbone
‘SPMotifNet’ used in DIR (9)).

As shown in Tab. 12, 13, our GSINA (PNA and SPMotifNet backbones) mostly outperform inter-
pretable GNNs DIR and GIB as well as other post-hoc (10) GNN explainers, showing our inherent
interpretability to extract invariant subgraphs. However, our GSINA is inferior to GSAT in inter-
pretability, we tend to believe that it is due to the innate characteristics of top-k based methods: in
the ‘hard’ top-k case, the output value is binary (0 / 1), meaning an item belongs to top-k or not,
‘hard’ top-k does not consider the relative ranking of items at all, while the prevalent metrics for
binary classification (e.g. AUC, precision@5) always consider. Hence, it is not natural to evaluate
the subgraph recognition performance of top-k based methods. However, GSAT does not restrict
edge predictions to (approximate) binary like top-k methods, so that it achieves better performance
in interpretability. Due to the utilization of soft top-r operation in GSINA, it places more mathemat-
ical constraints on the graph attention value distribution compared to GSAT. The attention of GSAT
is more flexible because it calculates the probability of each edge belonging to the invariant part
separately, without considering the global constraint on the ratio (r) of the invariant subgraph. The
choice of r in GSINA significantly impacts the attention distribution, whereas GSAT is not subject to
this issue, which is why GSAT’s attention distribution is more flexible. Furthermore, The design of
GSAT, as mentioned above, is a tradeoff. It excels in interpretability, but it falls short in effectively
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filtering out variant parts (as described in Sec. 1, Fig. 1). This leads to GSAT having a less optimal
ability to make predictions using subgraphs compared to GSINA.

D.3 INTERPRETATION VISUALIZATION

Here we visualize the subgraph extractions on several datasets in GSAT benchmark. We visualize
the original edge and node attention values given by our GSA, and do not perform the scaling
tricks: first normalization, then multiplying edges’ numerical values repeatedly (10 times in GSAT)
to improve discrimination, which is applied in visualizations of GSAT and CIGA.

(a) SPMotif-0.5, label 0 (motif is cycle)

(b) SPMotif-0.5, label 1 (motif is house)

(c) SPMotif-0.5, label 2 (motif is crane)

Figure 11: Visualization of the extracted subgraphs in SPMotif-0.5 dataset.

21



Under review as a conference paper at ICLR 2024

(a) SPMotif-0.7, label 0 (motif is cycle)

(b) SPMotif-0.7, label 1 (motif is house)

(c) SPMotif-0.7, label 2 (motif is crane)

Figure 12: Visualization of the extracted subgraphs in SPMotif-0.7 dataset.
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(a) SPMotif-0.9, label 0 (motif is cycle)

(b) SPMotif-0.9, label 1 (motif is house)

(c) SPMotif-0.9, label 2 (motif is crane)

Figure 13: Visualization of the extracted subgraphs in SPMotif-0.9 dataset.
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(a) OGBG-Molhiv, label 0 (not inhibits HIV virus replication)

(b) OGBG-Molhiv, label 1 (inhibits HIV virus replication)

Figure 14: Visualization of the extracted subgraphs in OGBG-Molhiv dataset.
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Figure 15: Graph-SST2, label 0 (negative sentiment)
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Figure 16: Graph-SST2, label 1 (positive sentiment)
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