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Abstract—Motivated by applications to equivariant neural
networks and cryo-electron microscopy we consider the problem
of recovering the generic orbit in a representation of a finite
group from invariants of low degree. The main result proved
here is that invariants of degree at most three separate generic
orbits in the regular representation of a finite group defined over
any infinite field. This answers a question posed in [4]. We also
discuss this problem for subregular reprsentations of the dihedral
and symmetric groups.

I. INTRODUCTION

Let V be a representation of a group G. A classical problem
in invariant theory is to give bounds on the number and
degrees of generators for the invariant ring k[V ]G. A more
recent problem, introduced by Derksen and Kemper [13],
is to find similar bounds for separating invariants - that is
collections of invariants that separates all orbits [15], [14].
Motivated by a broad range of applications, we consider
the related problem of determining lower bounds on the
degrees of invariants necessary to separate generic orbits in a
representation of a compact group [4], [19], [10]. This problem
has two important applications. The first is to the problem of
constructing efficient equivariant neural networks. The second
is to the multi-reference alignment (MRA) problem, which
arises in cryo-electron miscroscopy. In both applications it
is important to separate generic orbits with invariants of the
lowest possible degree. Remarkably, the degrees of invariants
needed to separate generic orbits can be significantly lower
than the degrees of invariants needed to separate all orbits.
For example if G = Zp with p prime acting by cyclic shift
on Cp then invariants of degree p are needed to separate all
orbits [14], while it is known that invariants of degree three
separate generic orbits [4].

Previous papers studied the generic orbit separation problem
for band-limited functions in the regular representation L2(G)
when G is a connected compact Lie group [19], and finite
abelian groups [4], [10]. The focus of this paper is on
representations of non-abelian finite groups. The main result
proved here states that for the regular representation of a finite
group defined over an infinite field invariants of degree at most
three separate generic orbits. This answers a problem posed
in [4, Remark 4.3] and extends Theorem 4.1 of loc. cit. to
arbitrary finite groups. We also discuss results and questions
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on orbit separation for subregular representations of dihedral
and symmetric groups.

Connection to deep learning. In machine learning it is
desirable to build neural networks that reflect the intrinsic sym-
metry of the data such as point clouds. If G is the symmetry
group of the data then we want to build the network from
G-equivariant functions and a basic model of an equivariant
neural network [12], [22] is a sequence of maps

Rn0
A1→ Rn1

σb1→ Rn2 . . .
σbk−1→ Rnk−1

Ak→ Rnk

where each Rni is a representation of G, the Ai are G-
equivariant linear transformations and the σbi are non-linear
maps. A difficulty with this model is that there are in general
relatively few G-equivariant linear maps between represen-
tations, so an equivariant network built this way may not
be sufficiently expressive. One approach to circumvent this
problem is to use invariant polynomial maps rather than linear
maps [21], [17], [11]. However, because the cost of computing
invariants grows exponentially in the degree, it is imperative
to classify representations for which invariants of low degree
separate almost all orbits.

Connection to multi-reference alignment and cryo-EM.
Given a representation V of a compact group G, the muti-
reference alignment (MRA) problem is that of recovering the
orbit of a signal vector x ∈ V from its noisy translates by
unknown random group elements

yi = gi · x+ ϵi (I.1)

and the ϵi are taken from a Gaussian distribution N(0, σ2I)
which is independent of the group element gi. This model was
studied in [5] for the regular representation of the cyclic group
Zn and in [6] it was proposed as an abstract version of the
cryo-EM signal reconstruction problem. The MRA problem
for the regular representation of Zn has been extensively
studied in recent years, with both uniform an non-uniform
distributions being considered [24], [8], [1], [7]. Other models
include the dihedral group with non-uniform distribution [9]
and rotation groups acting on spaces of band-limited functions
in R2 and R3 with uniform distribution [6], [23], [20], [19].

When the signal-to-noise ratio is extremely low, as is the
case for cryo-EM measurements, there is no way to estimate
the unknown group elements, but it can be shown that the
moments of the unknown signal can be accurately approxi-
mated [2]. When the distribution of random group elements is
governed by a uniform distribution the moments are invariant
tensors and the MRA problem reduces to the problem of



recovering an orbit from its invariants. However, the sample
complexity (the minimal number of measurements necessary
for accurate approximation) grows exponentially in the degrees
of the moments, so to efficiently solve the MRA problem it is
necessary to recover almost all signals from invariants of the
lowest possible degree.

II. POLYNOMIAL AND UNITARY INVARIANT TENSORS

Definition II.1 (Invariant tensor). If V is a representation of
finite group G defined over a field k then the symmetric tensor

TG
d (x) =

∑
g∈G

(g · x)
⊗

d (II.1)

is called the degree d invariant tensor.

If chark ∤ |G| then TG
d (x)/|G| is the projection of x⊗d to

(Symd V )G. This definition can be extended to any linearly
reductive algebraic group over k with the Reynolds operator
replacing the average over the group.

If V is a complex representation of a finite group G then
V is unitary and we define unitary invariants as follows.

Definition II.2 (The moment tensor). If V is a complex
representation of a finite group then the d-th moment tensor
of x ∈ V is

TG
d (x) =

∑
g∈G

(g · x)
⊗

d−1 ⊗ g · x (II.2)

If we divide by |G| then both Definition II.1 and Defini-
tion II.2 can be extended to any unitary representation of a
compact group where the sum is replaced by the integral over
the group with respect to the Haar measure.

By definition, both the moment and invariant tensors are
invariants; i.e. for any h ∈ G, TG

d (h ·x) = TG
d (x) and MG

d (h ·
x) = MG

d (x). In particular we may view the d-th moment
tensor as a map V → (V ⊗d−1 ⊗ V ∗)G = HomG(V

⊗d−1, V )
and the d-th invariant tensor as a degree-d polynomial map
V → (V ⊗d)G. When the group is compact or linearly
reductive, then the coefficients of TG

d (x) are exactly the G-
invariant polynomials of degree d in x. The coefficients of
MG

d (x) are also G-invariant functions but are not polynomials
due to the presence of the conjugated terms. We will refer
to these non-polynomial invariants occurring in the moment
tensor as unitary invariants.

Definition II.3. If V is a representation of a finite group (over
an arbitrary field) or a compact Lie group then we say that
polynomial invariants of degree at most d separate generic
orbits if there is a non-empty G-invariant Zariski open set U ⊂
V such that for x ∈ U the orbit of x is uniquely determined
by the invariant tensors TG

1 (x), . . . TG
d (x).

Remark II.4. As discussed in [4] if the field k is algebraically
closed then the condition that invariants of degree at most
d separate generic orbits is equivalent to the condition that
Frac(k[V ]G) = Frac k[V G

≤d] where V G
≤d ⊂ k[V ]G is the finite

dimensional subspace of invariant polynomials of degree at
most d. The analogous statement holds for complex represen-
tations of compact Lie groups. In this case the invariant ring

C[V ]G is the same as the invariant ring of the corresponding
complex algebraic group GC.

The following examples illustrate the difference between
polynomial and unitary invariants and their ability to separate
generic orbits.

Example II.5. Let Cn be the standard representation of the
cyclic group Zn represented in the Fourier basis. In other
words an element ℓ ∈ Zn acts by the rule

ℓ · (x0, . . . , xn−1) = (x0, e
2πιℓx1, . . . e

2πι(n−1)ℓxn−1)

Because the action is diagonalized all invariants are mono-
mials. There is a single unitary and polynomial invariant of
degree one, namely the function x0. The degree two polyno-
mial invariants are {xixn−i} whereas the degree two unitary
invariants are {xixi}. In signal processing the set of degree
two unitary invariants is called the power spectrum. The degree
three polynomial invariants are the monomials xixjxn−i−j

where all indices are taken modulo n. Likewise the degree-
three unitary invariants are the monomials xixjxi+j . In signal
processing the collection of degree-three unitary invariants is
called the bispectrum.

Note that if x = (x0, . . . , xn) is the Fourier transform of
a real vector then xi = xn−i so the polynomial and unitary
invariants agree on these vectors.

Since Cn with our chosen action of Zn is the regular
representation, we know, by Tannaka-Krein duality [28] that
the unitary invariants of degree at most three separate generic
orbits. Likewise, [4, Theorem 4.1 ] or our Theorem III.1
implies that the polynomial invariants of degree at most three
also separate generic orbits.

Example II.6. Now let let S1 = U(1) act on C2 = C1 + C2

with weights 1 and 2 i.e. θ · x1 = eiθx1 and θ · x2 = e2iθx2.
There are no non-constant polynomial invariants and hence
orbit recovery from these invariants is not possible. However,
the unitary invariants x1x1, x2x2, x

2
1x2 separate any S1 orbits

satisfying x1x2 ̸= 0.

Remark II.7. Note that the representation in Example II.5 is
defined over the reals, since it is the regular representation of
a finite group. By contrast, the representation we consider in
Example II.6 is not defined over the reals. A natural question is
whether for real representations of finite groups the separating
power of algebraic and unitary invariants on complex vectors
is the same.

III. THE REGULAR REPRESENTATION OF A FINITE GROUP

It was established in [28] that if G is a compact group and
V = L2(G) is the regular representation and f ∈ L2(G) is a
function whose Fourier coefficients are all invertible then the
orbit of f is determined from the bispectrum which encodes
the same information as the first three moment tensors. The
proof uses Tannaka-Krein Duality along with other results
in abstract harmonic analysis. When G is finite the question
as to whether a similar uniqueness result holds for generic
recovery from the first three invariant tensors was posed in [4,



Remark 4.3] and proved for finite abelian groups using Galois
theory [4, Theorem 4.1].

In [4, Theorem 4.1] the authors prove that if G is an
arbitrary finite group, Jennrich’s algorithm for decomposition
of real tensors implies that the G-orbit of a real valued function
f : G → R can be recovered from the invariants of degree at
most three - provided that the orbit of f consists of linearly
independent functions. Here we use an adaptation of Jennrich’s
algorithm to tensors over arbitrary fields and prove that if k
is any infinite field, with no restriction on the characteristic,
then polynomial invariants of degree at most three separate
generic orbits in the regular representation, and more generally
any representation where the generic orbit consists of linearly
independent vectors.

Theorem III.1. Let V a representation of a finite group over
defined over an infinite field k then the G-orbit of any vector
x ∈ V whose orbit consists of linearly independent vectors
is uniquely determined from the invariant tensors TG

2 (x) and
TG
3 (x).

Proof. Enumerate the elements of G as g1, . . . , gn where
g1 = e. If x ∈ V set xi = gix. By assumption on x, the
vectors x1, . . . , xn are linearly independent and their span is
a G-invariant subspace W ⊂ V isomorphic to the regular
representation. We can recover the subspace W from the
second invariant tensor

TG
2 (x) =

∑
g∈G

gx⊗ gx =

n∑
i=

xi ⊗ xi

without a priori knowing the vector x as follows. If we choose
a basis for V then we can represent TG

2 (x) as a symmetric
matrix with respect to this basis and the range of this matrix
will be the G-invariant subspace W . (Note that we do not need
k to be an infinite field to use this argument.)

We now consider the degree-three invariant tensor TG
3 (x) =∑n

i=1 xi⊗xi⊗xi. Fix two linearly independent elements a, b ∈
V ∗ and consider the contractions Ta =

∑n
i=1⟨a, xi⟩xi⊗xi and

Tb =
∑n

i=1⟨b, xi⟩xi⊗xi in Sym2 W ⊂ Sym2 V . Choosing an
ordered basis for W we can represent Ta and Tb as symmetric
n× n-matrices.

Let Da = diag ⟨a, xi⟩ and Db = diag ⟨b, xi⟩ then Ta =
XDaX

T and Tb = XDbX
T where X = (x1, . . . , xn)

is the matrix whose columns are {xi}. Since the xi are
linearly independent the matrix X is invertible. Moreover,
if the field k is infinite then for almost all choices of dual
vectors a, b ∈ V ∗ ⟨a, xi⟩ and ⟨b, xi⟩ are all non-zero, and the
products ⟨a, xi⟩⟨b, xi⟩−1 are distinct elements of the field k. In
particular the matrices Ta and Tb are invertible and the product
TaT

−1
b = XDaD

−1
b X−1, which can be determined from the

third invariant tensor has distinct eigenvalues, and hence one-
dimensional eigenspaces. To determine the xi we can use the
following strategy. Let u be any eigenvector of TaT

−1
b . Then

x = chx for some h ∈ G and non-zero constant c ∈ C. Then
{gu}g∈G = {cxi}. Hence

∑
g∈G gu⊗3 = c3T3(x). Since

T3(x) is known, we determine c3. We can also determine c2

and thus c, by comparing
∑

gu⊗2 with the known invariant

tensor TG
2 (x).

IV. SUBREGULAR REPRESENTATIONS OF FINITE GROUPS

Theorem III.1 implies that the generic orbit in any repre-
sentation that contains a copy of the regular representation can
be recovered from the first three moment or invariant tensors.
However, this condition is certainly not necessary, and we
can ask for non-trivial examples of subregular representations
where invariants of degree at most three separate generic
orbits.

The dihedral group. The dihedral group provides a class of
examples of representations properly contained in the regular
representation for which invariants of degree at most three
separate generic orbits.

Let Dn be the dihedral group of order 2n with generators r
of order n and s of order two. Consider the n-dimensional
standard representation of Dn where the generator r acts
by cyclic shifts and the generator s acts by the reflection
s(x0, . . . xn−1) = (x0, xn−1, xn−2, . . . x1).

The authors of this paper proved the following theorem in
the preprint [18]. A revised version of that paper is being
prepared for publication.

Theorem IV.1. [18] The first three invariant tensors separate
generic complex orbits in the standard representation, Cn, of
Dn.

Example IV.2 (The complete multiplicity-free representation
of the dihedral group). We define the complete muliplicity-
free representation V of finite group to be the sum of all
irreducibles taken with multiplicity one. Here we show that
for the complete multiplicity-free representation of Dn generic
orbits cannot be separated by invariants of degree at most
three.

The irreducible representations of Dn are as follows. If n
is even, then there are (n/2− 2) two-dimensional irreducible
representations V1, . . . V(n/2−2) where the rotation acts on
Vℓ with weights e±2πιℓ/n and the reflection exchanges the
two eigenspaces for the rotation. There are four characters,
L0, L−1, S0, S−1. The reflection acts trivially on L0, L−1

and the rotation acts with weights 1 (i.e. trivially) and -1
respectively. On S0, S−1 the reflection acts with weight −1
and the rotation acts with weights 1 and −1 respectively.

If n is odd then there are (n − 1)/2 two-dimensional
representations V1, . . . , V(n−1)/2 where the rotation acts on Vℓ

with eigenvalues e±2πιℓ/n and the reflection exchanges the two
eigenspaces. In addition if n is odd Dn has two characters, the
trivial character L0, and the character S0 where the rotation
acts trivially and the reflection acts with weight −1.

The n-dimensional standard representation of Dn is the sum
L0 ⊕ V1 + . . . Vn/2−2 ⊕ L−1 if n is even and L0 ⊕ V1 . . . ⊕
V(n−1)/2 is n is odd. In particular it is multiplicity free.

Interestingly we cannot separate the generic orbit with
invariants of degree at most three on V even though we can on
both the standard representation and the regular representation.

Corollary IV.3. Let V be the complete multiplicity-free rep-
resentation of the dihedral group Dn. Then the generic orbit



x ∈ V can only be recovered up to a list of size two for the
invariants of degree at most three.

Proof. If n is odd we can write an element of V as
(x1, . . . , xn, s0) where (x1, . . . , xn) are coordinates for the
standard reprsentation and s0 is coordinate for S0. For a
generic choice of (x1, . . . , xn) and non-zero s0 the vectors
(x1, . . . , xn, s0) and (x1, . . . , xn,−s0) lie in different Dn-
orbits but their invariants of degree three or less are equal.
In order to separate the orbits we need invariants of degree
four. Precisely we need invariants of the form s0p(x1, . . . , xn)
where p(x1, . . . , xn) is invariant under rotations and the re-
flection acts by −1. However lowest degree of such a semi-
invariant polynomial p(x1, . . . , xn) is three.

If n is even we can write an element of V as
(x1, . . . , xn, s0, s−1) and for a generic choice of (x1, . . . , xn)
and s0, s1 both non-zero, the vectors (x1, . . . , xn, s0, s−1) and
(x1, . . . , xn,−s0,−s−1) have the same invariants of degree
three or less but do not lie in the same Dn orbit.

The symmetric group. Deep learning of objects such as
sets or graphs which do not come with intrinsic ordering
requires the construction of invariants which separate orbits
under the symmetric group [3], [27], [29], [16]. Motivated by
these questions, we consider the permutation action of Sn on
the space Cn⊗ (Cd)∗ = Cn×d of n×d matrices and pose the
problem of determining bounds on the multiplicity d which
ensure that a set of low degree invariants can separate generic
orbits.

Recall that Cn splits as an Sn representation into Cn = V0+
V where V0 is the trivial representation generated by (1, . . . , 1)
and V is its orthogonal complement which is the standard
(n − 1)-dimensional representation of Sn. In particular, the
space of matrices (Cn)d = V d+V d

0 is not a subrepresentation
of the regular representation when d > 1, since the trivial
representation only occurs with multiplicity one in the regular
representation. However, we lose no important information by
removing the trivial summand V d

0 and working with just V d

which is a subregular representation for d ≤ n− 1. Hence the
space of matrices Cn×d can appropriately be considered as a
subregular representation for d ≤ n− 1.

The ring of invariants is generated by multisymmetric poly-
nomials of degrees 1 through n [26], [25] and when d > 1
they are no longer algebraically independent so it is possible
for invariants of low degree to separate generic orbits. The
multisymmetric polynomials can be enumerated as follows: If
{xi,j} for 1 ≤ i ≤ n, 1 ≤ j ≤ d is a dual basis for (Cn)d then
the sum

∑
σ∈Sn,1≤i1,...,ik≤d σ(x1,i1 ...x1,ik) = x1,i1 ...x1,ik +

x2,i1 ...x2,ik + ...+ xn,i1 ...xn,ik is an Sn-invariant polynomial
of degree k (note that the i1, ..., ik do not need to be distinct).
We refer to invariants of this form as multisymmetric power
sum polynomials.

There is a one-to-one correspondence between the power
sum multisymmetric polynomials and the monomials of the
form x1,i1 ...x1,ik in the variables {x1,i}1≤i≤d. Therefore, the
number of distinct power sum multisymmetric polynomials of
degree k is

(
d+k−1

k

)
. In particular there are

(
d+2
3

)
+

(
d+1
2

)
+

(
d
1

)
= 1

6 (d
3 + 6d2 + 11d) such invariants of degree at most

three.
Recall the following definition given in [4].

Definition IV.4. Let S ⊂ k[V ]G be a set of polynomial
invariants for the action of a finite group. We say that S list
resolves generic orbits in V if it contains a transcendence basis
for Frac(k[V ]G).

We give numerical evidence that, for d sufficiently large,
the invariants of degree at most three list resolve the generic
orbit in V = Cn×d. A necessary condition for the invariants
of degree at most three to contain a transcendence basis is that
1
6 (d

3+6d2+11d) ≥ nd. Asymptotically this forces d to be at
least ∼

√
n. To produce the table below we generated all of

the multisymmetric power sum polynomials of degree at most
three for different values of n and d ≤ n − 1 and checked
whether or not they contain a transcendence basis using the
Jacobian criterion as developed in [4, Proposition 3.25] and
implemented in Mathematica.

Group Representation Invariants of degree at most 3
contains a transcendence basis?

S4 C4 No
S4 C4×2 Yes
S5 C5 No
S5 C5×2 No
S5 C5×3 Yes
S6 C6 No
S6 C6×2 No
S6 C6×3 Yes

TABLE I: Invariants and transcendence bases for symmetric
groups

These computations lead us to make the following conjec-
ture.

Conjecture IV.5. The invariants of degree at most three list
resolve the generic orbit in (Cn)d if and only if
1
6 (d

3 + 6d2 + 11d) ≥ nd.
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