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Abstract

We present an efficient algorithm for linear contextual bandits with adversar-
ial losses and stochastic action sets. Our approach reduces this setting to
misspecification-robust adversarial linear bandits with fixed action sets. With-
out knowledge of the context distribution or access to a context simulator, the
algorithm achieves Õ(min{d2

√
T ,
√
d3T logK}) regret and runs in poly(d,C, T )

time, where d is the feature dimension, C is an upper bound on the number of
linear constraints defining the action set in each round, K is an upper bound on
the number of actions in each round, and T is number of rounds. This resolves the
open question by Liu et al. (2023) on whether one can obtain poly(d)

√
T regret

in polynomial time independent of the number of actions. For the important class
of combinatorial bandits with adversarial losses and stochastic action sets where
the action sets can be described by a polynomial number of linear constraints, our
algorithm is the first to achieve poly(d)

√
T regret in polynomial time, while no

prior algorithm achieves even o(T ) regret in polynomial time to our knowledge.
When a simulator is available, the regret bound can be improved to Õ(d

√
L⋆),

where L⋆ is the cumulative loss of the best policy.

1 Introduction

We consider the following linear contextual bandit problem: At each round t = 1, . . . , T , the
environment generates a hidden loss vector θt ∈ Rd and an action set At ⊂ Rd. The learner observes
At, selects an action at ∈ At, and incurs loss a⊤t θt. The goal is to compete with the best fixed
policy—defined as a mapping from an action set to an element in it. This setting generalizes the
classical linear bandit model by allowing the action sets At to vary stochastically over time. Crucially,
each At encodes the context based on which the learner makes decisions. In this work, At is called
context or action set interchangeably.

This framework is applicable in settings such as healthcare and recommendation systems, where
decisions must be made conditional on context. Prior work on contextual bandits has studied a variety
of assumptions on how losses and contexts are generated. While much of the literature assumes
i.i.d. losses and arbitrarily chosen action sets (for which a well-known algorithm is LinUCB Li
et al. (2010)), we focus on the complementary regime: the action sets are drawn i.i.d. from a fixed
distribution D, while the losses may be chosen adversarially.

A first computationally efficient algorithm for this setting was proposed by Neu and Olkhovskaya
(2020) under the assumption that the context (i.e., action set) distribution is known. Since an action
set is a subset of Rd (i.e., it lies in the space 2R

d

), the distribution over action sets is in the space
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Table 1: Comparison with state-of-the-art results in adversarial linear contextual bandits. d is the
feature dimension, K is an upper bound on the number of actions, and C is an upper bound on the
number of linear constraints to describe the convex hull of each action set. It holds that C ≤ K + 1
and in many combinatorial problems we have C = poly(d) and K = 2Ω(d). The run time of the
linear optimization oracle of Neu and Valko (2014) is bounded by poly(d,C) but could also be
smaller.

Algorithm Regret Computation Simulator Feedback
(omitting log(dT ) factors)

Schneider and Zimmert (2023)
√
dT for the special case
At ⊆ {e1, . . . , ed}

poly(d, T ) no bandit

Neu and Valko (2014) (dT )2/3
poly(d, T ) plus
T oracle calls no semi-bandit

Dai et al. (2023) min{d
√
T ,

√
dT logK} poly(d,K, T ) yes bandit

Liu et al. (2023) d
√
T K · TΩ(d) no bandit

Liu et al. (2023) d2
√
T poly(d,K, T ) no bandit

Ours min{d2
√
T ,

√
d3T logK} poly(d,C, T ) no bandit

Ours d
√
L⋆ poly(d,C, T ) yes bandit

∆(2R
d

), which is generally intractable to represent efficiently. This assumption was later removed by
subsequent efficient algorithms (Luo et al., 2021; Sherman et al., 2023; Dai et al., 2023; Liu et al.,
2023). In the setting where the learner has access to a simulator that can generate free contexts (i.e.,
the learner is able to sample contexts from D as many times as they want without incurring cost), Dai
et al. (2023) shows that a near-optimal regret bound of Õ(min{d

√
T ,

√
dT logK}) is achievable.

When the learner has neither knowledge of the context distribution nor simulator access to random
context samples, the best known results are by Liu et al. (2023): they provide an algorithm with
near-optimal regret Õ(d

√
T ) with run time TΩ(d) and another algorithm with regret Õ(d2

√
T ) with

run time poly(d,K, T ) where K = maxt |At|. Notably, while the regret bound of this last algorithm
is independent of the number of actions K, its computational complexity scales polynomially in K.
In fact, this is the case for all previous algorithms as well (Luo et al., 2021; Sherman et al., 2023; Dai
et al., 2023; Liu et al., 2023, 2024b). This makes them unsuitable for many important combinatorial
problems (e.g., m-set, shortest path, flow, bipartite matching), where K is usually exponentially large
in the dimension d.

Our work gives the first algorithm whose computational complexity does not explicitly scale with the
number of actions, making adversarial linear contextual bandits applicable to a much wider range
of problems. Without simulator access, our method achieves regret Õ(min{d2

√
T ,
√
d3T logK})

and with simulator access this can be improved to Õ(d
√
L⋆), where L⋆ = O(T ) is the cumulative

loss of the best policy. Our algorithm runs in O(d,C, T ) time, where C is the number of linear
constraints to describe the convex hull of each action set. Notice that C ≤ K + 1 in general, as
the convex hull of an action set of size K can be written as a linear program with at most K + 1
constraints. On the other hand, in many combinatorial problems, C = poly(d) while K = 2Ω(d).
For example, in a shortest path problem with d edges, the set of all paths can be described by
a linear program with O(d) constraints, while the number of paths could be of order 2Ω(d). For
combinatorial problems with stochastic action sets and adversarial losses, we are only aware of Neu
and Valko (2014) who studied the case where the learner has semi-bandit feedback. Their algorithm
achieves Õ

(
(dT )2/3

)
regret with one call to the linear optimization oracle of the action set per round.

Compared to their work, our work weakens the assumption on the feedback (from semi-bandits to
full-bandits) and improves the regret bound, but our method is computationally heavier—there are
action sets where linear optimization can be solved in polynomial time while having an exponentially
large number of constraints, such as spanning trees. How to further improve our computational
complexity to match theirs is left as future work. It also remains open how to efficiently achieve the
near-optimal bound Õ(min{d

√
T ,

√
dT logK}) without simulators, even when the learner is willing

to pay poly(d,K, T ) computation. This has only been resolved in the special case where action sets
are subsets of the standard basis {e1, . . . , ed}, which is also known as the sleeping bandits problem
(Schneider and Zimmert, 2023).
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Our result is achieved by establishing a novel and computationally efficient reduction from adversarial
linear contextual bandits to adversarial linear bandits with misspecification. Linear bandits can
be viewed as linear contextual bandits with a fixed context and is therefore less challenging than
linear contextual bandits. This reduction scheme is related to the work of Hanna et al. (2023), which
reduces stochastic linear contextual bandits (with both stochastic contexts and stochastic losses) to
misspecified stochastic linear bandits. Compared to Hanna et al. (2023), we make two key advances:
First, our reduction is polynomial-time, and we also provide a polynomial-time algorithm for the
problem we reduce to, whereas Hanna et al. (2023) focuses solely on the regret bound and it remains
open how their reduction can be implemented in polynomial time. Second, we study the strictly
more general setting with adversarial losses. A more detailed comparison with Hanna et al. (2023) is
provided in Appendix A.

Finally, regarding results in terms of L⋆, we remark that our bound of Õ(d
√
L⋆) can be specialized

to the setting of Olkhovskaya et al. (2023) (a slightly different formulation of adversarial contextual
bandits). We then obtain a slightly worse rate but, importantly, remove their unrealistic assumption
that the context distribution is log-concave.

2 Problem Description and Main Results

Notation Suppose A ⊂ Rd is a set of vectors. Then the convex hull of A is denoted as conv(A) =

{x =
∑k
i=1 λiai : k ∈ N,

∑k
i=1 λi = 1, λi ≥ 0, ai ∈ A}. If A is a polytope, we denote its set of

vertices as vert(A), and denote the normal cone of A at a vertex v ∈ vert(A) as N (A, v) = {y ∈
Rd : maxx∈A ⟨y, x− v⟩ ≤ 0}.

2.1 Linear Contextual Bandits

For simplicity, we consider an oblivious adversary.5 Before any interaction with the learner, the
adversary secretly chooses T loss vectors (θt)t∈[T ] where θt ∈ Rd for all t. For each round

t = 1, 2, . . . , T , an action set At ⊂ Rd is drawn according to At
i.i.d.∼ D and revealed to the learner.

The learner then chooses an action at ∈ At and observes loss ℓt ∈ [0, 1] with Et[ℓt] = a⊤t θt, where
Et denotes the expectation conditioned on the history up to time t − 1 and at. The expected
regret against a fixed policy π ∈ Π is defined as

RegT (π) = E

[
T∑
t=1

⟨at − π(At), θt⟩

]

where policy π maps an action set A ⊂ Rd to a point π(A) ∈ conv(A).6 Note that the policy that
minimizes the total expected loss is

arg min
π∈Π

E

[
T∑
t=1

⟨π(At), θt⟩

]
= arg min

π∈Π
EA∼D

[〈
π(A),

T∑
t=1

θt

〉]
,

which is attained by the policy π(A) = arg mina∈A
〈
a,
∑T
t=1 θt

〉
. Thus, to minimize the expected

regret, it suffices to compare the learner to the class of linear classifier policies

Πlin =
{
πϕ
∣∣ ϕ ∈ Rd

}
where πϕ(A) = arg min

a∈A
⟨a, ϕ⟩ , (1)

where ties can be broken arbitrarily.

5There are two kinds of results we can get: 1) regret compared to the best policy in the full policy set Π
under oblivious adversary, and 2) regret compared to the best policy in the linear policy set Πlin under adaptive
adversary. To achieve 2), it suffices to use misspecification-robust linear bandit algorithms with high-probability
bounds in our reduction. This can be achieved by standard techniques of getting high-probability bounds (Lee
et al., 2020; Zimmert and Lattimore, 2022). To simplify the exposition, we only focus on the first case.

6Defining π(A) ∈ conv(A) instead of π(A) ∈ A only makes the guarantee more general and simplifies the
notation. Equivalently, it defines a randomized policy: to execute π(A), sample a ∈ A such that E[a] = π(A).
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2.2 Linear Bandits and ϵ-Misspecified Linear Bandits

The adversarial linear bandit problem with oblivious adversary is the case in which the adversary
decides (θt)t∈[T ] before any interaction with the learner. The learner is given a fixed action set
Ω̂ ⊂ Rd. At every round t ∈ [T ], the learner chooses an action yt ∈ Ω̂ and receives ct ∈ [0, 1] as
feedback with Et[ct] = ⟨yt, θt⟩. The regret with respective to a fixed action y ∈ Ω̂ is defined as

RegT (y) = E

[
T∑
t=1

⟨yt − y, θt⟩

]
.

A misspecified linear bandit problem is the case where the learner, instead of receiving an unbiased
sample of ⟨yt, θt⟩ as feedback, receives ct with |Et[ct] − ⟨yt, θt⟩ | ≤ ϵ for some ϵ known to the
algorithm.

2.3 Results Overview

In this section, we present a general framework that can reduce the adversarial contextual bandit
problem to a misspecification-robust linear bandit algorithm defined as the following.
Definition 1 (α-misspecification-robust adversarial linear bandit algorithm). A α-misspecification-
robust linear bandit algorithm over action set Ω̂ ⊂ Rd has the following property: with a given ϵ > 0

and the guarantee that every time the learner chooses yt ∈ Ω̂, the loss received ct ∈ [0, 1] satisfies

|Et[ct]− ⟨yt, θt⟩ | ≤ ϵ,

the algorithm ensures

E

[
T∑
t=1

⟨yt, θt⟩

]
≤ min

y∈Ω̂

T∑
t=1

⟨y, θt⟩+ Õ
(
d
√
T + α

√
dϵT

)
. (2)

Notice that there is an α parameter in Definition 1 that specifies the dependence of the regret on the
misspecification level ϵ. It is known that α = 1 is the statistically optimal dependence. However, for
specific algorithms, we might have α > 1.

We establish the following reduction:
Theorem 1. Given access to an α-misspecification-robust adversarial linear bandit algorithm, we
can achieve minπ∈Π RegT (π) ≤ Õ(d

√
T + αd

√
T logK) in adversarial linear contextual bandits

without access to a simulator.

We remark that the αd
√
T logK term in Theorem 1 comes from the misspecification term α

√
dϵT

in (2). When the learner has access to a simulator that generates free contexts, the ϵ can be made
arbitrarily small, allowing us to achieve the optimal d dependence. This will be discussed in Section 5.

3 Reduction from Linear Contextual Bandits to Linear Bandits

Let π denote a policy, which maps any given action set A to a randomized action in conv(A). Let Π
denote the set of all possible policies. We define the following map

Ψ(π) = EA∼D[π(A)],

which is the mean action of π. Applying Ψ to all π ∈ Π, the set Ω = {Ψ(π) | π ∈ Π} is induced.
Note that, under this map, the expected loss under actions drawn such that E[at] = π(At) may be
written as

E [⟨at, θt⟩] = EAt∼D [⟨π(At), θt⟩] = ⟨Ψ(π), θt⟩ .

Accordingly, if the learner draws at from policy πt in round t, the expected regret may be written as

RegT (π) = E

[
T∑
t=1

⟨at − π(At), θt⟩

]
= E

[
T∑
t=1

⟨πt(At)− π(At), θt⟩

]
= E

[
T∑
t=1

⟨Ψ(πt)−Ψ(π), θt⟩

]
.
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3.1 Approximating Ω

Since Ω cannot be accessed directly without full knowledge of the context distribution D, we cannot
work with Ω directly. Instead, we will therefore approximate Ω by its empirical counterpart Ω̂ based
on N i.i.d. samples A1, . . . ,AN from D:

Ω̂ =
{
Ψ̂(π)

∣∣∣π ∈ Π
}
=

{
x ∈ Rd : x =

1

N

N∑
i=1

ai

∣∣∣∣∣ ai ∈ conv(Ai), ai = aj when Ai = Aj

}
,

(3)
where Ψ̂(π) = 1

N

∑N
i=1 π(Ai).

We proceed to show that the empirical cumulative loss of any linear classifier policy on the sample
A1, . . . ,AN is close to its expected cumulative loss, as long as N is large enough:
Lemma 1 (Uniform Convergence). Consider any loss vector θ ∈ Rd, and suppose that |A| ≤
K and maxa∈A |⟨a, θ⟩| ≤ b almost surely. Then, for any δ ∈ (0, 1], uniformly over all linear
classifier policies πϕ, the difference in performance of πϕ on the sample A1, . . . ,AN and its expected
performance is at most

sup
ϕ∈Rd

∣∣∣〈Ψ(πϕ), θ
〉
−
〈
Ψ̂(πϕ), θ

〉∣∣∣ ≤ 2b

√
2d ln(NK2)

N
+ b

√
2 ln(4/δ)

N

with probability at least 1− δ.

The proof is provided in Appendix C. Its key idea is to rephrase the result as an equivalent statement
about uniform convergence for linear multiclass classifiers with K classes in the batch setting, with
an unusual loss function. We can then obtain a concentration inequality that holds uniformly over all
linear classifiers using standard tools. Specifically, we go via Rademacher complexity and a bound
on the growth function of the class of multiclass linear classifiers in terms of its Natarajan dimension,
which is known to be at most d.

3.2 Connection between Linear Contextual Bandits and Linear Bandits

Algorithm 1: Adversarial Linear Contextual Bandits
1 Input: An adversarial linear bandit algorithm ALG and a set SN of N action sets drawn from D.
2 Initiate an instance of ALG over action set Ω̂ constructed from SN .
3 for t = 1, . . . , T do
4 Obtain yt from ALG.
5 Find distribution αt ∈ ∆(vert(Ω̂)) such that Eψ∼αt

[ψ] = yt.
6 Sample ψt ∼ αt and let ϕt be an arbitrary element in the interior of −N (Ω̂, ψt).
7 Receive action set At, choose action at = arg mina∈At

⟨a, ϕt⟩, and receive loss ℓt ∈ [0, 1].
8 Send ℓt to ALG.

The procedure that reduces linear contextual bandits to linear bandits is outlined in Algorithm 1.
We also provide a visual illustration of Ω̂ and the main variables in the algorithm in Figure 1. In
the following discussion, let us assume for simplicity that the learner has perfect knowledge of Ω,
i.e., assume for now that Ω̂ = Ω. Then, according to Section 3, we can view the problem as linear
bandits over Ω ⊂ Rd. But when the linear bandit algorithm tells us to sample a point yt ∈ Ω, what
corresponding policy πt should we use in order to guarantee that Ψ(πt) = EA∼D[πt(A)] = yt? This
might be theoretically achievable if we knew D exactly, but even then the support of D might be too
large to make this computationally tractable. To resolve this, we make a key observation stated in the
following Lemma 2. In Lemma 2, we assume that D has a finite support and thus Ω is a polytope
with a finite number of vertices. However, we do not really need this assumption in our setting,
as we will eventually apply Lemma 2 on the empirical distribution D̃ = Uniform{A1, . . . ,AN},
which naturally has a finite support, and the set Ω̂ built on it according to (3). The error between the
empirical distribution D̃ and the true distribution D will be analyzed in Section 3.3.
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Figure 1: Illustration of Ω̂, yt, ψt and the normal cone −N (Ω̂, ψt).

Lemma 2. Fix any finite-support action-set distribution D and its corresponding linear bandit
feasible set Ω = {EA∼D[π(A)] : all possible policies π}. For any vertex ψ of Ω, we can find a
linear classifier policy πϕ such that EA∼D[πϕ(A)] = ψ. In fact, this holds for any interior point ϕ of
−N (Ω, ψ).

Proof of Lemma 2. Let ψ be a vertex of Ω and ϕ be an interior point of −N (Ω, ψ). Then there exists
ϕ such that for any ψ′ ∈ Ω, ψ′ ̸= ψ, ⟨ψ′ − ψ, ϕ⟩ > 0.

Let ψ̃ = EA∼D [πϕ(A)], and let π be a policy that ψ corresponds to under distribution D (i.e.,
EA∼D[π(A)] = ψ). Then 〈

ψ̃, ϕ
〉
= EA∼D [⟨πϕ(A), ϕ⟩]

= EA∼D

[
min
a∈A

(
a⊤ϕ

)]
≤ EA∼D

[
π(A)⊤ϕ

]
= ⟨ψ, ϕ⟩ .

Thus, it must be that ψ̃ = ψ. This finishes the proof.

Based on Lemma 2, we have the following strategy to execute yt. First, decompose yt as a convex
combination of extreme points of Ω, i.e., decompose yt as

∑
i αiψi where ψ1, ψ2, . . . are vertices of Ω,

and (α1, α2 . . .) is a distribution over them. Then for each ψi, find the corresponding ϕi ∈ −N (Ω, ψ)
according to Lemma 2. Finally, let πt be the policy that mix πϕ1 , πϕ2 , . . . with weights (α1, α2, · · · ).
This way, we have by Lemma 2,

EA∼D [πt(A)] = EA∼D

[∑
i

αiπϕi
(A)

]
=
∑
i

αiEA∼D [πϕi
(A)] =

∑
i

αiψi = yt.

This allows us to execute a policy πt such that EA∼D[πt(A)] = yt without explicit knowledge of
D ∈ ∆(2R

d

) but only knowledge of Ω ⊂ Rd. Notice that we do not have perfect knowledge of Ω, but
only the estimated feasible set Ω̂. However, exactly the same approach can be applied to Ω̂, resulting
in the design of Algorithm 1.

3.3 Bounding the error due to the discrepancy between Ω̂ and Ω

From Section 3.2, we know how to execute the linear contextual bandit algorithm by leveraging a
linear bandit procedure in Ω̂. However, there are errors due to the discrepancy between Ω̂ and Ω
which contribute to the final regret.

First, the loss estimator we constructed will be biased. Suppose that D̃ is the empirical distribution
based on N action sets that are drawn independently from D, and Ω̂ is constructed from them
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based on (3). When we sample a point yt ∈ Ω̂ and execute the corresponding policy πt such that
yt = EA∼D̃[πt(A)], the expected loss the learner observes is EA∼D[⟨πt(A), θt⟩] ̸= ⟨yt, θt⟩. This
means that from the viewpoint of the linear bandit problem on Ω̂, the feedback is misspecified. This
motivates us to develop a misspecification robust linear bandit algorithm (Definition 1) which allows
the feedback to not fully follow the standard linear bandit protocol. We elaborate more about this in
Section 3.4.

The second source of error comes from difference between the action sets Ω̂ and Ω. With the
misspecification-robust linear bandit algorithm on Ω̂, the learner has good regret bound on Ω̂.
However, the real regret we care about is on Ω. This requires us to bound the difference between the
two regret definitions:

Real regret on Ω that we care about: EA∼D[⟨πt(A), θt⟩]− EA∼D[⟨π(A), θt⟩],
Regret on Ω̂ that the robust linear bandit algorithm can bound: EA∼D̃[⟨πt(A), θt⟩]− EA∼D̃[⟨π(A), θt⟩].

Both errors discussed above can be related to the difference
supπ

∣∣EA∼D̃ [⟨π(A), θt⟩]− EA∼D [⟨π(A), θt⟩]
∣∣. This can further be bounded using Lemma 1,

where we establish uniform convergence over the set of all linear policies. According to Lemma 1,
we have with probability at least 1− δ, for all linear policies π,∣∣EA∼D̃ [⟨π(A), θt⟩]− EA∼D [⟨π(A), θt⟩]

∣∣ ≲√d log(NK/δ)

N
. (4)

This allows us to bound the two sources of errors mentioned above.

3.4 Robust Linear Contextual Bandits

As discussed in Section 3.3, we would like to develop a linear bandit algorithm that tolerates
misspecification. Although there is a rich related literature, most prior results are for the stochastic
linear bandit problem and do not apply here. For adversarial linear bandits that is misspecification
robust, we are only aware of the work by Neu and Olkhovskaya (2020) and Liu et al. (2024a).
However, the bound in Neu and Olkhovskaya (2020) has a worse T 2/3 regret, while the algorithms
of Liu et al. (2024a) are either computationally inefficient or highly sub-optimal. Fortunately, our
problem is slightly easier than that studied by Liu et al. (2024a), as our learner has knowledge of
the amount of misspecification ϵ, and this amount remains the same in all rounds. This allows us to
design the computationally efficient Algorithm 2 with an improved dependence on the amount of
misspecification.

Algorithm 2 is an adaptation of the clipped continuous exponential weight algorithm of Ito et al.
(2020): The qt in Line 3 of Algorithm 2 is the standard continuous exponential weights, while the q̂t
in Line 5 confines the support of qt within an ellipsoid centered around the mean. This is helpful
in obtaining a first-order bound (Ito et al., 2020). Sampling from q̂t can be done with standard
techniques for sampling from a log-concave distribution (to sample from qt) plus rejection sampling
(to correct the distribution to q̂t), which admits a poly(d,C, T ) computational complexity. See Ito
et al. (2020)’s Section 4.4 for a discussion on the computational complexity.

The key addition compared to (Ito et al., 2020) is the bonus term bt that ensures misspecification
robustness. This bonus encourages additional exploration, preventing the learner from being misled
by misspecified feedback. The form of the bonus for adversarial linear bandits was first developed
in the series of work (Lee et al., 2020; Zimmert and Lattimore, 2022) aimed at obtaining high-
probability bounds. Our use of the bonus is similar to Liu et al. (2024b), which tackles corruption
and misspecification. In the regret analysis, this bonus term creates a negative regret term that offsets
the regret overhead due to misspecification.

The guarantee of Algorithm 2 is given in the following theorem.

Theorem 2. Algorithm 2 is a
√
d-misspecification-robust linear bandit algorithm defined in Defini-

tion 1.

We remark that while there exist algorithms that are 1-misspecification-robust (Liu et al., 2024a),
their run time scales at least with the number of actions. Algorithm 2 achieves α-robustness with the
smallest α we are aware of among algorithms that run in poly(d,C, T ) time.

7



Algorithm 2: Misspecification-Robust Continuous Exponential Weights

1 Parameters: γ = 10 log(10dT ), β = T−4.
2 for t = 1, 2, . . . , T do
3 Define

qt(y) =
exp

(
−η
∑
τ<t

〈
y, θ̂τ − bτ

〉)
∫
Ω̂
exp

(
−η
∑
τ<t

〈
z, θ̂τ − bτ

〉)
dz
, xt = Ey∼qt [y], Σt = Ey∼qt [(y − xt)(y − xt)

⊤].

4

5 Define

q̂t(y) =
qt(y)I

{
∥y − xt∥2Σ−1

t

≤ dγ2
}

∫
Ω̂
qt(z)I

{
∥z − xt∥2Σ−1

t

≤ dγ2
}
dz
, Σ̂t = Ey∼q̂t [(y − xt)(y − xt)

⊤].

6 Sample yt ∼ q̂t and receive loss ct ∈ [0, 1].

7 Define θ̂t = (βI + Σ̂t)
−1(yt − xt)ct and

bt = 8η

(
ϵ+

1

T 2

)∑
τ<t

(θ̂τ − bτ ).

In fact, Algorithm 2 achieves an even more favorable small-loss regret bound, which can be leveraged
to obtain a small-loss bound for linear contextual bandits when the simulator is available. We discuss
this in Section 5.

3.5 Combining Everything and Using the Doubling Trick

Combining everything above, we are able to establish the regret bound for the linear contextual bandit
problem. The proof of the following theorem is in Appendix D.2.
Theorem 3. Algorithm 1 with ALG instantiated as a α-misspecification-robust linear bandit algo-
rithm ensures

E

[
T∑
t=1

⟨at, θt⟩

]
≤ min

π∈Π
E

[
T∑
t=1

⟨π(At), θt⟩

]
+ Õ

(
d
√
T + αTd

√
log(NKT )

N

)
.

Corollary 1 (Restatement of Theorem 1). Given access to a α-misspecification-robust adversar-
ial linear bandit algorithm ALG, Algorithm 1 with doubling trick achieves minπ∈Π RegT (π) ≤
Õ(d

√
T + αd

√
T logK) in adversarial linear contextual bandits without access to simulators.

Proof. We will use the doubling trick and restart Algorithm 1 at times 2, 4, 8, 16, . . ., each time using
the contexts received so far to estimate Ω̂. Thus, in the k-th epoch, Ω̂ is constructed by N = Θ(2k)
contexts, allowing us to bound the regret in epoch k as

Õ

(
d
√
2k + α2kd

√
log(NKT )

2k

)
= Õ

(
d
√
2k + αd

√
2k log(NKT )

)
using Theorem 3. Summing the regret over all epochs allows us to bound

min
π∈Π

RegT (π) ≤ Õ

log2 T∑
k=1

d
√
2k +

log2 T∑
k=1

αd
√
2k log(NKT )

 = Õ
(
d
√
T + αd

√
T logK

)
.

By instantiating ALG as Algorithm 2 (which is an
√
d-misspecification-robust algorithm by The-

orem 2) and invoking Corollary 1, we get the final regret bound as Õ(
√
d3T logK). As we can
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assume K ≤ T d without loss of generality (any action set can be discretized into no more than T d
points and incurs a negligible regret of d/T due to discretization error), the regret bound can be
further improved to Õ(min{d2

√
T ,
√
d3T logK}).

4 Computational Complexity

Algorithm 1 contains two steps, lines 5 and 6, for which it is not obvious whether they can be
implemented efficiently. We will now describe an approach to implement both steps in poly(d,C,N)
time, provided that conv(A) is a polytope that can be described by at most C linear constraints for
D-almost all A.

We start with the computational complexity of a separation oracle for Ω̂. We assume, without loss of
generality, that no two sets Ai and Aj in the construction of Ω̂ are equal; otherwise we can replace
them by a single set 2Ai, which will only decrease N . Thus, Ω̂ is the Minkowski sum of N convex
polytopes that, by assumption, can all be described by at most C constraints. For any x ∈ Rd, let

g(ϕ) = ϕ⊤x−max
x′∈Ω̂

ϕ⊤x′ = ϕ⊤x− 1

N

N∑
i=1

max
xi∈Ai

ϕ⊤xi.

If g(ϕ) > 0 for some ϕ, then ϕ gives a hyperplane that separates x from Ω̂; and if g(ϕ) ≤ 0 for all ϕ,
then x ∈ Ω̂. Since g is concave, and we can solve every subproblem maxxi∈Ai ϕ

⊤xi in poly(d,C)
time, we can maximize g in poly(d,N,C) time to obtain our separation oracle.

We then proceed with line 5 of Algorithm 1. To implement it, we need to be able to take any
point yt ∈ Ω̂ and find a distribution αt supported on the vertices of Ω̂ that we can sample from
efficiently. By Carathéodory’s theorem, any yt ∈ Ω̂ can be represented as a convex combination
of at most d + 1 vertices of Ω̂: yt =

∑k
l=1 αlvl for k ≤ d + 1 where all vl are vertices of Ω̂, and

α1, . . . , αk ≥ 0 with
∑
l αl = 1 can be interpreted as the probabilities of selecting the vertices.

This is a categorical distribution on at most d+ 1 points, from which we can sample in O(d) time
(assuming we have access to an oracle that provides samples from the uniform distribution on [0, 1]).
Thus the main challenge is to compute the vertices vl and the probabilities αl. By Corollary 14.1g) of
Schrijver (1986) (restated in Lemma 3), there exists an algorithm that can do both in time poly(d, h)
for any set Ω̂ given access to a separation oracle that runs in time O(h). As discussed above, we
have h of order poly(d,C,N), from which it follows that we can also find αl and sample from it in
poly(d,C,N) time.

After the sampling procedure has chosen a particular vertex ψt ∈ {v1, . . . , vk}, it remains to find
an interior point of the corresponding normal cone −N (Ω̂, ψt) to implement line 6. That is, we
need to find any ϕ such that ⟨ϕ, ψt − x⟩ < 0 for all x ∈ Ω̂. Strengthen this requirement slightly
to ⟨ϕ, ψt − x⟩ ≤ −ϵ for a small ϵ > 0. To find such a ϕ, we consider the convex function
f(ϕ) := maxx∈Ω̂⟨ϕ, ψt−x⟩, which measures the worst-case constraint violation of ϕ. For any given
ϕ, let x⋆ ∈ arg maxx∈Ω̂ ⟨ϕ, ψt − x⟩. Then x⋆ serves two purposes: first, it certifies whether the
constraint is violated (since ϕ is infeasible if ⟨ϕ, ψt − x⋆⟩ > −ϵ); second, the vector ψt − x⋆ is a
subgradient of f(ϕ) and thus defines a separating hyperplane that can guide the update of ϕ.

By Corollary 14.1a) of Schrijver (1986) (restated in Lemma 4) and assuming access to a separation
oracle for Ω̂, we can compute x⋆ in polynomial time. This gives a separation oracle for the feasible
region defined by the strict cone constraint. As a result, we can use the ellipsoid method (e.g.,
Grötschel et al. (1988), Chapter 3) to find a feasible ϕ in polynomial time. The total runtime is
poly(d,C,N).

5 Small-Loss Bound with Access to Simulator

The sub-optimal rate d2
√
T we obtained in Section 3 comes from the misspecification term α

√
dϵT

in the regret bound of robust linear bandits (Definition 1). While it is unclear how to further improve
α or ϵ, we demonstrate the power of our reduction by further assuming access to simulator: it not
only allows us to recover the minimax optimal regret d

√
T but also allows us to obtain a first-order

bound d
√
L⋆ when losses are non-negative, where L⋆ is the cumulative loss of the best policy.
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By the black-box nature of our reduction, what we additionally need is just a misspecification-robust
linear bandit algorithm with small-loss regret bound guarantee, formally defined as follows:
Definition 2 (α-misspecification-robust adversarial linear bandit algorithm with small-loss bounds).
A misspecification-robust linear bandit algorithm with small-loss bounds over action set Ω̂ ⊂ Rd has
the following property: with a given ϵ > 0 and the guarantee that every time the learner chooses
yt ∈ Ω̂, the loss received ct ∈ [0, 1] satisfies

|Et[ct]− ⟨yt, θt⟩ | ≤ ϵ,

the algorithm ensures

E

[
T∑
t=1

⟨yt, θt⟩

]
≤ min

y∈Ω̂

T∑
t=1

⟨y, θt⟩+ Õ

d
√√√√ T∑

t=1

⟨y, θt⟩+ α
√
dϵT

 . (5)

The next theorem shows that Algorithm 2 satisfies Definition 2 with α =
√
d.

Theorem 4. Algorithm 2 is a
√
d-misspecification-robust linear bandit algorithm with small-loss

bound defined in Definition 2.

With access to a misspecification-robust linear bandit algorithm with small-loss bounds, we have
Theorem 5. Given access to simulator that can generate free contexts, and access to an α-
misspecification-robust adversarial linear bandit algorithm with small-loss regret bound guarantee,
we can achieve minπ∈Π E [RegT (π)] ≤ Õ(d

√
L⋆) in adversarial linear contextual bandits, where

L⋆ = min
π∈Π

E

[
T∑
t=1

⟨π(At), θt⟩

]
is the expected total loss of the best policy. This is achieved with O(α2d2T 2) calls to the simulator.

The proof of Theorem 5 is very similar to Theorem 3, except that now, with access to the simulator,
we are able to make N in Theorem 3 large enough that the second term in Theorem 3 is negligible.
We provide the omitted proofs in Appendix E.

6 Conclusion and Open Questions

We have provided a general framework that reduces adversarial linear contextual bandits to
misspecification-robust linear bandits in a black-box manner. It achieves Õ(d2

√
T ) regret with-

out a simulator, and is the first algorithm we know of that handles combinatorial bandits with
stochastic action sets and adversarial losses efficiently. The requirement of misspecification robust-
ness stems from our need to use an approximate feasible set Ω̂ because we do not have direct access
to the exact feasible set Ω, which depends on the action set distribution D.

Three open questions are left by our work: First, can the computation cost be improved further to
match that of Neu and Valko (2014), who only require a linear optimization oracle for each action set,
and do not require a polynomial number of constraints? Second, can the regret be further improved to
the near-optimal Õ(d

√
T ) bound with a polynomial-time algorithm without simulators? Third, can

we achieve poly(d)
√
L⋆ regret without simulator? For the second question, one may try to generalize

the approach of Schneider and Zimmert (2023). For the third question, one idea is to establish a
Bernstein-type counterpart of Lemma 1, potentially drawing ideas from Bartlett et al. (2005); Liang
et al. (2015).

We expect that our approach has wider applications than adversarial linear contextual bandits. For
example, our approach may be generalized to linear MDPs with fixed transition and adversarial losses
(Luo et al., 2021; Sherman et al., 2023; Dai et al., 2023; Kong et al., 2023; Liu et al., 2024b) and
facilitate learning with exponentially large or continuous action sets.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: All claims made in the abstract and introduction either have formal proofs.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations and trade-offs for our results compared to the state-of-the-art are
provided in Table 1 and the introduction. Computational efficiency is discussed in Section 4.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: all theorems are backed up by formal proofs, either in the main paper or in the
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: This is a theory paper without experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper does not include experiments requiring data or code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This is theoretical work, which did not require human subjects or participants,
and involved no data. It contributes to the fundamental understanding of contextual bandits,
without any direct foreseeable negative societal impact. Mitigation measures were therefore
not applicable.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: This is theoretical work, which contributes to the fundamental understanding
of contextual bandits. The long term societal impact is too unpredictable to provide a
meaningful discussion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Comparison with Hanna et al. (2023)

Our work and Hanna et al. (2023) both reduce linear contextual bandits to linear bandits with
misspecification. The linear bandits the two works reduce to are slightly different. For comparison,
let A1, . . . ,AN be empirical action sets drawn from D, and define

Ω̂ =
{
Ψ̂(π)

∣∣∣π ∈ Π
}
, Ω̂lin =

{
Ψ̂(π)

∣∣∣π ∈ Πlin

}
, Ω̂ϵlin =

{
Ψ̂(π)

∣∣∣π ∈ Πϵlin

}
, (6)

where Ψ̂(π) = 1
N

∑N
i=1 π(Ai), Πlin is the set of linear policies defined in (1), and

Πϵlin =
{
πϕ
∣∣ ϕ ∈ ϵ-net of the unit ball in Rd

}
.

It holds that Ω̂ϵlin ⊂ Ω̂lin ⊂ Ω̂ because Πϵlin ⊂ Πlin ⊂ Π. The relation among the three sets in (6) is the
following: Ω̂lin is the boundary of Ω̂ (Lemma 2), and Ω̂ϵlin is a discretized subset of Ω̂lin. It has been
shown that there must exist an optimal policy in Πlin (see our arguments in Section 2.1), and that Πϵlin
must contain an ϵ-near-optimal policy (see (47) of Liu et al. (2023)).

Our work reduces the linear contextual bandit problem to linear bandits in Ω̂, while Hanna et al.
(2023) reduces it to linear bandits in Ω̂ϵlin. According to the discussion above, both suffice to
establish no regret guarantees against the optimal policy. The key difference lies in the computational
efficiency. As discussed in Section 4, Ω̂ is a polytope whose separation oracle can be implemented in
poly(d,C, T ) time, while in Hanna et al. (2023), Ω̂ϵlin is a set containing ( 1ϵ )

Θ(d) discrete points with
ϵ chosen as Θ( 1

T ). It remains open whether Ω̂ϵlin can be represented efficiently and whether Hanna
et al. (2023)’s algorithm can be implemented in polynomial time. In addition, our work operates on
the adversarial-loss setting, strictly generalizing Hanna et al. (2023)’s stochastic-loss setting.

A technical question related to the discussion above is whether we can apply the discretization idea
from Hanna et al. (2023) purely in the analysis but not in the algorithm, i.e., bounding the regret
overhead by the discretization error without restricting the learner’s policy to the discretized linear
policies. This would allow us to avoid the Rademacher complexity analysis (Lemma 1) and instead
use Hoeffding’s or Bernstein’s inequality combined with a union bound, possibly leading to an
improved regret bound. However, there is a key technical challenge: the mapping Ψ̂(πϕ) is not
continuous in ϕ, which prevents us from bounding ∥Ψ̂(πϕ)− Ψ̂(πϕ′)∥ by a constant times ∥ϕ− ϕ′∥,
where ϕ is an arbitrary point and ϕ′ is a point in the discretized set. This would leave us no control
on the performance of policies outside the set of discretized linear policies Πϵlin. As a result, we are
unable to derive a uniform convergence result analogous to Lemma 1 using this approach.

B Lemmas for Linear Programming

Lemma 3 (Corollaries 14.1f and 14.1g of Schrijver (1986)). Suppose P ⊂ Rd is a bounded polytope
defined by rational inequalities of size at most α, and for which there exists a separation oracle SEP.
There exists an algorithm that solves the following problem: for any rational x ∈ P , find vertices
x0, x1, . . . , xd ∈ P and λ0, λ1, . . . , λd ≥ 0 such that x =

∑d
i=0 λixi and

∑d
i=0 λi = 1, in time

polynomially bounded by d, α, the running time of SEP, and the size of the input x.
Lemma 4 (Corollary 14.1a of Schrijver (1986)). Suppose P ⊂ Rd is a polytope defined by rational
inequalities of size at most α, and for which there exists a separation oracle SEP. Then there exists
an algorithm that solves the linear optimization problem arg maxx∈P β

⊤x for any rational vector β
in time polynomially bounded by d, α, the running time of SEP, and the size of the input β.

C Proof of Lemma 1

Lemma 1 (Uniform Convergence). Consider any loss vector θ ∈ Rd, and suppose that |A| ≤
K and maxa∈A |⟨a, θ⟩| ≤ b almost surely. Then, for any δ ∈ (0, 1], uniformly over all linear
classifier policies πϕ, the difference in performance of πϕ on the sample A1, . . . ,AN and its expected
performance is at most

sup
ϕ∈Rd

∣∣∣〈Ψ(πϕ), θ
〉
−
〈
Ψ̂(πϕ), θ

〉∣∣∣ ≤ 2b

√
2d ln(NK2)

N
+ b

√
2 ln(4/δ)

N
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with probability at least 1− δ.

Proof. We will first reduce the result to a statement about uniform convergence for linear multiclass
classifiers with K classes and an unusual loss function. To this end, note first that we can assume
without loss of generality that A = {V1, . . . , VK}, where the V1, . . . , VK are random vectors in Rd.
(If A has fewer than K elements, then consider it as a multiset and add repetitions of one of its
elements.) We can assume all randomness in A is determined by an underlying random variable
Z and that Vy = −g(Z, y) for each ‘class’ y ∈ [K], where g is a class-sensitive feature map in the
sense of Shalev-Shwartz and Ben-David (2014, Section 17.2). Defining the linear multiclass classifier

cϕ(Z) = arg max
y∈[K]

⟨g(Z, y), ϕ⟩,

we then obtain the correspondence
πϕ(A) = Vcϕ(Z).

For any multiclass classifier c, let f(Z, c) = ⟨Vc(Z), θ⟩ be our ‘loss function’. Then

〈
Ψ(πϕ), θ

〉
= E

Z
[f(Z, cϕ)],

〈
Ψ̂(πϕ), θ

〉
=

1

N

N∑
i=1

f(Zi, cϕ).

We therefore need to show the following uniform convergence result, with probability at least 1− δ,

sup
c∈C

∣∣∣E[f(Z, c)]− 1

N

N∑
i=1

f(Zi, c)
∣∣∣ ≤ 2b

√
2d ln(NK2)

N
+ b

√
2 ln(4/δ)

N
(7)

for the class of linear multiclass classifiers

C =
{
cϕ | ϕ ∈ Rd

}
,

with loss function f . In order to establish (7), let S = (Z1, . . . , ZN ), and consider the empirical
Rademacher complexity

Rad(C, S) = 1

N
E

σ1,...,σN

[
sup
c∈C

N∑
i=1

σif(Zi, c)
]
,

where the σi are independent Rademacher random variables with Pr(σi = −1) = Pr(σi = +1) =
1/2. Since |f(Z, c)| ≤ b for c ∈ C by assumption, standard concentration bounds in terms of
Rademacher complexity imply that

sup
c∈C

∣∣∣E
Z
[f(Z, c)]− 1

N

N∑
i=1

f(Zi, c)
∣∣∣ ≤ 2 E

S′
[Rad(C, S′)] + b

√
2 ln(4/δ)

N
(8)

with probability at least 1− δ. (This follows, for instance, by observing that

sup
c∈C

|E
Z
[f(Z, c)]− 1

N

N∑
i=1

f(Zi, c)|

= max
{
sup
c∈C

E
Z
[f(Z, c)]− 1

N

N∑
i=1

f(Zi, c), sup
c∈C

E
Z
[−f(Z, c)]− 1

N

N∑
i=1

(−f(Zi, c))
}

and applying part 1 of Theorem 26.5 of Shalev-Shwartz and Ben-David (2014) separately to f and
−f to control both parts in the maximum separately using a union bound; then noting that f and −f
have the same Rademacher complexity.)

We proceed to bound the Rademacher complexity on the right-hand side of (8). First, let CS =
{(c(Z1), . . . , c(ZN )) | c ∈ C} denote the restriction of C to the sample S. Then

Rad(C, S) = Rad(CS , S) ≤ b

√
2 ln |CS |
N
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by Massart’s lemma (Shalev-Shwartz and Ben-David, 2014). As discussed by Shalev-Shwartz and
Ben-David (2014, Chapter 29), one possible generalization of the Vapnik-Chervonenkis dimension to
multiclass classification is Natarajan’s dimension NatDim(C). Natarajan’s lemma (Natarajan, 1989,
p. 93), (Shalev-Shwartz and Ben-David, 2014, Lemma 29.4) shows that

|CS | ≤ NNatDim(C)K2NatDim(C),

and, for linear multiclass classifiers, it is also known (Shalev-Shwartz and Ben-David, 2014, Theo-
rem 29.7) that

NatDim(C) ≤ d.

Putting all inequalities together, it follows that

sup
c∈C

∣∣∣E
Z
[f(Z, c)]− 1

N

N∑
i=1

f(Zi, c)
∣∣∣ ≤ 2b

√
2d ln(NK2)

N
+ b

√
2 ln(4/δ)

N

with probability at least 1− δ, as required.

D Omitted Details in Section 3

D.1 Robust Linear Bandits

Lemma 5 (Lemma 14 of Zimmert and Lattimore (2022)). Let F be a ν-self-concordant barrier for
A ⊂ Rd for some ν ≥ 1. Then for any x, u ∈ A,

∥x− u∥∇2F (x) ≤ γ′⟨x− u,∇F (x)⟩+ 6γ′ν

where γ′ = 8
3
√
3
+ 7

3
2

6
√
3ν

(γ′ ∈ [1, 4] for ν ≥ 1).

It is known that the continuous exponential weight algorithm is equivalent to FTRL with entropic
barrier as the regularizer together with a particular sampling scheme (Bubeck and Eldan, 2015;
Zimmert and Lattimore, 2022). We summarize the equivalence in the following lemma, the details of
which can be found in Zimmert and Lattimore (2022).
Lemma 6 (Facts from Bubeck and Eldan (2015), Zimmert and Lattimore (2022)). Consider Algo-
rithm 2. Let xt = Ey∼qt [y] and let F : A → R be the entropic barrier on A. Then we have

xt = arg min
y∈Ω̂

〈
y,
∑
τ<t

(
θ̂τ − bτ

)〉
+
F (y)

η
.

Furthermore,

∇F (xt) = −η
∑
τ<t

(θ̂τ − bτ ) and ∇2F (xt) =
(
Ey∼qt [(y − xt)(y − xt)

⊤]
)−1

.

Lemma 7 (Lemma 4, Ito et al. (2020)). Let qt, q̂t,Σt, Σ̂t be as defined in Algorithm 2. Then for any
f(y) : A → [−1, 1],

|Ey∼qt [f(y)]− Ey∼q̂t [f(y)]| ≤ 10d exp(−γ) ≤ 1

d5T 10
.

Furthermore,
3

4
Σt ⪯ Σ̂t ⪯

4

3
Σt.

Proof of Theorem 2. First, we decompose the regret as follows:

E

[
T∑
t=1

⟨yt − u, θt⟩

]

≤ E

[
T∑
t=1

⟨Ey∼qt [y]− u, θt⟩

]
+O(1)

= E

[
T∑
t=1

〈
xt − u, θ̂t − bt

〉]
︸ ︷︷ ︸

FTRL

+E

[
T∑
t=1

〈
xt − u, θt − θ̂t

〉]
︸ ︷︷ ︸

Bias

+E

[
T∑
t=1

⟨xt − u, bt⟩

]
︸ ︷︷ ︸

Bonus

+O(1).
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Bounding FTRL term The analysis for the FTRL term follows that in Ito et al. (2020). Specifically,
directly following their Lemma 5, Lemma 6, and the analysis below Lemma 6, we have the following:
as long as η∥θ̂t − bt∥Σt

≤ 1, we have

FTRL ≤ d log T

η
+ ηE

[
T∑
t=1

∥θ̂t − bt∥2Σt

]
+O(1)

≤ d log T

η
+ 2ηE

[
T∑
t=1

∥θ̂t∥2Σt
+ ∥bt∥2∇−2F (xt)

]
+O(1). (by Lemma 6)

For the two middle terms, we have

∥θ̂t∥2Σt
≤ (yt − xt)

⊤
(
βI + Σ̂t

)−1

Σt

(
βI + Σ̂t

)−1

(yt − xt)c
2
t

≤ 2(yt − xt)
⊤Σ−1

t (yt − xt)c
2
t (by Lemma 7)

≤ 2dγ2c2t , (by the truncation in the algorithm)

and

∥bt∥2∇F (xt)
=

(
2
√
dγϵ+

1

T 2

)2

∥∇F (xt)∥2∇−2F (xt)
≤ O

(
d2γ2ϵ2 +

1

T 2

)
,

where we used the fact that F (·) is a O(d) self-concordant barrier and thus ∥∇F (xt)∥2∇−2F (xt)
≤

O(d). Thus, since η ≤ 1
dγ2 , we have

FTRL ≤ d log T

η
+O

(
ηdγ2

T∑
t=1

c2t + ηTd2γ2ϵ2

)
.

Bounding Bias term Let E[ct] = y⊤t θt + ϵt(yt), where ϵt(y) is the amount of misspecification
when choosing y. By assumption, we have |ϵt(y)| ≤ ϵ for any y.

Et[θ̂t] = Et
[
(βI + Σ̂t)

−1(yt − xt)
(
y⊤t θt + ϵt(yt)

)]
= Et

[
(βI + Σ̂t)

−1(yt − xt)
(
(yt − xt)

⊤θt + ϵt(yt)
)]

+ Et
[
(βI + Σ̂t)

−1(yt − xt)x
⊤
t θt

]
= θt − β(βI + Σ̂t)

−1θt + Et
[
(βI + Σ̂t)

−1(yt − xt)ϵt(yt)
]
+ (βI + Σ̂t)

−1(x̂t − xt)x
⊤
t θt.

Using this we get∣∣∣〈xt − u, θt − Et[θ̂t]
〉∣∣∣

≤ β
∣∣∣(xt − u)⊤(βI + Σ̂t)

−1θt

∣∣∣+ ∣∣∣(xt − u)⊤Et
[
(βI + Σ̂t)

−1(yt − xt)ϵt(yt)
]∣∣∣︸ ︷︷ ︸

(⋆)

+
∣∣∣(xt − u)⊤(βI + Σ̂t)

−1(x̂t − xt)x
⊤
t θt

∣∣∣ . (9)

We handle (⋆) as follows:

(⋆) = Et
[√

(xt − u)⊤(βI + Σ̂t)−1(yt − xt)(yt − xt)⊤(βI + Σ̂t)−1(xt − u)ϵt(yt)2
]

≤
√

(xt − u)⊤(βI + Σ̂t)−1Et [ϵt(yt)2(yt − xt)(yt − xt)⊤] (βI + Σ̂t)−1(xt − u)

≤ ϵ

√
(xt − u)⊤(βI + Σ̂t)−1Σ̂t(βI + Σ̂t)−1(xt − u)

≤ ϵ∥xt − u∥(βI+Σ̂t)−1 .
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Continuing from (9), we get∣∣∣〈xt − u, θt − Et[θ̂t]
〉∣∣∣

≤ β∥xt − u∥(βI+Σ̂t)−1∥θt∥(βI+Σ̂t)−1 + ϵ∥xt − u∥(βI+Σ̂t)−1 + ∥xt − u∥(βI+Σ̂t)−1∥x̂t − xt∥(βI+Σ̂t)−1

≤
√
dβ∥xt − u∥(βI+Σ̂t)−1 + ϵ∥xt − u∥(βI+Σ̂t)−1 +

√
1

β
∥xt − u∥(βI+Σ̂t)−1∥x̂t − xt∥2,

where in the last inequality we use that ∥yt − xt∥(βI+Σ̂t)−1 ≤ 2∥yt − xt∥Σ−1
t

by Lemma 7 and the

assumption that ∥θt∥2 ≤
√
d.

By Lemma 7 we have ∥xt − x̂t∥ = ∥Ey∼qt [y] − Ey∼q̂t [y]∥ ≤
√
dd−5T−10. By the choice of

β = d−2T−4, we can bound the expectation of the sum of the last expression as

Bias ≤ E

[
T∑
t=1

∥xt − u∥(βI+Σ̂t)−1

(
ϵ+

1

T 2

)]
.

Bounding Bonus term Notice that with the equivalence established in Lemma 6, our bonus term
bt can also be written as

bt = −8

(
ϵ+

1

T 2

)
∇F (xt),

where F (·) is the entropic barrier on A. Using Lemma 5 and the fact that F (·) is an O(d)-self-
concordant barrier, we can bound

⟨xt − u, bt⟩ ≤ − (8ϵ+ 8/T 2)

4
∥xt − u∥∇2F (xt) + 6ϵν

= −
(
2ϵ+

2

T 2

)
∥xt − u∥∇2F (xt) +O(dϵ)

= −
(
2ϵ+

2

T 2

)
∥xt − u∥Σ−1

t
+O(dϵ)

≤ −
(
ϵ+

1

T 2

)
∥xt − u∥Σ̂−1

t
+O(dϵ). (by Lemma 7)

Thus,

Bonus ≤ E

[
−

T∑
t=1

(
ϵ+

1

T 2

)
∥xt − u∥Σ̂−1

t
+O (dTϵ)

]
.

Adding up all terms Adding up the three terms, we get

E

[
T∑
t=1

⟨yt − u, θt⟩

]
≤ d log T

η
+O

(
ηdγ2E

[
T∑
t=1

c2t

]
+ dTϵ

)
.

By the assumption ct ∈ [0, 1] and the assumption
∣∣Et [ct]− y⊤t θt

∣∣ ≤ ϵ, we can further bound the
right-hand side by

O

(
d log T

η
+ ηdγ2E

[
T∑
t=1

ct

]
+ dTϵ

)
≤ O

(
d log T

η
+ ηdγ2E

[
T∑
t=1

⟨yt, θt⟩

]
+ (d+ ηdγ2)Tϵ

)
.

Then, by rearranging, we find that

E

[
T∑
t=1

⟨yt − u, θt⟩

]
≤ O

(
d log T

η
+ ηdγ2

T∑
t=1

⟨u, θt⟩+ dTϵ

)
.

Choosing the optimal η, we further bound

E

[
T∑
t=1

⟨yt − u, θt⟩

]
= O

dγ
√√√√(log T )

T∑
t=1

⟨u, θt⟩+ dTϵ

 = Õ
(
d
√
T + dTϵ

)
. (10)

By Definition 1, this is a
√
d-misspecification-robust algorithm.
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D.2 Regret bound of LCB

Proof of Theorem 3. Let Π̂ be the set of linear policies created from the vertices of Ω̂, and let Π be
set of all linear policies.

The regret bound guaranteed by the α-misspecification-robust linear bandit problem is

E

[
T∑
t=1

⟨yt, θt⟩

]
≤ min

y∈Ω̂

T∑
t=1

y⊤θt + Õ
(
d
√
T + α

√
dϵT

)
(11)

for some α ≥ 1. By Lemma 2, we have

yt = EA∼D̃ [πt(A)] .

We further define

zt = EA∼D [πt(A)] , z⋆ = EA∼D [π⋆(A)] , y⋆ = EA∼D̃ [π⋆(A)] ,

where π⋆ ∈ Π is the final regret comparator. Define

ϵ = 4

√
d log(NKT/δ)

N
,

where N is the number of contexts used to construct Ω̂. Then by Lemma 1 we have
|⟨yt, θt⟩ − ⟨zt, θt⟩| ≤ ϵ and |⟨y⋆, θt⟩ − ⟨z⋆, θt⟩| ≤ ϵ with probability at least 1−δ for all t. Choosing
δ = 1

T 2 , we obtain

E

[
T∑
t=1

⟨zt, θt⟩

]
≤ E

[
T∑
t=1

⟨yt, θt⟩

]
+ Tϵ

≤
T∑
t=1

⟨y⋆, θt⟩+ Õ
(
d
√
T + α

√
dTϵ

)
(by (11))

≤
T∑
t=1

⟨z⋆, θt⟩+ Õ
(
d
√
T + α

√
dTϵ

)
=

T∑
t=1

⟨z⋆, θt⟩+ Õ

(
d
√
T + αdT

√
log(NKT )

N

)
.

This proves the theorem.

E Omitted Details in Section 5

Proof of Theorem 4. This is by the same proof as Theorem 2, just noticing that it actually achieves a
small-loss bound in (10).

Proof of Theorem 5. This is similar to the proof of Theorem 3, except that we replace (11) by

E

[
T∑
t=1

⟨yt, θt⟩

]
≤ min

y∈Ω̂

T∑
t=1

y⊤θt + Õ

d
√√√√ T∑

t=1

⟨y, θt⟩+ α
√
dϵT

 . (12)

Following the same steps, we get

E

[
T∑
t=1

⟨zt, θt⟩

]
≤

T∑
t=1

⟨z⋆, θt⟩+ Õ

d
√√√√ T∑

t=1

⟨z⋆, θt⟩+ αdT

√
log(NKT )

N

 , (13)
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where zt = EA∼D [πt(A)] and z⋆ = EA∼D [π⋆(A)].

Since the learner is given simulator access, she can draw N = Ω̃(α2d2T 2) samples and make the

last term in (13) be a constant. This will give a final regret bound of Õ
(
d
√∑T

t=1 ⟨z⋆, θt⟩
)

=

Õ(d
√
L⋆).
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