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Abstract
We introduce Stereo Risk, a new deep-learning
approach to solve the classical stereo-matching
problem in computer vision. As it is well-known
that stereo matching boils down to a per-pixel
disparity estimation problem, the popular state-
of-the-art stereo-matching approaches widely rely
on regressing the scene disparity values, yet via
discretization of scene disparity values. Such dis-
cretization often fails to capture the nuanced, con-
tinuous nature of scene depth. Stereo Risk departs
from the conventional discretization approach by
formulating the scene disparity as an optimal so-
lution to a continuous risk minimization problem,
hence the name “stereo risk”. We demonstrate
that L1 minimization of the proposed continuous
risk function enhances stereo-matching perfor-
mance for deep networks, particularly for dispar-
ities with multi-modal probability distributions.
Furthermore, to enable the end-to-end network
training of the non-differentiable L1 risk optimiza-
tion, we exploited the implicit function theorem,
ensuring a fully differentiable network. A compre-
hensive analysis demonstrates our method’s theo-
retical soundness and superior performance over
the state-of-the-art methods across various bench-
mark datasets, including KITTI 2012, KITTI
2015, ETH3D, SceneFlow, and Middlebury 2014.

1. Introduction
Stereo matching is one of the most important problems in
the field of computer vision (Hoff & Ahuja, 1989; Kang
et al., 1995; Scharstein & Szeliski, 2002; Szeliski, 2022).
It involves the analysis of a pair of rectified stereo images,
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Figure 1. Qualitative Comparison. Comparison with state-of-the-
art methods such as IGEV (Xu et al., 2023), DLNR (Zhao et al.,
2023) on Middlebury dataset. All methods are trained only on
SceneFlow (Mayer et al., 2016), and evaluated at quarter resolution.
It can be observed that our method generalizes and predicts high-
frequency details better than state-of-the-art methods.

captured concurrently, with the objective of determining
the pixel-level displacement map from the left image to the
corresponding location in the right image, a representation
commonly referred to as a “disparity map”. In the context
of rectified image pairs, the stereo matching problem can be
conceptualized as a well-structured one-dimensional search
problem in the image space (Szeliski, 2022). The utility
of stereo camera systems is underscored by their efficacy
and cost-effectiveness, leading to their widespread adoption
in diverse commercial and industrial applications. Notably,
these applications encompass domains such as autonomous
navigation (Fan et al., 2020; Bimbraw, 2015), smartphone
technology (Meuleman et al., 2022; Luo et al., 2020; Pang
et al., 2018), and various forms of robotic vision based
automation systems (Kim et al., 2021; Liu et al., 2023b;a;
Jain et al., 2023; 2024; Kaya et al., 2023).

Classical stereo matching methods—often categorized as
local methods, use a predefined support window to find
suitable matches between stereo image pair (Scharstein &
Szeliski, 2002; Hirschmuller, 2007). Yet, approaches that
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optimize for all disparity values using a global cost func-
tion were observed to provide better results (Kolmogorov
& Zabih, 2001; Klaus et al., 2006; Bleyer et al., 2011; Ya-
maguchi et al., 2014). In recent years, the proliferation
of high-quality, large scale synthetic ground-truth datasets,
the availability of high-performance GPUs, and advance-
ments in deep learning architectures have paved the way for
deep-learning based stereo matching models trained within
supervised settings. These models have shown a substantial
improvement in accuracy compared to classical methods
(Kendall et al., 2017a; Chang & Chen, 2018; Zhang et al.,
2019; Lipson et al., 2021). Nevertheless, one fundamental
challenge still remains, i.e., how to model continuous scene
disparity values given only a limited number of candidate
pixels to match? After all, the scene is continuous in nature.

Numerous recent studies have undertaken the challenge of
predicting continuous scene disparities, classifiable into two
main categories: (i) Regression-based approaches predict
a real-valued offset by neural networks for each hypoth-
esis of discrete disparity. The offset is then added to the
discrete disparity hypothesis as the final continuous pre-
diction. Typical examples include RAFT-Stereo (Lipson
et al., 2021), CDN (Garg et al., 2020), and more recently
IGEV (Xu et al., 2023) and DLNR (Zhao et al., 2023). (ii)
Classification-based approaches first estimate the categor-
ical distribution1 for the discrete disparity hypotheses and
then take the expectation value of the distribution as the
final disparity, which can be any arbitrary real value even
though the categorical distribution is discrete (Kendall et al.,
2017a; Chang & Chen, 2018; Zhang et al., 2019).

In this paper, we aim to address the importance of continu-
ous disparity modeling in stereo matching, given the cate-
gorical distribution of disparity hypotheses. We introduce
a new perspective on the disparity prediction problem by
framing it as a search problem of finding the minimum risk
(Lehmann & Casella, 1998; Vapnik, 1991; Berger, 2013) of
disparity values. Specifically, we define stereo risk as the
average prediction error concerning all possible values of
the ground-truth disparity. Since the ground-truth disparity
is unavailable when making the prediction, we approximate
it using the disparity hypotheses with a categorical distribu-
tion. We search for a disparity value as our prediction that
achieves minimal overall risk involved with it. Furthermore,
we show that the commonly used disparity expectation can
be viewed as a specific instance of the L2 error function
of the proposed risk formulation framework. Yet, L2 error
function approach, despite easy to optimize, is sensitive
to multi-modal distribution and leads to overly smooth so-
lutions (Chen et al., 2019; Tosi et al., 2021). Thus, we

1A categorical distribution is a discrete probability distribution
that describes the possible results of a random variable that can
take on the K possible categories, with the probability of each
category separately specified.

introduce L1 error function approach to risk minimization,
offering potential benefit over L2 limitations.

Nevertheless, our choice to use L1 risk for model training
leads to one practical problem, i.e., it’s closed-form solution
remains elusive. As a result, we embark on the pursuit of a
solution by means of derivative computations applied to our
novel risk function, followed by its continuous optimization.
Our approach involves interpolating the disparity categorical
distribution leading to defining a continuous probability den-
sity function. Subsequently, we introduce a binary search
algorithm designed to efficiently identify the optimal dispar-
ity that minimizes the proposed risk. To facilitate end-to-end
network training, we introduce the use the implicit function
theorem (Krantz & Parks, 2002) to compute the backward
gradient of the final disparity concerning the categorical
distribution. All these methodological choice ensures the
better model training while optimizing the proposed risk.

Upon evaluations, our approach shows superior perfor-
mance compared to many state-of-the-art methods on bench-
mark datasets such as SceneFlow (Mayer et al., 2016),
KITTI 2012 & 2015 (Geiger et al., 2012; Menze & Geiger,
2015). Moreover, our approach achieves significantly bet-
ter cross-domain generalization, as observed on Middlebury
(Scharstein & Szeliski, 2002), ETH 3D (Schöps et al., 2017),
and KITTI 2012 & 2015. An example of qualitative compar-
ison is given in Fig. 1. Ablation studies confirm the effec-
tiveness of risk minimization, not only within the proposed
network but also in the context of general stereo-matching
networks, such as ACVNet (Xu et al., 2022) and PCWNet
(Shen et al., 2022). We believe our work not only advances
stereo matching in computer vision but also holds promise
for its integration to robotics and control via risk analysis.

2. Related Work
(i) Deep Stereo Matching. In recent years, there has been a
substantial enhancement in the accuracy of stereo matching
due to the adoption of deep learning-based methodologies.
As a result, the pursuit of designing robust and efficient
network architectures for stereo matching has emerged as
a prominent area of research. For instance, Zbontar et al.
(Zbontar & LeCun, 2015) harnessed deep convolutional net-
works to acquire discriminative features for image patches.
DispNetCorr (Mayer et al., 2016) introduced explicit corre-
lation within networks to construct cost volumes. GCNet
(Kendall et al., 2017a) employed volume concatenation and
refined it through 3D convolution. PSM-Net (Chang &
Chen, 2018) leveraged spatial pyramid pooling (Zhao et al.,
2017) and stacked hourglass networks (Newell et al., 2016)
to capture contextual information. STTR (Li et al., 2021)
extended the flexibility of disparity range by employing
transformers (Vaswani et al., 2017; Dosovitskiy et al., 2021).
Furthermore, considerations pertaining to the uniqueness
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Figure 2. Difference between the expectation based approach and our method. In (a) the pixel in the red circle is located at the
boundary of the chair, thus the disparity distribution has multiple modes. (b) and (c) shows the discrete distribution of disparity hypotheses
in orange bars. In (b) the prediction obtained by averaging is blurred and far from any of the modes. In (c) we obtained the optimal
solution under L1 norm, which is more robust and closer to the ground truth. The green curve is the interpolated probability density.

constraint were addressed using optimal transport (Cuturi,
2013). ACVNet (Xu et al., 2022) incorporated attention
mechanisms to weight matching costs, further contributing
to the advancement of stereo matching methodologies.

Another line of research is to improve efficiency. In GANet
(Zhang et al., 2019) the computationally costly 3D convolu-
tions are replaced by the differentiable semi-global aggrega-
tion (Hirschmuller, 2007). GWCNet (Guo et al., 2019) con-
structs the cost volume by group-wise correlation. AANet
(Xu & Zhang, 2020) proposes the adaptive cost aggrega-
tion to replace the 3D convolution for efficiency. AnyNet
(Wang et al., 2019), DeepPruner (Duggal et al., 2019), HIT-
Net (Tankovich et al., 2021), CasMVSNet (Gu et al., 2020),
PCWNet (Shen et al., 2022) and Bi3D (Badki et al., 2020)
prune the range of disparity in the iterative manner. RAFT-
Stereo (Lipson et al., 2021), CREStereo (Li et al., 2022),
IGEV (Xu et al., 2023) and DLNR (Zhao et al., 2023) use
recurrent neural networks (Cho et al., 2014) to predict and
refine the disparity iteratively.

Inspired by CasMVSNet (Gu et al., 2020), our network
consists of two stages one to predict and other to refine the
disparity map. This hierarchical design reduces the time
and memory cost, while keeping the matching accuracy.

(ii) Continuous Disparity by Classification. In deep net-
works featuring cost volumes, the prevalent method for pre-
dicting disparity from these volumes involves the weighted
average operation, commonly referred to as expectation.
For instance, (Chen et al., 2019) find the average operation
suffers from the over-smoothing problem, introducing the
concept of a single-modal weighted average. (Garg et al.,
2020) propose to predict a continuous offset to shift the
distribution modes of disparity. Furthermore, they gener-
ate multi-modal ground truth disparity distributions and
supervise the network to learn the distribution by Wasser-
stein distance. SMD-Net (Tosi et al., 2021) exploit bimodal

mixture densities as output representation for disparities.
UniMVSNet (Peng et al., 2022) aimed to unify the benefit
of both classification and regression by introducing a novel
representation and a unified focal loss. Yang et al. (Yang
et al., 2022) tackled the multi-modal issue by utilizing the
top-K hypotheses for disparity. On the contrary, we propose
to minimize the risk under L1 norm to capture continuous
disparity and solve the multi-modal problem. Moreover, our
approach can be trained in an end-to-end manner.

(iii) Robustness and Cross-Domain Generalization. Ex-
isting real-world stereo datasets are small and insufficient to
train deep neural networks for possible variations at test
time, thereby making network robust and apt for cross-
domain generalization. In this spirit, Tonioni et al. (2017;
2019a;b) fine tune the stereo matching networks on the tar-
get domain via unsupervised loss. Liu et al. (2020) jointly
optimize networks for domain translation and stereo match-
ing during training. Zhang et al. (2020); Song et al. (2021)
normalize features to reduce domain shifts. Cai et al. (2020);
Liu et al. (2022a) design robust features for stereo matching.
Liu et al. (2022b) shows that the cost volume built by cosine
similarity generalizes better. Zhang et al. (2022) apply the
stereo contrastive loss and selective whitening loss to im-
prove feature consistency. Chang et al. (2023) proposed the
hierarchical visual transformation to learn invariant robust
representation from synthetic images. Our approach can
be combined with above methods to further improve the
robustness. Yet, we present a novel perspective to improve
robustness by L1 risk minimization.

3. Method
3.1. Probability Modeling for Continuous Disparity

For each pixel in the left image, suppose the possible dis-
parities are in the range of [dmin, dmax]. Conventional stereo
matching algorithms typically calculate a cost function that
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can equate to a probability mass function (PMF) with a finite
set of disparities d = [d1, ..., dN ]T . It computes a discrete
distribution pm = [pm1 , ..., pmN ]T , where di ∈ [dmin, dmax]
and pmi is the probability that the ground truth disparity is
di. The pm must satisfy pmi ≥ 0 and

∑
i p

m
i = 1.

The discrete formulation reasons the probability only at a
finite set of disparities. Yet, in real-world applications, the
ground-truth disparity is continuous. Thus, we propose to
interpolate the discrete distribution via Laplacian kernel,
and compute the probability density function of disparity
x ∈ R as

p(x;pm) =

N∑
i

k(x, di)p
m
i , (1)

here k(x, di) is defined as 1
2σ exp− |x−di|

σ , and σ is the
hyper-parameter for bandwidth. The above density function
is valid as p(x;pm) ≥ 0 for ∀ x ∈ R and

∫
p(x;pm)dx =

1. An illustration of the interpolation is shown in Fig. 2
(c). The orange bars represent the given discrete distribution
pm, and the green curve is the interpolated density function.
Later, we show that such a continuous modeling enable us
to compute derivative of the proposed stereo risk function.

3.2. Risk in Stereo Matching

To choose a value as the final prediction, we propose to
minimize the following risk:

argminyF (y,pm) = argminy

∫
L(y, x)p(x;pm)dx

(2)
where F (y,pm) is called as the risk at y, and L(y, x) is the
error function between y and x. By risk we mean that if
we take y as predicted disparity, how much error there shall
be with respect to the ground truth. Since the exact ground
truth is unavailable at the time for making the prediction, we
average the error across all possible ground-truth disparities
with the distribution p(x;pm).

Previous methods usually compute the expectation value of
x as the final prediction for the disparity:

y =

∫
xp(x;pm)dx. (3)

We want to point out that we can arrive at the same predic-
tion by using squared L2 norm loss as L(y, x) in Eq.(2),
i.e., argminyF (y,pm) =

∫
xp(x;pm)dx if L(y, x) =

(y − x)2. Nevertheless, it is well known that the L2 norm is
not robust to outliers. As an example, in Fig. 2 (b) it can be
observed that the estimated expectation is inaccurate when
there are multiple modes in the distribution. And therefore,
we resort to L1 norm of L(y, x) in Eq.(2), i.e.,

argminyF (y,pm) = argminy

∫
|y−x|p(x;pm)dx. (4)

Algorithm 1 Forward Prediction
input τ > 0, σ > 0, d = [d1, ..., dN ], d1 < d2 < · · · <

dN , and pm = [pm1 , ..., pmN ]
dl ← d1
dr ← dN
g ← τ + 1
while |g| > τ do

dm ← (dl + dr)/2.0

g ←
∑

i p
m
i Sign(dm − di)(1− exp− |dm−di|

σ )
if g > 0 then
dr ← dm

else
dl ← dm

end if
end while

output dm

Given the distribution p(x;pm) of the disparity, the optimal
y will minimize the L1 error with respect to all possible dis-
parities weighted by the corresponding probability density.
As shown in Fig. 2 (c), our final prediction is more robust
to the incorrect modes and closer to the ground truth.

3.3. Differentiable Stereo Risk Minimization

Obtaining a minimal risk solution to Eq.(4) seems difficult
as it is challenging to derive its closed form formulation. So,
performing end-to-end learning with deep network seems
difficult. To this end, we put forward an approach that
enable end-to-end learning of the network as follows:

(i) Forward Prediction. Given a discrete distribution pm,
we find the optimal y for Eq.(4) based on the following two
observations. Firstly, the target function F (y,pm) is convex
with respect to y, hence we compute the optimal solution
where ∂F/∂y = 0, i.e.,

G(y,pm) ≜
∂F (y,pm)

∂y
(5)

=
∑
i

pmi Sign(y − di)(1− exp−|y − di|
σ

) = 0 (6)

where Sign() is the sign function (a slight abuse of notation).
Sign() can be thought of as an indicator function, i.e., it
is 1 if y > di and −1 otherwise. Secondly, the second-
order derivative ∂2F/∂2y ≥ 0, indicating that the first-order
derivative is a non-decreasing function. We find the optimal
disparity, i.e., the zero point of G(y,pm), by binary search,
as shown in Algorithm 1. In all our experiments, we set
σ = 1.1 and τ = 0.1. For N disparity hypotheses, the
binary search algorithm can find the optimal solution with
time complexity of O(logN) (Cormen et al., 2009).

(ii) Backward Propagation. Our approach to forward pre-
diction for solving Eq.(4) contains non-differentiable op-
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Figure 3. Overall pipeline (Left to Right). We first extract multi-scale features from left and right images respectively. The subsequent
procedures are divided into two stages. In the coarse stage —shown in orange arrow, we sample disparity hypotheses uniformly and
match on 1/4-resolution features. While in the refined stage—shown in green arrow, to match 1/2-resolution features efficiently. Disparity
hypotheses are sampled centering around the disparity predicted from the coarse stage. In both stages, we first construct cost volumes by
concatenation, and then apply the stacked hourglass networks to aggregate the matching cost, and finally search for the disparity that
minimizes the proposed L1 risk in Eq.(4).

erations —refer Algorithm 1. Yet, to enable end-to-end
training, we have to compute dy/dpm to propagate the gra-
dient backward. Now, since G(y,pm) ≡ 0 at the optimal
y, we obtain the following via use of Implicit Function
Theorem (Krantz & Parks, 2002):

dG(y,pm) =
∂G

∂y
dy +

∂G

∂pm
dpm = 0. (7)

By organizing the terms, we obtain

dy

dpm
= −∂G/∂pm

∂G/∂y
(8)

= [. . . ,
σSign(di − y)(1− exp− |y−di|

σ )∑
j p

m
j exp− |y−dj |

σ

, . . .]T ,

(9)

showing the back-propagation computation. Here, we clip
the denominator

∑
j p

m
j exp− |y−dj |

σ in the above equation
to be no less than 0.1 to avoid large gradients.

3.4. Network Architecture

To find the disparity value, we match the image patches of
left and right images by constructing stereo cost volumes
as done in Kendall et al. (2017b); Chang & Chen (2018).
Yet, an exhaustive matching requires extensive memory
and computation. So, for efficiency, we adopt a cascade
structure following Gu et al. (2020). Categorically, we first
sample the disparity hypothesis by a coarse matching at low-
resolution image features. This reduces the search space to
a large extent. Next, we refine the sampled hypothesis at
high-resolution image features.

Fig. 3 shows the overall network architecture details. For
clarity on our design choices, we explain the network com-
ponents in five module as follows2:

(a) Feature Extraction. Given an input image, the module
aims to output multi-scale 2D feature maps. Specifically,
we first use a ResNet (He et al., 2016) to extract 2D feature
maps of resolution 1/4 and 1/2 with respect to the input
image. The ResNet contains 4 stages of transformation with
3, 16, 3, 3 residual blocks, respectively. The spatial resolu-
tion is downsampled before the beginning of the first and
third stages of transformation. Next, we apply the spatial
pyramid pooling (Zhao et al., 2017) on the 1/4-resolution
feature map from the fourth stage to enlarge the receptive
field. In the end, we upsample the enhanced feature map
from 1/4 to 1/2 and fuse it with the 1/2-resolution feature
map from ResNet. The final outputs are the feature maps
of 1/4 and 1/2 resolution. We apply the same network and
weights to extract features from left and right images.

(b) Disparity Hypotheses Sampling. The disparity hy-
potheses provide the candidates of pixel pairs to match. In
the coarse stage, we uniformly sample 192 hypotheses in
the range 0 to maximum possible disparity. In the refined
stage, we reduce the sampling space according to the pre-
dicted disparity from the coarse stage. Concretely, for each
pixel we sample 16 hypotheses between the minimum and
maximum disparity in the local window of size 12× 12.

(c) Matching. We match the 2D feature maps from the
left and right images according to the sampled disparity

2More details are provided in the Appendix
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Table 1. Comparison with state-of-the-art on SceneFlow test set. The 1st and 2nd bests are in red and blue, respectively. Ours in bold.
METHOD PARAM (M) TIME (S) EPE ↓ > 0.5PX ↓ > 1PX ↓ > 2PX ↓
CFNET (SHEN ET AL., 2021) 21.98 0.13 1.04 15.91 10.30 6.89
PCWNET (SHEN ET AL., 2022) 34.27 0.25 0.90 17.59 8.08 4.57
ACVNET (XU ET AL., 2022) 6.84 0.16 0.47 9.70 5.00 2.74
DLNR (ZHAO ET AL., 2023) 54.72 0.44 0.53 8.75 5.44 3.44
IGEV (XU ET AL., 2023) 12.60 0.36 0.47 8.51 5.21 3.26
OURS 11.96 0.35 0.43 8.10 4.22 2.34

Table 2. Comparison with state-of-the-art methods on KITTI 2012 Benchmark. † denotes using extra data for pre-training. The first and
second bests are in red and blue respectively. Our method in bold. The results are obtained from KITTI official website.

METHOD PARAM (M) TIME (S) > 2PX > 3PX
NOC ALL NOC ALL

LEASTEREO (CHENG ET AL., 2020) 1.81 1.90 2.39 1.13 1.45
CFNET (SHEN ET AL., 2021) 21.98 0.12 1.90 2.43 1.23 1.58
ACVNET (XU ET AL., 2022) 6.84 0.15 1.83 2.34 1.13 1.47
ACFNET (CHEN ET AL., 2021) 1.83 2.35 1.17 1.54
NLCA-NET V2 (RAO ET AL., 2022) 1.83 2.34 1.11 1.46
CAL-NET (CHEN ET AL., 2021) 1.74 2.24 1.19 1.53
CRESTEREO (LI ET AL., 2022) † 1.72 2.18 1.14 1.46
LAC+GANET (LIU ET AL., 2022A) 9.43 1.72 2.26 1.05 1.42
IGEV (XU ET AL., 2023)† 12.60 0.32 1.71 2.17 1.12 1.44
PCWNET (SHEN ET AL., 2022) 34.27 0.23 1.69 2.18 1.04 1.37
OURS 11.96 0.32 1.58 2.20 1.00 1.44

hypothesis. The features at each pair of candidates pixels
for matching will be concatenated along the channel di-
mension, which forms a 4D stereo cost volume (feature×
disparity×height×width). In the coarse stage, we match
the feature map of 1/4 resolution for efficiency. To capture
high-frequency details, we match the 1/2-resolution feature
map in the refined stage.

(d) Cost Aggregation. We use the stacked hourglass archi-
tecture (Newell et al., 2016) to transform the stereo cost
volume and aggregate the matching cost. For the coarse and
refined stages, the structures are same except for the number
of feature channels. Specifically, the network consists of
three 3D hourglasss as in (Chang & Chen, 2018). Each
hourglass first downsamples the volume hierarchically to
1/2 and 1/4 resolution with respect to the input volume, and
then upsample in sequence to recover the resolution. This
procedure helps aggregate information across various scales.
The final output is a volume that represents the discrete
distribution of disparity hypotheses.

(e) Risk Minimization. This module applies Alg. 1 to
compute the optimal continuous disparity for each pixel
given the discrete distribution of disparity hypotheses. At
train time, we additionally compute the gradient according
to Eq.(9) to enable backward propagation.

3.5. Loss Function

Given the predicted disparity xpred ∈ R and the ground-
truth disparity xgt ∈ R, we compute the smooth L1 loss
as

L(xgt, xpred) =

{
0.5(xgt − xpred)2, if |xgt − xpred| < 1.0

|xgt − xpred| − 0.5, otherwise
(10)

We apply the above loss function to the predicted disparities
from both the coarse and refined stages, and obtain Lcoarse
and Lrefined, respectively. The total loss is thus defined as
L = 0.1 ∗ Lcoarse + 1.0 ∗ Lrefined.

4. Experiments and Results
Implementation Details. We implement our method in Py-
Torch 2.0.1 (Python 3.11.2) with CUDA 11.8. The software
is evaluated on a machine with GeForce-RTX-3090 GPU.
Datasets. We perform experiments on four datasets namely
SceneFlow (Mayer et al., 2016), KITTI 2012 & 2015
(Geiger et al., 2012; Menze & Geiger, 2015), Middlebury
2014 (Scharstein & Szeliski, 2002), and ETH 3D (Schöps
et al., 2017). (a) SceneFlow is a synthetic dataset containing
35,454 image pairs for training, and 4,370 image pairs for
test. (b) KITTI 2012 & 2015 are captured for autonomous
driving. There are 194 training image pairs and 195 test
image pairs in KITTI 2012. For KITTI 2015, there are 200
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Table 3. Comparison with state-of-the-art methods on KITTI 2015 Benchmark. † denotes using extra data for pre-training. The first and
second bests are in red and blue respectively. Our method in bold. The results are obtained from KITTI official website.

METHOD PARAM (M) TIME (S) ALL NOC
D1 BG D1 FG D1 ALL D1 BG D1 FG D1 ALL

LEASTEREO (CHENG ET AL., 2020) 1.81 1.40 2.91 1.65 1.29 2.65 1.51
CFNET (SHEN ET AL., 2021) 21.98 0.12 1.54 3.56 1.88 1.43 3.25 1.73
ACVNET (XU ET AL., 2022) 6.84 0.15 1.37 3.07 1.65 1.26 2.84 1.52
ACFNET (CHEN ET AL., 2021) 1.51 3.80 1.89 1.36 3.49 1.72
NLCA-NET V2 (RAO ET AL., 2022) 1.41 3.56 1.77 1.28 3.22 1.60
CAL-NET (CHEN ET AL., 2021) 1.59 3.76 1.95 1.45 3.42 1.77
CRESTEREO (LI ET AL., 2022) † 1.45 2.86 1.69 1.33 2.60 1.54
LAC+GANET (LIU ET AL., 2022A) 9.43 1.44 2.83 1.67 1.26 2.64 1.49
IGEV (XU ET AL., 2023) † 12.60 0.32 1.38 2.67 1.59 1.27 2.62 1.49
DLNR (ZHAO ET AL., 2023) 54.72 0.39 1.60 2.59 1.76 1.45 2.39 1.61
PCWNET (SHEN ET AL., 2022) 34.27 0.23 1.37 3.16 1.67 1.26 2.93 1.53
CROCO (WEINZAEPFEL ET AL., 2023)† 417.15 1.38 2.65 1.59 1.30 2.56 1.51

OURS 11.96 0.32 1.40 2.76 1.63 1.25 2.62 1.48

training image pairs and 200 test image pairs. (c) Middle-
bury 2014 is an indoor dataset including 15 image pairs for
training. (d) ETH 3D is a gray-scale dataset providing 27
image pairs for training.
Training Details. We train our network on SceneFlow. The
weight is initialized randomly. We use AdamW optimizer
(Loshchilov & Hutter, 2019) with weight decay 10−5. The
learning rate decreases from 2×10−4 to 2×10−8 according
to the one cycle learning rate policy. We train the network
for 2 × 105 iterations. The images are randomly cropped
to 320 × 736. For KITTI 2012 & 2015 benchmarks, we
further fine tune the network on the training image pairs for
2.5× 103 iterations. The learning rate goes from 5× 10−5

to 5 × 10−9 over iterations. More details are provided in
the Appendix.

Table 4. Cross-domain evaluation on Middlebury train set of quar-
ter resolution. † denotes using extra data for pre-training. The first
and second bests are in red and blue respectively. All methods
are trained on SceneFlow and evaluated on Middlebury train set
without fine-tuning.

METHOD
> 0.5PX > 1PX

NOC ALL NOC ALL

CFNET 29.50 34.30 17.85 22.16
ACVNET 39.04 42.97 22.68 26.49
DLNR 19.43 23.75 10.16 13.76
IGEV † 19.05 23.33 10.44 14.05
PCWNET 33.33 38.00 16.80 21.36

OURS 19.22 23.33 9.32 12.63

4.1. In-Domain Evaluation

Tab.(1), Tab.(2) and Tab.(3) provide statistical comparison
results with the competing methods on SceneFlow, KITTI
2012, and KITTI 2015 bechmarks, respectively. All the

methods have been trained and fine-tuned on the correspond-
ing training set. For SceneFlow test set, our proposed ap-
proach shows the best results over all the evaluation metrics.
Particularly, we reduce > 1px error from 5.00 to 4.22, and
> 0.5px error from 8.51 to 8.10. For KITTI 2012 & 2015
benchmarks, the matching accuracy of our approach in the
non-occluded regions rank the first among the published
methods. Especially, in KITTI 2012, we reduce the > 2px
error in non-occluded regions by 0.11.

Table 5. Cross-domain evaluation on ETH 3D train set. † denotes
using extra data for pre-training. The first and second bests are in
red and blue respectively. All methods are trained on SceneFlow
and evaluated on ETH 3D train set without fine-tuning.

METHOD
> 0.5PX > 1PX

NOC ALL NOC ALL

CFNET 15.57 16.24 5.30 5.59
ACVNET 21.83 22.64 8.13 8.81
DLNR 18.66 19.07 13.11 13.39
IGEV † 9.83 10.39 3.60 4.05
PCWNET 18.25 18.88 5.17 5.43

OURS 7.90 8.59 2.41 2.71

4.2. Cross-Domain Generalization

For this experiment, we compare the methods when dealing
with environments never seen in the train set. Specifically,
all methods are trained only on SceneFlow training set, and
then evaluated on the Middlebury, ETH 3D and KITTI 2012
& 2015 train set, “without” fine-tuning.

The statistical comparison results are shown in Tab.(4),
Tab.(5), Tab.(7), and Tab.(8). Our proposed approach
achieves the first or the second best accuracies under all
the evaluation metrics on the 4 real-world datasets. Particu-
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Table 6. Ablation studies on Middlebury training set of quarter resolution. The first and second bests are in red and blue respectively. Our
method in bold. All methods are trained on SceneFlow and evaluated on Middlebury training set without fine-tuning.

BACKBONE TRAINING TEST PARAM (M) TIME (S) > 1PX > 2PX
NOC ALL NOC ALL

ACVNET
EXPECTATION EXPECTATION 6.84 0.12 22.68 26.49 13.54 16.49
EXPECTATION L1-RISK 6.84 0.18 22.32 26.14 13.13 16.05

PCWNET
EXPECTATION EXPECTATION 34.27 0.19 16.80 21.36 8.93 12.62
EXPECTATION L1-RISK 34.27 0.26 16.53 21.08 8.65 12.30

OURS

EXPECTATION EXPECTATION 11.96 0.17 9.88 13.27 4.92 7.29
EXPECTATION L1-RISK 11.96 0.25 9.83 13.22 4.90 7.27

L1-RISK EXPECTATION 11.96 0.17 9.83 13.19 4.79 7.06
L1-RISK L1-RISK 11.96 0.25 9.32 12.63 4.49 6.70

Table 7. Cross-domain evaluation on KITTI 2012 train set. † de-
notes using extra data for pre-training. The first and second bests
are in red and blue respectively. All methods are trained on Scene-
Flow and evaluated on KITTI 2012 train set without fine-tuning.

METHOD
> 2PX > 3PX

NOC ALL NOC ALL

CFNET 7.08 7.97 4.66 5.31
ACVNET 20.34 21.44 14.22 15.18
DLNR 12.01 12.81 8.83 9.46
IGEV 7.55 8.44 5.03 5.70
PCWNET 6.63 7.49 4.08 4.68

OURS 5.82 6.70 3.84 4.43

larly, for Middlebury, we reduce the > 1px error from 13.76
to 12.63. Furthermore, on ETH 3D we reduce > 0.5px error
from 10.39 to 8.59, and > 1px error from 4.05 to 2.71. Thus,
our approach result seems more resilient to cross-domain
setting and generalizes better than competing methods. The
qualitative comparison is provided in the Appendix.

4.3. Ablation Studies

We performed ablations to analyze risk minimization ef-
fects in disparity prediction. All the models are trained on
SceneFlow and tested on Middlebury without fine-tuning.

(a) Effect of Risk Minimization. We compare the expec-
tation, i.e., Eq.(2) and the L1-norm risk minimization for
disparity prediction at train and test time. We present the
comparison results in Tab.(6). Even with expectation min-
imization at train time, we slightly improve the matching
accuracy with L1-norm risk minimization at test time. Yet,
if we use the L1-norm risk minimization at both train time
and test time, the best accuracy is achieved under all metrics.

(b) Performance with Different Networks. We replace the
disparity prediction method in ACVNet (Xu et al., 2022) and
PCWNet (Shen et al., 2022) from expectation i.e., Eq.(2)
to L1-norm risk minimization only during test. The results
are shown in Tab.(6). Our proposed method improves the
accuracy under all metrics without re-training.

Table 8. Cross-domain evaluation on KITTI 2015 train set. † de-
notes using extra data for pre-training. The first and second bests
are in red and blue respectively. All methods are trained on Scene-
Flow and evaluated on KITTI 2015 train set without fine-tuning.

METHOD
ALL

D1 BG D1 FG D1 ALL

CFNET 4.77 13.26 6.07
ACVNET 12.35 19.97 13.52
DLNR 18.67 14.86 18.08
IGEV 4.01 15.58 5.79
PCWNET 4.25 14.40 5.81

OURS 3.68 13.52 5.19

4.4. Network Processing Time & Paremeters

We present the networks’ inference time and number of pa-
rameters in Tab.(1), Tab.(2), Tab.(3), and Tab.(6)—cf. Time
(s) column. For a fair comparison, all networks are evalu-
tated on the same machine with a GeForce-RTX-3090 GPU.
Our network outperforms many state of the arts on inference
time, including IGEV and DLNR. Moreover, our network
has fewer learnable parameters than PCWNet, IGEV and
DLNR. In addition, our proposed L1-norm risk minimiza-
tion module doesn’t require extra learnable parameters. The
running time is shown in Tab.(6). By changing the disparity
prediction method from expectation minimization to our
proposed approach, the running time increases slightly.

5. Conclusion
The paper concludes that continuous end-to-end trainable
model for stereo matching is possible with L1 risk minimiza-
tion formulation. It is shown that the proposed approach
is beneficial to multi-modal disparity distributions and out-
liers and generalizes better on cross-domain stereo images.
Stereo Risk is unique in a way that it provides a new way of
solving stereo-matching with well-thought-out theoretical
arc (Vapnik, 1991) and improved results, enabling adapta-
tions from fields such as robotics and control engineering.
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Stereo matching, a key technology in computer vision,
promises significant advancements in areas like autonomous
vehicles, medical imaging, virtual reality, and robotics, en-
hancing safety, efficiency, and immersive experiences. The
future of stereo matching will significantly impact soci-
ety, specifically coming from the automation industry and
therefore, it requires a balanced approach in its usage that
maximizes benefits while mitigating risks, ensuring its de-
velopment aligns with societal values and needs.
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A. Training Details
We train our network on SceneFlow. The weight is initialized randomly. We use AdamW optimizer (Loshchilov & Hutter,
2019) with weight decay 10−5. The learning rate decreases from 2× 10−4 to 2× 10−8 according to the one cycle learning
rate policy. We train the network for 2× 105 iterations. The images will be randomly cropped to 320× 736. For KITTI
2012 & 2015 benchmarks, we further fine tune the network on the training image pairs for 2.5× 103 iterations. The learning
rate starts from 5× 10−5 to 5× 10−9.

Following RAFT-Stereo (Lipson et al., 2021), we apply various image augmentations during training to avoid the over-fitting
problem. Specifically, the augmentations include (a) color transformation, (b) occlusion, and (c) spatial transformation.
In (a) color transformation, we randomly change the brightness, contrast, saturation and hue of the left and right images
independently. The brightness and contrast factors are uniformly chosen from [0.6, 1.4]. The saturation factor is uniformly
chosen from [0.0, 1.4]. The hue factor is uniformly chosen from [-0.16, 0.16]. In (b) occlusion, we randomly select a few
rectangular regions in the right image, and set the pixels inside the regions as the mean color of the right image. The number
of regions is chosen from {0, 1, 2, 3} with probabilities {0.5, 0.166, 0.166, 0.166}. The position of the region is uniformly
chosen in the right image, and the width and height are uniformly chosen from [50, 100]. In (c) spatial transformation, we
randomly crop the left and right images to the resolution 320×736.

B. Network Structure Details
In this part, we present more details for the (i) feature extraction and (ii) cost aggregation.

(i) Feature Extraction. Given an input image, the module aims to output multi-scale 2D feature maps. More specifically,
we first use a ResNet (He et al., 2016) to extract 2D feature maps of resolution 1/4 and 1/2 with respect to the input image.
The ResNet contains 4 stages of non-linear transformation with 3, 16, 3, 3 residual blocks respectively, where each block is
composed of convolutional layers and skip connections. And the spatial resolution is downsampled before the beginning
of the first and third stages of transformation. Then we apply the spatial pyramid pooling (Zhao et al., 2017) on the
1/4-resolution feature map from the fourth stage of transformation to enlarge the receptive field. In the end, we upsample the
enhanced feature map from 1/4 to 1/2 and fuse it with the 1/2-resolution feature map from the first stage of transformation in
ResNet. The final outputs are the feature maps of 1/4 and 1/2 resolution. We apply the same network and weights to extract
features from left and right images. The details of the network structure and the resolution of the feature maps are shown in
Tab.(9).
(ii) Cost Aggregation. We use the stacked hourglass architecture (Newell et al., 2016) to transform the stereo cost volume

and aggregate the matching cost. For the coarse and refined stages, the structures are the same except for the number of
feature channels. Specifically, the network consists of three 3D hourglasss as in Chang & Chen (2018). Each hourglass first
downsamples the volume hierarchically to 1/2 and 1/4 resolution with respect to the input volume, and then upsamples in
sequence to recover the resolution. The above procedure helps aggregate the matching information across various scales.
The final output is a volume that represents the discrete distribution of disparity hypotheses. We present the details of a
single hourglass structure in Tab.(10). For an input image with resolution h× w, the D, H , W , C are 192, h/4, w/4, 32
respectively in the coarse stage. In the refined stage, we set D, H , W , C to be 16, h/2, w/2, 16 respectively.

C. Experiments
C.1. Ablation Study for Tolerance

In this part, we change the value of the tolerance τ in the binary search algorithm and observe its effects. As shown in
Tab.(11), when decreasing the value of τ , the search algorithm will iterate for more times to search for the optimal solution.
And the error of the predicted disparity is reduced. When τ ≥ 0.1, the algorithm achieves the best accuracy.

C.2. Ablation Studies for Huber Loss

In this part, we evaluate the effects of different loss functions. In Tab.(12), we evaluate the L2 loss, the L1 loss, and the
Huber loss, i.e. a combination of L1 and L2 norm depending on the thresholding value β. The table clearly shows the
benefit of using risk minimization loss under L1.
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Table 9. Network structure for feature extraction.
Name Layer Setting Output Dimension

ResNet
Input H × W × 3
Stem-1 3 × 3, 32 H × W × 32
Stem-2 3 × 3, 32 H × W × 32
Stem-3 3 × 3, 32 1

2H × 1
2W × 32

Stage-1
[

3 × 3, 32
3 × 3, 32

]
× 3 1

2H × 1
2W × 32

Stage-2
[

3 × 3, 64
3 × 3, 64

]
× 16 1

4H × 1
4W × 64

Stage-3
[

3 × 3, 128
3 × 3, 128

]
× 3 1

4H × 1
4W × 128

Stage-4
[

3 × 3, 128
3 × 3, 128

]
× 3, dila = 2 1

4H × 1
4W × 128

Spatial Pyramid Pooling

Branch-1
64 × 64 avg pool

1
4H × 1

4W × 323 × 3, 32
bilinear interpolation

Branch-2
32 × 32 avg pool

1
4H × 1

4W × 323 × 3, 32
bilinear interpolation

Branch-3
16 × 16 avg pool

1
4H × 1

4W × 323 × 3, 32
bilinear interpolation

Branch-4
8 × 8 avg pool

1
4H × 1

4W × 323 × 3, 32
bilinear interpolation

Concat [Stage-2, Stage-4, Branch-1, Branch-2, Branch-3, Branch-4] 1
4H × 1

4W × 32

Fusion-1 3 × 3, 128 1
4H × 1

4W × 32
1 × 1, 32

UpSample
Up-1 nearest interpolation 1

2H × 1
2W × 32

Add [Stage-1, Up-0] 1
2H × 1

2W × 32
Fusion-2 3 × 3, 16 1

2H × 1
2W × 16

Table 10. Network structure for 3D hourglass.
Name Layer Setting Output Dimension
Input D × H × W × C
Conv-1 3 × 3 × 3, 2C 1

2D × 1
2H × 1

2W × 2C
Conv-2 3 × 3 × 3, 2C 1

2D × 1
2H × 1

2W × 2C
Conv-3 3 × 3 × 3, 4C 1

4D × 1
4H × 1

4W × 4C
Conv-4 3 × 3 × 3, 4C 1

4D × 1
4H × 1

4W × 4C

Atte-4

3 × 3 × 3, C

1
4D × 1

4H × 1
4W × 4C

3 × 3 × 3, 4C
sigmoid

prod Conv-4

Conv-5 deconv 3 × 3 × 3, 2C 1
2D × 1

2H × 1
2W × 2C

add Conv-2

Atte-5

3 × 3 × 3, C

1
2D × 1

2H × 1
2W × 2C

3 × 3 × 3, 2C
sigmoid

prod Conv-5

Conv-6 deconv 3 × 3 × 3, C
D × H × W × C

add Input

Atte-6

3 × 3 × 3, C

D × H × W × C
3 × 3 × 3, C

sigmoid
prod Conv-6
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Table 11. Ablation studies for tolerance τ on Middlebury training set of quarter resolution. The first and second bests are in red and blue
respectively. Our method in bold. All settings are trained on SceneFlow and evaluated on Middlebury training set without fine-tuning.

Tolerance τ Number of Iterations > 1px > 2px
Noc All Noc All

0.3 9 9.36 12.67 4.50 6.71
0.1 11 9.32 12.63 4.49 6.70

0.01 14 9.32 12.63 4.49 6.70

Table 12. Ablation studies for loss function on Middlebury training set of quarter resolution. The first and second bests are in red and blue
respectively. Our method in bold. All settings are trained on SceneFlow and evaluated on Middlebury training set without fine-tuning.

Loss > 1px > 2px
Noc All Noc All

L2 9.83 13.19 4.79 7.06
β = 10.0 9.41 12.73 4.55 6.76
β = 4.0 9.36 12.68 4.51 6.72
β = 1.0 9.33 12.64 4.50 6.70

L1 9.32 12.63 4.49 6.70

C.3. Ablation Studies for Network Architectures

In this part, we apply our method to the IGEV (Xu et al., 2023) framework. Specifically, we use our method to compute
the initial disparities from the geometry encoding volume. The results are shown in Tab.(13). Our method improves the
accuracy of IGEV.

Table 13. Ablation studies for IGEV on Middlebury training set of quarter resolution. The first and second bests are in red and blue
respectively. Our method in bold. All methods are trained on SceneFlow and evaluated on Middlebury training set without fine-tuning.

Backbone Training Test Param (M) Time (s) > 3px > 4px
Noc All Noc All

IGEV (Xu et al., 2023) Expectation Expectation 12.60 0.34 4.47 6.64 3.46 5.32
Expectation L1-Risk 12.60 0.38 4.37 6.63 3.40 5.32

C.4. Ablation Studies for Interpolation Kernel

In this part, we change the interpolation kernel from Laplacian to Gaussian and observe the effects. As shown in Tab.(14),
we find the Laplacian kernel has better accuracy.

C.5. Cross-Domain Generalization

In this part, we apply our method to ITSA (Chuah et al., 2022) only at inference time. We use the pre-trained model provided
by ITSA, which is trained on synthetic images. As shown in Tab.(15), when evaluated on real-world datasets, our method
can improve the performance on various networks and benchmarks.

C.6. Ablation Studies for Training Using L1 Risk

In this part, we provide more results on Middlebury using L1-risk minimization both at training and test time on several
popular stereo-matching network architectures, demonstrating the usefulness and completeness of our approach to stereo
matching problem. The results are shown in Tab.(16).

D. Qualitative Results
In this section, we present more qualitative results on real-world datasets in Fig. 4, Fig. 5 and Fig. 6. It can be observed that
in general our method generalizes and predicts high-frequency details better than other recent methods.

E. Solution for Squared L2 Norm Loss
In this part, we present the optimal solution when using the squared L2 norm loss, i.e., L(y, x) = (y − x)2.
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Table 14. Ablation studies for interpolation kernel on Middlebury training set of quarter resolution. The first and second bests are in red
and blue respectively. Our method in bold. All settings are trained on SceneFlow and evaluated on Middlebury training set without
fine-tuning.

Kernel Param (M) Time (s) > 1px > 2px
Noc All Noc All

Gaussian 11.96 0.25 9.35 12.66 4.50 6.71
Laplacian 11.96 0.25 9.32 12.63 4.49 6.70

Table 15. Cross-domain evaluation with ITSA. The first and second bests are in red and blue respectively. All methods are trained on
SceneFlow and evaluated on Middlebury training set without fine-tuning.

Backbone Training Test KITTI 2012 KITTI 2015 Middlebury ETH3D

ITSA-PSMNet Expectation Expectation 5.2 5.8 9.6 9.8
Expectation L1-Risk 5.0 5.6 9.0 9.7

ITSA-GwcNet Expectation Expectation 4.9 5.4 9.3 7.1
Expectation L1-Risk 4.6 5.2 8.8 7.1

ITSA-CFNet Expectation Expectation 4.2 4.7 8.5 5.1
Expectation L1-Risk 4.1 4.7 8.4 5.0

argminyF (y,pm) = argminy

∫
(y − x)2p(x;pm)dx. (11)

Firstly, we found the function F (y,pm) =
∫
(y − x)2p(x;pm)dx is convex with respect to y, because∫

(λy1 + (1− λ)y2 − x)2p(x;pm)dx ≤
∫
(λ(y1 − x)2 + (1− λ)(y2 − x)2)p(x;pm)dx (12)

= λ

∫
(y1 − x)2p(x;pm)dx+ (1− λ)

∫
(y2 − x)2p(x;pm)dx (13)

Secondly, the optimal solution for the function F (y,pm) can be obtained where ∂F/∂y = 0, i.e.,

∂F (y,pm)

∂y
= 2

∫
(y − x)p(x;pm)dx = 2y − 2

∫
xp(x;pm)dx = 0 (14)

Therefore the optimal solution is y =
∫
xp(x;pm)dx.

F. Evaluation Metrics
The definition of evaluation metrics (Geiger et al., 2012; Menze & Geiger, 2015) is below:
D1: Percentage of stereo disparity outliers in first frame.
BG: Percentage of outliers averaged only over background regions.
FG: Percentage of outliers averaged only over foreground regions.
ALL: Percentage of outliers averaged over all ground truth pixels.

16



Stereo Risk: A Continuous Modeling Approach to Stereo Matching

Table 16. Ablation studies for L1 risk on Middlebury training set of quarter resolution. The first and second bests are in red and blue
respectively. Our method in bold. All methods are trained on SceneFlow and evaluated on Middlebury training set without fine-tuning.

Backbone Training Test > 1px > 2px
Noc All Noc All

PSMNet (Chang & Chen, 2018) Expectation Expectation 15.42 21.01 7.53 12.17
L1-Risk L1-Risk 15.27 20.67 7.48 11.92

GCNet (Kendall et al., 2017a) Expectation Expectation 19.93 25.72 11.15 16.12
L1-Risk L1-Risk 16.31 22.19 8.55 13.45

(a) Image (b) IGEV (c) DLNR (d) Ours

Figure 4. Qualitative Comparison. We compare our method with recent state-of-the-art methods such as IGEV (Xu et al., 2023),
DLNR (Zhao et al., 2023) on Middlebury (Scharstein & Szeliski, 2002). All methods are trained only on SceneFlow (Mayer et al., 2016),
and evaluated at quarter resolution.

(a) Image (b) IGEV (c) PCWNet (d) Ours

Figure 5. Qualitative Comparison. We compare our method with recent state-of-the-art methods such as IGEV (Xu et al., 2023),
PCWNet (Shen et al., 2022) on ETH 3D (Schöps et al., 2017). All methods are trained only on SceneFlow (Mayer et al., 2016).

17



Stereo Risk: A Continuous Modeling Approach to Stereo Matching

(a) Image (b) IGEV (c) PCWNet (d) Ours

Figure 6. Qualitative Comparison. We compare our method with recent state-of-the-art methods such as IGEV (Xu et al., 2023),
PCWNet (Shen et al., 2022) on KITTI 2012 (Geiger et al., 2012). All methods are trained only on SceneFlow (Mayer et al., 2016).
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