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ABSTRACT

Spatial-temporal forecasting plays a pivotal role in urban planning and computing.
Although Spatial-Temporal Graph Neural Networks (STGNNs) excel in modeling
spatial-temporal dynamics, they often suffer from relatively poor computational
efficiency. Recently, Multi-Layer Perceptrons (MLPs) have gained popularity in
spatial-temporal forecasting for their simplified architecture and better efficiency.
However, existing MLP-based models can be susceptible to noise interference,
especially when the noise can affect both input and target sequences in spatial-
temporal forecasting on noisy data. To alleviate this impact, we propose Robust
Spatial-Temporal Information Bottleneck (RSTIB) principle. The RSTIB extends
previous Information Bottleneck (IB) approaches by lifting the specific Markov
assumption without impairing the IB nature. Then, by explicitly minimizing the
irrelevant noisy information, the representation learning guided by RSTIB can be
more robust against noise interference. Furthermore, the instantiation, RSTIB-MLP,
can be seamlessly implemented with MLPs, thereby achieving efficient and robust
spatial-temporal modeling. Moreover, a training regime is designed to handle the
dynamic nature of spatial-temporal relationships by incorporating a knowledge
distillation module to alleviate feature collapse and enhance model robustness
under noisy conditions. Our extensive experimental results on six intrinsically noisy
benchmark datasets from various domains show that the RSTIB-MLP runs much
faster than state-of-the-art STGNNs and delivers superior forecasting accuracy
across noisy environments, substantiating its robustness and efficiency.

1 INTRODUCTION

Spatial-temporal forecasting holds great significance in modeling complex dynamic systems (Bai et al.,
2020;|Guo et al.,|2021a}; Deng et al.,|2021)). It needs to capture both temporal and spatial dependencies
to accurately predict important statistics, e.g., traffic flow states or electricity consumption.

Previous works in spatial-temporal forecasting have effectively adopted convolutional neural networks
(CNNs) (Lai et al.,|2018)), recurrent neural networks (RNNs) (Meng et al.|[2020), temporal convolution
networks (TCNs) (Wu et al.l |2019) to model spatial-temporal relations. Lately, there has been a
growing interest in spatial-temporal graph neural networks (STGNNs) (Shao et al., [2022bzc; [Wu
et al, 2019) due to their strong capacity. Though achieving exceptional performance, STGNN-based
methods suffer from slow computational efficiency. To alleviate this, a few recent works (Shao et al.|
2022a;|Qin et al.,|2023; Wang et al., 2023bj |Yi et al., 2024)) adopt Multi-Layer Perceptrons (MLP)
due to its advantageous efficiency. However, MLP-based models become less effective when facing
spatial-temporal noise perturbation, which is common in real world (Jiang et al.l 2023b; [Tang et al.,
2023} |[Fang et al., [2021}; |Liu et al., |2024c; [Zhang et al., 2023)). As shown in Fig. |1} two time series
may become indistinguishable in both the historical input end and the forecasting target end due to
the presence of noise perturbation. This is termed as “sample indistinguishability” in (Shao et al.|
2022a). There is no theoretically grounded principle in existing MLP-based models that can alleviate
this issue. Besides, we can also observe severe feature collapse, i.e., feature collapse is reflected
by much lower feature variance, which is used for quantitative analysis of the diversity among the
learned features (Papyan et al., [2020; Zhu et al., 2023a; Bardes et al., [2021)) (See Section .
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Figure 1: (a) Two time series are distinguishable at both historical input (P area) and forecasting
target (F area), but (b) they become indistinguishable in both cases in the presence of noise.

Methods based on adversarial training (Jiang et al.|[2023b), graph information bottleneck (GIB) (Tang
et al.| [2023), mathematical tools (Choi et al., [2022)), frequency domain MLPs (Yi et al., [2024]),
Biased TCN (Chen et al.} |2024), Spatial-temporal Curriculum Dropout (Wang et al., 2023a) have
been proposed to combat the noise for robust representation learning. However, spatial-temporal
data often undergoes preprocessing through a sliding window mechanism, where a sequence can
serve as either the input or the target when residing in different windows. Noise potentially harms
both ends, termed as “dual noise effect”’. Consequently, the enhancement of these methods is often
marginal since they only consider a single end effect. While Robust Graph Information Bottleneck
(RGIB) (Zhou et al., 2023) effectively combats bilateral edge noise for link prediction, we reveal that
generalizing RGIB directly to MLP networks for spatial-temporal forecasting is difficult: the GNN
model architecture and graph data assumption it relies upon is very different from the spatial-temporal
data that is continuous multivariate time series. It is significant to derive additional guiding principles
and specific instantiation to handle such a scenario.

In this paper, we first disclose that spatial-temporal data noise is detrimental to (i) both forecasting
input and target and (ii) both predictive performance and feature variance. To combat it, we introduce
a new theoretically sound principle, named Robust Spatial-Temporal Information Bottleneck (RSTIB),
generalizing the RGIB principle to mitigate the dual noise effect in spatial-temporal data. Particularly,
it lifts the Markov assumption typically assumed in IB while not impairing the IB nature. In doing
so, the derived additional noisy information and the original redundant information are explicitly
reformulated and minimized. RSTIB-MLP, guided by the RSTIB principle, is further instantiated
for robust spatial-temporal modeling. Subsequently, combined with the instantiation, we propose
a training regime to handle the dynamic relations between different time series via an innovative
knowledge distillation module. The key idea is to balance the informative terms within the objective
by accounting for the quantified noise impact, thereby being better balanced and less impacted by
noisy information. We quantify the noise impact to each time series by defining a new noise impact
indicator (Definition d.2) and incorporate this knowledge for each time series.

Our main contributions can be summarized as follows:

* To the best of our knowledge, it is the first work to derive and extend IB for handling the dual
noise effect in spatial-temporal forecasting. We reveal that dual noise effect can lead to significant
degradation in both of the predictive accuracy and feature variance.

* We propose the RSTIB principle, a general theoretical framework to robustify MLP networks. A
corresponding computationally efficient instantiation, named RSTIB-MLP, is devised by utilizing
pure MLP networks for robust forecasting on noisy spatial temporal data, with theoretical support
for its robustness due to the RSTIB principle.

* A new training regime is further designed to enhance the robust representation learning. This
regime incorporates a novel knowledge distillation module, strengthening robustness and boosting
the variance of its learned features.

» Benchmark datasets from various domains are adopted for noisy and clean evaluations. Extensive
comparisons based on our theoretical analysis and empirical studies demonstrate our method’s
superiority.
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2 RELATED WORK

Spatial-Temporal Forecasting (STF). Efforts in STF have led to the development of sophisticated
models such as AGCRN (Bai et al.,2020), GraphWaveNet (Wu et al.,|2019)), and STExplainer (Tang
et al.| 2023), which leverage STGNN-based methodologies to model series-wise dependencies over
time. Recent explorations have integrated Neural-ODE-based (Jin et al.| 2022} and self-supervised
learning paradigms (Li et al., [2022)) to enhance spatial-temporal modeling. Despite their predictive
capabilities, these methods often suffer from computational efficiency issues when compared with
MLP-based approaches.

MLP-based Approaches for STF. In response to the efficiency challenge, MLP-based approaches
have gained attention. Notable works include STID (Shao et al., 2022a)), which incorporates spatial-
temporal identity information to achieve superior performance over STGNN-based methods, and
STHMLP (Qin et al.,|2023), which employs a hierarchical MLP structure to capture various aspects
of spatial-temporal data. FreTS (Yi et al., 2024) applies MLPs in the frequency domain. Specifically,
its advantage of the energy compaction can help MLPs to preserve clearer patterns while filtering out
influence of noises. However, these methods have not yet explored the dual noise effect in the face of
comprehensive noise perturbations.

Robust Representation Learning with Information Bottleneck Principle. The Information
Bottleneck (IB) principle has emerged as a guiding framework for robust representation learning.
Initially applied in Deep Variational Information Bottleneck (DVIB) (Alemi et al.| | 2016]), IB has since
found applications in diverse domains (Peng et al.,|2018; Higgins et al.| 2016)). Notably, GIB (Wu
et al.| 2020) extends IB to graph-structured data for supervised learning. Subsequent advancements,
such as STExplainer (Tang et al.,[2023]), build upon the GIB principle for explainable representations.
While these methods can enhance robustness to some extent, they overlook the presence of noise
in the forecasting target. RGIB (Zhou et al., |2023) takes a step forward by decoupling mutual
information to enhance such robustness, but generalizing it to MLP networks for spatial-temporal
forecasting remains unexplored.

3 NOTATIONS AND PRELIMINARIES

Spatial-temporal Forecasting (STF). STF aims at predicting the future target spatial-temporal data
Y € RFXNXC with N time series of C features in each time series within F' nearest future time
slots, based on historical input data X € RP*N*C from the past P time slots. Additionally, we
denote the sample from time series i at time step ¢ as X}, € R and Y;; € R for the historical and
future data respectively. ’

Feature Variance. Drawing inspiration from prior studies (Bardes et al., 2021;Zhu et al.,|2023a),
we aim for the learned representations in spatial-temporal forecasting to display significant diversity,
capturing complex spatial-temporal patterns effectively. We quantify feature variance as follows:

Consider a set of latent spatial-temporal representations (zy, 22, . . ., 2y ), where each z; € R? for
¢ =1,..., N. The feature variance is defined as:

d
Var(zl,zg,...,zN) = éz (\/ COV”') s (1)
i=1

where Cov,; denotes the variance of the i-th feature across the set of representations, defined as
the diagonal elements of the covariance matrix Cov. Cov is computed as Cov = Zf\; (2 —

Z)(z — 2)T, with z = + ZZ\; z; representing the mean vector of the representations (see (Bardes
et al., 2021} /Zhu et al.| 2023a) for detailed derivation and theoretical grounding).

Noise Perturbation vs. Feature Variance. We conduct an empirical study to assess the impact of
noise perturbation on feature variance, where the STID model (Shao et al., [2022a) is used. During
training, we inject random noise into the signals from the single input end and both ends, with a 50%
probability across varying noise ratios — 10%, 30%, 50%, 70%, and 90%. The evaluation focuses on
the diversity of extracted features by measuring the variance under these conditions. As shown in
Table[T] a significant degradation in feature variance is observed with increasing noise perturbation.
Besides, a faster degradation can be observed when injecting to both ends, highlighting the detrimental
effects of the noise and the dual noise effect on the effectiveness of capturing spatial-temporal patterns.
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Table 1: Feature Variance of Single-End and Dual Noise Effect Under Different Noise Ratios

Noise Ratio 10% 30% 50% 70% 90 %
Feature Variance (Single End) 1.9462 1.0325 0.8529 0.6323 0.6042
Feature Variance (Dual Noise Effect) 1.6900 0.6582 0.4859 0.4350 0.4332

4 METHODOLOGY

In this section, we introduce the Robust Spatial-Temporal Information Bottleneck (RSTIB) principle,
a theoretical framework designed to be more general for enhancing robust spatial-temporal modeling.
Following this, we detail a novel instantiation termed RSTIB-MLP, which leverages data reparam-
eterization techniques for continuous multivariate time series. We also design a training regime,
incorporating a knowledge distillation module, to further enhance the performance of spatial-temporal
forecasting. This approach capitalizes on the dynamic spatial-temporal relationships inherent in the
data, resulting in a better balance of informative terms within the objective.

4.1 DERIVING THE RSTIB PRINCIPLE

Let X represents the input to the IB model and its variants, obtained from X" and the attachment of
spatial-temporal information from a specially designed module. Formally, given the input X, target
Y, and encoding Z from X, the learning objective of the standard IB principle can be formulated as
follows:

minLrp=-I1(Z,Y)+ 8 xI(X,Z), 2
where (-, -) denotes mutual information (MI), and 8 > 0 is a Lagrange multiplier for controlling the
trade-off between the compression of X and the preservation of Y. The Markov chain Z7 — X — Y
is assumed in IB (Alemi et al.,[2016). We can use the information diagram (Fig to depict the
IB, where we represent information of X and Y as circles. Then IB encourages to cover as much of
I(X;Y) and as little of H(X|Y) as possible.

7/
\
(a) (b)

Figure 2: Comparison of IB(a) and DVIB with lifted Markov assumption Z — X — Y (b). (a)
(1) H(X|Y) information Z covers, i.e., I(X; Z|Y'), (2) the minimum sufficient information
preserved by the expected optimal representation 7, i.e., I(X;Y") (b) By lifting 7 — X — Y,
I(Z;Y|X) exists as (3), i.e., H(Y|X) information Z covers.

However, the vanilla IB is sub-optimal in our scenario. By drawing inspirations from (Jiang et al.|
2023b}, |Choi et al., 2022 [Tang et al.| 2024} |Yuan et al.,2024; |Liu et al., [ 2024b)), we firstly have the
following assumptions about spatial-temporal data:

Assumption 4.1. Noisy Nature of spatial-temporal Data. We focus on spatial-temporal data that
inherently exhibits noisy characteristics. Under the sliding window mechanism, a sequence can serve
different purposes when residing in different windows, either as the input or the target. Consequently,
the noise elements can potentially reside in the input and target areas. For simplicity, we presume
the noise type in our analysis to adhere to Additive White Gaussian Noise (AWGN), a prevalent and
empirically approximated noise model in practical applications (Lim & Puthusserypady, 2007).

Assumption 4.2. Invariant and Variant spatial-temporal Patterns. A dynamic spatial-temporal
graph exhibits a dual nature, wherein each node, representing a time series, embodies both spatial-
temporal invariant patterns conducive to generalized predictions across all time windows and
spatial-temporal variant patterns reflecting underlying time-varying and node-specific dynamics.

Following these assumptions, it is naive to assume the Markov assumption Z — X — Y, which
results in I(Z;Y | X) = 0. This implies that we directly overlook the noisy information behind
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H(Y|X) (i.e., the noisy information conveyed by the target data). Fortunately, [Wieczorek & Roth
(2020) demonstrate that a lower bound of 7(Z;Y") can be derived without relying onthe Z — X — Y
assumption, thus lifting the Z — X — Y Markov restriction. It is achieved in the DVIB model, which
assumes X — Z — Y assumption by its construction. We apply it to our specific scenario by assuming
only the Markov chain condition X — Z — Y (See Proposition[d.5). The introduced additional term,
I1(Z;Y | X), as represented in Fig must be minimized as well, along with the original irrelevant
information, i.e., I(X; Z|Y"). Accordingly, we introduce the following reformulations:

Proposition 4.1. Reformulate 1(Z;Y | X)and I(X;Z | Y). The sum of I(Z;Y | X) and
I(Y; Z|X) can be reformulated as: 1(Z;Y | X)+1(Z; X |Y)=1(Z; X,Y) - I(X;Y; Z). Proof.
See Appendix|F71}

Leveraging this reformulation, we aim to minimize the influence of noisy information Z captures,
encapsulated by H(X|Y) and H (Y| X).

Definition 4.1. Robust Spatial-Temporal Information Bottleneck Principle. Under the Markov
chain condition X — Z — Y, the learning objective is encapsulated by the following optimization:

min Lrerip = —1(Z,Y)+ 1 x I(Z; X,Y) — B2 x I(X;Y; Z). 3)
where 31, B2 > 0 is the respective Lagrange multipliers to control the balance within this objective.

4.2 INSTANTIATING RSTIB

Here, we introduce the instantiation, termed RSTIB-MLP, in the order of I(X;Y; Z), I(Z; X,Y)
and I(Z,Y).

Instantiating (X;Y; Z). Per definition (Definition B.8), the expression I(X;Y; Z) = I(X;Y) —
I(X;Y | Z) indicates that maximizing I(X;Y"; Z) is equivalent to minimizing I(X;Y | Z), given
I(X;Y) remains constant. It is important to note that the Markov chain condition X — Z — Y is
only approximated by reaching the optimal joint distribution of X, Y, Z. Therefore, by explicitly
minimizing I(X;Y | Z), we aim to learn a sufficient Z while reaching our objective simultaneously.
To this end, Z is initially encoded from X. Then, we aim to reduce the relative knowledge between
X and Y by observing Z. To achieve this objective, we employ data reparameterization to obtain
the reparameterized X and Y while assuming independent and identically distributed (i.i.d) prior
distributions of them, thereby reducing the overlapped information conditioned on X, Z, and Y. We
effectuate the instantiation by directly imposing input regularization I (X; X) and target regularization
I(Y;Y). While mutual information terms are typically intractable, we introduce upper bounds for
I(X;X)and I(Y;Y), as elucidated in Proposition

Proposition 4.2. The Upper Bounds of I(X; X) and 1(Y;Y). Assuming the prior distribution
of X and Y, denoted as Q(X) and Q(Y), to be i.i.d unit Gaussian N'(0,1). The upper bounds

for I(X; X) and I(Y;Y) are given by I(X; X) < E {KL (P¢T()~(|X)||Q()~()>} and I(Y;Y) <

E [K L (P% (17|Y)||Q(Y))} where K L denotes the Kullback-Leibler divergence, Py, and Py,
denote the parameterized distributions. Proof. See Appendix|[F2)

According to Proposition[d.2] we first utilize simple MLP layers to parameterize the posterior distri-
bution Py_ (Z|X). This parameterization yields the posterior Gaussian distribution of Z, represented
as Py ~ N (2, o2). Subsequently, we employ two additional Fully-Connected(FC) layers, one for
X and the other for Y, to facilitate dimension transformation for aligning the dimensions of X and
Y respectively. This process parameterizes two distributions, denoted as P o ™ N (i, cme) and

Py~ N (iiy, y?). According to this, we establish Py, ~ N (tig,02) and Py, ~ N (ju,, 02), where

Po = T+ fig, fy = Y + [y, 02 = o, and 03 = U}f respectively. Then, we adopt data reparame-

terization to obtain T = p, + o€ and § = p, + oye, where T and y represent the reparameterized
signals, with each € X and §j € Y respectively, and € ~ A(0, 1).

Proposition 4.3. Analytical Solution for the Upper Bounds of the Input and Target Regular-
ization. The Kullback-Leibler (KL) divergence between two Gaussian distributions, given their
means and variances, can be analytically determined. Specifically, in our context, the KL diver-
gence is computed for the input and target respectively, as L, = KL(N (ug,02)[|[N(0,1)) =
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1(~logoZ+p2+o2-1), L, = KL(N(uy,Jg) IN(0,1)) = 4 (—logoy 4+ pz + o) — 1),
where L, denotes the upper bound of the input regularization, and L,, denotes the upper bound of
the target regularization. Proof. See Appendix[F3]

Instantiating /(Z; X,Y). According to the mutual information w.r.t three random variables
(Definition [B.3), we can express 1(Z; X,Y) = H(Z) — H(Z | X,Y). Thus, our objective is
to minimize the overlap of the entropy of Z with respect to X and Y. Given the condition of the
Markov chain X — Z — Y, this can be implemented by reducing the entropy overlap between Z and
X through the use of data reparameterization. Specifically, reparameterized data X serves as the input
to the MLP encoders. The encoders maintain the same network structure and parameters as used in
the instantiation of I(X;Y’; Z). Then, the posterior distribution Py_(Z|X) is parameterized through
the encoding process, as denoted Py_ ~ N (p,,02). The encoding 2 = y, + o€ is obtained through
reparameterization, where z € Z. Besides, we impose the representation regularization (X 3 Z),
and by assuming the prior distribution of Z to be similar i.i.d unit Gaussian A/(0, 1), out goal can be
reached. The analytical solution for the upper bound of 1 (X ; Z) is also given in Proposition

Proposition 4.4. The Upper Bound of the Representation Regularization and Its Analytical
Solution. The Upper bound of the representation regularization can be similarly given by I(X; Z) <
E {KL <P¢2 (Z|X)] |Q(Z))}, with Q(Z) being an i.i.d unit Gaussian N (0, 1). Specifically, we have
the analytical solution for this upper bound: L. = KL(N (u-,02) || N(0,1)) = 3 (— logo?+p2+

2
UZ

[F4]

— 1), where L, denotes the upper bound of representation regularization. Proof. See Appendix

Instantiating /(Z;Y"). Given the explicit reparameterization of Y to obtain Y, we aim to optimize

1(Z; }7) instead of 1(Z;Y"). However, directly computing I(Z; 17) is also intractable. Therefore, we
introduce Proposition [d.5|below to provide an approximated lower bound.

Proposition 4.5. The Lower Bound of I(Z;Y). The variational lower bound of I(Z;Y') can be
derived and approximated by minimizing the typical regression loss while without being restricted to
the Markov assumption Z — X —Y, as follows:

I(Z; Y/) > IEP(X)Ep(zp()p(f/p() log Q(Y/|Z) ~ _Ereg<YS7 Y/)» 4
where L4 represents the regression loss and Y® signifies the prediction. Proof. See Appendix

Specifically, predictions are made through a regression layer to obtain Y based on Z. We employ a
standard regression loss, such as Mean Absolute Error (MAE), to maximize the variational lower
bound.

Furthermore, findings from (Burgess et al., 2018)) underscore the significance of the training regime
concerning the /3 hyperparameter value for robust representation learning rather than adhering to
a fixed g-weighted term. In light of Assumption it is evident that conventional IB methods
designed for static relations are not directly applicable to the domain of spatial-temporal forecasting,
which inherently relies on dynamic relationships. Consequently, we adopt a novel approach by
designing a training regime tailored for dynamic relations.

Training Regime. In our training regime, we adapt the regularization strategy (i.e., the balance of
the informative terms within the objective) to accommodate the noise impact on different time series
quantified in each time window. When noise impact is low, we relax the regularization. When there is
a significant noise impact, we intensify the regularization. To quantify it, we leverage a trained model
with no assumption on the model type and treat it as the teacher. Then, the noise impact indicators,
defined in Definition[d.2] are computed based on the teacher model’s predictive performance. By
leveraging this knowledge, we dynamically balance the RSTIB-MLP’s robust representation learning
in different time series within different time windows. The noise impact indicator is formally defined
as follows:

Definition 4.2. Noise Impact Indicator. Given the historical data X" € RT*N*C and a teacher
model fr with trained and fixed parameters, we define the noise impact indicator to quantify the
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noise impact on each time series. It is calculated as follows:
o ce(@EY)) _ exp(D(fr(4, X))
Yoliexp (D (Y],Y;)) 0L exp (D (fr(A X");,Y5))

where A € RVNXN represents the adjacency matrix, utilized optionally depending on the modeling
approach of the teacher. D(-, ) denotes the distance function, such as mean squared error (MSE)
or mean absolute error (MAE), to indicate the predictive performance. The computed &; for each
time series reflects the relative impact of noise within the current time window, with higher values
indicating greater susceptibility to noise.

,  Vie{l,...,N}, (5

Learning Framework. The final objective for the robust representation learning in RSTIB-MLP is
formalized as follows:

N
LRSTIB-MLP = ) [_Lreg(}/;sv Vi) + (14 )AL + AyLyi + L) | - (6)

i=1

The balance among all terms is controlled by the noise impact indicator &; and the Lagrange multi-
pliers \;, Ay, and A, for input, target, and representation regularization, respectively. This learning
objective highlights the relationship between RSTIB-MLP and the proposed training regime. The
control over the balance of the informative terms is achieved not only by setting the hyperparameters,
namely the Lagrange multipliers, but also by leveraging knowledge from noise impact indicators
computed for different time series.

5 EXPERIMENTS

Datasets. For demonstrating universality, we consider six datasets from different domains, including
PEMS04, PEMS07, PEMSO08 (Fang et al., [2021} |Guo et al., 2019; Song et al., [2020; [Yu et al.|
2017), LargeST(SD) (Liu et al. 2024a), Weather2K-R (Zhu et al., [2023b), Electricity (Deng
et al.|[2021). The diverse sample rates ensure the exploration of short-term, mid-term and long-term
forecasting evaluations. Detailed statistics and public accesses are provided in Appendix[E] For
PEMS and LargeST(SD) benchmark datasets, we choose the traffic flow (vehicles per hour) as the
metric. For Weather2K-R dataset, We select vertical visibility from 20 meteorological factors as the
experimental variable. For Electricity dataset, we select the average electricity consumption (Deng
et al.,[2021)). Besides, For Electricity dataset, we adopt the same training, validation, and testing
split ratio as in (Deng et al.,[2021)), and for other datasets, we adopt 6:2:2 for all datasets to ensure
consistency.

Robust Baselines for Clean and Noisy Spatial-temporal Forecasting. (1) MLP-based Baseline:
STID (Shao et al.| 2022a); (2) STGNN-based Methods: GWN (Wu et al., [2019) (3) IB-based
Method: STGKD (Tang et al.,2024)) (4) GIB-based Baselines: STExplainer (Tang et al.|[2023)) and
STExplainer-CGIB (STExplainer with Conventional GIB); (5) Adversarial Training-based Method:
TrendGCN (Jiang et al., |2023b) (6) Mathematical Tools-based Method: STG-NCDE (Choi et al.}
2022). (7) Energy Compaction Enhanced Method : FreTS (Yi et al.| [2024) (8) Biased TCN-
based Method: BiTGraph (Chen et al., [2024). (9) Spatial-temporal Curriculum Learning-based
Method: STC-Dropout (Wang et al., | 2023a).

Extra Baselines Designed for Clean Spatial-temporal Traffic Forecasting. We also dedicate to
utilize PEMS datasets to compare RSTIB-MLP with three types of baselines proposed for clean
spatial-temporal traffic forecasting: (1) Attention-based Method: DSTAGNN (Lan et al., [2022);
(2) MLP-based method: STHMLP (Qin et al.} [2023)); (3) STGNN-based Methods: STGCN (Yu
et al.,2017), AGCRN (Bai et al.,[2020), GMSDR (Liu et al., 2022), FOGS (Rao et al.,|2022), and
TrendGCN (Jiang et al., [2023b);

Implementation Details. For the basic settings, we employ a hidden dimension d = 64 and utilize
an MLP architecture with L=3 layers. For PEMS and LargeTS(SD) benchmark datasets, we use
historical traffic flow data with window length P = 12 to forecast future traffic flow data with window
length F = 12, while for the Electricity dataset, we follow the default settings in (Deng et al., [2021)),
i.e., we set P=16 and F=3, and calculate the average predictive accuracy by averaging over 1, 2,
3 hours. Since there is no pre-defined graph structure in the Electricity dataset, some results are
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denoted as “-” , meaning Not Available. The model performance is evaluated using three metrics:
MAE, RMSE, and MAPE. The learning rate is initialized as 7 = 0.002 with a decay factor r =
0.5. Baselines with recommended hyperparameter settings are used (See Appendix]D)). Our method
is teacher model agnostic (AppendixJK.10), where we set the default teacher model to STGCN.
Spatial-temporal prompts (Tang et al., 2024) are utilized to attach the spatial-temporal information.

5.1 MAIN RESULTS

Table 2: Predictive Accuracy Comparison Under Various Noise Ratios in Different Datasets

Noise Ratio I 0%(clean) I 10% I 30% I 50%

Metrics ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE
Dataset PEMS04

STID 18.79 30.37 12.51% 27.83 41.34 17.31% 36.53 5274 2L.11% 36.22 5215 2145%
GWN 19.22 30.74 12.52% 30.03 43.27 19.32% 39.55 56.78  22.60% | 40.87 55.13  23.02%
TrendGCN 18.81 30.68 12.25% 23.83 37.10 17.53% 27.35 43.10 19.32% 27.90 4483 20.38%
STExplainer-CGIB 19.14 30.77 12.91% 25.76 38.36 16.05% 31.72 48.51 17.98% 28.43 44.69  16.85%
STExplainer 18.57 3014 12.13% 24.48 36.78 15.89% 31.39 47.18 18.05% 29.60 46.41 17.37%
STGKD 18.69 30.46 12.34% 2435 37.06 16.31% 28.53 44.74 17.66% 29.24 46.28 18.63%
BiTGraph 18.82 30.44 12.25% 24.73 37.08 16.03% 31.65 47.52 18.20% 29.85 46.75 17.50%
STC-Dropout 18.75 30.38 12.33% 26.85 39.32 16.50% 34.15 5122 20.54% 33.74 50.37 19.98%
STG-NCDE 19.21 31.09 12.76% 24.82 3741 17.30% 29.24 44.17 19.44% 30.97 47.19  20.86%
FreTS 18.77 30.45 12.25% 24.68 37.05 16.00% 31.60 47.45 18.17% 29.82 46.65 17.48%
RSTIB-MLP 18.46 30.14 12.22% | 23.64 3644 1522% | 27.15 4285 17.19% | 27.16 43.43 17.76%
Dataset PEMS07

STID 20.41 33.68 8.74% 27.99 45.02 12.37% 31.83 55.26 13.62% 32.38 57.29 14.07%
GWN 20.25 33.32 8.63% 28.25 45.47 12.51% 32.15 55.81 13.76% 37.71 59.86  25.21%
TrendGCN 2043 34.32 8.51% 26.87 44.65 14.59% 31.94 5528  20.78% 36.78 57.89  23.22%
STExplainer-CGIB | 20.55 35.12 8.61% 28.14 44.07 12.18% 34.92 57.60 14.22% 35.12 59.17 16.78%
STExplainer 20.00 3345 8.50% 28.30 44.21 12.22% 31.58 54.03 14.82% 3252 57.64 15.48%
STGKD 20.30 34.30 8.87% 27.04 43.83 12.23% 31.64 55.16 13.69% 32.16 56.89 14.08%
BiTGraph 20.25 33.75 8.60% 28.55 44.55 12.35% 31.84 54.37 14.94% 32.77 58.00 15.60%
STC-Dropout 20.47 3391 8.75% 28.63 44.67 12.41% 31.72 54.42 15.01% 3291 58.13 15.69%
STG-NCDE 20.53 33.84 8.80% 28.79 44.62 14.22% 3221 56.23 15.78% 33.48 58.83 16.78%
FreTS 19.92 33.65 8.70% 28.60 44.40 14.10% 32.05 56.00 15.65% 33.30 58.60 16.65%
RSTIB-MLP 19.84 33.90 8.33% 26.55 43.77 11.37% | 30.15 54.08 12.65% | 30.94 56.79 1291%
Dataset PEMS08

STID 14.87 23.97 10.43% 20.26 3224 14.05% 26.64 45.73 15.63% 27.76 48.64 16.45%
GWN 14.67 23.49 9.52% 20.52 32.65 14.19% 2691 46.19 15.78% 28.04 49.13 16.61%
TrendGCN 15.15 24.26 9.51% 20.81 3249 14.92% 24.74 41.46  23.74% 26.90 45.69  22.95%
STExplainer-CGIB 14.87 24.07 10.26% 23.66 35.49 24.34% 24.87 43.14 15.32% 26.50 44.62 15.54%
STExplainer 14.59 2391 9.80% 20.28 32.86 13.37% 25.42 43.41 16.77% 27.17 45.79 15.26%
STGKD 15.13 24.80 10.66% 20.62 3245 14.99% 25.63 43.29 16.03% 25.93 44.03 16.59%
BiTGraph 14.85 24.20 9.90% 20.55 33.15 13.50% 25.70 43.75 16.90% 2745 46.10 15.40%
STC-Dropout 14.70 24.32 9.75% 20.35 3225 13.95% 25.55 44.82 15.25% 26.75 47.15 16.15%
STG-NCDE 15.45 24.81 9.92% 21.36 33.25 15.23% 28.35 41.89 16.33% 29.44 47.32 18.62%
FreTS 14.85 24.15 9.89% 20.52 33.12 13.45% 25.68 43.75 16.88% 27.41 46.05 15.35%
RSTIB-MLP 14.51 24.18 9.44% 19.90 31.86 12.92% | 23.16 4046  14.26% | 24.37 43.77  14.36%
Dataset LargeST(SD)

STID 17.60 29.05 11.92% 26.53 40.35 16.91% 34.82 5403  20.62% 3521 5526  21.52%
GWN 17.74 29.62 11.88% 27.39 40.95 17.81% 32.87 55.64 18.84% 37.32 5825  23.23%
TrendGCN 17.39 29.63 11.64% 25.84 39.64 16.23% 3145 51.71 17.83% 33.63 52.18 18.85%
STExplainer-CGIB 18.60 30.29 12.69% 26.17 40.46 17.55% 32.11 53.39 18.37% 34.56 52.88 19.43%
STExplainer 17.51 28.86 11.57% 25.68 39.48 16.24% 3141 51.49 17.87% 33.39 51.96 18.80%
STGKD 17.60 29.42 11.62% 25.85 39.71 16.08% 31.52 51.37 17.67% 33.93 52.67 18.97%
BiTGraph 18.85 29.80 12.68% 25.81 39.34 16.23% 31.16 52.13 17.74% 33.74 51.98 18.86%
STC-Dropout 17.55 29.36 11.68% 25.78 39.64 16.14% 31.48 51.42 17.73% 33.87 52.73 18.92%
STG-NCDE 17.58 29.14 11.87% 26.24 40.39 16.52% 31.83 52.67 17.86% 33.76 5223 18.97%
FreTS 17.54 29.01 11.95% 26.16 40.21 16.53% 31.60 52.99 17.71% 34.09 5251 18.86%
RSTIB-MLP 17.50 28.75 11.20% | 25.02 3837 15.42% | 30.60 5052  16.85% | 32.78 5038 17.92%
Dataset Weather2K-R

STID 3997.92 6199.77 65.34% | 4950.47 6610.89 67.06% | 6301.76 8071.43 76.94% | 7654.47 9660.18 82.08%
GWN 3991.24  6207.50 66.00% | 5218.42 6896.87 66.72% | 6883.07 8681.24 7427% | 8324.23 9832.49 83.08%
TrendGCN 3987.92  6223.53  65.30% | 4589.04 627423 63.31% | 5982.71 7688.16 72.99% | 7108.36 8964.54 81.53%
STExplainer-CGIB | 3994.82 6200.83 65.35% | 4789.03 6540.73 67.32% | 6215.86 7985.24 75.72% | 7775.50 9812.44 81.61%
STExplainer 3992.57 619833  65.22% | 4786.53 6537.73  67.18% | 6213.36 7982.24 75.58% | 7773.00 9809.44 81.47%
STGKD 3990.07 6195.83 65.08% | 4784.03 6534.73  67.02% | 6210.86 7979.24 75.44% | 7770.50 9805.94 81.33%
BiTGraph 3989.32  6216.03 65.21% | 4588.67 6274.45 63.15% | 5981.76 7680.34 72.91% | 7103.92 8964.87 81.38%
STC-Dropout 3986.43 620521 65.35% | 4792.87 6543.12 67.25% | 620549 7975.08 75.45% | 7782.56 9817.33 81.60%
STG-NCDE 3992.57 6199.03 65.22% | 4787.33  6538.53  67.15% | 6214.36 7983.04 75.58% | 7774.00 9810.24 81.46%
FreTS 3984.37 6219.03  65.12% | 4585.09 6269.53 63.13% | 5978.26 7683.56 72.81% | 7104.06 8959.94 81.35%
RSTIB-MLP 3964.53 6191.08 64.94% | 4561.97 6239.33 62.96% | 5948.52 7645.33 72.64% | 7073.69 891437 81.17%
Dataset Electricity

STID 20.18 39.82 15.92% 26.08 4798  21.74% 37.25 6527  2823% 50.97 81.16  45.78%
GWN - - - - - - - - - - - -
TrendGCN 19.98 39.62 15.72% 25.23 46.48  20.37% 34.35 63.82  26.78% | 47.26 78.65  42.38%
STExplainer-CGIB - - - - - - - - - - - -
STExplainer - - - - - - - - - - - -
STGKD 20.15 40.05 15.89% 25.40 46.75  20.65% 34.90 6490  27.65% | 48.75 79.80  44.90%
BiTGraph 19.98 39.87 16.12% 25.52 47.10  21.05% 35.68 65.82  28.55% | 49.78 78.95  43.78%
STC-Dropout 19.92 39.85 16.47% 26.12 4825  21.69% 36.68 6832  30.27% | 49.30 78.03  42.78%
STG-NCDE 19.85 39.92 16.52% 26.05 48.12  21.78% 36.75 6845  30.18% | 49.23 7790  42.85%
FreTS 20.12 40.45 16.22% 26.15 47.88  21.95% 37.30 69.25  31.05% 52.98 78.75  43.78%
RSTIB-MLP 19.80 39.67 1572% | 24.50 4585 19.95% | 33.80 6250 25.85% | 45.30 74.60  40.75%
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Robustness Study. We evaluate the robustness of RSTIB-MLP by injecting noise into both the input
and the target area, similar to the empirical study we conduct for evaluating the harmful aspect of
dual noise effect. As presented in Table [2] the results demonstrate that the increase in errors for
RSTIB-MLP is significantly lower compared to existing robust methods when dealing with noisy data.
This finding underscores the robustness of RSTIB-MLP, which can be attributed to its consideration
of both noisy input and target information conveyed. In contrast, previous approaches typically
consider only a single noisy area. Our method’s ability to handle both noisy patterns contributes to its
enhanced robustness.

Learning with Clean Data. In this analysis, we investigate the behavior of RSTIB-MLP when
learning with clean data. As depicted in Table[2]and Table[TT]in Appendix we observe some
improvements in performance metrics on clean datasets, although not significant. It is noteworthy
that while our primary objective is to enhance robustness on noisy datasets, the observed slight
improvement on clean datasets suggests potential benefits. However, we hypothesize that the
marginal improvement could stem from the challenge of effectively balancing the informative terms
within the learning objective, thus impacting the overall performance.
PEMS04

Inspecting Representation Learning from a Feature 20
Variance Perspective: A Case Study. In this case study, 18
we examine the superiority of our method from the per-
spective of feature variance, a crucial aspect for effective
model evaluation. As discussed in (Bardes et al., [2021),
maintaining feature diversity is essential to mitigate fea-
ture collapse and enhance model robustness. The quan- -
titative case findings in Fig[3]indicate that our proposed Nolse Ratio
knowledge distillation module significantly boosts feature .
variance, a critical factor in capturing the intricate and Figure 3: Feature Variance (Var) of
dynamic spatial-temporal patterns. This observation un- leferent Methods w.r.t different noise
derscores the effectiveness of accounting for the noise ratio (7) in PEMS04 Dataset

impact on different time series when balancing the infor-

mative terms in the learning objective, which is achieved by incorporating knowledge distillation into
the training regime. We also provide a model interpretation case study to visualize the distribution of
learned representation in Appendix. [K.8]
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Figure 4: Ablation Study Results on Different Benchmark Datasets When Combating Noises
with Different Noise Ratios

5.2 ABLATION STUDY

We assess our proposed components within RSTIB-MLP through its various variants: i) “w/o IB &
KD”: Excludes any Information Bottleneck (IB)-based enhancement and the knowledge distillation
module. ii) “w/o RSTIB & KD”: Similar to the first variant but implements vanilla IB. iii) “w/o KD”":
Removes the knowledge distillation module while instantiating the RSTIB principle. The ablation
study, as shown in FigH] reveals significant performance degradation without IB instantiation in most
scenarios, emphasizing its role in mitigating the detrimental effects of spatial-temporal data noise.
However, the results also show some circumstances where implementing the vanilla IB principle
results in even worse performance. The potential reason is that vanilla IB has not considered noisy
information conveyed by the target, while also challenging to balance the informative terms within its
objective. Besides, instantiating RSTIB can make significant performance improvements compared
with vanilla IB instantiation or non-IB enhanced instantiation. This underscores the importance of
minimizing the noisy information conveyed by both input and target data ends in the spatio-temporal
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forecasting scenario. Furthermore, the knowledge distillation module contributes to performance
enhancement, due to the better balance of the informative terms during robust representation learning.

5.3 HYPERPARAMETER ANALYSIS

MAE vs Distance Function MAE vs A

We conduct a hyperparameter analysis focusing 1852 e 18.7

on two key hyperparameters in RSTIB-MLP: %150 o EJP

the distance function for computing the noise AN

impact indicator & and the Lagrange multipli- 1o e 185 o

ers A (Az, Ay, A;). This study aims to evaluate MAE  SmocthLl WSt 162 1le3 14 15
istance Function A

their influence on model performance using the

PEMSO04 dataset (results shown in Fig. E]): i) Figure 5: Hyperparameter analysis showing

Distance Function for Noise Impact: We test comparisons for distance function (left) and )
Mean Absolute Error (MAE), Mean Squared Er- (right)

ror (MSE), and Smooth L1 Loss for computing

&. The MAE distance function provides the best

MAE metric. ii) The Lagrange Multipliers: We set A\, A, A, to equal values, varying them over
1x1072,1 x 1073,1 x 107%,1 x 107°. The best MAE value is achieved at A = 1 x 1073, The
detailed analysis regarding MAE, RMSE, MAPE metrics have been included on Appendix [K:9]

5.4 COMPUTATIONAL EFFICIENCY

Effiency Sudy: SecondeEpoch - MAE This section compares the efficiency of RSTIB-MLP with some rep-

102 T e LY. resentative state-of-the-art STGNN-based methods. We also include
0 _ Il an MLP-based method, STID (Shao et al., [2022a)), as an MLP-based
¢ sTID baseline. We measure the efficiency by recording the average training
wee - time per epoch of all methods on the PEMS04 dataset. All evaluations
00 e ® are conducted on an NVIDIA RTX 3090Ti GPU. Fig[g] displays the
e results. We can see that prior STGNN-based works require more time
Seconds/Fooch due to the sophisticated model design (See Section[H). By contrast, our

Figure 6: Efficiency Study work utilizes computationally more efficient MLP networks, resulting
in PEMS04 Dataset in a more streamlined model architecture, allowing faster processing

and shorter training time.

Table 3: Traini time for different
Beyond the results provided in Figl] we also ate raining convergence time for citieren

SRR baselines.
evaluate the overall training time to convergence
for better showcasing our method’s superior ef- — -
ficiency. We include the results in Table[3] in _Method Total Training Time (Seconds)
which it is clear that our full training is much ~ RSTIB-MLP 28423
faster than the competing methods. For example, = DSTAGNN 9283.7
as shown in Table 3} our method reduces up to  Graph-WaveNet 7308.6
88.42% of training convergence time compared  STG-NCDE 9238.7
to one of the most effective STGNN-based base-  STExplainer 24514.0

line methods, STExplainer (Tang et al.||[2023)).

6 CONCLUSION

In noisy spatial-temporal forecasting scenarios, noise perturbation can degrade forecasting accuracy
and induce feature collapse. We propose the Robust Spatial-Temporal Information Bottleneck (RSTIB)
principle for guiding robust representation learning to mitigate these effects. By leveraging RSTIB,
we instantiate our method using a pure MLP network, resulting in a computationally efficient and
robust RSTIB-MLP model for the task. Additionally, we incorporate a knowledge distillation
module into our training regime. Knowledge distillation can enhance feature diversity and improve
predictive accuracy by better leveraging the knowledge from previously trained teacher models to
balance informative terms within the objective of RSTIB-MLP. Through comprehensive evaluation
encompassing feature variance and predictive performance metrics, our approach demonstrates
superior performance in handling of noise. It maintains robust forecasting accuracy under challenging
conditions while computationally more efficient than stat-of-the-art STGNN-based methods.

10



Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

For enhancing reproducibility, we provide the links to all the datasets in Appendix. For the
theoretical results, detailed proofs has been provided in Appendix[F} along with the assumptions made
in Assumption. [A.1and Assumption. [£.2] Implementation details for RSTIB-MLP are also provided
in Appendix. Besides, settings for each dataset are detailed in the Datasets and Implementation
subsections in Section
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A NOTATIONS

Our notations are elaborated in Table ]

B ADDITIONAL PRELIMINARIES

B.1 MATHEMATICAL PRELIMINARIES AND DEFINITIONS

This section provides mathematical preliminaries concerning entropy and mutual information using
three discrete random variables X, Y, and Z for illustrative purposes. It is important to note that
these variables do not carry specific meanings within this context and the notations used here are
distinct from those in the main discussion. Additionally, this section offers an intuitive understanding
of each term.

Definition B.1. Entropy. We define the entropy H(X) of a discrete random variable X as a measure
of its uncertainty, using its marginal distribution p(z). Mathematically, entropy is expressed as:

— > p(x)log p(a %
rzeX

where the summation extends over all possible outcomes x of the random variable X. The function
H (X)) quantifies the expected information content or uncertainty inherent in X ’s outcomes.

Definition B.2. Joint Entropy. The entropy of two random variables X and Y can be jointly
considered by viewing them as components of a single vector-valued random variable. This joint
entropy is defined as:

HX,Y)=-= > plx,y)logp(x,y)
zeX,yey

- Z Zp(ﬂr,y) log p(z,y), )

rzeX yeyY

where p(x,y) represents the joint probability distribution of X andY . This definition encapsulates
the total uncertainty present when considering the distribution of both variables simultaneously.

Definition B.3. Conditional Entropy. Given two discrete random variables X and Y, the conditional
entropy of X given'Y is defined as:

H(X|Y) == py) > pzly)logp(zy), ©)

yey rzeX

where p(x|y) is the conditional probability of X given'Y, and p(y) is the marginal distribution of Y.
Avalue of H(X|Y) = 0 implies that knowing Y completely determines X, signifying no remaining
uncertainty about X once 'Y is observed.

This concept allows us to understand H(X) as a priori entropy of X, while H(X|Y') represents
a posteriori entropy—reflecting the uncertainty in X after Y is known. The reduction in entropy,
H(X) — H(X|Y), quantifies the amount of information Y provides about X, which is formally
termed mutual information in Definition B.4)|
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Table 4: Notations

Symbol Description

N The number of time series(i.e., nodes).

P The length of historical input.

F The length of forecasting target.

C The number of features in each input or target time series at a specific time slot.

X" The historical spatial-temporal data X"* € RP*N*C 'with N time series of C features
in each time series within P nearest historical time slots, with each X[fi € RC.

X The input to RSTIB-MLP model, generated from X". The dimension of X, along
with X, ;, depends on X}, and the attachment of spatial-temporal information from a
specially designed module.

Y The forecasting target data Y € RF*NXC with N time series of C features in each
time series within F' nearest future time slots, with each Y; ; € RC.

X The reparameterized input.

Y The reparameterized target.

YT The teacher model’s output.

Yys The RSTIB-MLP model’s output.

d The hidden dimension of each z € Z, i.e., z; € R fori =1,...,N.

Z The encoded spatial-temporal representation, comprised of a series of latent spatial-
telj'\n;pgral representations (z1, 2a,...,2y) where z; € Réfori =1,...,N. Z €
R >4,

Cov The covariance matrix of Z, with each Cov;; representing the variance of the i-th
feature across the representations, i.e., the diagonal elements of Cov.

Var The feature variance defined in Eq..

D The distance function for calculating the noise impact indicators.

& The noise impact indicator, where &; is computed for each time series.

B8 The Lagrange multiplier defining the trade-off between the compression of X and
preservation of Y in the IB objective.

b1, Be The Lagrange multipliers defining the informative terms within the RSTIB objective.

Az> Ays Az The Lagrange multipliers defining the balance between the informative terms within
the RSTIB-MLP objective.

Lip The original objective of IB principle.

LrsTiB The objective of RSTIB principle.

Lrstip—nmrp | The learning objective of RSTIB-MLP.

reg The typical regression loss.

Ly, Ly, L, The upper bounds of input regularization, target regularization, representation regular-
ization.

L The number of layers.

Ny The time slots in a day.

Ny The number of days in a week.

fr The teacher model.

n The learning rate.

E The expectation of a random variable, i.e., the mean of the possible values a random
variable can take, weighted by the probability of those outcomes.

E The maximum epoch number.

B The batch size.

r The decay factor.

T The non-linear activation.

~ The noise ratio.

H The entropy of a discrete random variable, e.g., H(X) represents the entropy of X.

~
-
N

The mutual information between two discrete random variables, e.g., I(X;Y) repre-
sents the mutual information between X and Y.
The lautum information between two discrete random variables, e.g., LI(X;Y") repre-
sents the lautum information between X and Y.
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Remark B.1. Conditional Entropy w.r.t three variables. The conditional entropy H(Z|X,Y)
quantifies the residual uncertainty in a random variable Z when the values of other variables X and
Y are known. It is mathematically defined as:

H(ZIX,Y) =~ Y pla,y) Y p(zlz,y)logp(z|z,y) (10)
rzeX,ycyY z€Z

Here, p(x,y) represents the joint distribution of X and Y, and p(z|x,y) is the conditional probability
of Z given that X and 'Y take the values x and y respectively. This measure effectively describes how
much uncertainty in Z remains after observing both X and Y .

Definition B.4. Mutual Information. Given two discrete random variables X and Y, their mutual
information (MI), denoted as I(X;Y'), is defined by:

I(X;Y) = H(X) — (XIY)
== pl@)logp(x)+ Y pla,y)logp(zly)

zeX rzeX,ycY
=— logp(x) Y pl@y)+ > plz.y)logply)
zeX yey rzeX,yeyY
X
= Y py)leg (p((:'g)> : an
zeX,yey p

where p(x,y) is the joint distribution between X andY, p(x) is the marginal distribution of X and
p(z|y) is the conditional probability distribution of X given'Y, respectively.

Definition B.5. Relative Entropy. The relative entropy, or Kullback-Leibler (KL) distance, between
two probability mass functions p(x) and q(x) is defined as follows:

KL(pllg) = ) pl=) tog 242, (12)

reX q(x)

The mutual information between X and Y can also be expressed as I1(X;Y) =
KL(p(x,y)||p(z)p(y)), which implies that mutual information is the relative entropy between the
Jjoint distribution p(z,y) and the product of the marginal distributions p(x)p(y).

Remark B.2. Mutual information satisfies the following identities:
I(X;Y)=HX)-HX|Y)=HY)-HYI|X)=1(Y; X) (13)

I(X;Y)=H(X)- HX|Y)=H(X)+ HY) - HX,Y). (14)

The relationships among H(X), H(Y), H(X|Y), H(Y|X), I(X;Y), and H(X,Y) can be visual-
ized in a Venn diagram, as shown in Fig. [7]

Figure 7: Relationship between H(X), H(Y), H(X|Y), H(Y|X), I(X;Y), H(X,Y). (1):
H(X|Y); 2): I(X;Y); Q:H(Y|X); A+2): H(X); 2+3): H(Y); (142+3): H(X,Y).

Remark B.3. Mutual Information w.r.t to three variables 1(Z; X,Y ). The mutual information
1(Z; X,Y) quantifies the shared information between the variable Z and the variables consisted of
both X andY . It is defined mathematically as:

I(Z;X,Y)= >  play, 2)log B2 Y)
reX,yeY,zeZ

p(z|z,
p(z)
where p(x,y, z) represents the joint probability distribution of the variables X, Y, and Z. This
expression highlights how much uncertainty in Z is reduced by knowing both X and Y.

) (15)
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Definition B.6. Lautum Information. Because of the non-symmetry of the KL divergence, Lautum
information is defined as the divergence from the product of the marginal distributions to the joint
distribution of two random variables X and 'Y and is given by:

LI(X;Y) = KL(p(x)p(y) || p(z,y)), (16)

where p(x,y) is the joint distribution of X and Y. p(x) and p(y) are the marginal distributions of X
andY respectively. This concept was introduced by (Palomar & Verdu, |2008)).

Definition B.7. Conditional Mutual Information. The conditional mutual information between X
andY given Z, denoted as I(X ;Y |Z), measures the amount of information shared between X and
Y that is unique and not already explained by Z. It is defined as:

I(X;Y|Z) = H(X|Z) - H(X|Y, Z)

(z,y]z)
= p(z,y, z)log <p>
xeX,yzE:Y,zeZ p(z]2)p(yl2) (17)
)

> p(x,y,z)log(%).

zeX,yeY,zeZ

which quantifies the additional information about X obtained by observing Y when the influence of
Z is already known.

Definition B.8. Interaction Information. The interaction information concerning the variables X,
Y, and Z quantifies the unique information shared by these three variables. It is formally defined as:

I(X;Y;Z) = I(X;Y) - I(X;Y|Z) (18)

This measure reveals whether the mutual information between X andY is increased or decreased by
conditioning on Z.

B.2 PRELIMINARIES FOR IB AND DVIB

Here, we detail the preliminaries regarding the Information Bottleneck(IB) and Deep Variational
Information Bottleneck(DVIB). We denote X as the input to different IB models, Z as the encoding
from X, and Y as the target.

¢
\
(a) (b)

Figure 8: Comparison of IB(a) and DVIB with lifted markov assumption Z — X — Y'(b). Refer
to Fig. 2|for more details.

In Fig. [8al the entropy of X, i.e., H(X), and the entropy of Y, i.e., H(Y'), are depicted as circles, with
their mutual information I(X;Y") represented in the overlapping area. The representation learning
guided by the IB principle aims to optimize the information flow by retaining as much relevant
information about Y in Z as possible while minimizing the redundant information from X. This
principle targets reducing the irrelevant information H (X|Y") Z captures, namely I(X; Z|Y'), aiming
for what is termed the “minimal sufficient representation”, ideally encapsulating solely I(X;Y).
Achieving this optimal representation presents substantial challenges due to the intrinsic complexities
of the models and the varied selection of parameters and hyperparameters, such as 3 in Eq. (2).

Incorporating the IB model with deep learning, where mutual information terms are modeled using
deep neural networks (DNNs5), has proven successful. The DVIB method leverages deep learning
to approximate the IB model, finding a sufficient statistic Z given X while retaining pertinent side
information about Y. The approach involves parameterizing the conditional probabilities P(Z|X)
and P(Y'|Z) using DNNs, thus enabling direct recovery of the terms in the original IB objectives.
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Regarding the assumptions of the Markov chain, the typical practice in the original IB formulation
assumes Z — X —Y . This assumption is also utilized to derive DVIB. Additionally, by its construction,
the DVIB model satisfies the data generating process, which implies that the Markov assumption
X — Z — Y holds. Adhering to both Markov chain restrictions in DVIB may seem overly restrictive,
and as pointed out by (Wieczorek & Roth, [2020), no directed acyclic graph (DAG) with three vertices
can faithfully represent such a distribution. Consequently, Wieczorek & Roth|(2020) theoretically
explore the possibility of relaxing the Z — X — Y restriction by demonstrating how [(Z;Y") can be
lower bounded, thus potentially circumventing the necessity for the Z — X — Y configuration. As
illustrated in Fig. the original IB method does not encompass a region representing (Z; Y| X),
owing to its reliance on the Z — X — Y Markov chain assumption. Conversely, in the DVIB approach
with this assumption lifted, the term I(Z;Y|X) # 0 is represented in Fig Detailed explanations
regarding the derivation are provided in Proofs. [F5]

Algorithm 1 RSTIB-MLP for Spatial-Temporal Forecasting
ht!

Input: Historical spatial-temporal data X", input adjacency matrix A(optional), trained teacher
model fr, N time series, Vg4 time slots in a day, N,, = 7 days in a week, Lagrange multipliers
Azs Ays Az, maximum epoch number E, learning rate 7.
fore =1to E do

// Obtain noise impact indicator for each time series

Obtain teacher output Y7 = fr(4, Xh).

Calculate noise impact indicator d; for each time series ¢ according to Eq. (3).

// Prepare the input X to the RSTIB-MLP

Attach the spatial-temporal information to the historical input data X, according to Eq. (20),
to obtain the input X to RSTIB-MLP.

// Data Reparameterization for obtaining X and 'Y

Adopt the MLP encoders, along with two additional Fully-Connected(FC) layers to align with
the dimension of X and Y, respectively. They are utilized for parameterizing P 6 ™ N (tiy, 0}2)

and Py~ N iy, 7y%).

9:  Establish Py, ~ N(uy,02) and Py, ~ N (py,07), where pi, = & + fig, py = y + fiy,
2

AN

[e BN |

02 =0o,” and ol = o, ? respectively.
10: Adopt data reparameterization to obtain X and Y, by obtaining & = ji, + o€ and §j =

Hy + oye, witheach 7 € X and Yy € Y respectively, and € ~ N(O, 1).

11: // Input Regularization and Target Regularization

12: Calculate the upper bounds of the input and target regularization according to Proposition
4.3

13: // Data Reparameterization for obtaining Z

14: Adopt the same MLP encoders, sharing the same parameters, to parameterize the posterior
distribution Py_ ~ N (p5, 02).

15: Obtain Z by obtaining z = u, + o€ through reparameterization, where z € Z.

16: // Representation Regularization

17: Calculate the upper bound of the representation regularization according to Proposition

18: // Decoder

19: Use a simple regression layer to obtain the output Y according to Z.

20: Calculate the total loss Lrsrr5— a1 p according to Eq. @

21: Update each parameter © in ©® as© = 0 — - VgLrsria—mLp-
22: end for

23: return ©

B.3 PRELIMINARIES FOR SAMPLE INDISTINGUISHABILITY

A recent work (Deng et al.,|2021)) identifies that the essential element for the efficacy of STGNNs
lies in the capability of GCN to mitigate the issue of spatial indistinguishability. Thus, in MLP for
spatial-temporal forecasting, additional modules are needed to alleviate the sample indistinguishability
bottleneck by attaching the spatial-temporal information. In this study, spatial-temporal prompts (Tang
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Teacher Model Target Regularization I(Z;Y)

o g ) e e

I &
Input Regularization
I(X;X)
o v )+ (R - Y
T

Attach the Spatial-temporal Information I(X; Z)
Representation Regularization

Figure 9: The framework of RSTIB-MLP. The historical input data X" is attached with the
spatial-temporal information to generate RSTIB-MLP’s input X. Then, input regularization,
target regularization and representation regularization are imposed, along with the optimization
for supervision. X" is also used to calculate the noise impact indicators to quantify the noise
impact on each time series to balance the informative terms within this framework better.

2024)), which is an extension of spatial-temporal identity (Shao et al,[20224), are adopted to

attach this information to the historical input data X" for obtaining the input X to the models.

B.3.1 SPATIAL-TEMPORAL IDENTITIES

With the spatial-temporal identities technique, inputs can be attached with spatial-temporal identity
information, which is as follows:

X = FC(X{) | Bl | TP TP, (19)

where FC refers to fully connected layers that map the dimension of the historical input data X"
from RE*N*C (o the dimension RE*V %€’ Assuming N time series, Ny time slots in a day and
N,, = 7 days in a week, the spatial-temporal identities are in three trainable embedding matrices, i.e.,
E € RVN*C" with each E; € RS, TTP ¢ RN¢xC" with each TT*P € R®’, and TPW ¢ RNwx¢’
with each TPW € RC". The input to the model will be X € RP*N*4C" by concatenating (||) each
term.

B.3.2 SPATIAL-TEMPORAL PROMPTS

With the spatial-temporal prompts technique, inputs can be attached with spatial-temporal contextual
information, including which is as follows:

Xpi = FCL(X])|[FCo(EL)[FCs (EY) |[FCL (B ) |[FC5 (BT, (20)

Here, the terms E(®) € RN *C with each EZ(-Q) € RC represents learnable spatial prompt, E(T0P) ¢

RNaxC with each E{7°?) € RE and EP°W) € RN*C with each E{”°") € RC represent the
learnable temporal prompts, with the same settings that we have N time series, /N4 time slots in a

day and N,, = 7 days in a week. ng )P,t € RPXNXC ywith each Eg) e RC represents the dynamic

spatio-temporal transitional prompt, inherent from (Han et al},[2021). FC;, where i = 1...5, refers
to fully connected layers that map the data and all the embeddings to the same dimension C”. In this

case, the input fitted into the MLP networks will be X € RE*N*5C" with each X, ; € R5",

C ALGORITHM

Our learning framework is shown in Figure[0] Our algorithm is detailed in Algorithm|T].
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D BASELINES

All baselines for comparisons are based on their original implementations. We list their source links
here.

» STID, https://github.com/zezhishao/STID

» STExplainer, https://github.com/HKUDS/STExplainer

* TrendGCN, https://github.com/juyongjiang/TrendGCN

* STG-NCDE, https://github.com/jeongwhanchoi/STG-NCDE
* DSTAGNN, https://github.com/SYLan2019/DSTAGNN

* STGCN, https://github.com/VeritasYin/STGCN_IJCAI-18

* GWN, https://github.com/nnzhan/Graph-WaveNet

* AGCRN, https://github.com/LeiBAI/AGCRN

* GMSDR, https://github.com/dcliu99/MSDR

* FOGS, https://github.com/kevin-xuan/FOGS

* BiTGraph, https://github.com/chenxiaodanhit/BiTGraph

» FreTS§, https://github.com/aikunyi/FreTS

E DATASETS

Table 5: Statistics of Datasets

Dataset #Node #Time Steps #Sample Rate  #Time Span

PEMS04 307 16992 5min 01/2018 - 02/2018
PEMSO07 883 28224 Smin 05/2017 - 08/2017
PEMSO08 170 17856 5min 07/2016 - 08/2016
LargeST(SD) 716 35040 15min 01/2017 — 12/2021
Weather2K-R 1866 40896 lhour 01/2017 — 08/2021
Electricity 336 2184 Thour 10/2014 - 12/2014

The statistical information for six datasets is summarized in Table

The PEMS04/07/08 datasets are a comprehensive collection of traffic data gathered from Districts 4,
7, and 8 of Caltrans, respectively. These datasets typically include flow (vehicles per hour), speed
(miles per hour), and occupancy (percentage of time the detector is occupied), recorded across
multiple lanes and aggregated into 5-minute intervals. Public accessed data can be found in (Guo
et al.,[2021b): https://github.com/guoshnBJTU/ASTGNN/tree/main/data

The versions of the datasets are the same as the sources’ default versions.

LargeST (Liu et al.| 2024a): It is publicly available at https://github.com/liuxu77/LargeST.
Weather2K-R (Zhu et al.,|2023b): It is publicly available at https://github.com/bycnfz/weather2k.
Electricity (Deng et al.,[2021): It is publicly available at https://github.com/JLDeng/ST-Norm.

F THEORETICAL PROOFS

F.1 PROOF FOR PROPOSITION [4.1]

Proof. We firstly provide the proof for I(X;Y | Z) = H(X,Z)+ H(Y,Z) - H(X,Y,Z) — H(Z).

By utilizing the definition of conditional mutual information, I(X;Y | Z) can be expressed as
follows:
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[(X:Y | 2) = H(X | Z)+ H(Y | Z) - H(X,Y | ) @)

By expanding each term using the definition of conditional entropy, we can obtain:

H(X|2)=H(X,Z)— H(Z) (22)
H(Y | 2Z)=H(Y,Z) - H(Z) (23)
H(X,Y | Z)=H(X,Y,Z) - H(Z) (24)

Then we have:

I(X;Y | Z2) = (H(X,2) - H(Z))+ (H(Y, 2) - H(Z)) = (H(X,Y, Z) - H(Z))  (25)

Simplifying the equation, we can obtain:

I(X;Y | 2)=H(X,Z)+ H(Y,Z) - H(X,Y,Z) — H(Z) (26)

Proofs of I(X;Y | Z) = H(X,Z)+ H(Y,Z) — H(X,Y, Z) — H(Z) have been completed. Then,
we have the following equivalent expression:

I(X;Y | Z2)=H(X,Z)+ H(Y,Z) - HX.,Y, Z) — H(Z)

=[H(X)+H(Y) - H(X,Y)]
— [H(Z)+ H(X,Y) - H(X,Y, Z)] 27)
+[H(Z,Y)+ H(X,Y) - H(X,Y,Z)— HY)]
+[H(Z,X)+H(Y,X) - H(X,Y,Z) — H(X)]

By using the following definitions:

I(X;Y)=H(X)+H(Y) - HX,Y), (28)
(ZXY) H(Z)+H(X,Y) - H(X,Y, Z), 29)
I(Z; X |Y)=H(Z, )4—H(X,Y)—H(X,Y,Z)—H(Y)7 (30)
I(Z;Y | X)=H(Z,X)+ HY,X)-H(X,Y,Z) — H(X), 3D
We have:
[(X;Y | 2) = I(X:Y) - (I(Z: X,Y) - [(Z: X | Y) = [(Z;Y | X)) (32)

According to Definition[B.8] we draw the conclusion as follows:
I(Z,Y | X))+ I1(Z; X |Y)=1(Z; X,Y) - I(X,;Y;2) (33)
F.2 PROOF FOR PROPOSITION[4.2]
Proof. Consider the mutual information 1 (f( ; X) defined as follows:
P(X|X
x |log (7‘~)
P(X)

We parameterize the conditional distribution P(X|X) by utilizing Py, (X]X), and substituting the
margmal distribution P(X) with a variational approximation Q(X), which introduces an extra

KL(P(X)||Q(X)) term, we get:
log (Wﬂ — KL(P(X)Q(X)). (35)

I(X;X)=Eg (34)

I(X;X)=Eg x
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Using the non-negativity of the Kullback-Leibler divergence, we establish an upper bound:

1(X: X) < E[KL(P,, (XIX)|Q(X))] (36)

Similarly, for the mutual information I (f/, Y'), we have:

I(V3Y) < E[KL(P,, (VIV)Q(Y))] - (37)

F.3 PROOF FOR PROPOSITION

Proof. We demonstrate the proofs by utilizing £, as an example, which is the upper bound of the
input regularization. Considering £, as the Kullback-Leibler divergence from a normal distribution
N (42, 02) to the standard normal distribution N'(0, 1), the divergence is given by:

Lo = KL (N(1a,02) | N(0,1))

(w—uz)Q)
_ 2 exp <_T
(@ — pa) )log 2% dz

1
a / V/2mo2 P ( 203 \/2mo2 exp (7%)

(B P) [ L ggonoty - e 2]

1
N / NE T R <_ 202 207 2
1 — Uy 2 — Uy 2
—log(c?)+1— = /exp _E= ) ( — pg)?do + /exp Gl x? dx
o2 202 202

x

[—log(o2) + 02 + 12 — 1] .

N~ N~

(38)

Analogously, the upper bound of the target regularization, denoted as L,;, can be similarly derived
and results in:

Ly = (—logai—i—ai—&—uz —1) . (39)

DN =

F.4 PROOF FOR PROPOSITION 4.4

Proof. The proof can be found in the similar Proof. [F2]and Proof-

F.5 PROOF FOR PROPOSITION 4.3

Proof. Without holding the Markov chain condition Z — X — Y, we cannot derive the lower bound
of I(Z;Y) in (Alemi et all[2016). Therefore, We re-derive the substituted lower bound of I(Z;Y")
with the additional term I(Z;Y | X) that arises upon relaxing the constraint Z — X — Y. Then, we
establish the lower bound for our objective.
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I(Z;Y)=KL (/ P(Z|Y,X)P(Y,X) dx||P(Z)P(f/))
= /P(Z|X,17)P(X,Y/) log )dzd:cdgj
—Ep [ / P(Z|X,)log P

—Epix.7) {logP(f/)/P(ZD(, Y)dz
=Epx 7 Epz)x,7)[log P(Y|Z)]+ H(Y)
=Epx)Epyx)Epzx,v)llog P(Y[Z, X)| + H(Y)

[

t

— Epco) / / P(Z,V|X)log P(Z,V|X)dzdj + H(Y)

P(Y|X)P(Z,Y|X)

PEIXPZx) CHTAY)

:EP(X)//P(Z,ﬂX) log

=Epx)[KL (P(Y,Z|X) P(?|X)P(Z\X)) +//P(Z,17|X) log P(Y|X)dzdg] + H(Y)

P(Y,Z|X) P(Y/|X)P(Z\X)> +/P(Y/|X) log P(Y|X)dj] + H(Y)

= Epoo) KL (P(V, Z|X)||P(VIX) P(Z] X))

PZIX)PYIX)PZYIX) |y iy
P(Z,Y|X)P(Z|X)

—_

+//P(}7|X)P(Z|X) og

P(Y,Z|X) P(Y|X)P(Z\X)) +//P(}7|X)P(Z|X)logP(Z|X) dzdj) + H(Y)

= Epx) KL (P(f/, Z|1X) ‘P(Y|X)P(Z\X)> YKL (P(Y\X)P(Z|X)HP(Y/, Z|X))] +H(Y)

= Epo KL (P(V, Z1X)|[P(VIX)P(Z]X)) + KL (P(V1X)P(Z]X)||P(V, 2]X))
+Epzx)p1x)l0g(P(Y1Z, X)) + H(Y)
= I(Y; Z|X) + LI(Y; Z|X) + Ep(x)Ep 51 x)p(3 x) 08 P(Y]Z) + H(Y)

> Epx)Epz1x)p(v)x) 108 P(Y|Z)+ H(Y)
(40)

Let Q(Y'|Z) be the variational approximation of the intractable P(Y'|Z), similar to Eq.. By the
non-negativity of the KL divergence, we have:

KL(P(Y|Z) | Q(Y|Z)) > 0. (41)

Thus, the inequality simplifies to:

=N

I(Z;Y) > Epx)Epz1x)pvx) log P(Y]Z) + H(Y)

_ ~ 42)
= Epx)Epz1x)p(vx) 0g Q(Y[Z) + H(Y).

Since the entropy H (}7) is independent of the optimization, we can maximize I(Z, 17) by maximizing
Er)Epz1x)pvix) log QY |2) = —L,eq(YS,Y), where Y represents the predictive outputs
of RSTIB-MLP model.

25



Under review as a conference paper at ICLR 2025

G SANITY CHECK FOR RSTIB-MLP

In this section, we perform a sanity check on the RSTIB-MLP model to determine whether the
instantiation impairs the Information Bottleneck(IB) nature. By conducting this analysis, we aim to
theoretically ensure that the RSTIB principle, as an extension of the IB, does not reduce to undesirable
degenerate solutions.

Table 6: Comparison of Assumed Markov Chains, Structural Equations, and Corresponding
Directed Acyclic Graphs (DAGs)

Assumed Markov chain @—@—@

Z = fz(X,nz) Z = fz(X,nz)
Y = fy(X,ny) Y = fy(Z,ny)

Corresponding DAG @@@

Possible set of structural equations

As articulated by (Wieczorek & Roth| 2020), the assumptions underlying different Information
Bottleneck (IB) principles correspond to different admissible information flows, which can be
effectively represented using Directed Acyclic Graphs (DAGs). This approach allows for a convenient
elucidation of the properties in different IB models. The arrows in the DAGs explicitly symbolize the
data generation process rigorously defined by a corresponding set of equations.

a2

Z—X—Y
Z—X Y
A X Y //_7\
Z—X—Y Z—X Y
(a) (b)

Figure 10: Admissible DAGs Under Different Markov Assumptions while not impairing IB
nature. @) Z — X —-Y;b) X - Z-Y.

X—Z
Information X
Flow Z<
Y
X—Z—Y

Figure 11: DAGs of RSTIB-MLP.

As depicted in Fig[I0a] the Markov chain assumption Z — X — Y serves as a sufficient condition to
preclude the model from deriving the trivial solution Z = Y. Nonetheless, the necessary condition is
that Z should not directly depend on Y. Consequently, the requirement Z — X — Y can be relaxed to
merely prohibiting a direct edge from Y to Z in the DAGs, i.e., Y — Z. This relaxation is achieved
by adhering to the admissible DAGs under the Markov assumption X — Z — Y, as depicted in
Fig[TOb] Moreover, Z must encapsulate information about both X and Y, necessitating the exclusion
of structures Z7 — X < Y and Z — Y < X in the DAGs, which would otherwise result in
I(Z;Y) =0and I(X; Z) = 0, respectively. To summarize, since we also lift the Markov restriction
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Z — X —Y by justholding X — Z — Y condition, it is imperative to adhere to the DAGs outlined in
Fig. [I0b} This mandates a thorough sanity check of the RSTIB-MLP model.

The DAGs of RSTIB-MLP are presented in Fig. [I] As is shown in the figure, our model effectively
ensures that it does not reduce to the solution Z = Y while simultaneously guaranteeing the
preservation of information from both X and Y, thereby maintaining the nature of the information
bottleneck principle.

H COMPUTATIONAL COMPLEXITY ANALYSIS

In this analysis, we theoretically compare the computational complexities of our RSTIB-MLP with
other leading baselines in spatial-temporal forecasting. Many advanced STGNN-based methods
integrate Temporal Convolutional Networks (TCNs) and Graph Convolutional Networks (GCNs)
with self-attention mechanisms to effectively capture temporal and spatial dependencies, respectively.
In contrast, our RSTIB-MLP employs Multi-Layer Perceptrons (MLPs) alone, simplifying the model
architecture. This section provides a detailed analysis of the computational complexity associated
with these fundamental model architectures.

Table 7: Notation for Computational Complexity Analysis of GCNs and Self-Attention Mecha-
nisms.

Symbol | Description

N The number of time series
& The edge matrix
I€] The number of edges
The adjacency matrix, where A € RV*Y
d The hidden dimension of each time series
deg The average degree of the time series
A The adjacency matrix with self-loops, A = A+ 1 where [ is the 1dent1ty matrix
D The diagonal degree matrix corresponding to A, where Dy = > y Aj; j
A The normalized adjacency matrix, A’ = D~2 AD~2
Z The feature matrix, where Z € RV *d
w The feature transformation matrix for the I-th layer, € Rdxd
7(+) A non-linear activation function
L The total number of layers in the network
w The query matrix for the [-th layer of the self-attention mechanism, Wg ) € Raxd
% The key matrix for the I-th layer of the self-attention mechanism, W) € Rxd
W(l) The value matrix for the [-th layer of the self-attention mechanism, W‘(/l ) € Rdxd

Computational Complexity of GCN. We detail the computational complexities of GCNs based on
the notations provided in Table[/| The computation at the [-th layer of a GCN can be expressed as:

ZUH) — (A ZzOWwO) (43)
which can typically be divided into two primary operations:

¢ Feature Transformation: Z'() = 7O ®),
« Neighborhood Aggregation: Z(+1) = (A’ Z'D),

Thus, naively, the computational complexity of GCN can be expressed as:
O(L- (N -d*+ N?.d)) (44)

In practice, the scatter function from Pytorch (Paszke et al.}[2019) can efficiently handle the graph
structure’s sparsity. Given that the average degree of nodes is denoted by deg, the complexity for
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neighborhood aggregation per node is O(deg x d), resulting in a total of O(N x deg xd) = O(|€| xd).
Thus, the practical computational complexity of a GCN is:

OL-(N-d*+ €| - d)) (45)
Generally, the complexity of the activation function 7(-), being an element-wise operation, is negligi-
ble and can be approximated as O(N).

When combining GCNs with a Self-Attention mechanism, the query, key, and value matrices in the
I-th layer, denoted as W}, W, and WY, respectively, are all d x d matrices. The self-attention
mechanism involves the following computations:

1. Compute Q) = Z(l)Wg), KO = Z(l)W[({l), and VO = Z(l)W‘(,l), each with a computa-
tional cost of O(Nd?).

2. Compute the product Q) K (VT which incurs a cost of O(N?2d).

3. Compute the final attention scores, requiring O(N?d) time.

Therefore, the total computational complexity when incorporating self-attention is:
O(L - (N*d 4+ Nd?)) (46)

Computational Complexity of TCNs. We detail the computational complexities of TCNs based on
the notations provided in Table[§] TCNs integrated with attention mechanisms are often benchmarked
against sequential models such as RNNs and LSTMs. The computational complexity for these
sequence models is typically O(L x T x N? x d?). However, similar to the above analysis,
TCNs equipped with attention mechanisms generally incur lower computational costs, estimated
at O(L x N x T? x d). The reduced complexity is attributed to the faster learning dynamics
of T? compared to (N x d)?. Although TCNs have been demonstrated to enhance efficiency
significantly (Zhou et al.l 2020), they are still considered sub-optimal compared to MLP networks.

Table 8: Notation for Computational Complexity Analysis of TCNs with Attention Mechanisms.

Symbol | Description

The number of layers in the model
The length of the time series

The number of time series

The hidden dimension

>N

Computational Complexity of RSTIB-MLP Networks. The RSTIB-MLP architecture employs a
straightforward encoder-decoder MLP network design. We denote d;,, as the input dimension, d;
as the output dimension, and d as the dimension of the hidden layer. The computational complexity
of the model can be succinctly expressed as O(N X (d;, X d + doyt X d)), where N represents the
number of time series being processed.

Table 9: Notation for Computational Complexity Analysis of RSTIB-MLP Networks.

Symbol | Description

N The number of time series
din The dimension of the input
dout The dimension of the output

The dimension of the hidden layer in the MLP network

Thus, theoretically, RSTIB-MLP’s computational complexity is considerably more efficient than that
of STGNN-based methods, primarily due to its streamlined MLP-based model architecture.

I FURTHER DISCUSSIONS

1.1 LIMITATIONS

Our general framework leaves many interesting questions for future investigation. For example, could
we automatically search for better regularization coefficients with theoretical and empirical efficiency
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guarantees? Besides, MLPs with specially designed modules have been proven to be effective. Could
we instantiate the RSTIB principle to incorporate more reliable spatial-temporal information from the
module design? These are all the limitations and future directions that we are attempting to explore.

1.2 A FURTHER COMPARISON OF RSTIB AND OTHER IB PRINCIPLES

This section elaborates on the comparative analysis between the Information Bottleneck(IB), its vari-
ants and our proposed Robust Spatial-Temporal Information Bottleneck (RSTIB) principle. Notably,
RSTIB extends the capabilities of Deep Variational Information Bottleneck (DVIB) and Robust Graph
Information Bottleneck (RGIB). Given that RGIB itself generalizes the Graph Information Bottleneck
(GIB), our comparison primarily focuses on the IB model as introduced by (Tishby et al., [2000),
alongside its significant extensions: DVIB (Alemi et al.}[2016), GIB (Wu et al.| 2020), RGIB (Zhou
et al.l [2023)), and our RSTIB.

Briefly speaking, compared to IB, as well as DVIB and GIB derivatives, the RSTIB introduces
significant advancements by accounting for spatial-temporal data noise present both in input and
target regions, enhancing robustness in both theoretical constructs and instantiation. While the RSTIB
extends the RGIB principle, it diverges by considering lifting specific Markov assumption typically
held to explicitly minimize the irrelevant information terms. The subsequent reformulations can
ensure the integrity of the IB principle. In other words, RSTIB ensures, both theoretically and
practically, that encoding Z does not reduce to the trivial solution Z = Y and preserves information
from both X and Y. This enhancement is meticulously analyzed in Section[G] a thoroughness not
typically found in RGIB’s analysis. Furthermore, the instantiation of the RSTIB principle does not
depend on specific data structural assumptions inherent to the instantiations of RGIB, which are based
on graph data and assume that the number of edges in the pruned graph, denoted as | Z 4|, does not
exceed those in the original graph, | A|. Therefore, the RSTIB framework demonstrates more general
potential applications and robustness, making it suitable for instantiating in Multi-Layer Perceptron
(MLP) networks for spatial-temporal forecasting.

Analytically, traditional models such as IB, DVIB, and GIB predominantly focus on minimizing the
conditional entropy H (X|Y’) while maximally preserving H (Y| X). These models operate under the
implicit assumption that I(Z; Y| X) = 0, adhering strictly to the Markov chain condition Z — X — Y.
This approach proves effective for specific applications, such as classification tasks. However, in
spatial-temporal forecasting, with the Assumption [4.1] and [4.2] proposed about spatial-temporal
data, such Markov assumption is too restrictive. The noise-related irrelevant information could be
obscured within this restriction, thereby questioning the direct adoption of the Markov assumption
Z—X-Y . Besides, RGIB, by its definition, considers an explicit relationship between the information
terms and attempts to balance them in a self-controlled way. Some of its derived terms, such as
H(Z|X,Y), is minimized by controlling H(Z) to be within the range v;; < H(Z) < 7}, given
that H(Z) > max{H(Z|X),H(Z|Y)} > H(Z|X,Y). This requires a delicate balance within the
RGIB objective. In comparison to these, RSTIB adopts a distinct approach. It lifts the Markov
condition of Z — X — Y by adhering to only the X — Z — Y assumption, which is less restrictive
while not impairing the bottleneck nature of the representation Z. This formulation introduces
I(Z;Y|X) # 0, with the existing I(Z; X|Y") to be minimized, enhancing robustness against noise
perturbations in both input and target. Besides, RSTIB focuses on learning the “minimal sufficient
representation” while minimizing explicitly expressed and reformulated irrelevant information under
the X — Z — Y Markov assumption. This strategic orientation provides a theoretical guarantee that
the encoding of Z neither reduces to the trivial solution Z = Y nor compromises the information
from X and Y which results in I(X; Z) = 0and I(Z;Y") = 0 respectively.

Regarding instantiations, the GIB is inherently intertwined with the Graph Attention Network (GAT)
architecture. While the RGIB mitigates this constraint by eliminating the need to modify the Graph
Neural Network (GNN) architecture, it still necessitates reliance on GNNs and their inherent graph
structures. This dependence is under the assumption that the number of edges in the pruned graph,
denoted as |Z 4|, does not exceed those in the original graph, denoted as |A|. However, such an
assumption can not hold when generalizing to Multi-Layer Perceptron (MLP) networks, where graph
structures are inapplicable. Meanwhile, spatial-temporal data often comes with no pre-defined graph
structure. GIB/RGIB-based method can not directly be applied to such scenario. Besides, the DVIB
adheres strictly to both Markov chain assumptions, which imposes overly restrictive constraints on
the optimization process for the potential set of joint distributions P(X,Y, Z). In response to these
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limitations, we propose the RSTIB-MLP instantiation, as outlined in Section @} The information
flow of RSTIB-MLP follows Fig[TT] which is under less restrictive Markov assumption for a wider
array of potential joint distributions while not impairing IB nature with theoretical guarantees. Besides,
it integrates three independent and identically distributed (i.i.d.) Gaussian distributions as the prior
distributions for the input, representation, and target regions, which play the role of minimizing the
irrelevant information during the optimization. These circumvent the dependency on graph structures,
which can be instantiated in MLPs for spatial-temporal forecasting.

J  EXPERIMENTAL IMPLEMENTATION DETAILS

We provide a comprehensive description of the experimental settings. For all experiments, the best
models are selected based on the Mean Absolute Error (MAE) metric on the validation set. All
comparative baselines are trained using their default settings. The models are trained on NVIDIA
GeForce RTX 3090Ti GPUs, utilizing the PyTorch framework (Paszke et al.,[2019). The main code
bases referenced are STID (Shao et al.||2022a)) and STExplainer (Tang et al., 2023)), as implemented
in https://github.com/zezhishao/STID)| and https://github.com/HKUDS/STExplainer, respectively. Be-
sides, regarding the attachment of spatial-temporal information, we adopt the spatial-temporal prompts
technique in STGKD (Tang et al., 2024))(https://openreview.net/forum?id=akKNGGWegr). It com-
bines spatial-temporal identity (Shao et al.,|2022a)) with dynamic graph construction (Han et al.,[2021).
The reference implementation for this technique can be found in https://github.com/zezhishao/STID
and https://github.com/liangzhehan/DMSTGCN. We implement the noise injection by firstly loading
the original datasets, then we conduct the data normalization. Further, we build the index information
about time of day and day of week. Notably, The index information is not perturbed by the noise.
It is concatenated with perturbed input afterwards. We implement this attachment by adopting the
default settings in their works and combining them following the guideline of (Tang et al., [2024)
for fair comparison. The additional hyperparameter settings and additional experimental details are
provided in the subsequent sub-sections.

J.1 IMPLEMENTATION DETAILS FOR RSTIB-MLP

We adopt PyTorch 1.13.1 on NVIDIA RTX 3090Ti GPUs. The algorithm of RSTIB-MLP is shown in
Algorithmm We follow STID (Shao et al.,2022a)’s default model configuration, using 3 Multi-Layer
Perceptrons layers. The nonlinear activation 7 is ReLU. We follow STID’s default learning rate
setting, i.e., we initialize the learning rate 7 = 0.002, and apply a decay factor = 0.5 for all three
benchmarks. A summary of the default hyperparameter settings is in Table[T0] Table [I0] provides
the hyperparameters that produce the results in Section[5.1] For some specific hyperparameters with
a searching space, we provide the results of hyperparameter investigation, mainly consisted of the
Lagrange multipliers A, € {0.01,0.001,0.0001,0.00001}, A\, € {0.01,0.001,0.0001,0.00001},
A, € {0.01,0.001,0.0001,0.00001}, and the distance function D € {M AE, SmoothL1, MSE?},
evaluated in PEMSO04 dataset in Section

J.2  ADDITIONAL DETAILS FOR ROBUSTNESS STUDY

Each specified data noise ratio is termed as . And we perform random spatial-temporal noise
perturbation by adding independent Gaussian noise 7y - € to each feature dimension of the time series,
where € ~ N (0, 1).
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Table 10: Hyperparameter scope for Section

Hyperparameters Value/Search space Type

Batch Size B 32 Fixed*

Epoch E 200 Fixed

Learning Rate n 0.002 Fixed

Decay Factor r 0.5 Fixed

Hidden Dimension d 64 Fixed

Number of MLP Layers L 3 Fixed

Non-Linear Activation 7 ReLLU Fixed
Input Regularization Coefficient A, {0.01,0.001,0.0001,0.00001} | Choice¥
Target Regularization Coefficient A, {0.01,0.001, 0.0001,0.00001} | Choice
Representation Regularization Coefficient A, | {0.01,0.001,0.0001,0.00001} | Choice
Distance Function D {MAE, SmoothLl1, MSE} Choice

*Fixed: a constant value
tChoice: choose from a set of discrete values

The boldface numbers: Default setting that produces the result for Sectionlﬂ

K FURTHER EMPIRICAL RESULTS

K.1 ADDITIONAL PERFORMANCE COMPARISON ON CLEAN PEMS DATASETS

In this section, we provide additional empirical study for the comparison between the performance of RSTIB-
MLP and more baselines targeting on spatial-temporal traffic forecasting. The results are shown in Table[TT] By
examing the results, it’s more convincing that our predictive performance when learning with clean data can be
superior, even when comparing with STGNN .

Table 11: Performance Comparison Under Clean PEMS04, PEMS07, PEMS08 Datasets. The
boldface means the best results.

. Methods
Dataset Metrics
STGCN AGCRN GMSDR FOGS DSTAGNN STHMLP TrendGCN RSTIB-MLP
MAE 20.05 19.83 20.49 19.74 19.30 18.88 18.81 18.46
PEMS04 RMSE 32.07 32.26 32.13 31.66 31.46 30.31 30.68 30.14
MAPE(%) 13.09 12.97 14.15 13.05 12.70 12.74 12.25 12.22
MAE 21.98 22.37 22.27 21.28 21.42 20.71 20.43 19.84
PEMSO07 RMSE 35.66 36.55 34.94 34.88 34.51 33.99 34.32 33.90
MAPE(%) 9.28 9.12 9.86 8.95 9.00 8.75 8.51 8.33
MAE 16.39 15.95 16.36 15.73 15.67 15.22 15.15 14.51
PEMSO08 RMSE 25.60 25.22 25.58 24.92 24.77 24.18 24.26 24.18
MAPE(%) 10.34 10.09 10.28 9.88 9.94 9.82 9.51 9.44

K.2 FURTHER ABLATION STUDY ON EACH REGULARIZATIONS

Table 12: Performance of RSTIB-MLP under different noise ratios and ablated regularization
on PEMS04

Noise Ratio 10% 30% 50%

Method MAE RMSE MAPE | MAE RMSE MAPE | MAE RMSE MAPE
RSTIB-MLP w/o x+y+z | 24.97  37.67 16.55% | 29.64 45.75 20.43% | 29.80 46.71  19.23%
RSTIB-MLP w/o x+y 2450 3728 16.23% | 28.84 4512  1791% | 29.19 4587 18.79%
RSTIB-MLP w/o y 23.81 36.60 1556% | 27.49 4358 16.72% | 2798 4448 17.85%
RSTIB-MLP 23.64 3644 1522% | 27.15 4285 17.19% | 27.16 4343 17.76%

In this section, we aim to separately examine each regularization term within the objective function, including
input, target, and representation regularizations. For simplicity, we denote "w/0" meaning the word "without",

nyn non

x" as input regularization, "y" as target regularization and "z" as representation regularization respectively. As
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is shown in Table[T2] all the regularization terms can enhance the performance. Notably, there is a fact that the
input regularization contributes significantly compared with other regularization terms, while the contributions
from the representation and target regularization terms are comparable. The potential reason may lies on the fact
that applying input regularization ensures that the signals passed to subsequent layers are less noisy. Besides,
input regularization can prevent the model from overly relying on specific input patterns, thereby enhancing
robustness. In contrast, solely regularizing the representation may not sufficiently address the complexity and
noise present in the input data.

K.3 FURTHER EMPIRICAL STUDY OF COMBATING DATA MISSING

To demonstrate broader applicability, we conduct a performance comparison and an ablation study showcasing
how each module performs when combating against noise arising from data missing. We conduct this experiment
on the PEMS04 dataset, where we randomly drop the data by certain ratios. The results are shown in Table[T3]
and Table[T4]

Table 13: Performance comparison of different methods under varying missing ratios.

Missing Ratio 10% 30%

Method MAE RMSE MAPE | MAE RMSE MAPE
STG-NCDE 20.25 3258 13.22% | 26.32 4038 15.27%
STGKD 20.57 3277 13.40% | 29.06 4422 16.34%
STID 22.65 3552 13.87% | 30.21 4498 16.85%
RSTIB-MLP 19.83  31.79 12.82% | 2545 39.61 14.94%

Table 14: Ablation Study of RSTIB-MLP modules on the PEMS04 dataset with different
missing ratios

Missing Ratio 10% 30%

Method MAE RMSE MAPE | MAE RMSE MAPE
RSTIB-MLP 19.83  31.79 12.82% | 2545 39.61 14.94%
RSTIB-MLP w/o KD 19.95 3210 1291% | 2631 4046 15.22%
RSTIB-MLP w/o KD + RSTIB | 20.57 3277 13.40% | 29.06 4422 16.34%
RSTIB-MLP w/o KD + IB 21.35 3376  13.94% | 29.34 44.69 1791%

These results indicate that RSTIB-MLP can surpass all the MLP-based baselines, even be comparable with
STGNNs like STG-NCDE [2022). Besides, each module also contributes to the overall robustness.
Observing from the results, it is obvious that RSTIB implementation can significantly enhance the robustness,
especially when combating data missing with higher missing data ratio. Besides, traditional IB implementation
and knowledge distillation can also contribute to robustness enhancement, sharing similar conclusions from our
previous results.

K.4 MODEL ARCHITECTURE AGNOSTIC STUDY
To ensure consistency, we implement RSTIB on STID (Shao et al.,[2022a) to evaluate whether each module’s

contribution on enhancing robustness is model- or network architecture-agnostic. Table[T3]demonstrates the
results conducted on PEMS04. We keep the same notations as in Section@

Table 15: Results of RSTIB implementation on STID for clean and noisy PEMS04 datasets.

Noise Ratio 0% (Clean) 10% 30% 50%

Metrics MAE RMSE MAPE | MAE RMSE MAPE | MAE RMSE MAPE | MAE RMSE MAPE
STID 18.79 3037  12.57% | 27.83 4134  1731% | 36.53  52.74  21.11% | 36.22  52.15 21.45%
STID+IB 18.65 30.23  12.53% | 25.70  38.17 17.17% | 34.55 48.07 19.10% | 3499 5094  19.59%
STID+RSTIB 18.57 30.16  12.51% | 24.27 36.89 16.34% | 28.67 4473  18.06% | 29.02 4644 18.37%
STID+RSTIB+KD | 18.50  30.02  12.32% | 23.99  36.57 16.22% | 28.12 4431 17.81% | 28.86 4563 17.92%

The above results demonstrate the consistency of our method’s performance:

» Each evaluated module contributes to the enhancement of predictive performance under clean setting.
However, we observe that the enhancement of the performance may not be significant. The potential
reason could be the fact that our objective function includes more regularization terms, achieving an
optimal balance may be harder, leading to potential over-regularization under clean data.
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« Each module can also be applied to another baseline model, which is STID [2022a)) in
this evaluation. Besides, the enhancement from different modules under noisy scenarios can also be
clearly observed. Thus, the RSTIB implementation contributes significantly to the enhancement of
STID’s ability in combating the noise.

THE AVERAGE IMPROVEMENTS OF RSTIB-MLP WHEN COMBATING AGAINST NOISE
PERFURBATION

K.5

In this section, we calculate the average improvements of RSTIB-MLP when comparing with the best competing
methods by averaging over all the noise ratios on each noisy dataset. The results are summarized in Table[T6]
We can tell from the table that RSTIB-MLP can gain large improvement on several datasets when comparing
with specific baselines. For example, RSTIB-MLP improves MAE, RMSE and MAPE by 8.39%, 5.51%, and
3.74% on PEMSO04 dataset, and by 7.02%, 4.75%, and 8.08% on PEMSO0S8 dataset compared to one of the best

competing methods, STExplainer [2023).

Table 16: Average Improvements of RSTIB-MLP Compared with Each Baselines Under Noisy

Datasets

Noise Ratio PEMS04 PEMS07 PEMS08
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 33.53(+21.92%) 48.74(+15.78%) 19.96%(+15.95%) 30.73(+4.96%) 52.52(+1.93%) 13.35%(+7.82%) | 24.89(+9.02%) 4220(+7.57%) 15.38%(+9.84%)
GWN 36.82(+28.73%) 51.73(+20.51%) 21.65%(+22.67%) 32.70(+10.06%) 53.71(+3.99%) 17.16%(+21.99%) | 25.16(+10.02%) 42.66(+8.58%) 15.53%(+10.71%)
TrendGCN 26.36(+1.39%) 41.68(+1.83%)  19.08%(+12.35%) 31.86(+7.56%) 52.61(+2.01%) 19.53%(+35.20%) | 24.15(+6.72%)  39.88(+2.85%) 20.54%(+30.26%)
STExplainer-CGIB | 28.64(+8.70%)  43.85(+6.50%)  16.96%(+4.99%) 32.73(+10.40%) 53.61(+3.60%) 14.39%(+13.58%) | 25.01(+10.27%) 41.08(+6.12%)  18.4%(+20.48%)
STExplainer 28.49(+8.39%)  43.46(+5.51%)  17.10%(+3.74%) 30.79(+5.19%) 51.96(+0.85%) 14.17%(+12.73%) | 24.29(+7.02%)  40.69(+4.75%)  15.13%(+8.08%)
STGKD 27.37(+4.96%) 42.69(+3.69%) 17.53%(+4.34%) 30.28(+3.44%) 51.96(+0.76%) 13.33%(+7.65%) 24.06(+6.38%)  39.92(+2.98%) 15.87%(+12.76%)
BiTGraph 28.74(+9.21%)  43.78(+6.22%)  17.24%(+4.03%) 31.05(+5.97%) 52.31(+1.46%) 14.29%(+13.50%) | 24.57(+8.09%)  41.00(+5.49%)  15.27%(+8.89%)
STC-Dropout 31.58(+17.32%) 46.97(+12.48%) 19.01%(+11.73%) 31.09(+6.07%) 52.41(+1.65%) 14.37%(+13.94%) | 24.22(+6.82%)  40.63(+6.04%) 15.12%(+8.32%)
STG-NCDE 28.34(+8.07%) 42.92(+4.52%)  19.20%(+12.82%) 31.49(+7.25%) 53.22(+3.07%) 15.59%(+20.98%) | 26.38(+14.12%) 40.82(+5.03%) 16.73%(+16.91%)
FreTS 28.70(+9.07%)  43.72(+6.08%)  17.22%(+3.96%) 31.32(+6.73%) 53.01(+2.65%) 15.47%(+20.33%) | 24.54(+7.98%)  40.97(+5.43%)  15.23%(+8.64%)
RSTIB-MLP 2598 4091 16.72% 29.21 51.55 12.31% 22.48 38.70 13.85%
Noise Ratio LargeST(SD) ‘Weather2K-R Electricity
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 32.19(+8.24%) 49.88(+6.74%) 19.68(+14.61%) 6302.23(+7.01%) 8114.17(+6.21%) 75.36%(+4.27%) 38.10(+8.81%) 64.80(+5.59%)  31.92%(+9.22%)
GWN 32.53(+9.24%)  51.61(+9.67%) 19.96%(+15.61%) | 6808.57(+13.73%) 8470.20(+10.27%)  74.69%(+3.38%) - - -
TrendGCN 30.31(+2.80%) 47.84(+2.98%) 17.64%(+5.14%) 5893.37(+0.55%) 7642.31(+0.56%) 72.61%(+0.49%) 35.61(+2.88%)  62.98(+2.86%)  29.84%(+3.13%)
STExplainer-CGIB | 30.13(+4.75%) 49.08(+5.38%) 18.45%(+9.39%) 6260.13(+6.02%) 8112.80(+6.01%) 74.88%(+3.69%) - - -
STExplainer 29.50(+2.86%)  47.64(+2.58%)  17.69%(+5.15%) | 6257.63(+5.98%)  8109.80(+5.97%)  74.74%(+3.51%) - - -
STGKD 30.43(+2.99%) 47.92(+2.70%) 17.57%(+4.76%) 5891.45(+5.94%) 7639.89(+5.93%) 72.48(+3.32%) 36.35(+4.59%)  63.82(+4.05%)  31.07%(+6.38%)
BiTGraph 30.24(+2.75%) 47.81(+3.30%) 17.61%(+5.00%) 5891.45(+0.52%) 7639.88(+0.53%) 72.48%(+0.31%) 36.99(+6.09%)  63.96(+4.40%)  31.13%(+7.20%)
STC-Dropout 30.34(+2.88%)  47.93(+2.83%)  17.60%(+5.64%) | 6260.31(+6.02%)  8111.84(+5.99%)  T4.77%(+3.54%) | 37.37(+7.39%) 64.87(+5.96%) 31.58%(+9.18%)
STG-NCDE 30.72(+4.12%) 48.43(+4.38%) 17.78%(+5.97%) 6258.56(+6.00%) 8110.60(+5.98%) 74.73%(+3.50%) 37.34(+7.32%)  64.82(+5.88%)  31.60%(+9.22%)
FreTS 30.62(+3.79%) 48.57(+4.43%) 17.70%(+5.52%) 5889.14(+0.48%) 7637.68(+0.50%) 72.43%(+0.24%) | 38.81(+10.06%) 65.29(+6.42%) 32.26%(+10.93%)
RSTIB-MLP 29.47 46.42 16.73% 5861.39 7599.68 72.26% 34.53 60.98 28.84%
K.6 A STUDY OF AVERAGE PERFORMANCE DECAY COMPARISON
Table 17: Average Performance Decay Comparison Under Noisy Datasets
Noise Ratio PEMS04 PEMS07 PEMS08
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 33.53(-78.45%) 48.74(-60.49%) 19.96%(-59.55%) 30.73(-50.56%) 52.52(-55.94%) 13.35%(-52.75%) | 24.89(-67.38%) 42.20(-76.05%)  15.38%(-17.46%)
GWN 36.82(-91.57%) 51.73(-68.28%)  21.65%(-72.92%) 32.70(-61.48%) 53.71(-61.19%) 17.16%(-98.84%) | 25.16(-71.51%) 42.66(-81.61%)  15.53%(-63.13%)
TrendGCN 26.36(-40.14%)  41.68(-35.85%)  19.08%(-55.76%) 31.86(-55.95%) 52.61(-53.29%) 19.53%(-129.49%) | 24.15(-59.41%) 39.88(-64.39%) 20.54%(-115.98%)
STExplainer-CGIB | 28.64(-49.63%) 43.85(-42.51%) 16.96%(-31.37%) 32.73(-59.27%) 53.61(-52.65%) 14.39%(-67.13%) | 25.01(-68.19%) 41.08(-70.67%) 18.4%(-79.34%)
STExplainer 28.49(-53.42%) 43.46(-44.19%) 17.10%(-40.97%) 30.79(-53.95%) 51.96(-55.34%) 14.17%(-66.71%) | 24.29(-66.48%) 40.69(-70.18%) 15.13%(-54.39%)
STGKD 27.37(-46.44%)  42.69(-40.15%) 17.53%(-42.06%) | 30.28(-49.16%) 51.96(-51.49%) 13.33%(-50.28%) | 24.06(-39.02%) 39.92(-60.97%)  15.87%(-48.87%)
BiTGraph 28.74(-52.71%)  43.78(-43.82%)  17.24%(-40.73%) 31.05(-53.33%) 52.31(-54.99%) 14.29%(-66.16%) | 24.57(-65.45%) 41.00(-69.42%)  15.27%(-54.24%)
STC-Dropout 31.58(-68.43%) 46.97(-54.61%) 19.01%(-54.18%) 31.09(-51.88%) 52.41(-54.56%) 14.37%(-64.23%) | 24.22(-64.76%) 40.63(-67.06%)  15.12%(-55.08%)
STG-NCDE 28.34(-47.53%) 42.92(- 5%)  19.20%(-50.47%) 3 3.39%) 53.22(-57.27%) 15.59%(-77.16%) | 26.38(-70.74%) 40.82(-64.53%)  16.73%(-68.65%)
FreTS 28.70(-52.90%)  43.72(-43.58%) 17.22%(-40.57%) | 31. 7.23%) 53%) 15.47%(-77.82%) | 24.54(-65.25%) 40.97(-69.65%)  15.23%(-53.99%)
RSTIB-MLP 25.98(-40.74%)  40.91(-. 3%)  16.72%(-36.82%) 29.21(-47.23%) 52.06%) 12.31%(-47.78%) | 22.48(-54.93%) 38.70(-60.05%) 13.85%(-46.72%)
Noise Ratio LargeST(SD) ‘Weather2K-R Electricity
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
STID 32.19(-82.90%) 49.88(-71.70%) 19.68(-65.10%) 6302.23(-57.64%) 8114.17(-30.88%)  75.36%(-15.34%) | 38.10(-88.80%) 64.80(-62.73%) 31.92%(-100.50%)
GWN 32.53(-83.37%) 51.61(-74.24%) 19.96%(-68.01%) | 6808.57(-70.59%) 8470.20(-36.45%)  74.69%(-13.17%) - - -
TrendGCN 30.31(-74.30%)  47.84(-61.46%) 17.64%(-51.55%) | 5893.37(-47.78%) 7642.31( V%) 72.61%(-11.19%) | 35.61(-78.23%) 62.98(-58.96%)  29.84%(-89.82%)
STExplainer-CGIB | 30.13(-61.99%) 49.08(-62.03%) 18.45%(-15.39%) | 6260.1 8112.80(-30.83%)  74.88%(-14.58%) - - -
STExplainer 29.50(-68.48%) 47.64(-65.07%) 17.69%(-52.90%) | 6257.6. 8109.80(-30.84%)  74.74%(-14.60%) - - -
STGKD 30.43(-72.90%) 47.92(-62.88%) 17.57%(-51.20%) | 5891.4: 7639.89(-23.31%)  72.48%(-11.37%) | 36.35(-80.40%) 63.82(-59.35%)  31.07%(-95.53%)
BiTGraph 30.24(-60.42%) 47.81(-60.44%) 17.61%(-38.88%) | 5891.45(- 7639.88(-22.91%)  72.48%(-11.15%) | 36.99(-85.14%) 63.96(-60.42%)  31.13%(-93.11%)
STC-Dropout 30.34(-72.88%) 47.93(-63.25%) 17.60%(-50.68%) | 6260.31(-57.04%) 8111.84(-30.73%)  74.77%(-14.41%) | 37.37(-87.60%) 64.87(-62.79%)  31.58%(-91.74%)
STG-NCDE 30.72(-74.74%) 48.43(-66.20%) 17.78%(-49.79%) | 6258.56(-56.76%) 8110.60(-30.84%)  74.73%(-14.58%) | 37.34(-88.11%) 64.82(-62.37%)  31.60%(-91.28%)
FreTS 30.62(-74.57%) 48.57(-67.43%) 17.70%(-48.12%) | 5889.14(-47.81%) 72.43%(-11.23%) | 38.81(-92.89%) 65.29(-61.41%)  32.26%(-98.89%)
RSTIB-MLP 29.47(-68.40%)  46.42(-61.46%)  16.73%(-49.38%) | 5861.39(-47.85%) 72.26%(-11.27%) | 34.53(-74.39%) 60.98(-53.72%)  28.84%(-83.46%)

In this section, we aim to investigate if RSTIB-MLP’s performance is also superior regarding performance
degradation caused by the noise perturbation. The detailed average performance degradation of each baseline,
including RSTIB-MLP, by averaging across different noise ratios compared with clean scenario on Table [T7}
Notably, the performance regarding the average performance decline of RSTIB-MLP is still more superior
compared with other baselines. For all the metrics, including MAE, RMSE, MAPE in 6 benchmark datasets((3 x
6 = 18) cases), only 3 cases that RSTIB-MLP has not achieved the best or second-best results. Along with the
absolute best performance achieved by RSTIB-MLP in all cases, it is still reasonable to claim that RSTIB-MLP
has better, or comparably good, robustness, while achieveing substantially improved computationally efficiency.
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K.7 PERFORMANCE COMPARISON WITH TRANSFORMER-BASED BASELINES

In this section, we aim to investigate the performance comparison with large amount of parameters equipped
transformer based baselines with RSTIB-MLPs. PDFormer (Jiang et al.,2023a), STAEformer (Liu et al.| 2023)
are chosen as the baseline models, which are designed for spatial-temporal traffic forecasting, thus the results for
the PEMS08 and PEMS04 datasets are provided in Table[T8]and Fig[I2}

PEMS04 PEMSO08
60
4~ STAEformer MAE /) 4 STAEformer MAE ,ﬁ
551 4- PDFormer MAE 7 30 4 PDFormer MAE s
50 | 4 RSTIB-MLP MAE P4 45 | 4 RSTIB-MLP MAE K4
45
w 404
s
35 4
30 4
25 A
20 A
0 0.1 0.3 0.5 0 0.1 03 0.5
Noise Ratio Noise Ratio

Figure 12: MAE metric of different baselines on PEMS04 and PEMS08 when Subjecting to
Noises

As expected, it is observed that RSTIB-MLP is less effective under cleaner conditions, while it shows superior
performance as the noise ratio increases. This suggests that STAEformer and PDFormer may experience faster
degradation in performance under noisy conditions due to their complex architectures, which is also pointed out
in (Y1 et al.,|2024). Thus, this analysis aids in understanding the trade-off between efficiency and robustness
against noise when selecting models for practical deployment.

Table 18: Performance Comparison with Transformer-based Baselines

Noise Ratio | 0% (clean) 10% | 30% | 50%

Metrics ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE ‘ MAE RMSE MAPE
Dataset PEMS08

STAEformer | 13.50 23.11 8.96 % 16.81 26.09 14.89% | 2538 42.26 15.62% | 4530  63.89 32.69%
PDFormer 13.64 23.54 9.09% 20.21 32.35 15.52% | 28.23  43.22 17.84% | 52.20 67.12 35.26%
RSTIB-MLP | 14.51 24.18 9.44% 1990 31.86 12.92% | 23.16 4046 14.26% | 24.37 43.77 14.36%
Dataset PEMS04

STAEformer | 18.27 30.38 12.10% | 20.88 32.05 14.02% | 28.64 43.84 19.10% | 56.20 7420 38.02%
PDFormer 1840 29.94% 12.04% | 24.72  38.25 16.31% | 33.78 4521 21.93% | 58.32 76.23  39.45%
RSTIB-MLP | 18.46 30.14 12.22% | 23.64 36.44 1522% | 2715 4285 17.19% | 27.16 4343 17.76%

K.8 MODEL INTERPRETATION CASE STUDY

To gain deeper insights into the learned intermediate representations, we tend to visualize the representations
learnt by different models. Specifically, GWN (Wu et al.,[2019), STID (Shao et al.}2022a), STGKD (Tang et al.,
2024), RSTIB-MLP are included as the case models. The case study we conduct follows the steps below:

First, representations of the spatial-temporal signals in the test set are mapped into a R? space using t-SNE
method for dimension reduction. Then, Gaussian Kernel Density Estimation is adopted to estimate the distribution
of the embeddings. The models are all trained under noise perturbation with the noise ratio = 0.1. We can tell
from the results that baselines except RSTIB-MLP tend to result in the fragmentation of regions into several
disconnected subspaces, or collapse into just individual region. In comparison to this, RSTIB-MLP can be more
effective in organizing different spatial regions into larger subspaces with a better cohesion.

K.9 FULL HYPERPARAMETER INVESTIGATION RESULTS
We have undertaken a hyperparameter investigation, where we selectively vary specific hyperparameters while

maintaining the rest at their default settings. Our investigation centers on 2 kinds of key hyperparameters: the
Lagrange multipliers in RSTIB-MLP, denoted as A(Az, Ay, Az) and the distance function to calculate the noise
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Figure 13: Model Interpretation Case Study: Representations of the Spatial-temporal signals
in the test set are mapped into a R? space using t-SNE method for dimension reduction. Then,
Gaussian Kernel Density Estimation is adopted to estimate the distribution of the embed-
dings.(Learned by GWN, STID, STGKD, RSTIB-MLP from the left to right respectively, under
the noisy PEMS04 dataset with noise ratio = 30%)
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Figure 14: Hyperparameter Analysis of \ and Distance Function

impact indicator &. We are conducting this comprehensive study to understand how these hyperparameters
influence the overall model performance. The experimental outcomes on the PEMS04 dataset are presented
in Fig. E Here follows what we have drawn from our observations: i) The Lagrange Multipliers We set
Az, Ay, Az to be the same with each other and vary within the range of 1 x 1072,1 x 1072,1x 1074,1 x 107°.
ii) Distance function to calculate noise impact indicators. We explore different distance functions to calculate
the impact indicator for knowledge distillation. Our options for the distance functions include Mean Absolute
Error(MAE), Mean Squared Error(MSE), and Smooth L1 Loss(SmoothL1).

We observe that, in the PEMS04 dataset, concerning the choice of ), setting A = 1 x 1072 allows the MAE
and RMSE values to achieve the best results. In contrast, setting A = 1 x 10~* yields an optimal value for
MAPE. As for selecting the distance function, using MAE as the distance function leads to the best outcomes for
the corresponding MAE and RMSE metrics. Meanwhile, employing the MSE to compute the impact indicator
results in optimized MAPE.
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Table 19: Teacher Model Agnostic on PEMS(07 Dataset with Varied Noise Ratios

Noise Ratio(y) 0% 50% 90%

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
STID 20.41 33.68 8.74 32.38 57.29 14.07 33.33 58.50 13.96
STGKD 20.30 34.30 8.87 32.16 56.89 14.08 34.59 59.24 14.24
STExplainer-CGIB  20.55 35.12 8.61 35.1259.17 16.78 44.14 69.23 18.87
STExplainer 20.00 33.45 8.51 32.52 57.64 1548 45.37 70.57 19.90
TrendGCN 20.43 34.32 8.51 36.78 57.89 23.22 55.99 80.22 32.76
STG-NCDE 20.53 33.84 8.80 33.48 58.83 16.78 46.20 66.33 21.32
Ours-t-MLP 19.93 34.11 8.36 30.74 56.02 12.95 31.36 57.50 13.08

Ours-t-STGCN 19.84 33.90 8.33 30.94 56.79 12.91 30.93 56.91 12.91

K.10 TEACHER MODEL AGNOSTIC STUDY

We assert that our superior performance is independent of the choice of the teacher model. Table [T9presents our
results, where Ours-t-MLP indicates the adoption of MLP networks as the teacher model, and Ours--STGCN
indicates the adoption of STGCN networks as the teacher model. It is important to note that the teacher models
are pre-trained, with their parameters fixed during the training of the RSTIB-MLP. A plausible explanation for
these statistics is that we aim to obtain the normalized indicators, thus indicating a relative relationship among
time series. Consequently, the overall performance of its different teacher models does not significantly influence
the RSTIB-MLP’s performance, allowing for a more flexible configuration.

K.11 REPLICATION STUDY

This section provides the statistically significant robustness study of the RSTIB-MLP compared with some
chosen baselines when subjected to random initialization. We conducted multiple experiments on the PEMS
04/07/08 datasets, selecting five random seeds and five noisy conditions to ensure statistical significance. We
report the average performance and standard deviation. The statistical outcomes of this investigation are detailed
in Table[20] Table 2T] Table[22] Table[23] Table[24] The empirical findings indicate RSTIB-MLP’s remarkable
resilience to various initialization conditions.

Table 20: Replication Study for Performance Comparison Under Noise Perturbation with Noise
Ratio v = 10% on three Datasets. The boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 27.794+0.45 24.261+0.41 25.8610.41 24.5140.26 23.76+0.15 25.02+0.21  23.70 + 0.50

RMSE 41.45+0.07 37.134+0.24 38.374+0.48 36.94+0.24 37.06+0.27 37.31+0.15  36.58 + 0.44

MAPE(%) 17.414+0.37 16.1340.33 16.0040.17 16.01+0.29 17.56+0.05 17.48+0.27 1533 +£0.22

PEMS07 MAE 27.874+0.22 26.8940.23 27.9840.49 28.2640.30 26.764+0.25 28.87+£0.41  26.64 + 0.27

RMSE 45.10+0.45 43.641+0.45 43.89+0.35 44.07+0.15 44.70+0.03 44.55+0.41 43.82 +0.48

MAPE(%) 12.33+£0.42 12.19+0.46 12.00+0.29 12.13+0.19 14.61+£0.01 14.1940.05 11.55 £ 0.15

PEMS08 MAE 20.261+0.41 20.784+0.41 23.534+0.21 20.22+0.41 20.65+0.21 21.29+0.25 19.91 + 0.02

RMSE 32.30+0.41 32.52+0.49 35.43+0.11 32.69+0.20 32.65+0.39 33.16+£0.32  32.04 +0.39

MAPE(%) 14.17+0.11 15.11+0.14 24.2840.21 13.52+0.09 14.92+0.45 15.274£0.04 13.10 + 0.36

Table 21: Replication Study for Performance Comparison Under Noise Perturbation with Noise
Ratio v = 30% on three Datasets. The boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 36.46+0.50 28.64+0.09 31.78+0.39 31.41+0.49 27.16+0.34 29.10+0.11  27.31 £+ 0.05

RMSE 52.6040.05 44.8540.12 48.4740.18 46.9840.07 42.96+0.11 44.36+0.42  43.03 + 0.47

MAPE(%) 21.23+0.43 17.4840.07 18.09+0.16 17.98+0.45 19.434+0.43 19.26+0.02  17.21 + 0.44

PEMS07 MAE 31.874+0.49 31.5940.39 34.89+0.20 31.43+0.23 31.8240.11 32.2940.19  30.29 + 0.15

RMSE 55.214+0.03 55.2440.29 57.44+0.16 54.214+0.09 55.234+0.40 56.29+0.04 54.14 + 0.30

MAPE(%) 13.63+0.07 13.62+0.33 14.3240.20 14.98+0.27 20.68+0.33 15.844+0.39  12.80 + 0.34

PEMS08 MAE 26.614+0.42 25.654+0.45 24.8840.38 25.60+0.30 24.904+0.42 28.41+0.40 23.24 +0.20

RMSE 45.79+0.08 43.46+0.28 43.15+0.15 43.37+0.37 41.58+0.40 41.99+0.10  40.47 £ 0.02

MAPE(%) 15.64+0.35 16.21£0.29 15.4440.21 16.75+0.47 23.5540.38 16.294+0.45 14.38 + 0.27
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Table 22: Replication Study for Performance Comparison Under Noise Perturbation with Noise
Ratio v = 50% on three Datasets. The boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 36.26+0.40 29.15+0.29 28.48+0.07 29.45+0.44 27.90+0.05 31.06+0.29  27.29 + 0.06

RMSE 52.3240.21 46.4040.09 44.7440.05 46.501+0.46 44.814+0.15 47.29+0.36  43.60 + 0.46

MAPE(%) 21.42+0.01 18.56+0.33 16.88+0.30 17.23+0.34 20.31+0.39 20.74+0.41  17.60 £ 0.12

PEMS07 MAE 32.56%0.15 32.1040.28 35.08+0.44 32.53+0.49 36.8240.11 33.344+0.39  30.97 £ 0.15

RMSE 57.40£0.00 56.931+0.30 59.06+0.17 57.47£0.16 57.724+0.21 58.99+0.24  56.92 + 0.22

MAPE(%) 13.914+0.22 14.0240.33 16.75+0.26 15.4140.47 23.41%0.11 16.764+0.34  12.98 & 0.39

PEMS08 MAE 27.734+0.46 25.8840.24 26.6340.32 27.16+0.02 26.86+0.25 29.40+0.01 24.47 + 0.24

RMSE 48.49+0.24 43.94+0.16 44.60+0.43 45.70+0.03 45.67+0.26 47.13+£0.25 43.84 + 0.26

MAPE(%) 16.27£0.26 16.77£0.37 15.61+0.17 15.30£0.40 23.15+0.44 18.454+0.47 14.41 +0.24

Table 23: Replication Study for Performance Comparison Under Noise Perturbation with Noise
Ratio v = 70% on three Datasets. The boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset Metric

PEMS04 MAE 31.3440.47 29.8640.48 38.5640.38 33.31+£0.38 33.07+0.34 33.214+0.09  27.08 + 0.26

RMSE 47.12+0.28 46.0610.30 58.65+0.24 52.1440.17 51.04+0.42 49.79+0.27 43.12 +0.22

MAPE(%) 18.49+0.17 17.66+0.04 21.6940.27 19.2640.25 24.38+0.02 22.2440.37 17.42 +0.12

PEMS07 MAE 32.4240.03 32.8040.18 41.484+0.41 43.83+0.09 43.07+0.05 43.25+0.32  31.02 £ 0.25

RMSE 58.15+0.28 57.58+0.41 66.23+0.22 68.77+0.48 64.76+0.18 63.26+0.29  57.03 £ 0.20

MAPE(%) 13.89+0.47 14.17£0.22 17.30£0.23 17.95+0.38 29.234+0.28 18.76+0.28  13.01 + 0.20

PEMS08 MAE 26.3240.00 25.0240.08 28.284+0.09 28.15+0.49 32.4940.40 30.35+0.15  24.36 + 0.30

RMSE 45.72+0.22 45.55+0.36 45.8340.02 46.96+0.24 47.82+0.23 49.2540.22  43.70 + 0.50

MAPE(%) 16.54+0.18 15.04+0.10 17.55+0.25 16.86+0.07 28.254+0.20 20.15+0.00 14.24 +0.28

Table 24: Replication Study for Performance Comparison Under Noise Perturbation with Noise
Ratio v = 90% on three Datasets. The boldface means the best results.

Method STID STGKD STExplainer-CGIB STExplainer TrendGCN STG-NCDE RSTIB-MLP
Dataset ~ Metric

PEMS04 MAE 33.6240.06 29.2640.10 33.114+0.39 34.37+0.44 46.22+0.12 37.06+0.42 28.11 +0.29

RMSE 49.02+0.41 45.89+0.37 49.52+0.09 53.38+0.26 67.66+0.03 56.11+£0.40 44.67 + 0.41

MAPE(%) 20.374+0.26 17.88+0.21 24.491+0.46 26.70+0.41 38.5240.27 25.79+£0.24  17.05 £ 0.36

PEMS07 MAE 33.4240.05 34.774+0.39 44.254+0.13 45.40+0.49 55.86+0.09 46.33+0.07  31.00 + 0.43

RMSE 58.39+0.12 59.33+0.10 69.36+0.29 70.63+0.43 80.23+0.41 66.36+0.40  56.96 + 0.16

MAPE(%) 14.13+0.32 14.09+0.32 19.04+0.14 19.95+0.17 32.6740.05 21.25+0.40 13.10 + 0.06

PEMS08 MAE 26.50+0.27 25.37+0.46 32.71+0.02 28.72+0.17 46.71£0.48 32.59+0.04 24.43 +0.30

RMSE 45.26+0.13 44.8940.07 53.4940.25 47.2040.18 65.1240.26 53.41+0.33  44.04 £ 0.39
MAPE(%) 15.97+0.03 15.6440.37 20.04+0.05 18.27+0.48 38.77+0.39 23.44+0.12  14.22 £ 0.47
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