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Abstract

Single-cell DNA methyolme profiling platforms based on bisulfite sequencing
techniques promise to enable the exploration of epigenomic heterogeneity at
an unprecedented resolution. However, substantial noise resulting from tech-
nical limitations of these platforms can impede downstream analyses of the data.
Here we present methylVI, a deep generative model that learns probabilistic
representations of single-cell methylation data which explicitly account for the
unique characteristics of bisulfite-sequencing-derived methylomic data. After ini-
tially validating the quality of our model’s fit, we proceed to demonstrate how
methylVI can facilitate common downstream analysis tasks, including integrat-
ing data collected using different sequencing platforms and producing denoised
methylome profiles. Our implementation of methylVI is publicly available at
https://github.com/suinleelab/methylVI.

1 Introduction

Chromosomal DNA methylation (DNAm) at cytosine residues is known to play a critical role in a
broad range of biological processes, including cellular differentiation, genomic imprinting, and X-
chromosome inactivation, among others [1–3]. While the majority of methylation in the mammalian
genome occurs at CpG sites (i.e., a cytosine followed by a guanine nucleotide), CpH methylation
(i.e., methylation at a cytosine followed by a non-guanine nucleotide) is also known to be prevalent
in embryonic stem cells and brain tissue [4, 5]. Moreover, abnormalities in DNAm have been
implicated in numerous diseases, including cancer, Alzheimer’s disease, and diabetes [6–8]. As
a result, significant efforts have been made to develop methods for profiling DNAm levels, with
bisulfite-sequencing techniques emerging as the gold-standard for DNAm profiling [9].

To better understand heterogeneity in the epigenomic landscape, recent works have focused on
developing methods for profiling DNAm at the single-cell level [10–16]. However, analyzing single-
cell methylomic data is complicated by multiple nuisance sources of variation, such as differences in
sequencing depth, limited coverage of cytosines, and batch effects, that are unrelated to any underlying
biological phenomena. Such issues thus necessitate the development of new computational techniques
to fully leverage this rich data. Previous works in computational modeling of other single-cell omics
modalities have addressed these issues by developing probabilistic latent variable models that model
the distinct data generation processes of each modality [17–24]. However, to our knowledge no
corresponding works have focused on methylomic measurements. Thus, to address this gap in the
literature, here we introduce methylVI, a probabilistic latent variable model of single-cell methylomic
data that can facilitate the analysis of single-cell methylomic data.
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2 The methylVI probabilistic model

For a given cell i, single-cell bisulfite sequencing experiments output a set of binary values repre-
senting the methylation status at an individual cytosine residue. Due to technological issues, these
measurements exhibit highly sparse coverage (i.e., for most cytosines we have missing values), and
so in practice it is often preferred to aggregate measurements across larger pre-specified genomic
regions (e.g. 100 kilobase pair windows, gene body regions etc.). Moreover, due to their distinct roles
[5, 25], CpG and CpH methylation are often analyzed separately. Thus, we may regard the output of a
bisulfite sequencing experiment for a given cell i as two pairs of d-dimensional vectors (yGi , nG

i ) and
(yHi , nH

i ). Here yGij represents the number of methylated cytosines at CpG sites in region j and nG
ij

denotes the total number of profiled CpG sites in region j, and yHij and nH
ij are defined analogously

for CpH sites. We also let si denote the (one-hot-encoded) batch that cell i was collected in.

Let zi be a k-dimensional set of latent variables with k << d capturing the underlying methylation
state of cell i. Previous studies have found that DNAm exhibits significant local spatial correlation.
Thus, given zi and the aggregated measurements described previously, we could potentially model
yij as being drawn from a Binomial distribution, where the probability of methylation is assumed to
be constant for all cytosines in a given region. However, previous works have found that methylation
read counts generated by bisulfite sequencing technologies exhibit greater dispersion than would be
expected based on a Binomial model [26–28]. To account for this overdispersion, we thus choose to
model yij conditioned on the latent variables as being drawn from a Beta-Binomial distribution. Let
fθG : Rk → Rd and fθH : Rk → Rd denote neural networks parameterized by θG and θH that map a
cell’s latent representations to the full dimensionality of all genomic regions. For CpG features we
have the following generative process:

zi ∼ N (0, Id)

µG
ij = fθG(zi, si)j

yGij ∼ Beta-Binomial(nG
ij , µ

G
ij , γ

G
j ),

which we define similarly for CpH features. Here we use the mean-dispersion parameterization of the
Beta-Binomial distribution, and γG

j represents a region-specific dispersion parameter. For notational
convenience we let ν = {θG, γG, θH , γH} denote the full set of parameters for our generative model.

We now briefly describe the inference procedure for our model. We cannot directly compute the
posterior distribution of our latent variables p(zi|yGi , nG

i , y
H
i , nH

i , si), as computation of the marginal
distribution p(x) is intractable. Thus, we learn an approximate posterior qϕ(zi|yGi , nG

i , y
H
i , nH

i , si)
via variational inference [29], where ϕ denotes the parameters of a neural network as in the variational
autoencoder framework [30]. We then learn our model by optimizing the evidence lower bound
(ELBO) of log pν(y1:N ) with respect to variational parameters ϕ and generative model parameters ν.

3 Evaluation

3.1 Posterior Predictive Checks

We first evaluated methylVI by performing a set of posterior predictive checks (PPCs) similar to
those of Gayoso et al. [23]. For our PPCs we considered four single-cell brain cell methylome
datasets collected using different bisulfite sequencing platforms: snmC-seq [12], snmC-seq2 [31],
sn-m3C-seq [31], and snmCAT-seq [32]. We compared methylVI to factor analysis (FA) and principal
component analysis (PCA), which have been applied in previous analyses of single-cell methylome
data. These methods take normalized methylation levels for each genomic region as input, and thus
we benchmarked them under two normalization schemes: (1) a basic form of normalization in which
the average methylation at a genomic region for a given cell is estimated by dividing the number of
methylated reads by the coverage at that region for that cell, and (2) the posterior mean estimation
procedure implemented in the popular ALLCools [31] single-cell methylome analysis package, in
which the parameters of a Beta-Binomial distribution are estimated via the method of moments.

We began by comparing the coefficient of variation (CV) of each genomic region for each model’s
generated data versus the true data. In particular, for each model we sampled the posterior predictive
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snmC-seq [12] snmC-seq2 [31] sn-m3C-seq [31] snmCAT-seq [32]

Method CpG CpH CpG CpH CpG CpH CpG CpH

methylVI 1.23 0.71 1.33 0.64 1.96 1.48 1.27 0.54
FA (Mean) 3.53 1.92 3.93 2.29 4.25 4.74 3.76 1.53

CV FA (ALLCools) 4.42 4.07 5.15 5.05 5.07 6.97 4.84 3.97
PCA (Mean) 3.33 1.95 3.69 2.27 3.96 4.38 3.55 1.56

PCA (ALLCools) 4.66 4.13 5.28 5.13 5.19 7.18 5.14 4.13

methylVI 15.55 15.55 18.79 18.80 16.49 16.49 16.07 16.07
FA (Mean) 15.59 15.59 18.82 18.83 16.52 16.57 16.09 16.09

MWU FA (ALLCools) 15.92 15.95 19.13 19.16 16.85 16.90 16.44 16.47
PCA (Mean) 15.59 15.59 18.83 18.83 16.53 16.56 16.09 16.09

PCA (ALLCools) 15.92 15.95 19.14 19.18 16.85 16.89 16.45 16.47

Table 1: Posterior posterior predictive checks. We report the median absolute error of the coefficient
of variation (CV) (top) and median log Mann-Whitney U statistic (bottom) separately for CpG and
CpH features for each dataset. For both metrics lower values are better.

a b

Figure 1: a-b, UMAP [33] plots of dentate gyrus methylome data pre-integration (a) and after
integration with methylVI (b) colored by sequencing technology and cell type annotations from [31].

distribution 25 times and calculated the CV for each sample and feature. After averaging over samples
we separated the features by methylation type (i.e., CpG versus CpH), and we report the median
absolute error between the true and predicted CVs for each methylation type in Table 1. We found that
methylVI consistently outperformed baseline models. We also compared the original and replicated
data using the Mann-Whitney U (MWU) test statistic. We found (Table 1) that samples produced by
methylVI were closer to the true data (i.e., lower MWU) than those generated by baseline models.

3.2 Data Integration

As a further application of the methylVI model, we next evaluated its ability to integrate data from
different batches (e.g. datasets collected at different time points, using different technologies, etc.)
into a unified latent space via conditioning on provided batch labels si for each cell. For this task we
considered two sets of methylome measurements from the dentate gyrus gathered as part of a larger
mouse brain methylome atlas [31]. These measurements were taken at different time points using
different bisulfite sequencing platforms (snmC-seq2 vs. sn-m3C-seq), and exhibit clear separation by
batch (Fig. 1a). On the other hand, in methylVI’s latent space (Fig. 1b) we find that samples mix
across batches and instead separate primarily by cell type.

We benchmarked methylVI’s performance on this task with that of three methods originally designed
for scRNA-seq data (MNN [34], Scanorama [35], and Harmony [36]) along with ComBat [37], a
data integration method designed for bulk assays that has previously been applied to bulk methylome
data [38]. To quantify each method’s performance, we used the previously established single-cell
integration benchmark (scIB) suite of metrics [39]. In short, scIB assesses the quality of integrated
representations in terms of both mixing across batches (“Batch correction”) and conservation of bio-
logical variation (“Bio-conservation”); a successful integration data should achieve good mixing while
also conserving biological variation. We found (Table 2) that methylVI substantially outperformed
baselines in terms of batch correction, while also comparing favorably on bio-conservation.

3



Method Batch Correction Bio-conservation

methylVI 0.901 0.759
MNN 0.622 0.341

Scanorama 0.376 0.466
Harmony 0.287 0.242
ComBat 0.342 0.440

Unintegrated 0.237 0.684

Table 2: Data integration performance as measured by the scIB [39] suite of metrics (higher is better).

a b c d

Figure 2: a, methylVI’s latent representations of excitatory (Exc) and inhibitory (Inh) neurons’
methylomes from [12]. b-c, Log-transformed normalized Tbr1 gene body CpH methylation levels as
computed by ALLCools (b) and methylVI (c). d, Kolmogorov-Smirnov (KS) test statistics assessing
difference in distribution of normalized gene body CpH methylation levels of canonical neuron
marker genes between cell types corresponding to the marker gene versus other cell types. CpH
methylation values were normalized via the ALLCools pipeline (x-axis) or methylVI (y-axis).

3.3 Data Denoising

As another application of the methylVI model, we used it to construct denoised methylation profiles
of single cells. Such a denoised profiles can be used as input to further downstream analysis tasks,
such as identifying markers of different cell types or identifying regulatory networks. To construct
such a denoised profile, we compute Eqϕ(zi|yG

i ,nG
i ,yH

i ,nH
i ,si)[µ

G
ij ] for CpG methylation for all cells

i and regions j and similarly for CpH methylation (i.e., we obtain the latent embedding for each
cell i and subsequently compute the mean parameter of the Beta-Binomial distribution for region
j in cell i). To validate this denoising procedure, we considered again the mice brain methylome
dataset from Luo et al. [12]. Gene expression and gene body CpH methylation levels are known to
exhibit an inverse relationship in neurons [5]. In particular, we would expect lower gene body CpH
methylation levels for marker genes in cells of the cell type corresponding to that cell type. However,
this relationship can be obscured due to noise in the sequencing process. For example, Tbr1 is a
pan-excitatory neuron marker, yet qualitatively it is difficult to distinguish normalized Tbr1 gene body
methylation levels computed using the ALLCools pipeline in excitatory versus inhibitory neurons
(Fig. 2a-b). On the other hand, after denoising with methylVI, we observe clear differences (Fig. 2c).

To further illustrate this phenomenon, we considered a set of gold-standard neuron subtype marker
genes derived from the literature [40–42]. For each gene, we then applied the Kolmogorov-Smirnov
(KS) test to assess the difference of the distribution of normalized gene body CpH methylation levels
between cells from a given marker gene’s corresponding cell type(s) versus other cell types. In
particular, we compared KS statistics computed using ALLCools normalized values versus those
of methylVI. As we would expect significantly different distributions of CpH methylation levels
between a marker gene’s corresponding cell types versus other cell types, higher KS values suggest
better recovery of true biological phenomena. We found (Fig. 2d) that methylVI’s normalized CpH
methylation levels indeed resulted in consistently higher KS values compared to ALLCools.
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4 Discussion

Here we introduced methylVI, a deep generative model for the analysis of single-cell methylomic
data generated from bisulfite sequencing experiments. Using posterior predictive checks (Section
3.1), we found that methylVI was able to better fit single-cell methylome data compared to baseline
linear models employed in previous single-cell methylome analyses. We then applied methylVI to
integrate data from different experimental batches (Section 3.2) and to produce denoised methylome
profiles. Future work will focus on extending the methylVI model to perform additional downstream
analysis tasks (e.g. differentially methylated region testing), and incorporating the methylVI likelihood
function into previously developed frameworks (e.g. multiVI [43]) for analyzing multimodal assays.
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