Published as a conference paper at ICLR 2023

SPEEDYZERO: MASTERING ATARI WITH LIMITED
DATA AND TIME

Yixuan Mei' 2%, Jiaxuan Gao'2*, Weirui Ye!, Shaohuai Liu', Yang Gao' 2%, Yi Wu'2f
! Institute for Interdisciplinary Information Sciences, Tsinghua University, 2 Shanghai Qi Zhi Institute
meiyixuan2000@gmail.com

ABSTRACT

Many recent breakthroughs of deep reinforcement learning (RL) are mainly built
upon large-scale distributed training of model-free methods using millions to bil-
lions of samples. On the other hand, state-of-the-art model-based RL methods
can achieve human-level sample efficiency but often take a much longer over-
all training time than model-free methods. However, high sample efficiency and
fast training time are both important to many real-world applications. We develop
SpeedyZero, a distributed RL system built upon a state-of-the-art model-based RL
method, EfficientZero, with a dedicated system design for fast distributed compu-
tation. We also develop two novel algorithmic techniques, Priority Refresh and
Clipped LARS, to stabilize training with massively parallelization and large batch
size. SpeedyZero maintains on-par sample efficiency compared with EfficientZero
while achieving a 14.5x speedup in wall-clock time, leading to human-level per-
formances on the Atari benchmark within 35 minutes using only 300k samples.
In addition, we also present an in-depth analysis on the fundamental challenges in
further scaling our system to bring insights to the community.

1 INTRODUCTION

Deep reinforcement learning (RL) has achieved significant successes in the past few years. Prior
work has scaled model-free RL training to computing clusters with tens to hundreds of machines,
achieving human-level performance or beating human experts on various complex problems (Jader-
berg et al., [2019; Baker et al.| 2019; Berner et al.l [2019} |Vinyals et al., [2019). There are two fun-
damental ideas behind their successes: (1) training with larger batches for faster convergence, as
used in the task of hide-and-seek (Baker et al., 2019), DOTA 2 (Berner et al., 2019) and even in
many popular PPO projects (Yu et al., [2021}; |Stooke & Abbeel, 2018)), (2) developing systems with
high scalability, such as Gorila (Nair et al.| 2015), Ape-X (Horgan et al.,[2018), IMPALA (Espeholt
et al., 2018) and R2D2 (Kapturowski et al.,|2018)), which can efficiently simulate huge numbers of
environments in parallel. Despite the achievements, these model-free-RL applications consume an
extremely high volume of samples, which can be infeasible for many real-world scenarios without
an efficient simulator accessible.

By contrast, model-based RL methods require substantially fewer samples to train a strong agent.
In particular, some recent works have even achieved comparable sample efficiency to humans in
complex RL domains like Atari (Ye et al.,[2021)) or robotic control (Wu et al.,|2022). The downside
of model-based RL methods is that they often require a long training time (Schrittwieser et al.,
2020; |Ye et al.,2021)). Although people have tried to accelerate simple model-based RL methods in
the existing literature (Zhang et al.l [2019; |/Abughalieh & Alawneh, 2019), state-of-the-art sample-
efficient model-based RL such as EfficentZero (Ye et al.l 2021)), which requires complicated model
learning and policy planning, are still time-consuming to run.

In this paper, we aim to build a state-of-the-art sample-efficient model-based RL system that trains
fast in wall-clock time. To do so, we start with EfficientZero, a state-of-the-art sample efficient
model-based RL method, and then accelerate it with massively parallel distributed training. We
remark that scaling state-of-the-art model-based RL methods like EfficientZero is non-trivial for

*Equal Contribution
TEqual Advising

Published as a conference paper at ICLR 2023

two major challenges. First, different from model-free RL, for which massive parallelization can
be simply achieved by simultaneously simulating more environments, a single training step in Ef-
ficientZero requires substantially more computation steps, including model expansion, back-track
search/planning, Q-value backup, and re-analyzing past samples. Therefore, it is non-trivial to effi-
ciently parallelize these components. Second, we empirically notice that when the data producing
rate is largely accelerated via parallelization and the batch size is increased, in order to retain the
same sample efficiency, EfficientZero training may suffer from significant instabilities.

We present SpeedyZero, a distributed model-based RL training system, which leverages dedicated
system-level optimization to largely reduce computation overhead while inheriting the high sam-
ple efficiency from EfficientZero. From the system perspective, SpeedyZero contains three major
innovations for a much faster per-iteration training speed, including (1) a non-trivial partition over
computation workload to reduce network communications, (2) applying shared memory queues for
high-through-put and low-latency intra-process communication, and (3) an optimized data transfer
scheduling with reduced CPU-GPU communication and redundant data transmission. Furthermore,
from the algorithm perspective, SpeedyZero is equipped with two novel techniques, Priority Refresh
(P-Refresh) and Clipped LARS, to significantly stabilize model-based training in the case of mas-
sive parallelization and larger batch sizes. P-Refresh is a distributed and more aggressive variant of
prioritized experience replay (Schaul et al., 2015), which actively re-computes the accurate priori-
ties of all the samples in the replay buffer. Clipped LARS is a variant of LARS (You et al.,[2017) to
ensure stable training with large batch size. The proposed techniques are shown to be critical for the
overall success of SpeedyZero.

We evaluate SpeedyZero on the Atari 100k benchmark (Kaiser et al., [2019), SpeedyZero achieves
human-level performance with only 35 minutes of training and 300k samples. Compared with Effi-
cientZero, which requires 8.5 hours of training, SpeedyZero retains a comparable sample efficiency
while achieving a 14.5 x speedup in wall-clock time. Ablation studies are also presented to show the
effectiveness of each design component and technique in our system. In addition, we also conduct
a further study on the effect of batch size, and the results show that when the batch size increases,
SpeedyZero may significantly drop. We carefully analyze the underlying bottleneck and hope the
insights can benefit the community for future research.

Our main contributions are summarized as follows,

* We develop SpeedyZero, a massively parallel distributed model-based RL training system
featuring high sample efficiency and fast training speed. SpeedyZero masters Atari in 35
minutes with 300k samples, achieving 14.5x speed up and on-par sample efficiency com-
pared with the state-of-the-art EfficientZero algorithm.

» SpeedyZero adopts three system optimization techniques that significantly reduce training
latency and improve training throughput and further leverages two algorithmic techniques,
Priority Refresh and Clipped LARS, to stabilize training with massive parallelization and
larger batch sizes.

* We present comprehensive ablation studies on our system components and in-depth analy-
sis on the existing bottlenecks when further scaling SpeedyZero, leading to practical sug-
gestions and open questions for the community.

2 RELATED WORK

Distributed Machine Learning With the emergence of larger datasets and larger models, dis-
tributed machine learning systems proliferate in industry and in research. Two main branches exist
in this field: data parallelism and model parallelism. Data parallelism partitions an enormous dataset
into small chunks computationally tractable on single machines (or GPUs) and assigns the chunks to
different machines (or GPUs) in the training cluster. Successful frameworks of data parallelism in-
clude three generations of parameter servers (Smola & Narayanamurthy,|2010; |Dean et al., | 2012; |L1
et al.|[2014) and distributed data parallel (Li et al.,|2020). On the other hand, model parallelism like
Megatron-lm (Shoeybi et al.,[2019) handles the problem of training gigantic models with billions of
parameters by assigning different layers of the model to different machines. In our case, the model
is small enough to fit onto a single GPU, while the sample batch is too large for efficient single
GPU training. Therefore, we use distributed data parallel provided by PyTorch (Li et al.| 2020) for
multi-GPU training in SpeedyZero.

Published as a conference paper at ICLR 2023

EfficientZero -
Node Storage
4> P=Rejfresher
Samples| Samples Batches, Batches
== —— — —
Replay @ Data Transfer Optimization
Buffer
_ Message Passing
T —_— Shared Memory

Model Network

(a) EfficientZero System Architecture

Data Node T Reanalysis Node ‘ Trainer Node
Refresher Reanalysis Node ‘ ®
Priorities{) Trajectories Reanalysis Node \ ®

Samples Priorities Batches
— EIC B L
Buffer Trajectories R-B Samples Batches @ “ee
) N Replica @

Models

(b) SpeedyZero System Architecture

Figure 1: System Architecture Comparison between EfficientZero and SpeedyZero: Effi-
cientZero finishes all computation on a single machine. In comparison, SpeedyZero partitions the
workflow into data collection (Data Node), batch reanalysis (Reanalysis Node), and training (Trainer
node) and distributes the three stages to different machines. SpeedyZero has three main novelties
in its architecture (Sec. @): (1) modular design with non-trivial workload partition, (2) efficient
on-node communication with shared memory, (3) data transfer optimizations that reduce CPU-GPU
communication and overlap data transfer with computation. It also implements our proposed Prior-
ity Refresh (Sec. @) in priority refresher of the data node for more stable training.

Distributed Deep Reinforcement Learning There have been many successful attempts to scale out
model-based deep RL methods with distributed training. Assuming known environment models, Al-
phaGo (Silver et al.| [2016) achieves super-human performance in the game of Go by distributing the
rollout process in the Monte-Carlo Tree Search (MCTS) over hundreds of machines. Its successor
MuZero (Schrittwieser et al., |2020) achieves astonishing results in the game of Go with thousands
of TPUs. (Zhang et al.| 2019) proposes an asynchronized framework for paralleling model-based
RL training using the idea of parameter servers. However, their method is based on a simple model-
based RL method, which is easy to parallelize but has relatively low sample efficiency. In the
domain of model predictive control, many works (Abughalieh & Alawnehl 2019) study parallelism
for improved speed, but focus on simple settings that are far less complicated than games like Atari.
There are also many efforts in scaling out model-free deep RL methods, including Gorila (Nair
et al.| [2015), Ape-X (Horgan et al.,|2018), IMPALA (Espeholt et al.,2018]) and R2D2 (Kapturowski
et al., 2018). These prior works typically focus on data-rich settings, requiring millions to billions
of samples and hours to days of training. (Stooke & Abbeel, 2018)) studies accelerated training of
model-free methods such as PPO and A2C on a single machine. Our focus is on speeding up the
training of model-based RL methods while maintaining high sample efficiency, which could bridge
the training speed gap between model-based and model-free methods.

Besides system design optimizations, many prior works also adopt algorithmic improvements for
better performance in distributed training of deep RL agents. IMPALA (Espeholt et al.,2018) intro-
duces V-trace to correct the policy lag between the actors and learners. R2D2 (Kapturowski et al.,
2018) proposes burn-in’ steps to deal with the parameter lag in the recurrent neural networks. Many
works also adopt prioritized experience replay (PER) in distributed training settings (Horgan et al.,
2018 [Kapturowski et al., 2018 [Schrittwieser et al., 2020). Different from previous PER meth-
ods, our proposed prioritized sampling method, Priority Refresh, is able to stabilize value function
training in the case of limited training data and training steps.

3 PRELIMINARY

Reinforcement Learning. A partially observable Markov decision process (POMDP) is defined by
M= (S, AT, UQ,O), where S is a set of states, A is the set of possible actions, 7' is a transition

Published as a conference paper at ICLR 2023

function over next states given the actions at current states, and U : S x A — R is the reward
function. €2 is the set of observations of the agent and O maps states to probability distributions over
observations. We use o<; to denote the history of observations at timestep ¢. The objective of the
agent is to find a policy 7 that maximizes the expected discounted return E[> ", v'uz|a; ~ 7(-|o<;)]
where u; is the reward at step .

MuZero. MuZero (Schrittwieser et al., [2020) is a model-based RL method based on the Monte-
Carlo Tree Search (MCTS) algorithm. MuZero learns the environment dynamics and performs
MCTS over the learned environment model to find a better policy. More specifically, MuZero models
the environment with a representation function h, a dynamics function g, and a prediction function
f. To find a high-quality policy given a history of observations o<;, MuZero first encodes the
observation history by s = h(o<;), which is used as the latent state at the root of the tree. To
perform MCTS, MuZero runs N simulation steps. In the k-th simulation step, a leaf node s’ and an
unexplored action a’ on the leaf node are chosen by employing the UCT rule (Kocsis & Szepesvari,
2006; |[Rosin, |2011). Then a node expansion step comes by computing the next latent state sf“ and

reward r; 1 by the dynamics function g: s¥1 rF1 = ¢(s/,a’), as well as the policy and value
at s;*! by the prediction function f: vy *!, it = f(s;'). At the end of each simulation step,

the value vf“ is back-propagated along the tree path to update the Q values. The MCTS process

is computationally expensive since it requires extensive CPU operations to do tree search as well as
GPU resources for model inference.

MuZero interacts with the environment by searching a policy using MCTS over the learned environ-
ment model. The trajectories of data are then stored in the replay buffer. During training, a batch
of observation histories are sampled and MuZero rolls out the environment model on the batch of
observation histories {0<;} along the actions {a;.. ;+x—1} at the following K steps, and predicts a
batch of rewards {1}, policies {m?**~'} and values {v?*~1}. To learn the models, the
following loss is minimized,

> Lluryr,rf) + ML(Tak, DF) + NoL(Ze4k,0F)
k

where ;4 is the environment reward, 74 is the target policy obtained through MCTS over a
target model, 2,15 = Z?z_ol YUt ki + 7"V, 4 18 the discounted n-step return, vj is the value
computed by the target model.

To improve the sample efficiency, MuZero Reanalyze algorithm (Schrittwieser et al., 2020) re-
generates the policy and value of a training batch when the batch is sampled from the replay buffer.
Compared with MuZero, MuZero Reanalyze uses significantly fewer samples while still achieving
strong results. It is worth noting that the reanalysis step over the sampled batch is computationally
expensive since it involves an additional MCTS procedure.

EfficientZero. EfficientZero (Ye et al.,[2021)) is a sample-efficient visual RL algorithm built on top
of MuZero Reanalyze algorithm, which re-computes the target policies via MCTS when a training
batch is sampled from the replay buffer. EfficientZero further proposes several augmentations in
visual RL tasks, including using self-supervised consistency loss to provide more training signals to
the environment model, predicting the value prefix instead of the reward to deal with aleatoric un-
certainty and off-policy correction for the n-step return. The workflow of EfficientZero is shown in
Fig.|1al where the Reanalyze workers continuously generate the training batch. EfficientZero suffers
from the same computation expense issue as MuZero Reanalyze due to the reliance on reanalyzing
batches. Our method SpeedyZero inherits the sample efficiency optimizations from EfficientZero
and boosts its training speed by 14.5x.

4 SPEEDYZERO: A FAST AND EFFICIENT MODEL-BASED RL SYSTEM

4.1 OVERVIEW

The ultimate goal of SpeedyZero is to speed up the training of EfficientZero-based RL agents while
maintaining on-par sample efficiency. We achieve this through efforts on both the system side and
algorithm side in SpeedyZero, as shown in Fig.[I] The system optimizations in SpeedyZero help
us reduce the time needed for each training step. The algorithm optimizations reduce the number

Published as a conference paper at ICLR 2023

of training steps needed while maintaining the stability of the training process. We will discuss the
system optimizations in Sec.[#.2]and the algorithm optimizations in Sec.[d.3|respectively.

4.2 SPEEDYZERO SYSTEM DESIGN

As shown in Fig. [T} SpeedyZero partitions the workflow of EfficientZero into three stages: data
collection, batch generation, and training. The three stages are distributed to the data node, the
reanalysis node, and the trainer node respectively. SpeedyZero features the following three system
design novelties for higher training step throughput and lower latency on critical modules.

Modular Design and Non-Trivial Workload Partition: A naive partition of workload to mul-
tiple machines entails massive network data transfer, inducing high latency and low throughput.
SpeedyZero follows a modular design, in which we partition the workflow into three major stages
so that the data transfer across stages is reduced and we assign one type of node for each stage.
The machines (nodes) in SpeedyZero work together asynchronously and we can easily add more
machines for a single type of node if it becomes the bottleneck. Our partition strategy helps us scale
out SpeedyZero for higher throughput with low network latency overhead.

Efficient On-Node Communication with Shared Memory: Tradition message passing commu-
nication between different processes on the same machine serializes data on the sender side and
deserializes them again on the receivers (known as data ser/des). This process also entails multi-
ple memory copies. The data ser/des and memory copies make message passing extremely slow
when the amount of data we need to transfer is huge. We notice that in our settings, the majority
of data transferred can be expressed using NumPy arrays and many of these arrays are written once
but read multiple times. Therefore, we develop a special shared memory object store for on-node
communication. It avoids data ser/des for NumPy arrays and supports non-copy, lock-free reads for
them. With this shared memory object store in hand, processes in SpeedyZero can communicate
with higher bandwidth and lower latency.

Data Transfer Optimizations: We empirically find that batch generation latency on the reanalysis
node and priority refresh latency on the data node affect the final performance a lot. We also notice
that a considerable amount of time is spent on CPU-GPU data transfer in the two components.
Therefore, we reduce the CPU-GPU data transfer during batch reanalysis by storing all MCTS
latent states on GPU. For priority refresh (Sec. .3]), we store the observations in the replay buffer
on GPU to avoid loading them every time the priorities are re-computed. These two optimizations
help SpeedyZero better utilize GPU VRAM to reduce the latency on critical components.

Data transfer can also overlap with computation in many cases to further reduce latency and improve
throughput. In SpeedyZero, we overlap network transmission with computation by sending and
receiving network packages in separate processes, allowing workers to continue their jobs when the
package is flying through the network. Moreover, on the trainer node, we also overlap batch loading
with training by preloading the next batch into GPU.

4.3 ALGORITHM IMPROVEMENTS

Unstable Model-Based Training: We empirically find that the predicted values may behave unsta-
bly, especially during the initial training stage. The instability issue is largely due to the accelerated
training speed and a reduced amount of training steps due to the requirement of unchanged sample
efficiency. As shown in Fig.[2] the predicted values climb abnormally high at the beginning, and it
takes many steps before the values decrease back to the normal range. Notably, this phenomenon
exists when using either prioritized experience replay (DPER) (Horgan et al.| | 2018)) or uniform sam-
pling from the replay buffer. The surge in predicted values at the beginning prevents proper policy
improvements since MCTS relies on predicted values. Also, when scaling SpeedyZero to a larger
batch size, we observe several sudden large gradients during training across a wide range of trials,
as shown in Fig. We remark that the issues are not severe in EfficientZero since EfficientZero
uses a much longer overall training time and a smaller batch size than SpeedyZero does.

Priority Refresh: To address the issue of unstable values, we propose Priority Refresh, in which
we actively refresh the priorities of all data points in the replay buffer. As shown in Fig. a group
of priority refreshers periodically update the priorities of all data points in the replay buffer. The
latest priorities are synchronized to all reanalysis nodes with a constant frequency. Since the goal is
to stabilize the values, we use TD errors as the priorities. The key difference between P-Refresh and

Published as a conference paper at ICLR 2023

Unif. DPER P-Refresh
0.6 | y —— Trial-0
W“ || — Tial-1

— Tial2

— Trial-0
0.05- —— Trial-1

Pred. Value

Figure 2: The predicted values of different trials when using uniform sampling from the replay
buffer (Unif.), distributed prioritized experience replay (DPER), and priority refresh (P-Refresh) in
Jamesbond. Uniform sampling exhibits very unstable values. Values of DPER are less unstable but
still suffer from the same instability issue. In contrast, P-Refresh shows stable improvement in the
predicted values and exhibits much lower variance across different trials.

SGD Clipped LARS LARS

0.025

— Trial-0
— Trial-1
—— Trial-2

— Trial-0 — Trial-0

0.020 — THal-1 0.020 — Thal-1 0.020

E 0.015 —— Trial-2 g 0.015 —— Trial-2 g 0.015
= = =
— 0.010 — 0.010 — 0.010
)))
0.005 0.005 0.005
000y 03 o6 09 12 15 0005 03 o6 09 12 15 0000, o3 o6 09 12 15
Step led Step led Step led
(a) SGD (b) Clipped LARS (c) LARS

Figure 3: L1 norms of the parameters of the representation network of several trials with a larger
batch size using SGD, Clipped LARS, and LARS respectively in Breakout. (a) There exist several
sudden huge changes in the weights across all trials when using SGD. (b) Clipped LARS signif-
icantly stabilizes the training process. (c) LARS causes over-regularization in the initial training
stage and numerical instability or excessive shrinkage of the gradient during further training.

Distributed Prioritized Experience Replay (DPER) (Horgan et al.l 2018)) is that DPER only updates
priorities of data points that are trained on, while P-Refresh updates priorities of all data points. This
difference allows SpeedyZero to effectively use data from old policies, which stabilizes the training
and leads to better performance.

Clipped LARS: To tackle the unstable issue of large batch size training, we propose an optimizer
called Clipped LARS. Clipped LARS updates the parameters with the following rule,

Wyl = W — 7Y - min(w2 1)
[Vwe|lo + B wel]2”

(IIVwella + Bllwi|2) (D

where w; is the parameter of a layer after ¢ training steps, S is the weight decay coefficient, -y is the
base learning rate, 1 is a scaling factor to control the change in the parameter. As shown in Fig.
LARS (You et al 2017) shows an over-regularization effect in the early training stage. Clipped
LARS overcomes the over-regularization issue by clipping the scaling ratio to less than 1 to avoid
magnifying the gradients but only shrinking the exploding gradients. More details about Clipped
LARS can be found in Appendix [A3]

4.4 IMPLEMENTATION

SpeedyZero is highly optimized for higher training throughput and lower latency on critical modules.
In this section, we will introduce some key system efficiency optimizations. For more details about
the implementation of SpeedyZero, please refer to the appendix.

Distributed Data Parallel: We use Distributed Data Parallel provided by PyTorch (Li et al., [2020)
to amortize batch size on multiple GPUs for faster training.

Data Compression: We compress the batches sent through the network with the 1z4 algorithm,
reducing the average network bandwidth requirement by 12 x. Also, 1z4 features high compression
and decompression throughput, causing negligible overhead to our overall latency.

Replay Buffer Replication: We keep a replica of the replay buffer on each reanalysis node. This
grants data loaders fast access to the data they need and also reduces traffic over the network. Each
trajectory is only transmitted once while priorities are synchronized throughout the training process.

6

Published as a conference paper at ICLR 2023

5 EXPERIMENTS
5.1 EXPERIMENT SETUP

Atari 100k Benchmark. The Atari 100k benchmark is proposed for testing the effectiveness of
sample efficient RL methods (Kaiser et al., 2019). It contains 26 Atari games that are deemed
solvable with a limited amount of samples. In this benchmark, agents are allowed to take at most
100 thousand environment steps, which are equivalent to 400 thousand frames due to a frameskip of
4. EfficientZero is the first method that achieves human performance in terms of both the mean and
median of the human normalized score on this benchmark. In our experiments, we test SpeedyZero
on the Atari 100k benchmark and also conduct additional experiments on the same set of games
with 300k environment steps. Raw performance on each game as well as the mean and median
of the human normalized score is reported. Human normalized score is computed as (SCOreagen: —
SCOI€andom) / (SCOTChuman — SCOT€random). The baselines we compare against include SimPLe (Kaiser
et al.,2019), CuRL (Srinivas et al., 2020), SPR (Schwarzer et al., 2020), MuZero and EfficientZero.
All baselines use 100k environment steps.

For the main results in Sec. and ablation study in Sec. the trainer node is configured with
8 DDP trainers and each DDP trainer receives batches with batch size 256 for training, indicating a
total batch size of 2048. The model held by each Reanalyze workers is updated every 25 training
steps. The models of the priority refreshers and actors are updated every 10 training steps. The total
number of training steps is 15k. We run SpeedyZero with two different clusters, resulting in 35min
and 50min total running time due to differences in the machine hardware. The detailed hardware
configuration of the two clusters is listed in the appendix. As a reference, EfficientZero uses a batch
size of 256 and 120k training steps, taking over 8.5 hours to finish training under the same machine
configuration used by the 35min experiments of SpeedyZero.

In Sec. we carry out case studies on large batch size training with limited steps and point
out bottlenecks that prevent SpeedyZero from using larger batch sizes and less training time. We
compare SpeedyZero with model-free method PPO (Schulman et al.,|2017)) under the setting of large
batch size training on a subset of representative environments. PPO uses 25 million environment
steps for training. The full scaling policy for SpeedyZero is given in the appendix.

5.2 MASTERING ATARI IN 30 MINUTES

Table. [T] compares the result of SpeedyZero under different cluster configurations and number of
environment steps with the result of other methods on the set of games in the Atari 100k benchmark.
SpeedyZero surpasses human performance on both the normalized mean score and the normalized
median score. Running with 100k environment steps for 50 minutes, SpeedyZero achieves a nor-
malized mean of 1.483 and a normalized median of 1.011. Compared with EfficientZero, which
uses 8.5 hours on each game, SpeedyZero achieves 10x speedup. The performance gap is mainly
caused by the usage of a larger batch size in our setting.

Additionally, We perform experiments with 300k environment steps on two different clusters which
allow SpeedyZero to finish training in 35 and 50 minutes. In the 35 minutes experiment, which
accelerates EfficientZero by 14.5x, SpeedyZero achieves a normalized mean of 2.594 and normal-
ized median of 0.520. In the 50 minutes experiment, SpeedyZero achieves a similar normalized
mean to the 35 minutes experiment, i.e. 2.915, and shows a stronger normalized median of 1.113.
We observe severe performance degradation on some environments, e.g. Jamesbond, when shifting
from the 50min experiment to the 35min experiment. The inconsistency of the performance among
different machine configurations also occurred in our early experiments. (See [A.6|for more details.)
The main reason for the performance gap is the non-uniform speedup of different components on
machines with faster GPUs. For example, increasing the training speed while not accelerating the
data generation process will influence the “priority staleness”, which measures the model version
gap between when a batch is sampled from the replay buffer and when it is trained on.

5.3 ABLATION STUDY

Priority Refresh. As stated in Sec. d.3] the RL agent’s final performance suffers a lot from the
unstable predicted values during the initial training stage. Therefore we propose Priority Refresh to
stabilize the training process. As shown in Fig.[2] when using uniform sampling, the predicted values

Published as a conference paper at ICLR 2023

Game Random Human | SimPLE CuRL SPR MuZero EfficientZero SpeedyZero
Environment Steps / / 100k 100k 100k 100k 100k 300k 300k 100k
Time / / / / / 8.5 hours 8.5 hours 35min S50min S50min
Alien 227.8 7127.7 616.9 558.2 801.5 530.0 1140.3 627.3 1058.3 718.0
Amidar 5.8 1719.5 88.0 142.1 176.3 38.8 101.9 85.8 153.5 86.1
Assault 222.4 742.0 527.2 600.6 571.0 500.1 1407.3 1241.1 1129.0 952.5
Asterix 210.0 8503.3 1128.3 734.5 977.8 1734.0 16843.8 124148.3 1771429 11019.3
Bank Heist 14.2 753.1 34.2 131.6 380.9 192.5 361.9 166.7 239.5 228.6
BattleZone 2360.0 37187.5 | 51844 14870.0 16651.0 7687.5 17938.0 10873.3 9930.0 7437.5
Boxing 0.1 12.1 9.1 1.2 35.8 15.1 4.1 33.7 28.1 29.0
Breakout 1.7 30.5 16.4 4.9 17.1 48.0 406.5 401.1 404.1 371.1
ChopperCmd 811.0 7387.8 1246.9 1058.5 974.8 1350.0 1794.0 935.0 1168.0 1254.8
CrazyClimber 10780.5 35829.4 | 62583.6 12146.5 42923.6 56937.0 80125.3 113582.7 1079754 82106.3
Demon Attack 152.1 1971.0 208.1 817.6 545.2 3527.0 13298.0 25603.3 26023.3 9097.7
Freeway 0.0 29.6 20.3 26.7 24.4 21.8 21.8 0.0 10.7 7.1
Frostbite 65.2 4334.7 254.7 1181.3 1821.5 255.0 313.8 406.5 831.4 262.6
Gopher 257.6 24125 771.0 669.3 715.2 1256.0 3518.5 3907.9 4108.2 2600.3
Hero 1027 30826.4 | 2656.6 62793 7019.2 3095.0 8530.1 7601.9 5650.9 6002.5
Jamesbond 29.0 302.8 125.3 471.0 365.4 87.5 459.4 169.5 3423 340.1
Kangaroo 52.0 3035.0 323.1 872.5 3276.4 62.5 962.0 1403.3 542.5 428.7
Krull 1598.0 2665.5 45399 4229.6 36889 4890.8 6047.0 7677.3 6388.3 5855.15
Kung Fu Master 258.5 22736.3 | 17257.2 14307.8 13192.7 18813.0 31112.5 30964.7 291315 22170.2
Ms Pacman 307.3 6951.6 1480.0 1465.5 1313.2 1265.6 1387.0 2685.0 3296.1 1586.6
Pong -20.7 14.6 12.8 -16.5 -5.9 -6.7 20.6 15.0 17.5 16.3
Private Eye 24.9 69571.3 58.3 218.4 124.0 56.3 100.0 0.0 333 29.7
Qbert 163.9 13455.0 | 1288.8 1042.4 669.1 3952.0 15458.1 14205.0 16043.1 14467.0
Road Runner 11.5 7845.0 5640.6 5661.0 14220.5 2500.0 18512.5 17235.0 25368.0 8496.3
Seaquest 68.4 42054.7 683.3 384.5 583.1 208.0 1020.5 901.6 1312.2 530.7
Up N Down 533.4 11693.2 | 3350.3 2955.2 28138.5 2896.9 16095.7 6411.0 22531.8 12383.1
Normed Mean 0.000 1.000 0.443 0.381 0.704 0.562 1.904 2.594 2915 1.483
Normed Median 0.000 1.000 0.144 0.175 0.415 0.227 1.160 0.520 1.113 1.011

Table 1: Scores and running time achieved by SpeedyZero and some baselines on the Atari 100k
benchmark. Compared with previous RL methods, SpeedyZero achieves human-level performance
and performs best on 9 out of 26 games with 10X shorter training time. The results of SpeedyZero
are evaluated with 100 evaluation episodes. The 35min results of SpeedyZero with 300k environ-
ment steps are evaluated with 3 training seeds. The 50min results of SpeedyZero are evaluated with
16 training seeds. The training time of EfficientZero is evaluated under the same machine configu-
ration of the 300k, 35 minutes experiment of SpeedyZero.

Game DPER Uniform P-Refresh
Pong 16.0 13.0 17.5
Jamesbond 284.2 251.3 342.3
UpNDown | 216343 204323 22531.8

Table 2: Ablation study on different training data sampling strategy, i.e., DPER, uniform sampling,
and Priority Refresh. Unif. is the worst in all environments while Priority Refresh outperforms all
the baselines in these environments.

remain unstable throughout the training process. When using DPER, although the values sometimes
seem more stable, the variance across different trials is still considerably high. In contrast, Priority
Refresh ensures stable training within a single run and across multiple runs. In Table. |2} Priority
Refresh achieves the highest score among all sampling methods in a set of environments. This
suggests the superiority of Priority Refresh in stabilizing training and improving final performance.

Clipped LARS. Table. [3| compares the performance of SpeedyZero when using SGD, LARS, and
Clipped LARS as the optimizer. When using LARS, training fails completely. Clipped LARS
stabilizes large batch size training of SpeedyZero and significantly improves the performance over
SGD and LARS, indicating that Clipped LARS is critical to the overall success of SpeedyZero.

5.4 EFFECT OF BATCH SIZE

Prior works have shown that PPO can be easily parallelized and benefit from large batch size train-
ing (Stooke & Abbeel, [2018). However, we find that it is hard to train with larger batch sizes in

Optimizer SGD LARS Clipped LARS
Asterix 2732.0 200.0 11019.3
Breakout 88.7 0.6 371.1
Gopher 1459.4 0.6 2600.3
Pong 2.1 -19.9 16.3

Table 3: Performance of SpeedyZero using SGD, LARS, and Clipped LARS on a number of selected
Atari games with a batch size of 2048. LARS completely fails to learn any useful policies. Clipped
LARS is significantly better than SGD and LARS.

Published as a conference paper at ICLR 2023

20 3200 600-
12-
2600-
400°
L 4 0] v
5 Q
S 4 S 2000- §
n 200-
-12- =¥ PPO 1400
—k— Speedyzero
20 i ‘y 800- ‘ ‘ 0 ‘ ‘
512 1024 2048 4096 512 1024 2048 4096 512 1024 2048 4096
Batch Size Batch Size Batch Size
(a) Pong (b) Gopher (c) Jamesbond

Figure 4: The effect of batch size for SpeedyZero comparing with a distributed implementation
of PPO. We report the scores of PPO and SpeedyZero on selected games with batch size of
512/1024/2048/4096. Here PPO consumes 25M samples while SpeedyZero uses 100k samples.
With an increasing batch size, PPO maintains its performance while the performance of SpeedyZero
drops a lot. The most significant drop happens when increasing the batch size from 2048 to 4096.

Batch Size | Oracle Staleness SpeedyZero Staleness | Staleness Ratio
512 50 50.8 1.016
1024 25 36.3 1.452
2048 12.5 37.2 2.976

Table 4: Bottleneck analysis on the Reanalyze staleness. Oracle staleness is the optimal staleness
that could be achieved by the synchronized version of SpeedyZero. SpeedyZero Staleness measures
the actual reanalyze staleness achieved by SpeedyZero. Finally, ”Staleness Ratio” is the ratio of
SpeedyZero staleness to the oracle staleness. A larger staleness ratio indicates a larger gap between
the synchronized and asynchronized execution. As the batch size increases, the reanalyze ratio be-
comes larger, indicating a much more severe gap between SpeedyZero and the synchronized version.

SpeedyZero. Fig. [d]compares PPO and SpeedyZero when using different batch sizes in a number of
selected environments. PPO doesn’t show performance degradation and maintains its performance
when using larger batch size. However, SpeedyZero demonstrates different degrees of performance
degradation in different environments and shows the most significant performance degradation when
increasing the batch size from 2048 to 4096. We find the "Reanalyze staleness” as a critical factor
influencing the performance of SpeedyZero and blocking the learning of SpeedyZero.

Reanalyze Staleness. Since reanalysis and training are parallelized, DDP trainers often do not re-
ceive batches that are reanalyzed by the latest target model but by an old version of the model. This
model version gap of the training batches, which we call ”"Reanalyze staleness”, could significantly
affect the quality of training. In practice, we find that there could be several reasons contribut-
ing to an increased Reanalyze staleness, including improper queue design between the reanalysis
node and the trainer node, a large latency of the Reanalyze processes, communication overhead and
compression time over the training batches.

When using a larger batch size, which requires a shorter interval to update the target model, the issue
of Reanalyze staleness becomes more severe since the latency of components except for the trainers
remains the same while the interval between two consecutive target model updates is much shorter.
Table. [reports the ratio of actual SpeedyZero Reanalyze staleness to the oracle Reanalyze stale-
ness when using different batch sizes. As expected, the ratio increases as the batch size increases,
indicating a much more severe gap between SpeedyZero and the synchronized version.

6 CONCLUSION

In this work, we have developed a fast and sample efficient model-based RL training system,
SpeedyZero, and introduced a new priority experience replay method, Priority Refresh, and an
optimizer, Clipped LARS, to stabilize training. With the highly optimized system design and al-
gorithmic improvements combined, SpeedyZero achieves human-level performance on the Atari
100k benchmark with only 300k samples and 35 minutes of training. This work is one step towards
the application of RL in real-world scenarios where both sample efficiency and training time are
mission-critical. We expect future research to further accelerate SpeedyZero and apply SpeedyZero
in the real world.

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work is supported by the Ministry of Science and Technology of the People “s Republic of
China, the 2030 Innovation Megaprojects “Program on New Generation Artificial Intelligence”
(Grant No. 2021AAA0150000).

REFERENCES

Karam M Abughalieh and Shadi G Alawneh. A survey of parallel implementations for model pre-
dictive control. IEEE Access, 7:34348-34360, 2019.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25, 2012.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407-1416. PMLR, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Max Jaderberg, Wojciech M Czarnecki, lain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Sci-
ence, 364(6443):859-865, 2019.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2018.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282-293. Springer, 2006.

Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication efficient distributed
machine learning with the parameter server. Advances in Neural Information Processing Systems,
27,2014,

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,
Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. Massively
parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61(3):203-230, 2011.

10

Published as a conference paper at ICLR 2023

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
g0, chess and shogi by planning with a learned model. Nature, 588(7839):604—609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. arXiv preprint
arXiv:2007.05929, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Alexander Smola and Shravan Narayanamurthy. An architecture for parallel topic models. Proceed-
ings of the VLDB Endowment, 3(1-2):703-710, 2010.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. arXiv preprint arXiv:2004.04136, 2020.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. arXiv
preprint arXiv:1803.02811, 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Daydreamer:
World models for physical robot learning. arXiv preprint arXiv:2206.14176, 2022.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476-25488, 2021.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Yunzhi Zhang, Ignasi Clavera, Boren Tsai, and Pieter Abbeel. Asynchronous methods for model-
based reinforcement learning. arXiv preprint arXiv:1910.12453, 2019.

11

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 CLUSTER HARDWARE CONFIGURATIONS

This section lists the cluster hardware configurations of the 35min and 50min experiments. For
the 35min experiments, the trainer node and the data node are both machines with 8 A100 80G
GPUs (with NV-Switch), 128 CPU cores, and 1TB of RAM. There are 9 reanalysis nodes, each
of which contains 4 A100 80G GPUs (with NV-Switch), 64 CPU cores, and 512GB of RAM. For
the 50min experiments, the trainer node and the data node both contain 8 A100 80G GPUs (without
NV-Switch), 128 CPU cores, and 512GB of RAM and the 15 reanalysis nodes all contain 1 NVIDIA
RTX 3090 GPUs, 128 CPU cores, and 512GB of RAM.

A.2 MODELS AND HYPER-PARAMETERS

SpeedyZero uses the same model as EfficientZero. The model consists of three modules: repre-
sentation function, dynamics function, and prediction function, which are all represented as neural
networks. We list the architecture of each module below:

Layer Type Configuration Activation ~ Batch Norm
Representation Network

Convolution kernel 3x3, stride 2, 32 output planes, output resolution 48 x 48 ReLU Yes
Residual Block 32 planes - -
Residual Downsample Block stride 2, 64 output planes, output resolution 24 X 24 - -
Residual Block 64 planes - -
Average Pooling stride 2, output resolution 12x12 ReLU Yes
Residual Block 64 planes - -
Average Pooling stride 2, output resolution 6 X 6 ReLU Yes
Residual Block 64 planes - -

Dynamics Network
- Concate the latent states with input actions into 65 planes - -

Convolution kernel 3x3, stride 2, 64 output planes - Yes
Convolution kernel 3x3, stride 2, 32 output planes, output resolution 48 X 48 - Yes
- A residual link adds the input latent states with output ReLU No
Residual Block 64 planes - -
Prediction Network

Residual Block 64 planes - -
Convolution kernel 1x1, 16 output planes ReLU Yes
- Flatten - R
Linear D output dimensions (D differs for reward/policy/value) - -
Value-prefix Prediction Network

Convolution kernel 1x1, 16 output planes ReLU Yes
- Flatten - -
LST™M 512 hidden size ReLU Yes
Linear 32 output dims ReLU Yes
Linear 601 output dims - -

Table 5: Network architecture of SpeedyZero.

We stack four historical frames as the input observations, with an interval of 4 frame-skip. The
frames are staked on the channel dimension, hence the shape of the input is 96 x 96 x 12.

Common hyper-parameters of SpeedyZero are as shown in Table.[6] The search budget is 50 in the
50min experiments while it is decreased to 45 in the 35min experiments to speedy up the generation
of interactions with the environment.

A.3 CLIPPED LARS

In practice, we use momentum SGD during the initial training process and then switch to Clipped
LARS after a number of training steps. When applying Clipped LARS, we use n = 0.05 for batch
normalization layers and biases in all layers. For other layers, a smaller 7 is used and is specifically
tuned for different games. Since we follow the initialization scheme of EfficientZero to set the last
linear layers of the value, policy, and reward prediction networks to zero, Clipped LARS is only
activated after the norms of these layers are above a constant threshold.

12

Published as a conference paper at ICLR 2023

Parameter Name Value
Observation down-sampling 96 x 96
Frame staked 4
Frame skip 4
Reward clipping True
Terminal on loss of life True
Max frames per episode 12K
Discount factor 0.9974
Optimizer SGD
Max gradient norm 10
Priority exponent (o) 0.6
Evaluation episodes 100
Actor model update interval 10
Unroll steps 5
TD steps 5
Policy loss coefficient 1
Value loss coefficient 0.25
Self-supervised consistency loss coefficient 2
LSTM horizon length 5
Dirichlet noise ratio 0.3
Number of simulations in MCTS 45/50

Table 6: Common hyper-parameters of SpeedyZero.

Game n
Asterix 0.01
Gopher 0.01
KungFuMaster 0.005
Pong 0.005
RoadRunner 0.005
UpNDown 0.005

Table 7: Best n found for a number of selected games. For other games, we use the default = 0.03.

We specifically perform grid search for 7 from [0.03,0.01, 0.005, 0.001] on Asterix, Gopher, Kung-
FuMaster, Pong, RoadRunner, and UpNDown. The best) found for the selected games are listed in
Table.|/} For other games, we use = 0.03 by default.

A.4 LARGE BATCH S1ZE EXPERIMENT SETUP

For SpeedyZero, We use the linear scaling rule for large batch size training. The hyper-parameters
for large batch size training are shown in Table. [§]

Batch Size Target Model Update Interval — Training Steps Learning Rate ~ SGD Init Steps
512 100 60k ﬁ 6k
1024 50 30k ToagT 3k
2048 25 15k o 600

Table 8: Hyper-parameters of SpeedyZero with different batch sizes.

For PPO, we only change the batch size for different experiments. The hyper-parameters of PPO are
shown in Table.[0] The network architecture we use for PPO is shown in Table.

13

Published as a conference paper at ICLR 2023

Parameter Name Value
Observation down-sampling 84 x 84
Frame staked 4
Frame skip 4
Learning rate Se-5
Discount 0.99
Env steps 25M
PPO Epoch 4
GAE parameter () 0.95
Number of actors 8
Entropy coeff. 0.01
VF coeff. 0.5

Table 9: Hyper-parameters of PPO

Layer Type Configuration Activation ~ Batch Norm
Convolution kernel 8x8, stride 4, 32 output planes ReLLU -
Convolution kernel 4x4, stride 2, 64 output planes ReLU -
Convolution kernel 3x3, stride 1, 64 output planes ReLLU -
Linear 512 ouput dims ReLU -
Linear actionqim, output dims - -

Table 10: Network architecture of PPO.

A.5 SYSTEM WORKFLOW AND SYSTEM CONFIGURATIONS

In this section, we describe the detailed workflow of SpeedyZero. We illustrate this by looking at
how one data point (environment step) takes effect in the whole training process. The story begins
on the data node. Actors on the data node collect the data point from the environment and put it
into the replay buffer. Priorities refreshers periodically recompute the priorities of data points in the
replay buffer. Since we have replay buffer replicas on reanalysis nodes, we need to synchronize the
data points and their priorities to the replicas. Each data point is only sent once (when the trajectory
is finished) while priorities are synchronized periodically throughout the training process.

On the reanalysis node, data loaders sample batches based on previously computed priorities and
reformat the batches for ease of GPU reanalysis. The batches are then sent into a shared memory
queue between data loaders and Reanalyze workers. The separation of data loading and reanalyzing
decouples CPU workload with GPU workload, improving resource utilization. During our imple-
mentation, we partition data loaders and Reanalyze workers into several groups. Each group has one
shared memory queue, and the data loaders can only communicate with Reanalyze workers in the
same group. We use grouping here to achieve higher bandwidth and lower latency. Continue with
the workflow, Reanalyze workers will then pop batches from the shared memory queue and reana-
lyze them using MCTS. The Reanalyze workers will not send the reanalyzed batches to the trainers.
Instead, they will push the batches into another shared memory queue, called the batch queue. Batch
senders will then take out the batches from the batch queue and send the batches through the net-
work to the trainer node. This additional step overlaps slow network transmission with computation
since Reanalyze workers can work on the next batch when the batch senders are sending the current
batch.

Similarly, on the trainer node, the DDP trainers do not receive batches themselves. The batch re-
ceivers are responsible for batch receiving and they will put the batches into a trainer-side batch
queue. The DDP trainers directly read the batches from this queue and use the batches in training.

In Table. [T} we show some key system configurations used to setup SpeedyZero on our cluster.
This can serve as a reference when setting up SpeedyZero on new clusters.

14

Published as a conference paper at ICLR 2023

Configuration Name Value
Data Node

Number of Actors 8
Number of Priority Refreshers 3
Replay Buffer Capacity (in number of trajectories) 8192
Replay Buffer Capacity (in memory consumption) “32GB
Reanalysis Node

Number of Data Loaders 36
Number of Reanalyze workers 24
Number of Batch Senders 16
Number of Data Loader - Reanalyer Queues 8
Data Loader - Reanalyer Queues Capacity (in number of batches, each) 32
Data Loader - Reanalyer Queues Capacity (in memory consumption, each) ~“32GB
Number of Batch Storages 8
Batch Storage Capacity (in number of batches, each) 16
Batch Storage Capacity (in memory consumption, each) "8GB
Trainer Node

Number of DDP Trainers 8
Number of Batch Receivers 8
Number of Batch Storages 1
Batch Storage Capacity (in number of batches, each) 64
Batch Storage Capacity (in memory consumption, each) "16GB
Signal Queue Capacity (in number of training signals) 16
Signal Queue Capacity (in memory consumption) 2GB

Table 11: Key system configuration of SpeedyZero.

A.6 EARLY EXPERIMENT RESULTS

In our early experiments, we tested SpeedyZero with a smaller batch size, i.e. 512, with a signif-
icantly decreased number of training steps, i.e. 20k. We use a small target model update interval
of 40. The experiment results are shown in Table. [[2] The performance shows a large variance
across different machine configurations. The main reason for the performance gap between these
experiments is the non-uniform speedup of different components on machines with faster GPUs.
For example, increasing the training speed while not accelerating the data generating process will
influence the “priority staleness”, which measures the model version gap between when a batch
is sampled from the replay buffer and when it is trained on. It is an interesting and challenging
direction to stabilize the performance of RL agents across different hardware configurations.

Priority Staleness. As data loaders run in parallel with the DDP trainers, there is a time gap

between a batch is sampled and is trained on. This means that datapoints in the batch are sam-
pled according to priorities from an old version of the model. This gap is measured by “pri-
ority staleness”, i.e. the step when the batch is trained on minus the step when it is sampled.
We ablate different degrees of priority staleness in

Table. [I3] When the priority staleness is very small, Stalencss G 20 35
SpeedyZero has poor performance. We hypothesize Pong 07 18 182

that the reason is that a larger priority staleness brings Jamesbond | 351.3 4943 535.5

some regularization effect on the sampling probabil- UpNDown | 42684 4582.6 10064

ity, hence preventing the training from only focusing

on a limited number of datapoints. However, the prior- Table 13: Performance in Pong, James-
ity staleness is hard to control in SpeedyZero, since it bond and UpNDown with different degrees
depends on the latency of multiple components in the of priority staleness. The result indicates
system, which could differ a lot on machines with dif- that the priority staleness should not be
ferent configurations. We leave the study of optimal too small, i.e., the priorities should be re-
priority staleness and improved schemes to control the computed at a proper frequency, for the
priority staleness as future work. best performance.

15

Published as a conference paper at ICLR 2023

Game Random Human | SimPLE ~ CuRL SPR MuZero EfficientZero SpeedyZero

Environment Steps / / 100k 100k 100k 100k 100k 300k 300k 300k 100k
Time / / / / / 8.5 hours 8.5 hours 0.5hours 0.75hours 1 hour 0.75hours
Alien 2278 71277 616.9 5582 801.5 530.0 1140.3 818.4 734.1 1177.7 5432
Amidar 5.8 1719.5 88.0 142.1 176.3 38.8 101.9 73.5 98.8 112.7 68.7
Assault 2224 742.0 5272 600.6 571.0 500.1 1407.3 991.5 906.2 1470.0 616.4
Asterix 210.0 8503.3 11283 734.5 977.8 1734.0 16843.8 41993.3 67179.1 49494.6 42269
Bank Heist 14.2 753.1 342 131.6 380.9 1925 361.9 205.8 217.6 187.3 128.8
BattleZone 2360.0 37187.5 | 51844 14870.0 16651.0 7687.5 17938.0 9655.3 6418.1 8906.3 5861
Boxing 0.1 12.1 9.1 1.2 35.8 15.1 44.1 21.2 313 47.0 155
Breakout 1.7 30.5 16.4 49 17.1 48.0 406.5 258.6 340.9 409.8 304.6
ChopperCmd 811.0 7387.8 1246.9 1058.5 974.8 1350.0 1794.0 356.7 472.1 453 408.8
CrazyClimber 10780.5 35829.4 | 62583.6 12146.5 42923.6 56937.0 80125.3 832323 984549 934552 69929.4
Demon Attack 152.1 1971.0 208.1 817.6 5452 3527.0 13298.0 54994 .4 344049 39699.7 5407.9
Freeway 0.0 29.6 20.3 26.7 24.4 21.8 21.8 0.0 4.0 0.0 13.9
Frostbite 65.2 4334.7 254.7 1181.3 1821.5 255.0 313.8 1105.2 561.7 2389 261.1
Gopher 257.6 24125 771.0 669.3 7152 1256.0 3518.5 2465.5 1989.7 2929.4 1481.4
Hero 1027 30826.4 | 2656.6 6279.3 7019.2 3095.0 8530.1 7806.1 7633.0 8461.3 61152
Jamesbond 29.0 302.8 1253 471.0 365.4 87.5 459.4 4943 351.6 5355 289.9
Kangaroo 52.0 3035.0 323.1 872.5 3276.4 62.5 962.0 4113 1012.7 1246.9 525.9
Krull 1598.0 26655 | 4539.9 4229.6 3688.9 4890.8 6047.0 6771.6 5659.6 7962.6 5470.5
Kung Fu Master 2585 227363 | 172572 14307.8 13192.7 18813.0 31112.5 24159.7 19958.8 21700 17253.5
Ms Pacman 307.3 6951.6 1480.0 1465.5 13132 1265.6 1387.0 1152.5 1716.6 3386.8 805.5
Pong -20.7 14.6 12.8 -16.5 -5.9 -6.7 20.6 1.8 3.8 18.2 -4.9
Private Eye 24.9 69571.3 583 2184 124.0 56.3 100.0 75.7 553 48.5 63
Qbert 163.9 13455.0 | 1288.8 1042.4 669.1 3952.0 15458.1 9584.7 9034.4 16334.2 4389
Road Runner 11.5 7845.0 | 5640.6 5661.0 14220.5 2500.0 18512.5 13350.0 11942.1 216922 5053.3
Seaquest 68.4 42054.7 | 683.3 384.5 583.1 208.0 1020.5 494.4 663.7 1047.5 367.1
Up N Down 533.4 11693.2 | 33503 29552 281385 28969 16095.7 4582.6 4942.7 10064 2376.1
Normed Mean 0.000 1.000 0.443 0.381 0.704 0.562 1.904 2.440 2213 2.660 1.038
Normed Median 0.000 1.000 0.144 0.175 0.415 0.227 1.160 0.500 0.531 0.904 0.383

Table 12: Early experiment results with a batch size of 512 and 20k training steps. Compared
with previous RL methods, SpeedyZero achieves human-level performance and performs best on
12 out of 26 games with 10x shorter training time. The results of SpeedyZero are evaluated with
100 evaluation episodes. The 0.5 hour and 1 hour results of SpeedyZero with 300k environment
steps are evaluated with 3 training seeds. The 0.75 hour results of SpeedyZero with 100k and 300k
environment steps are evaluated with 16 seeds. The training time of EfficientZero is evaluated under
the same machine configuration of the 300k, 30 minutes experiment of SpeedyZero.

16

	Introduction
	Related Work
	Preliminary
	SpeedyZero: A Fast and Efficient Model-Based RL System
	Overview
	SpeedyZero System Design
	Algorithm Improvements
	Implementation

	Experiments
	Experiment Setup
	Mastering Atari in 30 Minutes
	Ablation Study
	Effect of Batch Size

	Conclusion
	Appendix
	Cluster Hardware Configurations
	Models and Hyper-Parameters
	Clipped LARS
	Large Batch Size Experiment Setup
	System Workflow and System Configurations
	Early Experiment Results

