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ABSTRACT

Retraining large language models (LLMs) from scratch to include novel, internal
or domain-specific knowledge is prohibitively computationally expensive. There-
fore, practitioners rely on continual pretraining to adapt existing pretrained mod-
els to new data. As the model’s parameters are updated to assimilate new infor-
mation, it can abruptly lose proficiency on previously learned domains, a phe-
nomenon known as catastrophic forgetting. To address this issue, we propose
Context-aware Continual Pretraining (CA-CPT), a simple technique that provides
the model with sample-specific context before adapting its weights to new con-
tent in order to smoothen the training loss. Our empirical results demonstrate
that CA-CPT has comparable or superior performance on new domain data while
consistently mitigating the forgetting of both general knowledge and specialized
instruction-following abilities. We show that our method is broadly applicable, is
orthogonal to existing catastrophic forgetting mitigation strategies, and can serve
as a building block for more robust continually learning language models.

1 INTRODUCTION

Large language models (LLMs) have established themselves as cornerstones of modern natural lan-
guage processing, in part due to their scalability (Brown et al.| | 2020; Hoffmann et al., 2022} |Kaplan
et al.,2020). LLMs have billions of parameters and are pretrained on a corpora of trillions of to-
kens, an extensively compute-intensive process. The availability of high-performing open-weights
models (Abdin et al., 2024; (Grattafiori et al., [2024} Jiang et al., [2024} [Liu et al., 2025; Riviere et al.}
2024;|Walsh et al.| [2025; [Yang et al.,|2025)) has democratized LLMs, enabling practitioners to build
upon existing foundations.

The static nature of these foundation models presents a critical limitation. To maintain their rele-
vance and utility, particularly for specialized applications in fields like finance, law, or medicine,
LLMs must be continuously updated with new knowledge. Retraining the model from scratch on
a combined corpus of old and new data is computationally and financially infeasible for all but a
few organizations. This economic reality has given rise to a technique known as continual pretrain-
ing (CPT) (Jin et al.l 2022). This can come at the cost of decreased performance on previously
known domains, a phenomenon known as catastrophic forgetting (McCloskey & Cohen, 1989} Rat-
cliff, [1990; [van de Ven et al.l [2024)). The model, in its effort to minimize the loss on the new data,
aggressively updates its parameters in a way that disrupts the delicate configuration responsible
for encoding prior knowledge. This challenge is a manifestation of the classic stability-plasticity
dilemma (Grossberg}, [1987; Mermillod et al.| [2013). Simultaneously, a system must be stable, to
preserve existing knowledge, and plastic, to learn new information. Navigating this trade-off is the
central goal of continual learning research.

In this work, we present Context-aware Continual Pretraining (CA-CPT), a continual pretraining
method designed to mitigate catastrophic forgetting based on the observation that the initial tokens
of a sequence have a disproportionately high loss (Section[3.1), which is detrimental to the stability-
plasticity tradeoff. Our method directly addresses this issue by strategically masking these high-
loss initial tokens. It is a data-processing technique that can be seamlessly combined with other
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approaches, such as replay-based methods, regularization techniques or architectural methods. Our
main contributions are summarized as follows:

* We propose CA-CPT, a data-centric continual pretraining approach designed to mitigate
catastrophic forgetting in LLMs following continual pretraining.

* We provide a theoretical analysis showing that masking initial tokens reduces gradient
variance, thereby enhancing training stability and improving the stability—plasticity trade-
off.

* Empirically, we demonstrate that CA-CPT not only reduces catastrophic forgetting but
also enables efficient knowledge acquisition from new, domain-specific data.

* We show that CA-CPT is complementary and orthogonal to existing continual learning
techniques, making it broadly applicable.

2 RELATED WORK

2.1 CONTINUAL LEARNING & PRETRAINING

The challenge of adapting large models to new data streams without erasing prior knowledge has
spurred a rich and diverse field of research. Comprehensive surveys provide a structured taxonomy
of continual learning approaches (Shi et al.l[2024aj; [Wang et al., [2024; |Wu et al., [2024b)), which we
broadly categorized into four categories: replay, regularization, architecture and training regime.

Replay-Based Methods. The most intuitive approach to preventing forgetting is to periodically
rehearse previously learned information. Replay-based methods achieve this by storing a small
subset of data from past tasks and interleaving these samples with new data. Simple replay has been
shown to be an effective baseline when continually pretraining LLMs (Ibrahim et al.| [2024). Replay
can also be done generatively, where a model learns to produce synthetic data from past tasks (Shin
et al.l[2017).

Regularization-Based Methods. These techniques modify the learning objective by adding a
penalty term to the loss function discouraging significant changes to model parameters. For ex-
ample, Elastic Weight Consolidation (Kirkpatrick et al.|[2017) selectively makes learning slower on
weights deemed important for previous tasks. Such methods have been proved effective for contin-
ually learning language models (Rongali et al., 2021).

Architectural Methods. Some parameter-efficient techniques like Adapters (Houlsby et al.|2019)
and Low-Rank Adaptation (LoRA) (Hu et al., [2021)) freeze the main model and only train small new
modules. Similarly, LLaMa Pro (Wu et al.| 2024a) duplicates transformer blocks and trains the new
blocks on new corpus, allowing new capacity for new knowledge.

Training Regime Based Methods. |Gupta et al.| (2023) study the importance of rewarming the
learning rate when continually pretraining from a checkpoint with a decayed learning rate. |[brahim
et al.| (2024) establish that a simple combination of learning rate rewarming followed again by decay
has a great effect when paired with data replay.

Our work proposes a data-centric strategy, which is orthogonal to these approaches and tailored to
the unique challenges of continual pretraining of LLMs.

2.2 DATA SELECTION

By curating the data stream, it is possible to create a more effective and stable learning signal. We
present two levels of granularity for data selection: the sample level and the token level.

Sample-Level Data Selection. Sample-level data selection methods operate on entire documents
or sequences (Albalak et al., |2024). One well-established strategy is curriculum learning (Bengio
et al., |2009), where the model is first trained on easier examples before being exposed to more
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complex data. The intuition is that this gradual increase in difficulty provides a more stable learn-
ing trajectory. Other methods focus on the ordering of data to maximize contextual learning. For
instance, In-context Pretraining reorders documents so that semantically related documents appear
consecutively within the model’s context window, encouraging it to learn across documents (Shi
et al.l 2024b). Similarly, LinkBERT constructs training sequences by connecting documents via
hyperlinks, treating the corpus as a graph (Yasunaga et al.| [2022).

Token-Level Data Selection. Token-level strategies operate at a finer granularity, making deci-
sions about which individual tokens to include in the learning objective. The most foundational
form of token-level selection is the Masked Language Modeling (MLM) objective introduced with
BERT (Devlin et al.} 2019). In MLM, a random subset of tokens is replaced with a special masked
token and the model is trained to predict the original tokens. Recent work like Rho-1 introduced
Selective Language Modeling (SLM) (Lin et al., [2025). SLM selectively trains on tokens that are
deemed most “useful” by calculating an “excess loss™ for each token relative to a smaller, high-
quality reference model. More targeted approaches have been proposed for domain adaptation. (Gu
et al.| (2020); [Lad et al.| (2022)) selectively mask important tokens to learn domain-specific patterns
during a second pretraining phase. Other methods, instead of specifically learning the most impor-
tant tokens, will opt to ignore the least important ones. [Hou et al.[(2022) aim to reduce training time
by dropping unimportant tokens, but can fall short in handling semantic knowledge tasks (Zhong
et al.l [2023)).
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Figure 1: The Impact of Context on the Loss and Perplexity Distribution.

3 METHODOLOGY

In this study, we define the “context” of a sample as its beginning, which consists of a few tokens,
can vary in length and that will be masked for the training loss. We define the “content” of a sample
as the rest of the sample that we use to calculate the loss and train our model.

3.1 INITIAL OBSERVATION

Our approach is motivated by a key empirical observation: when training large language models,
the per-token loss is consistently and significantly higher during the initial tokens of a sequence.
We believe that in the context of CPT, where the model has already acquired extensive general
linguistic knowledge, allowing the training update to be heavily influenced by this initial high loss
is inefficient. This spike in loss at the beginning of a sequence is often an artifact of the model’s
limited context at that point, rather than a true indicator of its inability to generate accurate content.
This phenomenon is clearly illustrated in Figure [T}

To investigate this phenomenon further, we extend this observation to the overall perplexity of a
sample. By applying a masking strategy to the first few tokens of a sequence, we observed a drastic
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improvement in the sample’s overall perplexity. This finding suggests that mitigating the influence
of these high-loss tokens can lead to more stable and efficient training. Based on these observations,
we hypothesize that CA-CPT, which strategically masks the initial high-loss tokens, can improve
a model’s ability to adapt to a new domain while simultaneously mitigating catastrophic forgetting.
This method allows the model to focus its updates on the more content-rich portions of the text,
where meaningful domain-specific knowledge is more likely to be learned.

3.2 THEORETICAL JUSTIFICATION

The core premise of the CA-CPT, is that by systematically removing a known source of noise from
the training signal, the stability of the continual learning process can be significantly enhanced. We
argue that the initial tokens of a sequence are the primary source of this noise. By treating them as
a non-trainable context, we perform a targeted form of gradient variance reduction that links token
position to the stability of model parameters.

The optimization dynamics of language models are directly coupled to the information-theoretic
properties of sequential data. The conditional entropy of a token’s predictive distribution,
H(po(zt|x<4)), quantifies its uncertainty given prior context (Kuhn et al.| [2023)). For initial tokens
(t = 1), this context is null, forcing the model to rely on a diffuse, high-entropy unconditional prior.
This predictive uncertainty manifests as high-variance gradients through the negative log-likelihood
objective, L,(0) = —logpg(z¢|z<¢). The gradient with respect to the logits, V., L; = pr — i,
becomes a dense, high-magnitude vector when a flat prediction p; is contrasted with a one-hot tar-
get y;. The variance arises as different initial tokens pull shared parameters in disparate directions,
introducing significant noise into the optimization (Chung et al., 2024)).

While high gradient variance is a known impediment to convergence in standard training, its ef-
fects are amplified in continual learning. In the continual learning setting, the objective is to find
parameters that are optimal for a new task B without moving into a high-loss region for a previous
task A. The large, stochastic steps induced by high-variance gradients from initial tokens increase
the probability of traversing out of a low-loss plateau for prior tasks, directly causing catastrophic
forgetting (Wu et al.,|2024c).

CA-CPT serves as a principled variance reduction strategy to address this instability. We decom-
pose the total gradient for a sequence, V L1, into a high-variance component from initial tokens,
V Linitial, and a more stable component from subsequent tokens, V Lgpsequent- By masking the loss
on the initial £ tokens, our method effectively nullifies the noisy component V Liniia. The pa-
rameter update is thus driven exclusively by the cleaner, more contextually-grounded signal from
V Lubsequent- This improves the gradient’s signal-to-noise ratio, permitting adaptation to new data
while constraining the destructive updates that erode prior knowledge, thereby balancing plasticity
and stability.

3.3 INTRODUCING CONTEXT-AWARE CONTINUAL PRETRAINING

CA-CPT relies on a strategic preprocessing step: generating and prepending a context to the content
of each data sample. This context is then masked during training, focusing the model’s learning on
the content while providing it with relevant introductory information.

We propose two methods for creating the contexts for CA-CPT. The most suitable approach de-
pends on the dataset’s specific characteristics, such as available metadata and document structure.

Metadata-Based Context Generation. This method uses existing metadata or structural infor-
mation to create the context. For documents with titles or abstracts, these elements can serve as the
context, as they provide a high-level summary without revealing too much specific information. For
non-structural data, we can generate the metadata using a LLM. A key consideration here is to avoid
using a detailed summary that could ’spoil” the content and inhibit the model’s ability to learn from
the document itself.

Empirical Rule-Based Masking. This method involves masking a fixed portion of the beginning
of a document to serve as the context. It’s a more generalized approach that doesn’t rely on existing
metadata. When using this method, it’s crucial to balance the amount of text masked with the size of
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No Split

Maintaining biological integrity requires cells to verify
incoming signals before launching a metabolic pathway; if the
pathway is inhibited, the system must diagnose the source of
the failure. This diagnostic review involves analyzing internal
protein markers and genetic expression to determine if the
dysfunction was caused by a pathogenic stressor or a
catastrophic energy failure leading to apoptosis.

PPL=24.73

Sequential Split

Maintaining biological integrity requires cells to verify
incoming signals before launching a metabolic pathway; if the
pathway is inhibited, the system must diagnose the source of
the failure. This diagnostic review involves analyzing internal
protein markers and genetic expression to determine if the

Metadata Split

Chapter 3: Signal Transduction and Metabolic Integrity
Maintaining biological integrity requires cells to verify
incoming signals before launching a metabolic pathway; if the
pathway is inhibited, the system must diagnose the source of
the failure. This diagnostic review involves analyzing internal
protein markers and genetic expression to determine if the
dysfunction was caused by a pathogenic stressor or a
catastrophic energy failure leading to apoptosis.

PPL=19.94

Fixed-ratio Split

Maintaining biological integrity requires cells to verify
incoming signals before launching a metabolic pathway; if the
pathway is inhibited, the system must diagnose the source of
the failure. This diagnostic review involves analyzing internal
protein markers and genetic expression to determine if the

dysfunction was caused by a pathogenic stressor or a
catastrophic energy failure leading to apoptosis.

dysfunction was caused by a pathogenic stressor or a
catastrophic energy failure leading to apoptosis.

PPL=15.73 PPL=17.73

Figure 2: Context Generation Preprocessing Rules Illustrated. Highlighted words represent the
masked context.

the dataset. Masking too large a portion of each sample can lead to a significant loss of information,
which can be mitigated by creating multiple versions of the dataset with varying mask ratios.

To create the CA-CPT dataset used in our experiments, we applied a series of specific preprocessing
rules to our continual learning datasets. These rules, illustrated in Figure[2] were designed to generate
diverse data samples that capture the essence of both context creation methods. Our approach com-
bines these different strategies into a single aggregated dataset to ensure a rich and varied training
experience. We used the following specific rules:

* Metadata Split: For documents that include them, we used the title and abstract as the
context, with the main body of the text serving as the content.

* Sequential Splits: We split each document into 10 equal parts. From these, we generated
nine new samples. For each new sample, the context consisted of the first n parts, and the
content was the (n+1)-th part, for n from 1 to 9.

* Fixed-ratio Splits: We created three distinct datasets where the context was defined by a
fixed percentage of the document’s initial tokens:

— 90/10 Split: The first 90% of tokens were designated as context, with the final 10% as
content.

— 80/20 Split: The first 80% of tokens were used as context, with the final 20% as
content.

— 70/30 Split: The first 70% of tokens were used as context, with the final 30% as
content.

Once these CA-CPT datasets are created, they can be used for continual pretraining. During train-
ing, we simply ensure that the context portion of any CA-CPT sample is masked, so that the model
only computes loss and updates its parameters based on the content part of the sample.

4 EXPERIMENTAL SETUP

4.1 EXPERIMENTS

We conduct three sets of experiments to evaluate our method. The first set assesses the core per-
formance of CA-CPT on the base Llama 3.1-8B model against a standard CPT approach. This
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evaluation quantifies domain learning and catastrophic forgetting by measuring perplexity on new
domain-specific datasets and the general-domain RedPajama dataset.

The second set of experiments uses the instruction-tuned Llama 3.1-8B-Instruct model as a baseline
to which we added Llama Pro layers, froze all original weights, and trained only the newly added
layers. This setup was designed to specifically measure the forgetting of instruction-following skills
while the model learns new domain-specific knowledge. It highlights the orthogonality of CA-CPT
compared to other catastrophic forgetting mitigation methods.

The third set of experiments relates to downstream tasks. We demonstrate the ability of CA-CPT to
maintain performance, i.e. mitigating catastrophic forgetting, on general domain tasks, while also
showing performance on question answering tasks on new domains.

Details about our experimental setup can be found in Appendix [B|respectively.

4.2 MODELS

Llama 3.1-8B. We use the base Llama-3.1-8B model, from the Llama 3.1 (Grattafiori et al., [2024)
family, to demonstrate the core benefits of CA-CPT. This model serves as the primary control
for highlighting how our method mitigates catastrophic forgetting while efficiently acquiring new
domain-specific knowledge during continual pre-training.

Llama 3.1-70B. We also use Llama-3.1-70B, which is in the same family, to show that our method
works well even when scaling the model size, especially when evaluating on downstream tasks.

Llama 3.1-8B-Instruct. We use an instruction-tuned model which allows us to directly mea-
sure how effectively our method mitigates the forgetting of instruction-following abilities while
the model learns new domain knowledge.

Llama 3.1-8B-Instruct + LLaMa Pro (Wu et al.,2024a). We combine our method with an archi-
tectural method like Llama Pro using Llama 3.1-8B-Instruct to show that CA-CPT can be integrated
with other techniques to achieve stronger performance in domain adaptation and catastrophic for-
getting mitigation.

4.3 DATASETS

To evaluate our method, we selected three distinct and challenging datasets that represent data dis-
tributions unlikely to have been encountered by the pretrained model. The goal of this selection was
to test the model’s ability to adapt to novel linguistic and domain-specific knowledge. We also select
one dataset that represents previously acquired knowledge. Specifically, we use:

» ZelaiHandi (San Vicente et all [2024) is the most extensive collection of Basque texts
available, ranging from news articles to scientific articles and literature under various CC
licenses. The Basque language is particularly well-suited for our experiments due to its
unique linguistic properties; it is a unique language with no known genetic relationship to
other languages, providing a significant distributional shift for the LLM to adapt to.

* COLD French Law (Harvard Library Innovation Lab,[2024) includes over 800,000 French
legal articles under CC-BY 4.0 license. It presents a dual specificity, being both in a dif-
ferent language from the model’s primary training data and containing highly specialized
legal terminology and discourse structures. This combination makes it an excellent test
case for cross-lingual and domain-specific adaptation.

* Climate Policy Radar (Climate Policy Radar,[2025) contains national law and policy doc-
uments submitted to various international environment surveillance organizations such as
UNFCCC and NDCs under CC-BY 4.0 license. The specificity of this dataset makes it
interesting and a new distribution for the model to deal with.

* RedPajama (Together, 2023)) is a 30-trillion token dataset released under CC licenses and
designed for training LLMs. It encompasses a diverse range of sources and languages and
has been a foundational component in the training of many prominent LLMs. In this work,
we use this general-domain dataset as a proxy for a model’s original pre-training data,
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establishing it as our benchmark to measure the catastrophic forgetting of general-purpose
knowledge.

Each of the three first datasets was processed and structured according to the CA-CPT methods
detailed in Section

4.4 EVALUATION METRICS

We use perplexity (PPL) (Jelinek et al., 2005) for the CPT experiments to evaluate the quality of
our model to predict the next tokens and we use the respective metrics for each dataset to measure
the instruction-following capabilities. A lower perplexity score indicates that the model is more
confident in its predictions and has a better understanding of the text’s underlying structure and
vocabulary. We use perplexity to evaluate two key aspects of our approach:

* Domain Learning: we calculate the perplexity of our models on the domain-specific
datasets (ZelaiHandi, COLD French Law, and Climate Policy Radar). A significant drop
in perplexity on these datasets after CPT indicates that the model has successfully learned
and adapted to the new domains.

» Catastrophic Forgetting on General Domain: we also measure the perplexity on a
large, general-domain dataset, the RedPajama dataset. This dataset is representative of the
model’s original pre-training data. By tracking the perplexity on RedPajama, we directly
measure the extent to which our CA-CPT method mitigates the catastrophic forgetting of
the model’s initial, general-purpose knowledge.

» Catastrophic Forgetting on Instruction-Following Capabilities: we use standard
benchmarks such as ARC (Clark et al., 2018) under CC-BY-SA 4.0 license, Wino-
Grande (Keisuke et al., |2019) under CC-BY 4.0 license, MMLU (Hendrycks et al., [2021])
under MIT license, GSM8K (Cobbe et al.| 2021)) under MIT license, HellaSwag (Zellers
et al.| |2019) under MIT license, PIQA (Bisk et al.l [2020), OpenBookQA (Mihaylov et al.|
2018)), SciQ (Johannes Welbl, 2017) under CC-BY-NC 3.0 license, and TruthfulQA (Lin
et al., |2021) under Apache 2.0 license. The performance on these benchmarks allows us
to specifically evaluate how our CA-CPT methodology helps to reduce the forgetting of
instruction-following skills while learning new domain-specific knowledge.

* Downstream Performance on New Domain: we evaluate the domain adaptation of con-
tinually pretrained models on synthetically generated and human annotated downstream
tasks. Specifically, we report the accuracy on multiple choices question answering tasks.
We expand on the content of these datasets and how they were generated in Appendix [C]

5 RESULTS

5.1

COMPARING CA-CPT 10 CPT

Table 1: Catastrophic Forgetting Mitigation on General Domain Data Using Llama 3.1-8B.

\ Average PPL on RedPajama (]) \ % Samples where

Train Data | Baseline CPT CA-CPT | PPLcpr > PPLea.cpr
Climate Policy Radar | 12.79 137 168.33 013 67.37 % 0.0s8 99.83%
COLD French Law 12.79 +137  93.67 £o097  65.17 +o0.047 76.89%
Zelai Handi 12.79 137 254.61 019  92.60 +0.070 99.53%

Table [T shows that on the general-domain RedPajama dataset, CA-CPT demonstrates superior mit-
igation of catastrophic forgetting. It achieves a significantly smaller increase in perplexity compared
to standard CPT. Specifically, the perplexity scores for standard CPT are respectively 2.49x, 1.43x,
and 2.74 x higher than for CA-CPT when training respectively on the Climate Policy Radar, COLD
French Law, and Zelai Handi datasets.
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Table 2: Average Perplexity on Domain Adaptation Test Data Using Llama 3.1-8B.

| Average PPL on Domain Adaptation Test Data ({)

Train Data | Baseline CPT CA-CPT

Climate Policy Radar | 39.47 +24  27.77 +0.005 27.79 + 0.0059
COLD French Law 5.18 £o00034  1.43 + 0.00021 1.71 + 0.00026
Zelai Handi 10.10 o038  1.63 +0.0052 2.74 +o.0016

Crucially, this enhanced knowledge retention does not compromise the model’s ability to learn new
information. As seen in Table |2} on the domain-specific test datasets, both CA-CPT and standard
CPT models reduce perplexity to a similar degree, showing that the context-masking strategy does
not lead to a significant loss of learning efficiency.

5.2 ORTHOGONALITY OF CA-CPT

Table 3: Average Perplexity on Domain Adaptation Test Data Using Llama 3.1-8B-Instruct + Llama
Pro.

\ Average PPL ()
| Baseline CPT CA-CPT

Train Data

Climate Policy Radar | 72.54 +203  57.14 +177  59.53+ 1.9
COLD French Law 1158 +042  110.84 £02¢  96.04 +0.20
Zelai Handi 137.07 £043  97.14 035  65.06 +o0.26

Table 3| confirms the dual benefits of CA-CPT: it can effectively be combined with other contin-
ual learning methods like Llama Pro. We notice often superior, domain adaptation. For instance,
CA-CPT achieves significantly lower perplexity scores on the Climate Policy Radar and Zelai Handi
datasets, demonstrating more efficient learning on both of these datasets. This is also shown on
downstream tasks in Table [4]

5.3 EVALUATION ON DOWNSTREAM TASKS

Table 4: Evaluation on General Knowledge Downstream Tasks Llama 3.1-8B-Instruct + LLaMa
Pro.

B . | COLD French Law | Climate Policy Radar | Zelai Handi
enchmark Baseline
| CPT CA-CPT | CPT CA-CPT | CPT CA-CPT

ARC Challenge 0.5512 +o01ss | 0.5094 + 00146 0.5162 + 00146 | 0.5171 +00146  0.5461 +00145s | 0.5077 +o00146  0.5128 + 0.0146
ARC Easy 0.7984 +o00s3 | 0.7538 + 00088  0.7626 + 00087 | 0.7155 £0.0003  0.7934 00083 | 0.7319 00091 0.7437 +0.009
Hellaswag 0.7925 + 00041 | 0.7789 00041 0.7739 00042 | 0.7867 +00041  0.7876 +00041 | 0.7639 +o00s2  0.7657 + 0.0042
OpenBookQA 0.4300 +00222 | 0.4180 00221  0.4140 00220 | 0.4360 +00222  0.4340 +00222 | 0.3860 +0.0218  0.4220 + 0.0221
PIQA 0.8085 +00092 | 0.7992 00093  0.8020 + 00093 | 0.7938 +00004  0.8036 +00093 | 0.7753 £0.0007  0.7856 + 0.0096
SciQ 0.9610 +o00061 | 0.9450 £o0002  0.9490 + 00070 | 0.9310 +000s0  0.9590 +00063 | 0.9480 +o00070 0.9470 + 0.0071
TruthfulQA MC2  0.5413 o050 | 0.5160 +00153  0.5217 + 00153 | 0.5546 00152 0.5453 00151 | 0.5325 +00153  0.5241 o012
WinoGrande 0.7356 +o00124 | 0.7395 £00123  0.7293 00125 | 0.7088 +o00128  0.7419 +00123 | 0.7009 +0.0129  0.7238 +0.0126
GSMSK 0.7809 +o0117 | 0.6846 +o0128  0.7043 00126 | 0.6975 +00127  0.7521 + 00119 | 0.5406 +0.0137  0.6520 +0.0131
MMLU 0.6818 +00037 | 0.6763 +0003s 0.6782 + 00038 | 0.6743 +0003s  0.6815 +00037 | 0.6534 + 00038  0.6691 + 0.0038

As we can see in Table ] CA-CPT generally outperforms standard CPT on downstream tasks on
general domain. This means that, in addition to having lower perplexity on our general knowledge
dataset, models trained with CA-CPT can be expected to perform better on previously learned tasks.

Finally, Table[5|highlights the trade-off introduced by CA-CPT between retaining previously learned
knowledge and adapting to new downstream tasks. We can see that applying CA-CPT effectively
allows our model to perform well on downstream tasks in all kinds of settings. For example, on
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Table 5: Evaluation on Domain Specific Downstream Multiple Choices Question Answering Tasks.

| Accuracy (1)
| Baseline CPT CA-CPT

Climate Policy Radar | 0.2561 +o04s5  0.5000 +0.0s56  0.4024 + 00545
COLD French Law 0.3095 +00413  0.6270 +0.0433  0.6032 +0.0438

Climate Policy Radar | 0.2561 + o085  0.5854 +o0.0s47  0.3780 + 0.0530
COLD French Law 0.3175 £o00s16  0.5952 + 00439 0.6349 + 0.0431

Climate Policy Radar | 0.2561 +o004s5  0.4634 + 00554  0.3902 +0.0542
COLD French Law 0.3175 o046 0.5238 00447 0.4444 + 00444

Climate Policy Radar | 0.3537 z00s31  0.6829 z00517  0.5000 = 0.0s56
COLD French Law 0.3730 200433 0.6746 200419  0.6905 +0.0413

Model ‘ Task

Llama 3.1-8B

Llama 3.1-8B-Instruct

Llama 3.1-8B-Instruct + LLaMa Pro

Llama 3.1-70B

COLD French Law, both Llama 3.1-8B-Instruct and Llama 3.1-70B trained with CA-CPT outper-
form standard CPT.

6 LIMITATIONS

The effectiveness of CA-CPT is dependent on the dataset’s structure. For unstructured data, ap-
plying our metadata-based context creation method can become computationally intensive at scale,
as it would require us to synthetically generate the inexistent metadata. The alternative, empirical
rule-based masking, offers more flexibility but requires careful tuning to be effective. Moreover, our
experimental results are currently confined to the Llama 3.1 model family. While the findings are
strong, further research is required to verify that our method generalizes effectively across a wider
range of model families.

7 CONCLUSION

In this work, we introduced Context-Aware Continual Pretraining, a simple, powerful, and generaliz-
able method to mitigate catastrophic forgetting when continually pretraining LLMs. The core insight
is that the initial tokens contribute disproportionately to gradient variance, destabilizing the learning
process and leading to the erasure of prior knowledge. By strategically masking these tokens from
the loss computation, CA-CPT provides a more stable training signal, allowing the model to effec-
tively acquire new information without catastrophically forgetting its original knowledge. Through
empirical validation, we proved that CA-CPT significantly improves the stability-plasticity trade-
off compared to standard baselines. Indeed, our approach consistently improved the retention of
both general knowledge and instruction-following capabilities, while achieving on-par or superior
performance when adapting to new domains. CA-CPT represents a valuable and practical contri-
bution to the ongoing effort to build more robust, adaptable, and truly lifelong learning artificial
intelligence systems.



Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril
Zhang, and Yi Zhang. Phi-4 technical report, 2024. URL https://arxiv.org/abs/2412.
08905.

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language models,
2024. URL https://arxiv.org/abs/2402.16827.

Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th Annual International Conference on Machine Learning, ICML
’09, pp. 41-48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605585161. doi: 10.1145/1553374.1553380. URL https://doi.org/10.1145/
1553374.1553380.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Woojin Chung, Jiwoo Hong, Na Min An, James Thorne, and Se-Young Yun. Stable language
model pre-training by reducing embedding variability, 2024. URL https://arxiv.org/
abs/2409.07787.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Grantham Research Institute Climate Policy Radar. All document text data, 2025.
URL https://huggingface.co/datasets/ClimatePolicyRadar/
all-document—-text—data.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab

10


https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2402.16827
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2409.07787
https://arxiv.org/abs/2409.07787
https://huggingface.co/datasets/ClimatePolicyRadar/all-document-text-data
https://huggingface.co/datasets/ClimatePolicyRadar/all-document-text-data
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Under review as a conference paper at ICLR 2026

AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmén, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias

11



Under review as a conference paper at ICLR 2026

Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shugiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad lonescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Stephen Grossberg.  Competitive learning: From interactive activation to adaptive reso-
nance. Cognitive Science, 11(1):23-63, 1987. ISSN 0364-0213. doi: https://doi.org/10.
1016/S0364-0213(87)80025-3. URL https://www.sciencedirect.com/science/
article/pii/S0364021387800253.

Yuxian Gu, Zhengyan Zhang, Xiaozhi Wang, Zhiyuan Liu, and Maosong Sun. Train no evil: Selec-
tive masking for task-guided pre-training, 2020. URL https://arxiv.org/abs/2004.
09733.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats L. Richter, Quentin Anthony, Eugene
Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language models:
How to (re)warm your model?, 2023. URL https://arxiv.org/abs/2308.04014.

Casetext Part of Thomson Reuters Harvard Library Innovation Lab. Cold french law
dataset, May 2024. URL https://huggingface.co/datasets/harvard-1il/
cold-french-law.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.155506.

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and Denny
Zhou. Token dropping for efficient bert pretraining, 2022. URL https://arxiv.org/abs/
2203.13240.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
2019. URL https://arxiv.org/abs/1902.00751.

12


https://arxiv.org/abs/2407.21783
https://www.sciencedirect.com/science/article/pii/S0364021387800253
https://www.sciencedirect.com/science/article/pii/S0364021387800253
https://arxiv.org/abs/2004.09733
https://arxiv.org/abs/2004.09733
https://arxiv.org/abs/2308.04014
https://huggingface.co/datasets/harvard-lil/cold-french-law
https://huggingface.co/datasets/harvard-lil/cold-french-law
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.13240
https://arxiv.org/abs/2203.13240
https://arxiv.org/abs/1902.00751

Under review as a conference paper at ICLR 2026

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L. Richter, Quentin Anthony, Timothée
Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models, 2024. URL https://arxiv.org/abs/2403.08763.

F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. Perplexity—a measure of the difficulty of
speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):5S63-S63, 08
2005. ISSN 0001-4966. doi: 10.1121/1.2016299. URL https://doi.org/10.1121/1.
2016299.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088\

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. Lifelong pretraining: Continually adapting language models to emerging corpora,
2022. URLhttps://arxiv.org/abs/2110.08534.

Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions,
2017.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521-3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http:
//dx.doi.org/10.1073/pnas.1611835114.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation, 2023. URL https://arxiv.org/
abs/2302.09664!.

Tanish Lad, Himanshu Maheshwari, Shreyas Kottukkal, and Radhika Mamidi. Using selective
masking as a bridge between pre-training and fine-tuning, 2022. URL https://arxiv.org/
abs/2211.13815.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods. CoRR, abs/2109.07958, 2021. URL https://arxiv.org/abs/2109.07958.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not all tokens are what you need, 2025.
URL https://arxiv.org/abs/2404.07965.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,

13


https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2403.08763
https://doi.org/10.1121/1.2016299
https://doi.org/10.1121/1.2016299
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2110.08534
https://arxiv.org/abs/2001.08361
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://arxiv.org/abs/2302.09664
https://arxiv.org/abs/2302.09664
https://arxiv.org/abs/2211.13815
https://arxiv.org/abs/2211.13815
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2404.07965

Under review as a conference paper at ICLR 2026

Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025. URL |https://arxiv.org/abs/2412.19437.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The se-
quential learning problem, 1989. ISSN 0079-7421. URL https://www.sciencedirect.
com/science/article/pii/S0079742108605368.

Martial Mermillod, Aurélia Bugaiska, and Patrick BONIN. The stability-plasticity dilemma:
investigating the continuum from catastrophic forgetting to age-limited learning effects.
Frontiers in Psychology, Volume 4 - 2013, 2013. ISSN 1664-1078. doi: 10.3389/
fpsyg.2013.00504. URL https://www.frontiersin.org/journals/psychology/
articles/10.3389/fpsyg.2013.00504.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018.

Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
forgetting functions. Psychological Review, 97:285-308, 04 1990. doi: 10.1037/0033-295X.97.
2.285.

Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt
Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna
Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic,
Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben
Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry, Chris
Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple Vi-
jaykumar, Dominika Rogozifiska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Er-
ica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn
Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucinska, Harleen Batra, Harsh Dhand,
Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng
Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort,
Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kartikeya Badola,
Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene,
Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly Mc-
Nealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid,
Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,

14


https://arxiv.org/abs/2412.19437
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2013.00504
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2013.00504

Under review as a conference paper at ICLR 2026

Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-
strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-
bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical
size, 2024. URL https://arxiv.org/abs/2408.00118.

Subendhu Rongali, Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and Hong Yu. Continual
domain-tuning for pretrained language models, 2021. URL https://arxiv.org/abs/
2004.02288.

Inaki San Vicente, Gorka Urbizu, Ander Corral, Zuhaitz Beloki, and Xabier Saralegi. Zelaihandi:
A large collection of basque texts, 2024. URL https://huggingface.co/datasets/
orai-nlp/ZelaiHandi.

Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang,
Sayna Ebrahimi, and Hao Wang. Continual learning of large language models: A comprehensive
survey, 2024a. URL https://arxiv.org/abs/2404.16789,

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Gergely Szilvasy, Rich
James, Xi Victoria Lin, Noah A. Smith, Luke Zettlemoyer, Scott Yih, and Mike Lewis. In-
context pretraining: Language modeling beyond document boundaries, 2024b. URL https:
//arxiv.org/abs/2310.10638.

Hanul Shin, Jung Kwon Lee, Jachong Kim, and Jiwon Kim. Continual learning with deep generative
replay. CoRR, abs/1705.08690, 2017. URL http://arxiv.org/abs/1705.08690.

Together. Redpajama: an open dataset for training large language models, October 2023. URL
https://github.com/togethercomputer/RedPajama—Datal

Gido M. van de Ven, Nicholas Soures, and Dhireesha Kudithipudi. Continual learning and catas-
trophic forgetting, 2024. URL https://arxiv.org/abs/2403.05175!

Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu,
Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Ander-
son, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal
Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester
James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Ranga-
pur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson,
Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious, 2025.
URLhttps://arxiv.org/abs/2501.00656.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application, 2024. URL https://arxiv.org/abs/2302.
004877

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ying Shan, and Ping Luo.
Llama pro: Progressive llama with block expansion, 2024a. URL https://arxiv.org/
abs/2401.02415.

Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.

Continual learning for large language models: A survey, 2024b. URL https://arxiv.org/
abs/2402.01364.

15


https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2004.02288
https://arxiv.org/abs/2004.02288
https://huggingface.co/datasets/orai-nlp/ZelaiHandi
https://huggingface.co/datasets/orai-nlp/ZelaiHandi
https://arxiv.org/abs/2404.16789
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2310.10638
http://arxiv.org/abs/1705.08690
https://github.com/togethercomputer/RedPajama-Data
https://arxiv.org/abs/2403.05175
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2302.00487
https://arxiv.org/abs/2302.00487
https://arxiv.org/abs/2401.02415
https://arxiv.org/abs/2401.02415
https://arxiv.org/abs/2402.01364
https://arxiv.org/abs/2402.01364

Under review as a conference paper at ICLR 2026

Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, and Ying Wei. Meta continual learn-
ing revisited: Implicitly enhancing online hessian approximation via variance reduction. In
The Twelfth International Conference on Learning Representations, 2024c. URL https:
//openreview.net/forum?id=TpD2aG1h0D.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang. Linkbert: Pretraining language models with
document links, 2022. URL https://arxiv.org/abs/2203.15827.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yonggiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL|http://arxiv.org/abs/2403.13372.

Qihuang Zhong, Liang Ding, Juhua Liu, Xuebo Liu, Min Zhang, Bo Du, and Dacheng Tao. Revis-
iting token dropping strategy in efficient bert pretraining, 2023. URL https://arxiv.org/
abs/2305.15273.

16


https://openreview.net/forum?id=TpD2aG1h0D
https://openreview.net/forum?id=TpD2aG1h0D
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2203.15827
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2305.15273
https://arxiv.org/abs/2305.15273

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS IN PAPER WRITING

We disclose the use of LLMs to polish writing. Mostly, we used LLMs to make sentences more
concise and readable and to generate IATEX formatted tables.

B TRAINING SETUP AND HYPERPARAMETERS

All experiments were conducted on NVIDIA A100 GPUs and with identical hyperparameters to
ensure a fair comparison. We use a customized version of the LLaMA-Factory (Zheng et al., [2024)
framework, under Apache 2.0 license, adapted for CA-CPT.

Table 6: Detailed Experimental Setup for Each Training Run.

Training Parameter Value
batch size 64
training epochs 1
learning rate 2x107°
warmup ratio 0.1
learning rate schedule cosine
optimizer AdamW

for the Llama Pro experiments

number of llama pro layers 8
llama pro layers positions  [18,21, 24,27, 30, 33, 36, 39

C GENERATION OF SYNTHETIC DATASETS FOR DOWNSTREAM TASKS

To generate datasets for downstream domain tasks, we sample documents from the domain training
set. Using Llama 3.1-70B-Instruct, we generate one question per sampled document, For each
question, we also generate one true answer based on the text in the document and three false answers.
Prompts to generate the questions and the answers are presented in Figures [3]to 3]

We generate 300 questions and associated answers for each dataset. Then, we manually review the
questions and answers, verifying the format and the truthfulness of the answers. We also filter out
samples that with trivial or unsatisfying questions and answers. In total, our datasets contain 126
questions for COLD French Law and 82 questions for Climate Policy Radar. We have not created a
test dataset for ZelaiHandi since none of the authors understand the Basque language.
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You are an expert content creator specializing in generating
multiple-choice test questions. Your task is to analyze a
given text and compose a single, specific factual question
based on the information provided. The question must be
well-grounded and non-trivial, meaning it should require

the reader to understand a definition, a relationship, a
responsibility, or a process described in the text, rather
than simply recalling a single number, date, or name.

+*+*Instructions: xx*

- xxRole:** You are acting as a question generator.

Do not provide an answer.

— **xOutput:** Your output must be xxonly** the question
itself.Do not include any preambles, introductory
phrases, or explanations.

— **Clarity:++ The question must be clear, concise,

and directly solvable using only the information in the
provided text.

- xxFocus:**x The question should test a key concept,
definition, or relationship within the text.

- xxFormat:+x* The question must end with a gquestion mark (?).

*xText:x*
{text}

*xQuestion: **

Figure 3: Prompt to Generate a Question from a Document

You are an expert fact-checker and information extractor. Your
sole purpose is to provide the correct, factual answer to a
given question based x*xonlyxx on the information within the
provided text.

*xInstructions:*x

- *x*Role:x* You are acting as a precise, automated information extractor.
- xxQutput:*x* Your output must contain xxonlyx+ the factual answer.

Do not include any preambles (e.g., "The answer is..."), conversational
filler, or explanations.

- **Accuracy:** The answer must be a direct and truthful response based
**solelyxx on the provided text.

- *x*Conciseness:*x Provide the answer in a single, short sentence unless
the information is a number.

*kText:xx
{text}

**Question: «x*
{question}

** ANSWer: x*

Figure 4: Prompt to Generate a True Answer from a Document and a Question
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You are an expert at creating misleading but plausible incorrect answers
for multiple-choice questions. Your task is to generate a single,
factually incorrect answer based on the provided text and question. The
incorrect answer must be able to fool a human into believing it’s correct.

**Instructions:x*

— xxRole:** You are a misinformation generator. Your only output should
be a plausible, but false, answer.

- xxOutput:*x* Your output must be **onlyxx the single, incorrect answer.
Do not include any preambles (e.g., "The answer is..."), conversational
filler, or explanations.

— xxPlausibility:xx The false answer should appear convincing. It should
not be an obvious falsehood.

— **xConciseness:xx Provide the answer in a single, short sentence unless
the information is a number.

— **xUniqueness:xx The incorrect answer must be distinct from the following
list of previous answers: {previous_answers}

*xText:xx*
{text}

**Question: «x*
{question}

*xCorrect Answer:x*x
{question}

**Incorrect Answer: xx

Figure 5: Prompt to Generate a False Answer from a Document and a Question
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