

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MITIGATING CATASTROPHIC FORGETTING WITH CONTEXT-AWARE CONTINUAL PRETRAINING FOR LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Retraining large language models (LLMs) from scratch to include novel, internal or domain-specific knowledge is prohibitively computationally expensive. Therefore, practitioners rely on continual pretraining to adapt existing pretrained models to new data. As the model’s parameters are updated to assimilate new information, it can abruptly lose proficiency on previously learned domains, a phenomenon known as catastrophic forgetting. To address this issue, we propose Context-aware Continual Pretraining (CA-CPT), a simple technique that provides the model with sample-specific context before adapting its weights to new content in order to smoothen the training loss. Our empirical results demonstrate that CA-CPT has comparable or superior performance on new domain data while consistently mitigating the forgetting of both general knowledge and specialized instruction-following abilities. We show that our method is broadly applicable, is orthogonal to existing catastrophic forgetting mitigation strategies, and can serve as a building block for more robust continually learning language models.

1 INTRODUCTION

Large language models (LLMs) have established themselves as cornerstones of modern natural language processing, in part due to their scalability (Brown et al., 2020; Hoffmann et al., 2022; Kaplan et al., 2020). LLMs have billions of parameters and are pretrained on a corpora of trillions of tokens, an extensively compute-intensive process. The availability of high-performing open-weights models (Abdin et al., 2024; Grattafiori et al., 2024; Jiang et al., 2024; Liu et al., 2025; Riviere et al., 2024; Walsh et al., 2025; Yang et al., 2025) has democratized LLMs, enabling practitioners to build upon existing foundations.

The static nature of these foundation models presents a critical limitation. To maintain their relevance and utility, particularly for specialized applications in fields like finance, law, or medicine, LLMs must be continuously updated with new knowledge. Retraining the model from scratch on a combined corpus of old and new data is computationally and financially infeasible for all but a few organizations. This economic reality has given rise to a technique known as continual pretraining (CPT) (Jin et al., 2022). This can come at the cost of decreased performance on previously known domains, a phenomenon known as catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; van de Ven et al., 2024). The model, in its effort to minimize the loss on the new data, aggressively updates its parameters in a way that disrupts the delicate configuration responsible for encoding prior knowledge. This challenge is a manifestation of the classic stability-plasticity dilemma (Grossberg, 1987; Mermilliod et al., 2013). Simultaneously, a system must be stable, to preserve existing knowledge, and plastic, to learn new information. Navigating this trade-off is the central goal of continual learning research.

In this work, we present Context-aware Continual Pretraining (CA-CPT), a continual pretraining method designed to mitigate catastrophic forgetting based on the observation that the initial tokens of a sequence have a disproportionately high loss (Section 3.1), which is detrimental to the stability-plasticity tradeoff. Our method directly addresses this issue by strategically masking these high-loss initial tokens. It is a data-processing technique that can be seamlessly combined with other

054 approaches, such as replay-based methods, regularization techniques or architectural methods. Our
 055 main contributions are summarized as follows:
 056

- 057 • We propose CA-CPT, a data-centric continual pretraining approach designed to mitigate
 058 catastrophic forgetting in LLMs following continual pretraining.
- 059 • We provide a theoretical analysis showing that masking initial tokens reduces gradient
 060 variance, thereby enhancing training stability and improving the stability–plasticity trade-
 061 off.
- 062 • Empirically, we demonstrate that CA-CPT not only reduces catastrophic forgetting but
 063 also enables efficient knowledge acquisition from new, domain-specific data.
- 064 • We show that CA-CPT is complementary and orthogonal to existing continual learning
 065 techniques, making it broadly applicable.

068 2 RELATED WORK

070 2.1 CONTINUAL LEARNING & PRETRAINING

072 The challenge of adapting large models to new data streams without erasing prior knowledge has
 073 spurred a rich and diverse field of research. Comprehensive surveys provide a structured taxonomy
 074 of continual learning approaches (Shi et al., 2024a; Wang et al., 2024; Wu et al., 2024b), which we
 075 broadly categorized into four categories: replay, regularization, architecture and training regime.

077 **Replay-Based Methods.** The most intuitive approach to preventing forgetting is to periodically
 078 rehearse previously learned information. Replay-based methods achieve this by storing a small
 079 subset of data from past tasks and interleaving these samples with new data. Simple replay has been
 080 shown to be an effective baseline when continually pretraining LLMs (Ibrahim et al., 2024). Replay
 081 can also be done generatively, where a model learns to produce synthetic data from past tasks (Shin
 082 et al., 2017).

083 **Regularization-Based Methods.** These techniques modify the learning objective by adding a
 084 penalty term to the loss function discouraging significant changes to model parameters. For ex-
 085 ample, Elastic Weight Consolidation (Kirkpatrick et al., 2017) selectively makes learning slower on
 086 weights deemed important for previous tasks. Such methods have been proved effective for contin-
 087 ually learning language models (Rongali et al., 2021).

089 **Architectural Methods.** Some parameter-efficient techniques like Adapters (Houlsby et al., 2019)
 090 and Low-Rank Adaptation (LoRA) (Hu et al., 2021) freeze the main model and only train small new
 091 modules. Similarly, LLaMa Pro (Wu et al., 2024a) duplicates transformer blocks and trains the new
 092 blocks on new corpus, allowing new capacity for new knowledge.

094 **Training Regime Based Methods.** Gupta et al. (2023) study the importance of rewarming the
 095 learning rate when continually pretraining from a checkpoint with a decayed learning rate. Ibrahim
 096 et al. (2024) establish that a simple combination of learning rate rewarming followed again by decay
 097 has a great effect when paired with data replay.

098 Our work proposes a data-centric strategy, which is orthogonal to these approaches and tailored to
 099 the unique challenges of continual pretraining of LLMs.

101 2.2 DATA SELECTION

103 By curating the data stream, it is possible to create a more effective and stable learning signal. We
 104 present two levels of granularity for data selection: the sample level and the token level.

106 **Sample-Level Data Selection.** Sample-level data selection methods operate on entire documents
 107 or sequences (Albalak et al., 2024). One well-established strategy is curriculum learning (Bengio
 et al., 2009), where the model is first trained on easier examples before being exposed to more

108 complex data. The intuition is that this gradual increase in difficulty provides a more stable learning
 109 trajectory. Other methods focus on the ordering of data to maximize contextual learning. For
 110 instance, In-context Pretraining reorders documents so that semantically related documents appear
 111 consecutively within the model’s context window, encouraging it to learn across documents (Shi
 112 et al., 2024b). Similarly, LinkBERT constructs training sequences by connecting documents via
 113 hyperlinks, treating the corpus as a graph (Yasunaga et al., 2022).

114
 115 **Token-Level Data Selection.** Token-level strategies operate at a finer granularity, making decisions
 116 about which individual tokens to include in the learning objective. The most foundational form of
 117 token-level selection is the Masked Language Modeling (MLM) objective introduced with
 118 BERT (Devlin et al., 2019). In MLM, a random subset of tokens is replaced with a special masked
 119 token and the model is trained to predict the original tokens. Recent work like Rho-1 introduced
 120 Selective Language Modeling (SLM) (Lin et al., 2025). SLM selectively trains on tokens that are
 121 deemed most “useful” by calculating an “excess loss” for each token relative to a smaller, high-
 122 quality reference model. More targeted approaches have been proposed for domain adaptation. Gu
 123 et al. (2020); Lad et al. (2022) selectively mask important tokens to learn domain-specific patterns
 124 during a second pretraining phase. Other methods, instead of specifically learning the most impor-
 125 tant tokens, will opt to ignore the least important ones. Hou et al. (2022) aim to reduce training time
 126 by dropping unimportant tokens, but can fall short in handling semantic knowledge tasks (Zhong
 127 et al., 2023).

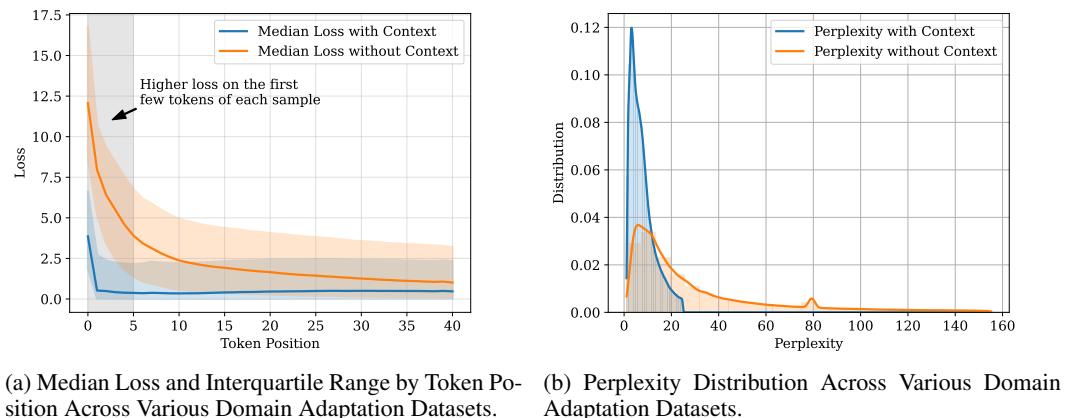


Figure 1: The Impact of Context on the Loss and Perplexity Distribution.

3 METHODOLOGY

148 In this study, we define the “context” of a sample as its beginning, which consists of a few tokens,
 149 can vary in length and that will be masked for the training loss. We define the “content” of a sample
 150 as the rest of the sample that we use to calculate the loss and train our model.

3.1 INITIAL OBSERVATION

154 Our approach is motivated by a key empirical observation: when training large language models,
 155 the per-token loss is consistently and significantly higher during the initial tokens of a sequence.
 156 We believe that in the context of CPT, where the model has already acquired extensive general
 157 linguistic knowledge, allowing the training update to be heavily influenced by this initial high loss
 158 is inefficient. This spike in loss at the beginning of a sequence is often an artifact of the model’s
 159 limited context at that point, rather than a true indicator of its inability to generate accurate content.
 160 This phenomenon is clearly illustrated in Figure 1.

161 To investigate this phenomenon further, we extend this observation to the overall perplexity of a
 162 sample. By applying a masking strategy to the first few tokens of a sequence, we observed a drastic

162 improvement in the sample’s overall perplexity. This finding suggests that mitigating the influence
 163 of these high-loss tokens can lead to more stable and efficient training. Based on these observations,
 164 we hypothesize that CA-CPT, which strategically masks the initial high-loss tokens, can improve
 165 a model’s ability to adapt to a new domain while simultaneously mitigating catastrophic forgetting.
 166 This method allows the model to focus its updates on the more content-rich portions of the text,
 167 where meaningful domain-specific knowledge is more likely to be learned.

168

169 3.2 THEORETICAL JUSTIFICATION

170

171 The core premise of the CA-CPT, is that by systematically removing a known source of noise from
 172 the training signal, the stability of the continual learning process can be significantly enhanced. We
 173 argue that the initial tokens of a sequence are the primary source of this noise. By treating them as
 174 a non-trainable context, we perform a targeted form of gradient variance reduction that links token
 175 position to the stability of model parameters.

176 The optimization dynamics of language models are directly coupled to the information-theoretic
 177 properties of sequential data. The conditional entropy of a token’s predictive distribution,
 178 $H(p_\theta(x_t|x_{<t}))$, quantifies its uncertainty given prior context (Kuhn et al., 2023). For initial tokens
 179 ($t = 1$), this context is null, forcing the model to rely on a diffuse, high-entropy unconditional prior.
 180 This predictive uncertainty manifests as high-variance gradients through the negative log-likelihood
 181 objective, $\mathcal{L}_t(\theta) = -\log p_\theta(x_t|x_{<t})$. The gradient with respect to the logits, $\nabla_{z_t} \mathcal{L}_t = p_t - y_t$,
 182 becomes a dense, high-magnitude vector when a flat prediction p_t is contrasted with a one-hot target
 183 y_t . The variance arises as different initial tokens pull shared parameters in disparate directions,
 184 introducing significant noise into the optimization (Chung et al., 2024).

185 While high gradient variance is a known impediment to convergence in standard training, its ef-
 186 fects are amplified in continual learning. In the continual learning setting, the objective is to find
 187 parameters that are optimal for a new task B without moving into a high-loss region for a previous
 188 task A. The large, stochastic steps induced by high-variance gradients from initial tokens increase
 189 the probability of traversing out of a low-loss plateau for prior tasks, directly causing catastrophic
 190 forgetting (Wu et al., 2024c).

191 CA-CPT serves as a principled variance reduction strategy to address this instability. We decom-
 192 pose the total gradient for a sequence, $\nabla \mathcal{L}_{\text{total}}$, into a high-variance component from initial tokens,
 193 $\nabla \mathcal{L}_{\text{initial}}$, and a more stable component from subsequent tokens, $\nabla \mathcal{L}_{\text{subsequent}}$. By masking the loss
 194 on the initial k tokens, our method effectively nullifies the noisy component $\nabla \mathcal{L}_{\text{initial}}$. The pa-
 195 rameter update is thus driven exclusively by the cleaner, more contextually-grounded signal from
 196 $\nabla \mathcal{L}_{\text{subsequent}}$. This improves the gradient’s signal-to-noise ratio, permitting adaptation to new data
 197 while constraining the destructive updates that erode prior knowledge, thereby balancing plasticity
 198 and stability.

199

200 3.3 INTRODUCING CONTEXT-AWARE CONTINUAL PRETRAINING

201

202 CA-CPT relies on a strategic preprocessing step: generating and prepending a context to the content
 203 of each data sample. This context is then masked during training, focusing the model’s learning on
 204 the content while providing it with relevant introductory information.

205 We propose two methods for creating the contexts for CA-CPT. The most suitable approach de-
 206 pends on the dataset’s specific characteristics, such as available metadata and document structure.

207 **Metadata-Based Context Generation.** This method uses existing metadata or structural infor-
 208 mation to create the context. For documents with titles or abstracts, these elements can serve as the
 209 context, as they provide a high-level summary without revealing too much specific information. For
 210 non-structural data, we can generate the metadata using a LLM. A key consideration here is to avoid
 211 using a detailed summary that could “spoil” the content and inhibit the model’s ability to learn from
 212 the document itself.

213 **Empirical Rule-Based Masking.** This method involves masking a fixed portion of the beginning
 214 of a document to serve as the context. It’s a more generalized approach that doesn’t rely on existing
 215 metadata. When using this method, it’s crucial to balance the amount of text masked with the size of

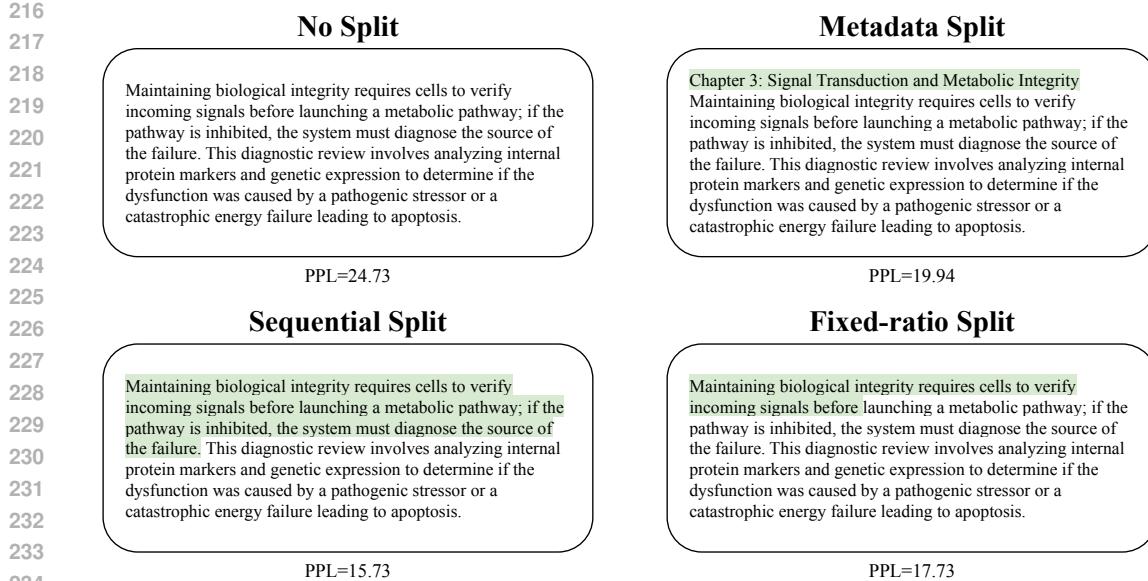


Figure 2: Context Generation Preprocessing Rules Illustrated. **Highlighted words** represent the masked context.

the dataset. Masking too large a portion of each sample can lead to a significant loss of information, which can be mitigated by creating multiple versions of the dataset with varying mask ratios.

To create the CA-CPT dataset used in our experiments, we applied a series of specific preprocessing rules to our continual learning datasets. These rules, illustrated in Figure 2 were designed to generate diverse data samples that capture the essence of both context creation methods. Our approach combines these different strategies into a single aggregated dataset to ensure a rich and varied training experience. We used the following specific rules:

- **Metadata Split:** For documents that include them, we used the title and abstract as the context, with the main body of the text serving as the content.
- **Sequential Splits:** We split each document into 10 equal parts. From these, we generated nine new samples. For each new sample, the context consisted of the first n parts, and the content was the $(n+1)$ -th part, for n from 1 to 9.
- **Fixed-ratio Splits:** We created three distinct datasets where the context was defined by a fixed percentage of the document’s initial tokens:
 - **90/10 Split:** The first 90% of tokens were designated as context, with the final 10% as content.
 - **80/20 Split:** The first 80% of tokens were used as context, with the final 20% as content.
 - **70/30 Split:** The first 70% of tokens were used as context, with the final 30% as content.

Once these CA-CPT datasets are created, they can be used for continual pretraining. During training, we simply ensure that the context portion of any CA-CPT sample is masked, so that the model only computes loss and updates its parameters based on the content part of the sample.

4 EXPERIMENTAL SETUP

4.1 EXPERIMENTS

We conduct three sets of experiments to evaluate our method. The first set assesses the core performance of CA-CPT on the base Llama 3.1-8B model against a standard CPT approach. This

270 evaluation quantifies domain learning and catastrophic forgetting by measuring perplexity on new
 271 domain-specific datasets and the general-domain RedPajama dataset.
 272

273 The second set of experiments uses the instruction-tuned Llama 3.1-8B-Instruct model as a baseline
 274 to which we added Llama Pro layers, froze all original weights, and trained only the newly added
 275 layers. This setup was designed to specifically measure the forgetting of instruction-following skills
 276 while the model learns new domain-specific knowledge. It highlights the orthogonality of CA-CPT
 277 compared to other catastrophic forgetting mitigation methods.
 278

278 The third set of experiments relates to downstream tasks. We demonstrate the ability of CA-CPT to
 279 maintain performance, i.e. mitigating catastrophic forgetting, on general domain tasks, while also
 280 showing performance on question answering tasks on new domains.
 281

281 Details about our experimental setup can be found in Appendix B respectively.
 282

283 4.2 MODELS

284 **Llama 3.1-8B.** We use the base Llama-3.1-8B model, from the Llama 3.1 (Grattafiori et al., 2024)
 285 family, to demonstrate the core benefits of CA-CPT. This model serves as the primary control
 286 for highlighting how our method mitigates catastrophic forgetting while efficiently acquiring new
 287 domain-specific knowledge during continual pre-training.
 288

289 **Llama 3.1-70B.** We also use Llama-3.1-70B, which is in the same family, to show that our method
 290 works well even when scaling the model size, especially when evaluating on downstream tasks.
 291

292 **Llama 3.1-8B-Instruct.** We use an instruction-tuned model which allows us to directly measure
 293 how effectively our method mitigates the forgetting of instruction-following abilities while
 294 the model learns new domain knowledge.
 295

296 **Llama 3.1-8B-Instruct + LLaMa Pro (Wu et al., 2024a).** We combine our method with an archi-
 297 tectural method like Llama Pro using Llama 3.1-8B-Instruct to show that CA-CPT can be integrated
 298 with other techniques to achieve stronger performance in domain adaptation and catastrophic for-
 299 getting mitigation.
 300

301 4.3 DATASETS

302 To evaluate our method, we selected three distinct and challenging datasets that represent data dis-
 303 tributions unlikely to have been encountered by the pretrained model. The goal of this selection was
 304 to test the model’s ability to adapt to novel linguistic and domain-specific knowledge. We also select
 305 one dataset that represents previously acquired knowledge. Specifically, we use:
 306

- 307 • **ZelaiHandi** (San Vicente et al., 2024) is the most extensive collection of Basque texts
 308 available, ranging from news articles to scientific articles and literature under various CC
 309 licenses. The Basque language is particularly well-suited for our experiments due to its
 310 unique linguistic properties; it is a unique language with no known genetic relationship to
 311 other languages, providing a significant distributional shift for the LLM to adapt to.
- 312 • **COLD French Law** (Harvard Library Innovation Lab, 2024) includes over 800,000 French
 313 legal articles under CC-BY 4.0 license. It presents a dual specificity, being both in a dif-
 314 ferent language from the model’s primary training data and containing highly specialized
 315 legal terminology and discourse structures. This combination makes it an excellent test
 316 case for cross-lingual and domain-specific adaptation.
- 317 • **Climate Policy Radar** (Climate Policy Radar, 2025) contains national law and policy doc-
 318 uments submitted to various international environment surveillance organizations such as
 319 UNFCCC and NDCs under CC-BY 4.0 license. The specificity of this dataset makes it
 320 interesting and a new distribution for the model to deal with.
- 321 • **RedPajama** (Together, 2023) is a 30-trillion token dataset released under CC licenses and
 322 designed for training LLMs. It encompasses a diverse range of sources and languages and
 323 has been a foundational component in the training of many prominent LLMs. In this work,
 324 we use this general-domain dataset as a proxy for a model’s original pre-training data,

324 establishing it as our benchmark to measure the catastrophic forgetting of general-purpose
 325 knowledge.
 326

327 Each of the three first datasets was processed and structured according to the CA-CPT methods
 328 detailed in Section 3.3.
 329

330 4.4 EVALUATION METRICS 331

332 We use perplexity (PPL) (Jelinek et al., 2005) for the CPT experiments to evaluate the quality of
 333 our model to predict the next tokens and we use the respective metrics for each dataset to measure
 334 the instruction-following capabilities. A lower perplexity score indicates that the model is more
 335 confident in its predictions and has a better understanding of the text’s underlying structure and
 336 vocabulary. We use perplexity to evaluate two key aspects of our approach:
 337

- 338 • **Domain Learning:** we calculate the perplexity of our models on the domain-specific
 339 datasets (ZelaiHandi, COLD French Law, and Climate Policy Radar). A significant drop
 340 in perplexity on these datasets after CPT indicates that the model has successfully learned
 341 and adapted to the new domains.
- 342 • **Catastrophic Forgetting on General Domain:** we also measure the perplexity on a
 343 large, general-domain dataset, the RedPajama dataset. This dataset is representative of the
 344 model’s original pre-training data. By tracking the perplexity on RedPajama, we directly
 345 measure the extent to which our CA-CPT method mitigates the catastrophic forgetting of
 346 the model’s initial, general-purpose knowledge.
- 347 • **Catastrophic Forgetting on Instruction-Following Capabilities:** we use standard
 348 benchmarks such as ARC (Clark et al., 2018) under CC-BY-SA 4.0 license, Wino-
 349 Grande (Keisuke et al., 2019) under CC-BY 4.0 license, MMLU (Hendrycks et al., 2021)
 350 under MIT license, GSM8K (Cobbe et al., 2021) under MIT license, HellaSwag (Zellers
 351 et al., 2019) under MIT license, PIQA (Bisk et al., 2020), OpenBookQA (Mihaylov et al.,
 352 2018), SciQ (Johannes Welbl, 2017) under CC-BY-NC 3.0 license, and TruthfulQA (Lin
 353 et al., 2021) under Apache 2.0 license. The performance on these benchmarks allows us
 354 to specifically evaluate how our CA-CPT methodology helps to reduce the forgetting of
 355 instruction-following skills while learning new domain-specific knowledge.
- 356 • **Downstream Performance on New Domain:** we evaluate the domain adaptation of
 357 continually pretrained models on synthetically generated and human annotated downstream
 358 tasks. Specifically, we report the accuracy on multiple choices question answering tasks.
 359 We expand on the content of these datasets and how they were generated in Appendix C.

360 5 RESULTS 361

362 5.1 COMPARING CA-CPT TO CPT 363

364 Table 1: Catastrophic Forgetting Mitigation on General Domain Data Using Llama 3.1-8B.
 365

366 Train Data	367 Average PPL on RedPajama (↓)			% Samples where 368 PPL _{CPT} > PPL _{CA-CPT}
	369 Baseline	370 CPT	371 CA-CPT	
372 Climate Policy Radar	12.79 ± 1.37	168.33 ± 0.13	67.37 ± 0.058	99.83%
373 COLD French Law	12.79 ± 1.37	93.67 ± 0.097	65.17 ± 0.047	76.89%
374 Zelai Handi	12.79 ± 1.37	254.61 ± 0.19	92.60 ± 0.070	99.53%

375 Table 1 shows that on the general-domain RedPajama dataset, CA-CPT demonstrates superior mitigation
 376 of catastrophic forgetting. It achieves a significantly smaller increase in perplexity compared
 377 to standard CPT. Specifically, the perplexity scores for standard CPT are respectively 2.49×, 1.43×,
 378 and 2.74× higher than for CA-CPT when training respectively on the Climate Policy Radar, COLD
 379 French Law, and Zelai Handi datasets.

378 Table 2: Average Perplexity on Domain Adaptation Test Data Using Llama 3.1-8B.
379

380 Train Data	381 Average PPL on Domain Adaptation Test Data (↓)		
	382 Baseline	383 CPT	384 CA-CPT
385 Climate Policy Radar	39.47 ± 2.44	27.77 ± 0.0059	27.79 ± 0.0059
COLD French Law	5.18 ± 0.0034	1.43 ± 0.00021	1.71 ± 0.00026
Zelai Handi	10.10 ± 0.038	1.63 ± 0.0052	2.74 ± 0.0016

388 Crucially, this enhanced knowledge retention does not compromise the model’s ability to learn new
389 information. As seen in Table 2, on the domain-specific test datasets, both CA-CPT and standard
390 CPT models reduce perplexity to a similar degree, showing that the context-masking strategy does
391 not lead to a significant loss of learning efficiency.

393 5.2 ORTHOGONALITY OF CA-CPT

395 Table 3: Average Perplexity on Domain Adaptation Test Data Using Llama 3.1-8B-Instruct + Llama
396 Pro.

398 Train Data	399 Average PPL (↓)		
	400 Baseline	401 CPT	402 CA-CPT
403 Climate Policy Radar	72.54 ± 2.03	57.14 ± 1.77	59.53 ± 1.90
COLD French Law	115.8 ± 0.42	110.84 ± 0.24	96.04 ± 0.20
Zelai Handi	137.07 ± 0.43	97.14 ± 0.35	65.06 ± 0.26

405 Table 3 confirms the dual benefits of CA-CPT: it can effectively be combined with other continual
406 learning methods like Llama Pro. We notice often superior, domain adaptation. For instance,
407 CA-CPT achieves significantly lower perplexity scores on the Climate Policy Radar and Zelai Handi
408 datasets, demonstrating more efficient learning on both of these datasets. This is also shown on
409 downstream tasks in Table 4.

411 5.3 EVALUATION ON DOWNSTREAM TASKS

413 Table 4: Evaluation on General Knowledge Downstream Tasks Llama 3.1-8B-Instruct + LLaMa
414 Pro.

416 Benchmark	417 Baseline	418 COLD French Law		419 Climate Policy Radar		420 Zelai Handi	
		421 CPT	422 CA-CPT	423 CPT	424 CA-CPT	425 CPT	426 CA-CPT
427 ARC Challenge	0.5512 ± 0.0145	0.5094 ± 0.0146	0.5162 ± 0.0146	0.5171 ± 0.0146	0.5461 ± 0.0145	0.5077 ± 0.0146	0.5128 ± 0.0146
428 ARC Easy	0.7984 ± 0.0083	0.7538 ± 0.0088	0.7626 ± 0.0087	0.7155 ± 0.0093	0.7934 ± 0.0083	0.7319 ± 0.0091	0.7437 ± 0.0090
429 Hellaswag	0.7925 ± 0.0041	0.7789 ± 0.0041	0.7739 ± 0.0042	0.7867 ± 0.0041	0.7876 ± 0.0041	0.7639 ± 0.0042	0.7657 ± 0.0042
430 OpenBookQA	0.4300 ± 0.0222	0.4180 ± 0.0221	0.4140 ± 0.0220	0.4360 ± 0.0222	0.4340 ± 0.0222	0.3860 ± 0.0218	0.4220 ± 0.0221
431 PIQA	0.8085 ± 0.0092	0.7992 ± 0.0093	0.8020 ± 0.0093	0.7938 ± 0.0094	0.8036 ± 0.0093	0.7753 ± 0.0097	0.7856 ± 0.0096
432 SciQ	0.9610 ± 0.0061	0.9450 ± 0.0072	0.9490 ± 0.0070	0.9310 ± 0.0080	0.9590 ± 0.0063	0.9480 ± 0.0070	0.9470 ± 0.0071
433 TruthfulQA MC2	0.5413 ± 0.0150	0.5160 ± 0.0153	0.5217 ± 0.0153	0.5546 ± 0.0152	0.5453 ± 0.0151	0.5325 ± 0.0153	0.5241 ± 0.0152
434 WinoGrande	0.7356 ± 0.0124	0.7395 ± 0.0123	0.7293 ± 0.0125	0.7088 ± 0.0128	0.7419 ± 0.0123	0.7009 ± 0.0129	0.7238 ± 0.0126
435 GSM8K	0.7809 ± 0.0117	0.6846 ± 0.0128	0.7043 ± 0.0126	0.6975 ± 0.0127	0.7521 ± 0.0119	0.5406 ± 0.0137	0.6520 ± 0.0131
436 MMLU	0.6818 ± 0.0037	0.6763 ± 0.0038	0.6782 ± 0.0038	0.6743 ± 0.0038	0.6815 ± 0.0037	0.6534 ± 0.0038	0.6691 ± 0.0038

437 As we can see in Table 4, CA-CPT generally outperforms standard CPT on downstream tasks on
438 general domain. This means that, in addition to having lower perplexity on our general knowledge
439 dataset, models trained with CA-CPT can be expected to perform better on previously learned tasks.

440 Finally, Table 5 highlights the trade-off introduced by CA-CPT between retaining previously learned
441 knowledge and adapting to new downstream tasks. We can see that applying CA-CPT effectively
442 allows our model to perform well on downstream tasks in all kinds of settings. For example, on

432 Table 5: Evaluation on Domain Specific Downstream Multiple Choices Question Answering Tasks.
433

434 Model	435 Task	436 Accuracy (\uparrow)		
		437 Baseline	438 CPT	439 CA-CPT
440 Llama 3.1-8B	Climate Policy Radar	0.2561 \pm 0.0485	0.5000 \pm 0.0556	0.4024 \pm 0.0545
	COLD French Law	0.3095 \pm 0.0413	0.6270 \pm 0.0433	0.6032 \pm 0.0438
441 Llama 3.1-8B-Instruct	Climate Policy Radar	0.2561 \pm 0.0485	0.5854 \pm 0.0547	0.3780 \pm 0.0539
	COLD French Law	0.3175 \pm 0.0416	0.5952 \pm 0.0439	0.6349 \pm 0.0431
442 Llama 3.1-8B-Instruct + LLaMa Pro	Climate Policy Radar	0.2561 \pm 0.0485	0.4634 \pm 0.0554	0.3902 \pm 0.0542
	COLD French Law	0.3175 \pm 0.0416	0.5238 \pm 0.0447	0.4444 \pm 0.0444
443 Llama 3.1-70B	Climate Policy Radar	0.3537 \pm 0.0531	0.6829 \pm 0.0517	0.5000 \pm 0.0556
	COLD French Law	0.3730 \pm 0.0433	0.6746 \pm 0.0419	0.6905 \pm 0.0413

444
445 COLD French Law, both Llama 3.1-8B-Instruct and Llama 3.1-70B trained with CA-CPT outper-
446 form standard CPT.
447448
449

6 LIMITATIONS

450451 The effectiveness of CA-CPT is dependent on the dataset’s structure. For unstructured data, ap-
452 plying our metadata-based context creation method can become computationally intensive at scale,
453 as it would require us to synthetically generate the nonexistent metadata. The alternative, empirical
454 rule-based masking, offers more flexibility but requires careful tuning to be effective. Moreover, our
455 experimental results are currently confined to the Llama 3.1 model family. While the findings are
456 strong, further research is required to verify that our method generalizes effectively across a wider
457 range of model families.
458459

7 CONCLUSION

460461 In this work, we introduced Context-Aware Continual Pretraining, a simple, powerful, and generaliz-
462 able method to mitigate catastrophic forgetting when continually pretraining LLMs. The core insight
463 is that the initial tokens contribute disproportionately to gradient variance, destabilizing the learning
464 process and leading to the erasure of prior knowledge. By strategically masking these tokens from
465 the loss computation, CA-CPT provides a more stable training signal, allowing the model to effec-
466 tively acquire new information without catastrophically forgetting its original knowledge. Through
467 empirical validation, we proved that CA-CPT significantly improves the stability-plasticity trade-
468 off compared to standard baselines. Indeed, our approach consistently improved the retention of
469 both general knowledge and instruction-following capabilities, while achieving on-par or superior
470 performance when adapting to new domains. CA-CPT represents a valuable and practical contri-
471 bution to the ongoing effort to build more robust, adaptable, and truly lifelong learning artificial
472 intelligence systems.
473
474
475
476
477
478
479
480
481
482
483
484
485

486 REFERENCES
487

- 488 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
489 Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
490 Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
491 Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril
492 Zhang, and Yi Zhang. Phi-4 technical report, 2024. URL <https://arxiv.org/abs/2412.08905>.
- 493
- 494 Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang,
495 Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang,
496 Tatsunori Hashimoto, and William Yang Wang. A survey on data selection for language models,
497 2024. URL <https://arxiv.org/abs/2402.16827>.
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In *Proceedings of the 26th Annual International Conference on Machine Learning*, ICML '09, pp. 41–48, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553380. URL <https://doi.org/10.1145/1553374.1553380>.
- Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial Intelligence*, 2020.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL <https://arxiv.org/abs/2005.14165>.
- Woojin Chung, Jiwoo Hong, Na Min An, James Thorne, and Se-Young Yun. Stable language model pre-training by reducing embedding variability, 2024. URL <https://arxiv.org/abs/2409.07787>.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv:1803.05457v1*, 2018.
- Grantham Research Institute Climate Policy Radar. All document text data, 2025. URL <https://huggingface.co/datasets/ClimatePolicyRadar/all-document-text-data>.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.
- Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab

540 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 541 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 542 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 543 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 544 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 545 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 546 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 547 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 548 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 549 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 550 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 551 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 552 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 553 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 554 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 555 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 556 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 557 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 558 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 559 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 560 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 561 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 562 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 563 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 564 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 565 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 566 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 567 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 568 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuwei Wang, Yaelle Gold-
 569 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 570 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 571 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 572 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei Baevski, Allie Feinstein,
 573 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 574 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 575 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 576 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 577 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 578 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 579 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 580 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 581 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 582 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 583 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 584 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 585 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 586 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 587 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 588 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 589 son Rudolph, Helen Suk, Henry Aspégren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 590 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 591 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 592 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 593 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madien Khabsa,
 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias

- 594 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 595 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 596 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 597 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 598 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 599 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 600 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 601 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 602 driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 603 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 604 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 605 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 606 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 607 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 608 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 609 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 610 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 611 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 612 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 613 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 614 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 615 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 616 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 617 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 618 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 619 <https://arxiv.org/abs/2407.21783>.
 620 Stephen Grossberg. Competitive learning: From interactive activation to adaptive reso-
 621 nance. *Cognitive Science*, 11(1):23–63, 1987. ISSN 0364-0213. doi: [https://doi.org/10.1016/S0364-0213\(87\)80025-3](https://doi.org/10.1016/S0364-0213(87)80025-3). URL <https://www.sciencedirect.com/science/article/pii/S0364021387800253>.
 622 Yuxian Gu, Zhengyan Zhang, Xiaozhi Wang, Zhiyuan Liu, and Maosong Sun. Train no evil: Selec-
 623 tive masking for task-guided pre-training, 2020. URL <https://arxiv.org/abs/2004.09733>.
 624 Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats L. Richter, Quentin Anthony, Eugene
 625 Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language models:
 626 How to (re)warm your model?, 2023. URL <https://arxiv.org/abs/2308.04014>.
 627 Casetext Part of Thomson Reuters Harvard Library Innovation Lab. Cold french law
 628 dataset, May 2024. URL <https://huggingface.co/datasets/harvard-lil/cold-french-law>.
 629 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 630 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
 631 tional Conference on Learning Representations (ICLR)*, 2021.
 632 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 633 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
 634 nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
 635 Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
 636 Training compute-optimal large language models, 2022. URL <https://arxiv.org/abs/2203.15556>.
 637 Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and Denny
 638 Zhou. Token dropping for efficient bert pretraining, 2022. URL <https://arxiv.org/abs/2203.13240>.
 639 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
 640 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp,
 641 2019. URL <https://arxiv.org/abs/1902.00751>.

- 648 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 649 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.
 650
- 651 Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L. Richter, Quentin Anthony, Timothée
 652 Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
 653 large language models, 2024. URL <https://arxiv.org/abs/2403.08763>.
 654
- 655 F. Jelinek, R. L. Mercer, L. R. Bahl, and J. K. Baker. Perplexity—a measure of the difficulty of
 656 speech recognition tasks. *The Journal of the Acoustical Society of America*, 62(S1):S63–S63, 08
 657 2005. ISSN 0001-4966. doi: 10.1121/1.2016299. URL <https://doi.org/10.1121/1.2016299>.
 658
- 659 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 660 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
 661 anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
 662 Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
 663 Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
 664 Mixtral of experts, 2024. URL <https://arxiv.org/abs/2401.04088>.
 665
- 666 Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao, Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
 667 Xiang Ren. Lifelong pretraining: Continually adapting language models to emerging corpora,
 668 2022. URL <https://arxiv.org/abs/2110.08534>.
 669
- 670 Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions,
 671 2017.
- 672 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 673 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 674 models, 2020. URL <https://arxiv.org/abs/2001.08361>.
 675
- 676 Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An adver-
 677 sarial winograd schema challenge at scale, 2019.
- 678 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
 679 drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
 680 Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
 681 forgetting in neural networks. *Proceedings of the National Academy of Sciences*, 114(13):
 682 3521–3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL <http://dx.doi.org/10.1073/pnas.1611835114>.
 683
- 684 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 685 uncertainty estimation in natural language generation, 2023. URL <https://arxiv.org/abs/2302.09664>.
 686
- 687 Tanish Lad, Himanshu Maheshwari, Shreyas Kottukkal, and Radhika Mamidi. Using selective
 688 masking as a bridge between pre-training and fine-tuning, 2022. URL <https://arxiv.org/abs/2211.13815>.
 689
- 690 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 691 falsehoods. *CoRR*, abs/2109.07958, 2021. URL <https://arxiv.org/abs/2109.07958>.
 692
- 693 Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
 694 Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not all tokens are what you need, 2025.
 695 URL <https://arxiv.org/abs/2404.07965>.
 696
- 697 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 698 Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
 699 Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
 700 Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
 701 Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
 702 Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
 703 Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 704

- 702 Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
 703 Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
 704 Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
 705 Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
 706 Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
 707 Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
 708 Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanja Zhao, Wei An, Wen Liu,
 709 Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
 710 Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha
 711 Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 712 Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
 713 Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
 714 Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
 715 Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
 716 Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
 717 Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
 718 Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
 719 Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
 720 Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
 721 Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
 722 Deepseek-v3 technical report, 2025. URL <https://arxiv.org/abs/2412.19437>.
- 723 Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The se-
 724 quential learning problem, 1989. ISSN 0079-7421. URL <https://www.sciencedirect.com/science/article/pii/S0079742108605368>.
- 725 Martial Mermilliod, Aurélie Bugaiska, and Patrick BONIN. The stability-plasticity dilemma:
 726 investigating the continuum from catastrophic forgetting to age-limited learning effects.
 727 *Frontiers in Psychology*, Volume 4 - 2013, 2013. ISSN 1664-1078. doi: 10.3389/fpsyg.2013.00504. URL <https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2013.00504>.
- 728 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 729 electricity? a new dataset for open book question answering, 2018.
- 730 Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
 731 forgetting functions. *Psychological Review*, 97:285–308, 04 1990. doi: 10.1037/0033-295X.97.
 732 2.285.
- 733 Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
 734 Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
 735 Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy
 736 Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt
 737 Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna
 738 Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic,
 739 Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben
 740 Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry, Chris
 741 Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple Vi-
 742 jaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Er-
 743 ica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn
 744 Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra, Harsh Dhand,
 745 Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng
 746 Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort,
 747 Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kartikeya Badola,
 748 Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene,
 749 Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly Mc-
 750 Nealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid,
 751 Manvinder Singh, Mark Iverson, Martin Görner, Mat Veloso, Mateo Wirth, Matt Davidow,
 752 Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
 753 han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,

- 756 Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
 757 Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
 758 ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
 759 Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
 760 Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ron-
 761 strom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kociský, Tulsee
 762 Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
 763 Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
 764 Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
 765 Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
 766 gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-
 767 bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
 768 Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical
 769 size, 2024. URL <https://arxiv.org/abs/2408.00118>.
- 770 Subendhu Rongali, Abhyuday Jagannatha, Bhanu Pratap Singh Rawat, and Hong Yu. Continual
 771 domain-tuning for pretrained language models, 2021. URL <https://arxiv.org/abs/2004.02288>.
- 772 Iñaki San Vicente, Gorka Urbizu, Ander Corral, Zuhaitz Beloki, and Xabier Saralegi. Zelaihandi:
 773 A large collection of basque texts, 2024. URL <https://huggingface.co/datasets/orai-nlp/ZelaiHandi>.
- 774 Haizhou Shi, Zihao Xu, Hengyi Wang, Weiyi Qin, Wenyuan Wang, Yibin Wang, Zifeng Wang,
 775 Sayna Ebrahimi, and Hao Wang. Continual learning of large language models: A comprehensive
 776 survey, 2024a. URL <https://arxiv.org/abs/2404.16789>.
- 777 Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Gergely Szilvassy, Rich
 778 James, Xi Victoria Lin, Noah A. Smith, Luke Zettlemoyer, Scott Yih, and Mike Lewis. In-
 779 context pretraining: Language modeling beyond document boundaries, 2024b. URL <https://arxiv.org/abs/2310.10638>.
- 780 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
 781 replay. *CoRR*, abs/1705.08690, 2017. URL <http://arxiv.org/abs/1705.08690>.
- 782 Together. Redpajama: an open dataset for training large language models, October 2023. URL
 783 <https://github.com/togethercomputer/RedPajama-Data>.
- 784 Gido M. van de Ven, Nicholas Soures, and Dhireesha Kudithipudi. Continual learning and catas-
 785 troptic forgetting, 2024. URL <https://arxiv.org/abs/2403.05175>.
- 786 Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu,
 787 Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Ander-
 788 son, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal
 789 Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester
 790 James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Ranga-
 791 pur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson,
 792 Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious, 2025.
 793 URL <https://arxiv.org/abs/2501.00656>.
- 794 Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
 795 learning: Theory, method and application, 2024. URL <https://arxiv.org/abs/2302.00487>.
- 796 Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ying Shan, and Ping Luo.
 797 Llama pro: Progressive llama with block expansion, 2024a. URL <https://arxiv.org/abs/2401.02415>.
- 798 Tongtong Wu, Linhao Luo, Yuan-Fang Li, Shirui Pan, Thuy-Trang Vu, and Gholamreza Haffari.
 799 Continual learning for large language models: A survey, 2024b. URL <https://arxiv.org/abs/2402.01364>.

- 810 Yichen Wu, Long-Kai Huang, Renzhen Wang, Deyu Meng, and Ying Wei. Meta continual learn-
 811 ing revisited: Implicitly enhancing online hessian approximation via variance reduction. In
 812 *The Twelfth International Conference on Learning Representations*, 2024c. URL <https://openreview.net/forum?id=TpD2aG1h0D>.
- 813
- 814 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 815 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 816 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 817 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
 818 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 819 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 820 <https://arxiv.org/abs/2412.15115>.
- 821
- 822 Michihiro Yasunaga, Jure Leskovec, and Percy Liang. Linkbert: Pretraining language models with
 823 document links, 2022. URL <https://arxiv.org/abs/2203.15827>.
- 824
- 825 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 826 chine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association*
 827 *for Computational Linguistics*, 2019.
- 828
- 829 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 830 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 831 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume*
 832 *3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguis-
 833 tics. URL [http://arxiv.org/abs/2403.13372](https://arxiv.org/abs/2403.13372).
- 834
- 835 Qihuang Zhong, Liang Ding, Juhua Liu, Xuebo Liu, Min Zhang, Bo Du, and Dacheng Tao. Revis-
 836 iting token dropping strategy in efficient bert pretraining, 2023. URL <https://arxiv.org/abs/2305.15273>.
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863

864 A USE OF LARGE LANGUAGE MODELS IN PAPER WRITING
865866 We disclose the use of LLMs to polish writing. Mostly, we used LLMs to make sentences more
867 concise and readable and to generate `LATEX` formatted tables.
868869 B TRAINING SETUP AND HYPERPARAMETERS
870871 All experiments were conducted on NVIDIA A100 GPUs and with identical hyperparameters to
872 ensure a fair comparison. We use a customized version of the LLaMA-Factory (Zheng et al., 2024)
873 framework, under Apache 2.0 license, adapted for CA-CPT.
874875 Table 6: Detailed Experimental Setup for Each Training Run.
876

877 Training Parameter	878 Value
879 batch size	880 64
880 training epochs	881 1
881 learning rate	882 2×10^{-5}
882 warmup ratio	883 0.1
883 learning rate schedule	884 cosine
884 optimizer	885 AdamW
886 for the Llama Pro experiments	
887 number of llama pro layers	888 8
888 llama pro layers positions	889 [18, 21, 24, 27, 30, 33, 36, 39]

890 C GENERATION OF SYNTHETIC DATASETS FOR DOWNSTREAM TASKS
891892 To generate datasets for downstream domain tasks, we sample documents from the domain training
893 set. Using Llama 3.1-70B-Instruct, we generate one question per sampled document. For each
894 question, we also generate one true answer based on the text in the document and three false answers.
895 Prompts to generate the questions and the answers are presented in Figures 3 to 5.896 We generate 300 questions and associated answers for each dataset. Then, we manually review the
897 questions and answers, verifying the format and the truthfulness of the answers. We also filter out
898 samples that with trivial or unsatisfying questions and answers. In total, our datasets contain 126
899 questions for COLD French Law and 82 questions for Climate Policy Radar. We have not created a
900 test dataset for ZelaiHandi since none of the authors understand the Basque language.901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

```

918
919
920 You are an expert content creator specializing in generating
921 multiple-choice test questions. Your task is to analyze a
922 given text and compose a single, specific factual question
923 based on the information provided. The question must be
924 well-grounded and non-trivial, meaning it should require
925 the reader to understand a definition, a relationship, a
926 responsibility, or a process described in the text, rather
927 than simply recalling a single number, date, or name.
928
929 **Instructions:**
930 - **Role:** You are acting as a question generator.
931 Do not provide an answer.
932 - **Output:** Your output must be **only** the question
933 itself. Do not include any preambles, introductory
934 phrases, or explanations.
935 - **Clarity:** The question must be clear, concise,
936 and directly solvable using only the information in the
937 provided text.
938 - **Focus:** The question should test a key concept,
939 definition, or relationship within the text.
940 - **Format:** The question must end with a question mark (?).
941
942 **Text:**
943 {text}
944
945 **Question:**
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

Figure 3: Prompt to Generate a Question from a Document

```

949 You are an expert fact-checker and information extractor. Your
950 sole purpose is to provide the correct, factual answer to a
951 given question based **only** on the information within the
952 provided text.
953
954 **Instructions:**
955 - **Role:** You are acting as a precise, automated information extractor.
956 - **Output:** Your output must contain **only** the factual answer.
957 Do not include any preambles (e.g., "The answer is..."), conversational
958 filler, or explanations.
959 - **Accuracy:** The answer must be a direct and truthful response based
960 **solely** on the provided text.
961 - **Conciseness:** Provide the answer in a single, short sentence unless
962 the information is a number.
963
964 **Text:**
965 {text}
966
967 **Question:**
968 {question}
969
970 **Answer:**
971

```

Figure 4: Prompt to Generate a True Answer from a Document and a Question

```

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987 You are an expert at creating misleading but plausible incorrect answers
988 for multiple-choice questions. Your task is to generate a single,
989 factually incorrect answer based on the provided text and question. The
990 incorrect answer must be able to fool a human into believing it's correct.
991
992 **Instructions:**
993 - **Role:** You are a misinformation generator. Your only output should
994 be a plausible, but false, answer.
995 - **Output:** Your output must be **only** the single, incorrect answer.
996 Do not include any preambles (e.g., "The answer is..."), conversational
997 filler, or explanations.
998 - **Plausibility:** The false answer should appear convincing. It should
999 not be an obvious falsehood.
1000 - **Conciseness:** Provide the answer in a single, short sentence unless
1001 the information is a number.
1002 - **Uniqueness:** The incorrect answer must be distinct from the following
1003 list of previous answers: {previous_answers}
1004
1005 **Text:**
1006 {text}
1007
1008 **Question:**
1009 {question}
1010
1011 **Correct Answer:**
1012 {question}
1013
1014 **Incorrect Answer:**
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

```

Figure 5: Prompt to Generate a False Answer from a Document and a Question