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Abstract
Although pre-trained sequence-to-sequence001
models have achieved great success in dia-002
logue response generation, chatbots still suf-003
fer from generating inconsistent responses in004
real-world practice, especially in multi-turn005
settings. We argue that this can be caused006
by a discrepancy between training and real-007
world testing. At training time, chatbot gen-008
erates response with the golden context, while009
it has to generate based on the context con-010
sisting of both user utterances and the model011
predicted utterances during real-world testing.012
With the growth of the number of utterances,013
this discrepancy becomes more serious in the014
multi-turn settings. In this paper, we propose015
a hierarchical sampling-based method consist-016
ing of both utterance-level sampling and semi-017
utterance-level sampling, to alleviate the dis-018
crepancy, which implicitly increases the dia-019
logue coherence. We further adopt reinforce-020
ment learning and re-ranking methods to ex-021
plicitly optimize the dialogue coherence dur-022
ing training and inference, respectively. Em-023
pirical experiments show the effectiveness of024
the proposed methods for improving the ro-025
bustness of chatbots in real practice 1.026

1 Introduction027

Sequence-to-sequence neural models (Vinyals and028

Le, 2015) serve as a foundation for dialogue re-029

sponse generation (Roller et al., 2020; Zhang030

et al., 2020b), where typical models adopt the auto-031

regressive framework (Sutskever et al., 2014). Dur-032

ing training, models are optimized to maximize the033

token-level likelihood of the golden response given034

the golden dialogue history context as input; during035

inference, the dialogue response generation model036

is required to predict the response token by token037

based on the golden multi-turn dialogue context.038

With advance in large-scale pre-training (Zhang039

et al., 2020a; Roller et al., 2020; Lewis et al., 2020)040

1Codes are attached to the supplementary material and will
be publicly available once accepted.
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(a) Training.
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(b) Offline Test.
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(c) Online Test.

Figure 1: The illustration of how Blender-bot gener-
ates responses in different settings. Blender-bot uses
golden context in both training and offline test settings.
The blue part indicates the discrepancy utterances in
the context of real-world testing (online test). Blender-
bot generates an incoherent response in human-bot con-
versation (Red utterance in Figure 1(c)).

and the availability of high-quality conversational 041

datasets (Li et al., 2017; Dinan et al., 2019b), mod- 042

els are able to generate fluent and informative re- 043

sponses (Shum et al., 2018). On the other hand, 044

despite achieving promising performance on the 045

standard evaluation metrics (e.g., F-1, BLEU, PPL), 046

dialogue response generation models still suffer 047

from unsatisfactory user experience in practice 048

(Welleck et al., 2020; Ram et al., 2018). Previ- 049

ous work shows that chatbots generate repetition 050

(Li et al., 2020a) and contradictory responses (Nie 051

et al., 2021; Li et al., 2021a). One possible reason 052
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is that current research focuses on the offline eval-053

uation settings, where the golden context is used054

as input. However, the golden context cannot be055

accessed in online settings. Figure 1(c) shows a056

human-bot conversation in practice. The golden057

context in Figure 1(a) and Figure 1(b) is replaced058

with a system-generated context in Figure 1(c). In059

this real-world setting, the multi-turn context con-060

sists of both previous chatbot generated utterance061

(r) and human response (u), which is inconsistent062

with the training settings.063

Such utterance-level discrepancy between offline064

training and online testing is reminiscent of the ex-065

posure bias problem (Bengio et al., 2015; Ranzato066

et al., 2016). Recent research has made solid strides067

towards alleviating the exposure bias problem in068

various generation tasks, such as image captioning069

(Bengio et al., 2015), speech recognition (Bengio070

et al., 2015), and neural machine translation (Zhang071

et al., 2019; Mihaylova and Martins, 2019). They072

simulate the inference stage by replacing golden tar-073

get input tokens with the model predictions during074

training. Intuitively, it can be applied to dialogue075

generation also. However, the unique challenge076

in multi-turn dialogue response generation is the077

existence of both the utterance-level and token-078

level discrepancy in a hierarchical manner, which079

is more severe compared to the above tasks. Given080

the golden context, 93.3% of generated utterances081

are coherent with the context after 10 turns in our082

experiments. However, when it comes to the pre-083

dicted context, the coherence rate drops to less than084

30% (Figure 2).085

To alleviate the inconsistency between train-086

ing and real-world testing, we propose both087

utterance-level and semi-utterance-level sampling-088

based methods to improve the performance for bot-089

bot conversation (self-talk). In particular, we sam-090

ple whole utterances with a scheduled probabil-091

ity and use model generated utterances to replace092

golden utterances. We schedule our sampling in a093

hierarchy way. Utterance-level sampling method094

generates the utterance based on the previous con-095

text, which simulates the online-testing scene dur-096

ing training. Semi-utterance-level sampling gener-097

ates an utterance by using both the previous context098

and the first few tokens in the sampled utterance,099

for keeping the semantic similarity between the100

generated utterance and the golden utterance. To101

further boost the performance, we adopt reinforce-102

ment learning and re-ranking to directly optimize103

Figure 2: Coherence rate against number of utterances
in the context. Coherence rate (Eq 6) measures the per-
centage of responses is coherence with the correspond-
ing contexts.

the dialogue coherence between the context and 104

the response in the simulated online setting, by 105

consulting an external natural language inference 106

(NLI) based coherence classifier during training 107

and inference, respectively. 108

We conduct our experiments on Wizard of 109

Wikipedia (Dinan et al., 2019b) and human-bot 110

conversation. Empirical results show that our hier- 111

archical sampling approach improves the abilities 112

of dialogue models on generating coherent and less 113

repetitive responses without introducing external 114

training signals. We further demonstrate that an 115

external coherence classifier can be used in both 116

training and inference to help models produce more 117

coherent responses. Finally, we demonstrate that 118

these methods make chatbots more robust in real- 119

word testing. We release our code and models at 120

https://anonymous. 121

2 Related Work 122

Alleviating Discrepancy. To bridge the gap be- 123

tween training and inference in auto-regressive 124

models, Bengio et al. (2015) first attempted to ran- 125

domly sample the previous generated token to re- 126

place the ground-truth token during training. Zhang 127

et al. (2019) extended the work of Bengio et al. 128

(2015) by sampling candidates using beam search. 129

Mihaylova and Martins (2019) considered sched- 130

uled sampling for transformer-based model. Liu 131

et al. (2021a) and Liu et al. (2021b) further de- 132

signed sampling strategy based on the model con- 133

fidence and decode steps, respectively. Xu et al. 134

(2021) introduced scheduled sampling in the one- 135
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to-many generation scenario. All these method are136

designed for mitigating the token-level exposure137

bias problem. To our knowledge, we are the first to138

improve the utterance-level discrepancy between139

training and real-world testing.140

Dialogue Coherence. Welleck et al. (2019) mod-141

eled dialogue coherence as natural language infer-142

ence and released the dialogue NLI dataset based143

on persona (Zhang et al., 2018). Li et al. (2020b)144

leveraged NLI as supervision to reduce incoherent145

and repetition response via unlikelihood training.146

Nie et al. (2021) extended dialogue NLI by releas-147

ing a human-written multi-domain dataset. Qin148

et al. (2021) further introduced dialogue NLI in149

task-oriented dialogue system. Khandelwal (2021)150

used reinforcement learning to optimize semantic151

coherence and consistent flow. Li et al. (2021b)152

proposed a dynamic flow mechanism to model the153

context flow. We use coherence as a measure of154

online dialogue quality. In contrast, existing work155

all consider the offline setting where the input is a156

golden history.157

3 Definition158

3.1 Task159

Given a dialogue context U = {u1, . . . ,ul−1},160

where ui = {xui
1 , . . . ,x

ui

|ui|} represents the i-th ut-161

terance. U can be formed as U = {x1, . . . ,xT }162

by concatenating all utterances as a token se-163

quence, where xi denotes the i-th token in U. The164

corresponding response can be denoted as r =165

ul = {y1, y2, . . . , yT ′}. Given a training context-166

response pair {U, r}, the probability P (r|U) can167

be computed by:168

p(r|U) =

T ′∏
t=1

p(yt|U, y1:t−1) (1)169

which can be estimated by a sequence-to-sequence170

neural network (i.e., transformers) with parame-171

ters θ. Our goal is to learn a dialogue generation172

model Pθ(r|U), which is able to generate response173

r based on the context U.174

3.2 Model175

We adopt a standard Transformer (Vaswani et al.,176

2017) seq2seq model in a dialogue response gener-177

ation setting.178

The dialogue context U is first fed into the trans-179

former encoder, yielding a sequence of hidden rep-180

resentations.181

henc = TRANSFORMER_ENCODER(U) (2)182

At the t th step of the decoder, henc and the pre- 183

vious output tokens y1:t−1 are then used as inputs, 184

yielding an output representation 185

hdec
t = TRANSFORMER_DECODER(henc, y1:t−1) (3) 186

The generative probability distribution of yt is 187

given by a linear projection of the hidden vector 188

hdect followed by a softmax transformation 189

p(yt|U, y1:t−1) = softmax(Wohdec
t + bo) (4) 190

where Wo and bo are trainable parameters. 191

The standard cross-entropy loss is used to opti- 192

mize the parameters θ. Given a training pair (U, r), 193

the objective is to minimize: 194

Ldialogue = −
T ′∑
t=1

log p(yt|U, y1:t−1) (5) 195

During inference, models auto-regressive gener- 196

ate the response r̂ based on the context U. 197

3.3 Evaluation 198

Offline Evaluation. A conventional practice for 199

evaluating dialogue generation model is formed 200

as a lexical similarity task. In particular, the dia- 201

logue generation model is first required to generate 202

response r̂ based on the golden dialogue context 203

U. And then the lexical similarity (i.e., F1, BLEU) 204

between the golden response r and the generated re- 205

sponse r̂ is calculated to measure the performance. 206

Online Evaluation. In real practice, chatbot is 207

used to communicate with human users online. As 208

an example for the l-th turn, the dialogue con- 209

text consists of both human utterances and chat- 210

bot utterances generated in previous turns, formed 211

as Û = {u1, r̂2,u3, r̂4, . . . ,ul−1}, where ui rep- 212

resents the i-th user utterances and r̂i represents 213

the chatbot prediction based on Ûi−1
1 . In this set- 214

ting, the golden context U does not exist, because 215

the context has been dynamically generated. An 216

intuitive method for online evaluation is to em- 217

ploy a human to talk with chatbot naturally. How- 218

ever this evaluation method is high-cost (Li et al., 219

2021a) and relative subjective (Dinan et al., 2019a), 220

which cannot be adopted in large-scale evalua- 221

tion. Following Deriu et al. (2020), we use bot- 222

bot conversations (self-talk) to simulate human- 223

bot conversation, and conduct a NLI-based clas- 224

sifier fc(Û, r̂) to estimate whether the generated 225

response is in line with the context. In particular, 226

given a prompt utterance u1, we conduct K turns 227
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self-talk conversations, yielding a list of utterances228

Û = {u1, r̂2, r̂3, . . . , r̂K}. At turn k ∈ [1,K], the229

coherence rate ck is calculated by:230

ck =

D∑
i=1

1(fc(Ûi−1
1 , r̂i) = 1)

D
(6)231

where D represents the number of instances for232

evaluation, 1(·) returns 1 if · is true and 0 other-233

wise.234

4 Method235

We take sampling-based methods to simulate on-236

line consentaneous (Section 4.1), and introduce a237

reinforcement learning method and a re-ranking238

method to optimize the dialogue coherence explic-239

itly (Section 4.2).240

4.1 Hierarchical Sampling241

The main difference between training and inference242

in real world practice when generating r̂ is whether243

we use the golden context U or the predicted con-244

text Û partly predicted by the model. We address245

this by introducing the hierarchical sampling to246

optimize dialogue coherence implicitly.247

Utterance Level Sampling. Our utterance-level248

sampling mechanism is shown in Figure 3. Given249

a golden context Ul−1
1 , we sample an utterance250

ui, i ∈ [1, l − 1] from a distribution (i.e., geomet-251

ric distribution ∼ Geo(p)), which tends to sample252

previous utterance to be replaced. After obtaining253

the utterance ui, we first ask the model to pre-254

dict the response r̂i based on the previous context255

U
′i−1
1 , and then we use the predicted utterance r̂i256

to replace the golden utterance ui in the golden con-257

text Ul−1
1 = {u1, . . . ,ui, . . . ,ul−1}, yielding the258

mixed context U
′l−1
1 = {u1, . . . , r̂i, . . . ,ul−1}.259

Finally, U
′l−1
1 are fed into the encoder. Accord-260

ingly, equation 5 is modified as below:261

Ldialogue = −
T ′∑
t=1

log p(yt|U
′l−1
1 , y1:t−1) (7)262

Semi-utterance Level Sampling. Our semi-263

utterance-level sampling method generates the re-264

sponse based on both the previous context and the265

first few tokens in the sampled utterance. In partic-266

ular, after obtaining the sampled utterance ui, we267

further keep the first j tokens in ui as additional268

cues to generate r̂′i. Intuitively, a larger j increase269

both semantic-level and lexical-level overlap be-270

tween the r̂′i and ui. A smaller j to simulate more271
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Figure 3: Training with proposed sampling-based
methods.

accumulate errors along with the inference steps. 272

The same as utterance level sampling in Section 4.1, 273

r̂′i is used to replace ui. 274

4.2 Explicit Coherence Optimization 275

Training. We introduce a reinforcement learning 276

method, which explicitly optimizes the coherence 277

between the context and the generated response. 278

We fine-tune the dialogue model Pθ to optimize the 279

reward model PRLθ . 280

As shown in Figure 4(a), we first ask the model 281

to generate a response r̂ based on the context U. 282

Then an external coherence classifier fc is used to 283

justify whether the response is coherent with the 284

context. We adopt the logits of fc corresponding to 285

the coherent label as the reward. In particular, the 286

input of fc is a context-response pair (U, r) and the 287

output is whether the response is coherent with the 288

context. For training fc, we turn context-response 289

pair (U, r) to [CLS] U [SEP] r [SEP], and 290

feed it into the RoBERTa model. The hidden state 291

of the [CLS] token is used for MLP followed by 292

a softmax scoring function to obtain the coherence 293

score. We train fc on DialoguE COntradiction 294

DEtection (DECODE) (Nie et al., 2021), which 295

is a human annotated corpus labeled with “con- 296

tradiction (non-coherent)” and “non-contradiction 297

(coherent)”. The classifier achieves 94.24 on DE- 298

CODE dev. 299

Following Ziegler et al. (2019) and Jaques 300

et al. (2020), we additionally introduce a Kull- 301

back–Leibler (KL) divergence term to prevent PRLθ 302

from drifting too far from Pθ (Figure 4(b)). For- 303

mally, given the context U, we calculate the KL- 304

divergence between two models’ output probabili- 305

ties 306

KL(U) =

T ′∑
t=1

log
pRLθ (xt|U,x1:t−1)

pθ(xt|U,x1:t−1)
(8) 307
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KL(U) can be considered as a KL-divergence308

for the language model task.309

Finally, we optimize PRLθ using Proximal Policy310

Optimization (PPO) (Schulman et al., 2017) with311

the clipped reward:312

Reward(U, r) = fc(U, r̂)− βKL(U) (9)313

where β is a hyper-parameter to control the con-314

tribution of the KL term. Intuitively, we use the315

classifier to encourage the model to generate coher-316

ent responses, and rely on the KL term to ensure317

fluency. The inference stage can be the same as the318

baseline methods in Section 3.2.319

Inference with Re-ranking. Another method to320

enhance dialogue coherence explicitly is inference321

with re-ranking. In particular, we first adopt beam322

search to produce multiple candidates responses,323

and then re-rank the utterances using the coherence324

classifier fc. At each turn, the candidate with the325

highest coherence score is used as the response.326

5 Experiments327

We train our model based on the golden context -328

response pair on Wizard of Wikipedia (Dinan et al.,329

2019b), a chit-chat dialogue benchmark. Two anno-330

tators are employed to chat based on an initial topic.331

The dataset contains 18,430 training dialogues with332

1,365 topics.333

5.1 Metrics334

Following Dinan et al. (2019b) and Kim et al.335

(2020), the perplexity (PPL) of the ground-truth336

response, given the golden context as input is taken337

as one automatic metric. Additionally, coherence338

rate and non-repetition rate are used as automatic339

metrics, and human evaluation is conducted.340

Coherence Rate. To evaluate online perfor-341

mance in real-world practice, we conduct self-talk342

to simulate the human-bot conversation, and mea-343

sure whether the generated response is coherent344

with the previous context as one automatic met-345

ric. The maximum interaction turn is set to 10. As346

model-based methods have been proved efficient347

and reliable (Nie et al., 2021; Cui et al., 2021; Li348

et al., 2021a), and we evaluate the dialogue coher-349

ence by consulting fc in Section 4.2.350

Non-Repetition Rate. Inspired by Li et al.351

(2016), we adopt non-repetition rate to quantify352

the diversity of the generated sequence during self-353

talk as a second automatic metric. We calculate354
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(b) Optimization.

Figure 4: Coherence-Oriented Reinforcement Learn-
ing.

distinct-1, distinct-2 and distinct-3 by counting the 355

diversity of uni-grams, bi-grams and tri-grams, re- 356

spectively. For each context Û, the distinct-n is 357

calculated by: 358

distinct−n =
COUNT(UNIQUEn-grami∈Û

(n-grami))

COUNT(TOTALn-grami∈Û
(n-gram))

(10) 359

where COUNT(), UNIQUE() and TOTAL() denote 360

count the item of a list, unique items in a list and 361

enumeration a list, respectively. A higher distinct-n 362

indicates a lower repetition rate during self-talk. 363

Human Evaluation. Following previous 364

work (Ritter et al., 2011), we conduct human 365

evaluation on self-talk to compare our hierarchical 366

sampling-based methods with our baseline multi- 367

turn BART by randomly sampling 50 instances 368

(including 500 utterances). Following Wu et al. 369

(2018), we employ three annotators to do a 370

side-by-side human evaluation. 371

In order to pursue more authentic evaluation in 372

real practice, we further adopt a human-bot con- 373

versation to online evaluate these two methods. In 374

particular, given a prompt utterance, we ask an an- 375

notator to chat with chatbot 10 turns. The final 376

human-bot test set we derive contains 50 dialogues 377

(including 500 utterances) for each model. We de- 378

fine three metrics for human evaluation, including 379

fluency, non-repetitive and coherence. Each aspect 380

is scored into three grades (0, 1 and 2) represent- 381

ing “bad”, “normal” and “good”, respectively. We 382

further calculate the Pearson correlation between 383

the human annotated coherence rate and the model 384

assigned coherence rate. 385
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Online Evaluation Offline

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 avg_5 avg_10 PPL

BART w/ Golden context 99.7 98.9 98.2 96.0 97.6 97.2 96.0 94.2 94.1 93.3 99.0 96.5 -

Single-turn BART 99.2 88.1 71.5 63.5 57.2 53.0 46.7 41.8 37.3 34.9 75.9 59.3 21.3
Multi-turn BART 99.2 96.5 79.2 67.7 48.7 43.0 32.5 28.4 24.5 21.9 78.3 54.2 17.8

w/ Utterance 98.4 97.0 89.3 76.7 71.6 59.1 60.5 45.7 49.8 35.6 86.6 68.4 17.2
w/ Semi-Utterance 98.1 97.2 85.7 69.2 64.0 50.5 52.1 36.4 43.6 29.1 82.9 62.6 17.1

w/ Hierarchical 99.2 97.6 91.2 78.5 72.3 60.7 57.8 45.5 44.3 33.0 87.8 68.0 17.4

Table 1: Test performance of self-talk given a prompt utterance on Wizard test set.

5.2 Baselines386

We compare the proposed methods with the follow-387

ing BART-based baselines:388

BART w/ Golden context. We fine-tune BART389

on the Wizard training set. During inference at turn390

k, the golden context Uk−1
1 is used to produce the391

response r̂k. Because the golden context is unavail-392

able in practice, the performance can be considered393

as the ceiling performance for alleviating the dis-394

crepancy between training and real-world testing.395

Multi-turn BART. During training, we fine-tune396

BART based on the golden context-response pair.397

Different from BART w/ Golden context, we use398

the context Ûk−1
1 predicted by previous turns to399

generate the response r̂k during inference.400

Single-turn BART. We fine-tune BART for the401

dialogue generation following the single-turn set-402

ting (Wang et al., 2013). Only the last predicted403

utterance r̂k−1 is fed to the encoder to generate r̂k404

for both training and inference. Single-turn BART405

ignores the history in previous utterances.406

5.3 Results407

Table 1 reports the performance of coherence rate408

as well as PPL for various methods, and Table 2409

shows the distinct-n for the predicted context gen-410

erated by these methods.411

Predicted Context vs Golden Context. We first412

compare whether the dialogue generation model is413

able to generate coherence response based on the414

golden context and the predicted context. As shown415

on the top of Table 1, the coherence rate of BART416

w/ Golden context does not decrease significantly417

with the number of turns increasing. The perfor-418

mance drops by only 5.6 points coherence rate from419

2 turns to 10 turns. However, given the predicted420

context, the coherence rate decreases sharply as the421

number of turns increase, with only 21.9 c10. This422

Model Dis-1 Dis-2 Dis-3

Multi-turn BART 24.37 32.30 36.35
w/ Hierarchical sampling 36.29 49.77 55.29

Table 2: Non-Repetition Rate (%) for n-gram. ‘Dis-n’
means ‘Distinct-n’.

shows the severity of the discrepancy problem in 423

real-world multi-turn dialogue generation. 424

Single-turn vs Multi-turn. In offline evaluation, 425

multi-turn BART achieves 17.8 PPL, which sig- 426

nificantly outperforms single-turn BART. This in- 427

dicates that context information is important for 428

response generation. However, we have mixed re- 429

sults in online evaluation. For example, multi-turn 430

BART outperforms single-turn BART when the 431

number of utterances in the context is less than 432

four in Table 1. When the number of utterances be- 433

comes larger, single-turn BART surprisingly gives 434

better results compared with multi-turn BART. The 435

reason can be that the mismatch between the golden 436

context and the predicted context hinders the model 437

performance as the number of utterances grows for 438

multi-turn model. 439

Sampling vs w/o Sampling. In Table 1, the pro- 440

posed sampling-based approach performs slightly 441

better on PPL compared to the multi-turn BART, 442

which shows our methods also work well in general 443

offline settings. When it comes to online settings, 444

our sampling-based methods outperform multi-turn 445

BART significantly in all metrics, although there 446

is no direct supervision signal on coherence. For 447

example, when measured in context corresponding 448

to 5 turns, multi-turn BART w/ hierarchical sam- 449

pling gives a c5 of 72.3%, as compared to 48.7% 450

by multi-turn BART. 451

Utterance vs Hierarchical. In Table 1, semi- 452

utterance level sampling underperforms utterance- 453

level sampling in online evaluation. This is be- 454

cause semi-utterance level sampling cannot accu- 455

rately simulate errors of the inference scene during 456
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Model Fluency Rep Coh

Self-talk

Multi-turn BART 1.93 0.89 0.74
w/ Hierarchical sampling 1.91 1.37 1.45

Human-bot Conversation

Multi-turn BART 1.89 0.96 0.63
w/ Hierarchical sampling 1.90 1.53 1.32

Table 3: Human Evaluation. ‘Rep’ and ‘Coh’ indicate
non-repetition and coherence, respectively.

(a) Multi-turn BART.

(b) Multi-turn BART w/ Hierarchical Sampling.

Figure 5: Coherence rate with explicit optimization.

training. For instance, the dialogue model tends457

to generate the response beginning with the word458

“I”. While semi-utterance level sampling keeps the459

first few tokens in the sampled utterance. When460

integrating utterance-level and semi-utterance level461

sampling, hierarchical sampling gives the best co-462

herence rate when context less than six turns, which463

achieves 87.8% on avg5. This shows the effec-464

tiveness of sampling in a hierarchy way, which465

simulates the errors on both utterance-level and466

token-level.467

Repetition. Table 2 reports the non-repetition 468

rate of our sampling-based methods, drawing multi- 469

turn BART as a reference. We find that our methods 470

give higher distinct-n measured by uni-gram, bi- 471

gram and tri-gram, which shows the effect of intro- 472

ducing hierarchical sampling to reduce copying and 473

repetition in model generated context. This also 474

provides support for the effectiveness of sampling- 475

based methods to increase the robustness of multi- 476

turn models. 477

Human Evaluation. Table 3 compares the hier- 478

archical sampling-based method with multi-turn 479

BART using human evaluation. All models are 480

able to produce fluent responses due to the power 481

of pre-training, where fluency exceeds 1.89 for all 482

models. Measured in non-repetition and coherence, 483

our hierarchical sampling method significantly out- 484

performs the baselines (p<0.01) on both self-talk 485

and human-bot conversation. In human-bot conver- 486

sation, the coherence increases largely from 0.96 to 487

1.53, showing that sampling enhances the robust- 488

ness of online multi-turn conversation. For self- 489

talk, the pearson correlation between the human 490

annotated and the model assigned coherence rate 491

is 0.78, which also demonstrates the effectiveness 492

of the model-based evaluation methods. 493

Explicit Objectives. Figure 5 shows the effect of 494

the explicit coherence optimization method. Train- 495

ing model with reinforcement learning outperforms 496

with MLE measured by coherence rate, showing 497

the usefulness of optimizing the dialogue coher- 498

ence directly. We also find that the coherence rate 499

improves significantly after re-ranking in the infer- 500

ence scene for both multi-turn BART and multi- 501

turn BART w/ hierarchical sampling. Furthermore, 502

as the number of candidate utterances increases, 503

the coherence rate increases. Multi-turn BART 504

w/ beam=20 even achieves 86.42 c10 compared 505

with 21.9 c10 for multi-turn BART. This indicates 506

that the dialogue model can give coherent response 507

candidates, which can be re-ranked by an external 508

coherence classifier to produce a coherent response. 509

Our hierarchical sampling-based methods also con- 510

sistently perform better than multi-turn BART by 511

introducing coherence re-ranking. 512

6 Analysis 513

6.1 The Number of Golden Turns 514

We investigate whether a larger number of golden 515

turns at the start is able to help model to produce 516
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u1(Prompt) My favorite video game is Quake. Have you ever played it?

Multi-turn BART

r̂2 I have not played it, but I know it was developed by the Quake team.
r̂3 Oh, Quake was developed by the Quake team. It’s a great game!
r̂4 I know it was developed by the Quake team. It was the first video game to be released commercially.

Multi-turn BART w/ Hierarchical sampling

r̂2 I have not played it, but I have heard it is a very good game.
r̂3 Yes it is. It was developed by the Quake team. It’s a team-based game.
r̂4 That sounds like a fun game to play with friends. What other games do you like?

Table 4: Examples of generated responses given a prompt utterance on the Wizard of Wikipedia Test Seen.

Figure 6: Contradiction rate across different turn. Con-
tradiction rate defined by (1− coherence rate)×100%.

Figure 7: Coherence rate across the number of golden
utterances at the beginning.

more coherent responses during inference. Fig-517

ure 7 shows the coherence rate against the number518

of golden utterances at the beginning during the519

self-talk, drawing using the golden context as a520

reference. It can be seen that a larger number of521

golden utterance at the beginning yields a larger co-522

herence rate in the first few turns. However, the co-523

herence rate decreases sharply with the number of524

turns increasing, which shows that simply increas-525

ing beginning golden turns cannot help to alleviate526

the discrepancy between training and real-world527

testing.528

6.2 Utterance-level Contradiction 529

To understand which turns in the context leads to an 530

incoherence response, we introduce an utterance- 531

based classifier to probe different utterances during 532

generating the response at 10-th turn in self-talk. 533

As shown in Figure 6, both models tend to generate 534

response that contradict with the early turns. This 535

shows that current models do not take full advan- 536

tage of the long-range dialogue context. Compared 537

with the multi-turn BART, the proposed sampling- 538

based methods significantly decrease the contradic- 539

tion rate in the early turns, and achieves the similar 540

results in the later turns, which shows our hierar- 541

chical sampling-based methods are able to improve 542

robustness of multi-turn models by alleviating the 543

error accumulation. 544

6.3 Case Study 545

We present an example to better understanding of 546

multi-turn BART and our model in Table 4. We 547

observe that both models are able to generate rea- 548

sonable response r̂2. Because the context for gener- 549

ating r̂2 contains prompt utterance (golden context) 550

u1 only. However, when the model encounters the 551

predicted utterance as context, multi-turn BART 552

tends to generate response with repetition and con- 553

tradiction. With hierarchical sampling, our model 554

produces coherence responses during self-talk. 555

7 Conclusion 556

We quantified online dialogue generation in prac- 557

tice, and proposed the hierarchical sampling-based 558

methods to alleviate the discrepancy between train- 559

ing and real-world testing. We further introduce an 560

external coherence classifier on both training and 561

inference to boost the performance. Experiments 562

demonstrate the effectiveness of our methods for 563

generating robust online response on both self-talk 564

and human-bot conversation. 565
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A Appendix801

A.1 Setup802

We implement our methods with transformers803

and choose bart-base as the pre-trained trans-804

former language model. AdamW (Loshchilov and805

Hutter, 2019) with a batch size of 32 is used to806

optimize parameters. The initial learning is set as807

5e-5, which will be halved in each training iter-808

ation. Following Lewis et al. (2020), we set the809

maximum input tokens as 512. For the coherence-810

oriented reinforcement learning method, we set β811

in Equation 9 as 0.2. For computational efficiency,812

we truncate the maximum decode length as 20 to813

calculate the KL-divergence.814
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