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Abstract
Density ratio estimation (DRE) is a paramount
task in machine learning, for its broad applica-
tions across multiple domains, such as covariate
shift adaptation, causal inference, independence
tests and beyond. Parametric methods for estimat-
ing the density ratio possibly lead to biased results
if models are misspecified, while conventional
non-parametric methods suffer from the curse
of dimensionality when the dimension of data
is large. To address these challenges, in this paper,
we propose a novel approach for DRE based on
the projection pursuit (PP) approximation. The
proposed method leverages PP to mitigate the im-
pact of high dimensionality while retaining the
model flexibility needed for the accuracy of DRE.
We establish the consistency and the convergence
rate for the proposed estimator. Experimental
results demonstrate that our proposed method out-
performs existing alternatives in various applica-
tions.

1. Introduction
Density ratio estimation (DRE) is a fundamental concept in
machine learning that focuses on directly estimating the ra-
tio between two probability density functions (PDFs), avoid-
ing the need to estimate each density function individually.
DRE has widespread applications, such as covariate shift
adaptation (Shimodaira, 2000; Sugiyama et al., 2007), out-
lier detection (Hido et al., 2011), independence test (Ai
et al., 2024), mutual information estimation (Suzuki et al.,
2009; Ai et al., 2024), importance sampling (Meng & Wong,
1996; Sinha et al., 2020), and treatment effect estimation in
causal inference (Ai et al., 2021; Matsushita et al., 2023).
See Sugiyama et al. (2012) for a comprehensive review of
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DRE and its applications in machine learning.

There are a variety of methods concerning the DRE prob-
lem in the existing literature, which can be divided into
three paradigms: the parametric methods (Liu et al., 2013;
2017; Nagumo & Fujisawa, 2024), the nonparametric lin-
ear sieve methods (Kanamori et al., 2009; Sugiyama et al.,
2008; 2010) and the nonparametric neural network methods
(Nam & Sugiyama, 2015; Fang et al., 2020; Rhodes et al.,
2020). The validity of the parametric modeling builds on
the correct model specification for the density ratio. If the
model is misspecified, the results may be severely biased.
Nonparametric neural network methods (Nam & Sugiyama,
2015; Fang et al., 2020; Rhodes et al., 2020) can achieve
superior performance without imposing parametric model
assumptions; however, they require a substantial number of
training samples to learn the extensive parameters involved.
Furthermore, theoretical guarantees for neural network esti-
mations remain insufficient.

Nonparametric linear sieve estimation is a statistical tech-
nique that combines the flexibility of nonparametric meth-
ods with the simplicity of linear models (Chen, 2007b).
The term “linear sieve" refers to a sequence of increasingly
complex linear models that are used to approximate the un-
known function of interest. With different choices of criteria,
e.g. squared-loss (Kanamori et al., 2009; Sugiyama et al.,
2011; Yamada et al., 2013), Kullback–Leibler divergence
(Sugiyama et al., 2008; Tsuboi et al., 2009), the method of
sieves is highly flexible in estimating complicated models.
Unlike nonparametric neural network methods that can be-
come excessively complex and computationally intensive,
the sieve approach seeks to balance model complexity with
interpretability and computational feasibility.

Although the linear sieve methods enjoy computational con-
venience and theoretical support (Kanamori et al., 2010),
they suffer from a significant challenge known as the curse
of dimensionality. Specifically, as the dimension of the data
increases, there is a notable and substantial deterioration in
the performance of these linear sieve methods. This phe-
nomenon is clearly evidenced by both ratio pattern visualiza-
tion and estimation error in our experimental results. Con-
ventional linear sieve methods, such as KLIEP (Sugiyama
et al., 2007) and uLSIF (Kanamori et al., 2009) can cor-
rectly capture the pattern of density ratio functions when
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the dimension of variables is 2 (see in Figure 1). However,
they experience a significant deterioration in performance
when the dimension of variables increases to 10 (see Figure
2). The root mean squared logarithmic error (RMSLE) for
the DRE based on conventional linear sieve methods further
quantifies this performance decline, exhibiting a dramatic
escalation as the dimension of variables increases (see in
Figure 3). This deterioration in performance is attributed to
the sparsity of the data in high-dimensional spaces, which
hinders the ability of the linear sieve methods to effectively
learn from the data and generalize to new, unseen instances.

To address the curse of dimensionality, a variety of 𝐷3 (Di-
rect DRE with Dimension reduction) methods have been pro-
posed (Sugiyama et al., 2010; 2011; Yamada & Sugiyama,
2011) by incorporating a dimension reduction step prior
to applying a linear sieve estimation. These dimension re-
duction techniques assume that the density ratio function
is located in a low-dimensional intrinsic space character-
ized by a linear transform of the high-dimensional variables.
However, this fundamental assumption can be restrictive in
many practical scenarios.

To overcome these limitations, in this paper, we propose a
novel method for DRE based on the projection pursuit (PP)
(Friedman & Tukey, 1974). The core idea is to approximate
the density ratio function by a product of PP functions and
estimate them iteratively. Each of the PP functions is a pro-
jection of the target function to a low-dimensional space.
As a result, at each iteration, we only need to estimate a
semiparametric single-index function based on a univari-
ate linear sieve basis. It is known that the approximation
error vanishes as the number of iterations approaches infin-
ity, mitigating the curse of dimensionality when the target
function can be expressed as many (or infinitely many) low-
dimensional projections along different directions (Diaconis
& Shahshahani, 1984). We further provide a theoretical jus-
tification for our method by establishing its consistency and
convergence rate for the proposed estimator. In application,
we apply the proposed method in causal inference, mutual
information estimation and covariate shift adaptation, and
find consistent improvements in performance.

This paper is organized as follows. Section 2 discusses
recent advancements in the field through analysis of related
work. Section 3 introduces the conventional methods for
DRE from the perspective of model specification. In Section
4, we propose the projection pursuit DRE method that can
achieve efficient estimation even in high-dimensional data
settings, and we establish the theoretical properties. Section
5 demonstrates the superiority of our proposed method in
various applications.

2. Related Work
While this work primarily addresses the curse of dimension-
ality in DRE, the field has also made significant progress
on two related challenges: stabilizing estimators through
effective regularization strategies, and addressing geometric
disparities between distributions known as density-chasm
effects.

Regularized Kernel Learning Methods. The regular-
ization scheme within reproducing Kernel Hilbert space
(RKHS) has been developed for estimating the DRE prob-
lem. Que & Belkin (2013) reformulated the DRE problem
as an inverse problem in terms of an integral operator corre-
sponding to a kernel, then proposed a regularized estimation
method with an RKHS norm penalty. Gizewski et al. (2022)
applied the regularized kernel methods in the context of
unsupervised domain adaptation under covariate shift and
developed the convergence rates. Gruber et al. (2024) pro-
posed iterated regularization and developed an improved
error bounds faster than the non-iterated error bound under
the Bregman distance and certain regular conditions (e.g.
source condition and capacity condition). Nguyen et al.
(2024) established the pointwise convergence rate of the reg-
ularized estimator taking into account both the smoothness
of the density ratio and the capacity of the space in which it
is estimated.

Density-Chasm Problem Density ratio estimation faces
an additional challenge known as the density-chasm prob-
lem, which occurs when the distributions differ substan-
tially (Rhodes et al., 2020; Choi et al., 2021; 2022). This
phenomenon arises because samples are less likely to be
observed in the low-density regions between the two dis-
tributions. To overcome this challenge, Choi et al. (2021)
proposed an invertible parametric transform mapping the
data onto a shared feature space, thereby bringing the trans-
formed densities become closer. Then they estimate the
density ratio in the feature space based on the key property
that, the ratio remains invariant under such invertible trans-
formation. Notably, this invertible transformation preserves
the original data dimensionality. Therefore, it is necessary to
clarify that they neither map the data to a low-dimensional
latent space nor address the curse of dimensionality as fo-
cused by our paper.

3. Density Ratio Estimation
Let 𝑝(𝒙) and 𝑞(𝒙) be two probability density functions of
the target and reference datasets respectively, where 𝒙 ∈ R𝑑
is a 𝑑-dimensional variable. The density ratio estimation
(DRE) problem is to estimate

𝑟∗ (𝒙) :=
𝑝(𝒙)
𝑞(𝒙)
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based on two independently and identically distributed
(𝑖.𝑖.𝑑.) samples from the two referred distributions, i.e.
{𝒙𝑝
𝑖
}𝑛𝑝
𝑖=1

i.i.d.∼ 𝑝(𝒙) and {𝒙𝑞
𝑖
}𝑛𝑞
𝑖=1

i.i.d.∼ 𝑞(𝒙). To make the den-
sity ratio function 𝑟∗ (𝒙) well-defined, we assume 𝑞(𝒙) dom-
inates 𝑝(𝒙), i.e. 𝑝(𝒙) > 0 implies that 𝑞(𝒙) > 0, andX ⊂ R𝑑
denotes the support of 𝑟∗ (𝒙).

Below, we briefly summarize the existing methods for the
DRE problem and highlight their limitations.

Parametric Methods The density ratio function is as-
sumed to satisfy the following parametric model (Liu et al.,
2013; 2017; Nagumo & Fujisawa, 2024):

𝑟∗ (𝒙) = 𝐶 exp{𝜽⊤ℎ(𝒙)},

where 𝐶 ∈ R is a normalizing constant, ℎ(𝒙) : R𝑑 ↦→ R𝑝

is the feature transformation function, 𝑝 is a known fixed
positive integer, and 𝜽 ∈ R𝑝 is the parameter of interest to
be estimated. See Nagumo & Fujisawa (2024, Appendix A)
for more detailed discussion on this parametric formulation.
The parametric formulation is particularly useful for sparse
estimation in high-dimensional problems. However, it relies
heavily on the correct model specification and may fail
to capture non-linear relationships or interactions within
the data as effectively as non-parametric methods. This
limitation diminishes their adaptability and flexibility in
handling complex or varying datasets.

Nonparametric Linear Sieve Methods The density ratio
function is approximated by a sequence of increasingly
complex linear models (Kanamori et al., 2009; Sugiyama
et al., 2008; 2012):

𝑟∗ (𝒙) ≈ 𝑟 𝑙𝑚𝑝 (𝒙) := 𝜽⊤𝝍(𝒙),

or log-linear models (Kanamori et al., 2010; Tsuboi et al.,
2009):

𝑟∗ (𝒙) ≈ 𝑟 𝑙𝑙𝑚𝑝 (𝒙) := 𝐶 exp{𝜽⊤𝝍(𝒙)},

where 𝝍(𝒙) : R𝑑 ↦→ R𝑝 is a user-specified basis function
(also called “sieve" in statistical literature), 𝜽 ∈ R𝑝 is the
𝑝-dimensional coefficient parameter, and 𝑝 ∈ N is unknown
and will go to infinity at an appropriate rate as the sample
size increases. The linear sieve methods adaptively learn
the model parameters (𝜽 , 𝑝) from the data by minimizing
the empirical discrepancy between the true density ratio
function and its linear sieve estimators under some distance
measure (e.g. the Kullback-Leibler divergence, the squared
distance, and the general Bregman distance). The linear
sieve methods seek to balance model complexity with inter-
pretability and computational feasibility.

However, the performance of linear sieve methods will sig-
nificantly deteriorate as the dimension of 𝒙 becomes large.
Such a curse of dimensionality can be explained as fol-
lows. The linear sieve approximation error for the density

ratio function is of order 𝑝−𝑠/𝑑 (Lorentz, 1986, Theorem 8),
where 𝑠 is the Hölder-smoothness of 𝑟∗ (𝒙), thus it requires
𝑝 larger than [1/𝜖]𝑑/𝑠 to achieve an 𝜖-error approximation
accuracy. On the other hand, a large 𝑝 will significantly en-
large the variance of these estimators; indeed, the variance
of the linear sieve estimator is of order

√︁
𝑝/𝑛 (Li & Racine,

2023, Theorem 15.1).

Deep Neural Network Methods Several deep neural
network-based methods have been proposed for the DRE
problem (Nam & Sugiyama, 2015; Fang et al., 2020; Rhodes
et al., 2020; Kato & Teshima, 2021; Choi et al., 2022), with
the aim of improving performance in high-dimensional data.
Despite their superior performance, these methods tend to
lack good interpretability and theoretical guarantees. More-
over, the effectiveness of deep neural network estimation
is intrinsically dependent on the availability of substantial
training datasets, and its computational burden is much
heavier than the parametric and linear sieve methods.

4. Projection Pursuit DRE
Projection pursuit (PP) is a statistical technique used for mul-
tidimensional data analysis. The key idea is to approximate
a high-dimensional function by progressively projecting it
onto efficient low-dimensional spaces that capture the most
significant features of the data structure. It was first de-
veloped by Friedman & Tukey (1974) for exploratory data
analysis and has been applied to various problems such as
PP-classification (Lee et al., 2005; da Silva et al., 2021), PP-
regression (Friedman & Stuetzle, 1981; Zhan et al., 2025),
and PP-density estimation (Friedman et al., 1984; Aladjem,
2005). Being inspired by the strengths of PP in mitigating
the curse of dimensionality (Huber, 1985), we propose a
PP-based method for estimating the density ratio 𝑟∗ (𝒙) and
develop valid asymptotic theories.

4.1. Projection Pursuit Approximation

We propose to approximate the density ratio function 𝑟∗ (𝒙)
by the multiplicative projection pursuit:

𝑟∗ (𝒙) ≈ 𝑟𝐾 (𝒙) =
𝐾∏
𝑘=1

𝑓𝑘 (𝒂⊤𝑘 𝒙) , (1)

where 𝐾 ∈N denotes the number of projections, {𝒂𝑘}𝐾𝑘=1 are
unit 𝑑-dimensional vectors indicating the projection direc-
tions, and { 𝑓𝑘}𝐾𝑘=1 are unknown univariate pursuit functions.
That is, the PP approximation (1) converts the estimation of
𝑟∗ (𝒙), whose direct estimation is challenging in the case of
large-dimensional 𝒙, to simpler tasks of estimating projected
univariate functions { 𝑓𝑘 (𝒂⊤𝑘 𝒙)}

𝐾
𝑘=1.

Estimation of { 𝑓𝑘 (𝒂⊤𝑘 𝒙)}
𝐾
𝑘=1 can be carried out iteratively

based on the relation 𝑟𝑘 (𝒙) = 𝑟𝑘−1 (𝒙) 𝑓𝑘 (𝒂⊤𝑘 𝒙) for 𝑘 ∈
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{1, ...,𝐾}, where 𝑟0 (𝒙) ≡ 1. Specifically, let E𝑞 [·] and E𝑝 [·]
denote the expectation taken with respect to (w.r.t.) the prob-
ability densities 𝑞(·) and 𝑝(·), respectively. Suppose that the
first 𝑘 −1 terms are given, that is 𝑟𝑘−1 (𝒙) =

∏𝑘−1
𝑚=1 𝑓𝑚 (𝒂⊤𝑚𝒙)

is given, the 𝑘th projection direction 𝒂𝑘 and the 𝑘th pur-
suit function 𝑓𝑘 can be determined by minimizing the 𝐿2-
distance, E𝑞{[𝑟∗ (𝒙) − 𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)]2}. We show in Ap-
pendix E that minimizing the 𝐿2-distance w.r.t. 𝑓 or 𝒂 is
equivalent to minimizing

𝐻 ( 𝑓 , 𝒂) :=E𝑞 [𝑟2
𝑘−1 (𝒙) 𝑓

2 (𝒂⊤𝒙)]
−2E𝑝 [𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)] . (2)

For model identification, we assume 𝒂𝑘 ∈ S+𝑑 as in Wang
& Yang (2009), where S+

𝑑
is the 𝑑 dimensional upper unit

hemisphere, i.e. S+
𝑑
= {𝒂 = (𝑎1, . . . , 𝑎𝑑) ∈ R𝑑 , ∥𝒂∥ = 1, 𝑎1 >

0}, and ∥ · ∥ denotes the Euclidean norm, i.e. for a vector 𝒗,
∥𝒗∥ :=

√
𝒗⊤𝒗.

4.2. Estimation Procedure

Since the function space for searching 𝑓𝑘 is infinitely dimen-
sional, direct optimization based on the sample analogue of
(2) is impossible. We consider seeking the estimator of the
pursuit function 𝑓𝑘 (𝑧), for 𝑧 ∈ {𝒂⊤𝒙 : 𝒂 ∈ S+

𝑑
,𝒙 ∈ X}, from

the linear sieve class:

F𝐽𝑘 :=
𝜷⊤𝚽𝑘 (𝑧) =

𝐽𝑘∑︁
𝑗=1
𝛽 𝑗𝜙 𝑗 (𝑧), 𝐽𝑘 ∈ N

 ,
where {𝜙 𝑗 }𝐽𝑘𝑗=1 is a sequence of univariate basis, 𝚽𝑘 (𝑧) =
(𝜙1 (𝑧), . . . , 𝜙𝐽𝑘 (𝑧))⊤, and 𝜷 = (𝛽1, ..., 𝛽𝐽𝑘 )⊤ is the approx-
imation coefficients. The rationale is that any continuous
function can be approximated arbitrarily well by a linear
sieve in F𝐽𝑘 as 𝐽𝑘 goes to infinity (see e.g., Chen, 2007b).

For 𝑘 = 1, . . . , 𝐾 , based on (2) and the linear sieve class, we
define the estimator in the 𝑘th iteration of ( 𝑓𝑘 , 𝒂𝑘) by

𝑓𝑘 (𝑧) := �̂�
⊤
𝑘𝚽𝑘 (𝑧), ( �̂�𝑘 , �̂�𝑘) := argmin

𝒂,𝜷
L̂𝑘 (𝒂, 𝜷;𝜆) (3)

where

L̂𝑘 (𝒂, 𝜷;𝜆) :=
1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) · [𝜷⊤𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )]

2 (4)

− 2
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 ) · 𝜷

⊤𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) +𝜆∥𝜷∥
2

is the regularized empirical loss, where 𝑟𝑘−1 (𝒙) :=∏𝑘−1
𝑚=0 𝑓𝑚 ( �̂�⊤𝑚𝒙), ∥𝜷∥2 := 𝜷⊤𝜷 is the ℓ2-penalty on the

model complexity, and 𝜆 > 0 is a tuning parameter. Here,
we use the ℓ2-penalty to circumvent the over-fitting prob-
lem, while maintaining a closed-form solution in 𝜷 for the
problem (4) when keeping 𝒂 fixed.

Proposition 4.1. For every fixed 𝒂 ∈ R𝑑 , we have

�̂�𝑘 (𝒂) := argmin
𝜷
L̂𝑘 (𝒂, 𝜷;𝜆)

=

[
𝒁𝑘 (𝒂)⊤𝒁𝑘 (𝒂)

𝑛𝑞
+𝜆𝑰𝐽𝑘

]−1 [
𝑾𝑘 (𝒂)
𝑛𝑝

]
,

where

𝒁𝑘 (𝒂) := {𝑟𝑘−1 (𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )}
𝑛𝑞

𝑖=1 ∈ R
𝑛𝑞×𝐽𝑘 ,

𝑾𝑘 (𝒂) :=
𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝑘 𝒙

𝑝

𝑖
) ∈ R𝐽𝑘 ,

and 𝑰𝐽𝑘 is an identity matrix of size 𝐽𝑘 × 𝐽𝑘 .

Proof. Using above notation, L̂𝑘 (𝒂, 𝜷;𝜆) can be written as
a quadratic function of 𝜷:

L̂𝑘 (𝒂, 𝜷;𝜆) = 1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
[𝜷⊤𝑟𝑘−1 (𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )]

2

− 2
𝑛𝑝

𝜷⊤

[
𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 ) ·𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 )

]
+𝜆𝜷⊤𝜷

= 𝜷⊤
[
𝒁⊤
𝑘
(𝒂)𝒁𝑘 (𝒂)
𝑛𝑞

+𝜆𝑰𝐽𝑘
]
𝜷− 2

𝑛𝑝
𝜷⊤𝑾𝑘 (𝒂).

Differentiating it with respect to 𝜷 and setting the derivative
to zero give the desired result. □

By Proposition 4.1 and (3), the estimators of 𝑓𝒂 (𝑧) and 𝒂𝑘
can be represented respectively as

𝑓𝒂,𝑘 (𝑧) := �̂�𝑘 (𝒂)⊤𝚽𝑘 (𝑧) , (5)

and

�̂�𝑘 =argmin
𝒂∈R𝑑

L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆)

=argmin
𝒂∈R𝑑

1
2𝑛𝑞
∥𝒁𝑘 (𝒂) �̂�𝑘 (𝒂)∥2

− 1
𝑛𝑝

�̂�𝑘 (𝒂)⊤𝑾𝑘 (𝒂) +𝜆 �̂�𝑘 (𝒂)⊤ �̂�𝑘 (𝒂) .

Then, we have 𝑓𝑘 (𝑧) = 𝑓�̂�𝑘 ,𝑘 (𝑧), the estimators of
{𝑟𝑘 (𝒙)}𝐾𝑘=1 are defined by

𝑟𝑘 (𝒙) = 𝑟𝑘−1 (𝒙) 𝑓𝑘 ( �̂�⊤𝑘 𝒙), 𝑘 ∈ {1, ...,𝐾} ,

and the estimator of the density ratio function 𝑟∗ (𝒙) is given
by 𝑟𝐾 (𝒙). In practice, to ensure non-negativity of the esti-
mated density ratio function, we truncate the negative values
of 𝑓𝑘 to the minimum positive estimated values for every
iteration. The complete process of our approach given tuned
hyper-parameters is summarized in Algorithm 1.
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In the following theorem, we focus on each iteration 𝑘

and show that, given the estimate 𝑟𝑘−1 (𝒙) of 𝑟𝑘−1 (𝒙), as the
sample sizes 𝑛𝑝 , 𝑛𝑞→∞, 𝑓𝒂,𝑘 and �̂�𝑘 converge respectively
to

𝑓𝒂,𝑘 := argmin
𝑓

𝐻 ( 𝑓 , 𝒂) , (6)

and
𝒂𝑘 := argmin

𝒂
𝐻 ( 𝑓𝒂,𝑘 , 𝒂) . (7)

Theorem 4.2. Suppose that Assumptions F.1 to F.4 in
Appendix F hold. Then, for each 𝑘 = 1, . . . , 𝐾, if
𝑛−1
𝑝

∑𝑛𝑝

𝑖=1{𝑟𝑘−1 (𝒙𝑝𝑖 ) − 𝑟𝑘−1 (𝒙𝑝𝑖 )}2 =𝑂 𝑝 (𝜉𝑛,𝑘−1), we have

sup
𝒂∈A

sup
𝑧∈Z

�� 𝑓𝒂,𝑘 (𝑧) − 𝑓𝒂,𝑘 (𝑧)��
=𝑂 𝑝

(
𝐽−𝑠𝑘 𝜁0 (𝐽𝑘) +

√︁
𝜉𝑛,𝑘−1𝜁0 (𝐽𝑘)2

+
√
𝐽𝑘𝜁0 (𝐽𝑘)2√
𝑛𝑞 ∧𝑛𝑝

)
, (8)

and

∥ �̂�𝑘 − 𝒂𝑘 ∥ =𝑂 𝑝

({
𝐽
−(𝑠−1)
𝑘

+
√︁
𝜉𝑛,𝑘−1 (9)

+
√
𝐽𝑘√

𝑛𝑞 ∧𝑛𝑝

}
·
√︃
𝜁1 (𝐽𝑘)

)
,

where A ⊂ S+
𝑑

is a compact set containing 𝒂𝑘 , Z :=
{𝒂⊤𝒙 : 𝒂 ∈ A and 𝒙 ∈ X}, 𝑠 denotes the number of
continuous derivatives that 𝑓𝒂,𝑘 (𝑧) possesses w.r.t. 𝑧 ∈
Z for any 𝒂 ∈ A, 𝜁0 (𝐽𝑘) is a sequence of constants
such that sup𝑧∈Z ∥𝚽𝑘 (𝑧)∥ ≤ 𝜁0 (𝐽𝑘), 𝜁1 (𝐽𝑘) is a se-
quence of constants such that the maximum eigenvalue of
E[𝚽(1)

𝑘
(𝒂⊤𝒙)𝚽(1)

𝑘
(𝒂⊤𝒙)⊤] is bounded by 𝜁1 (𝐽𝑘) uniformly

in 𝒂 ∈ A, and 𝑛𝑞 ∧𝑛𝑝 = min(𝑛𝑞 , 𝑛𝑝).
Finally, we have

sup
𝒙∈X
|𝑟𝐾 (𝒙) − 𝑟𝐾 (𝒙) | =𝑂 𝑝

(
𝐾∑︁
ℓ=1

[{
𝐽
−(𝑠−1)
ℓ

+
√︄

𝐽ℓ

𝑛𝑞 ∧𝑛𝑝

}
×
𝐾∏
𝑖=ℓ

{√︃
𝜁1 (𝐽𝑖) ∨ 𝜁2

0 (𝐽𝑖)
}])

,

where 𝜁1 (𝐽𝑘) ∨ 𝜁0 (𝐽𝑘) = max{𝜁1 (𝐽𝑘), 𝜁0 (𝐽𝑘)}.

The proof is available in Appendix F. Assumption F.1 im-
poses compactness conditions on X and parameter spaces
A. Assumption F.2 requires 𝑓𝒂,𝑘 (𝑧) to be bounded and
bounded away from 0, 𝑠-times continuously differentiable
w.r.t 𝑧 ∈ Z and has a bounded derivative w.r.t. 𝒂 ∈ A, which
are some common regularity conditions in the literature.
Assumption F.3 excludes near multicollinearity among the
basis functions, 𝚽𝑘 (𝑧), and regulates the rate of 𝐽𝑘 relative

to 𝑛𝑝 and 𝑛𝑞 to guarantee the consistency of our estimators.
Such conditions are standard in sieve regression. Assump-
tion F.4 requires the Hessian matrix of the sieve approxima-
tion of 𝐻 ( 𝑓 , 𝒂) to be positive definite at its minimum w.r.t.
𝒂, which is met when the minimum is in the interior of A.

Algorithm 1 ppDRE

1: Input: samples {𝒙𝑝
𝑖
}𝑛𝑝
𝑖=1 and {𝒙𝑞

𝑖
}𝑛𝑞
𝑖=1; number of basis

functions 𝐽𝑘 , learning rate 𝛿, ridge penalty parameter 𝜆,
maximum steps 𝐾 .

2: Initialize: 𝑟0 (𝒙) ≡ 1
3: for 𝑘 = 1 to 𝐾 do
4: Initialize randomly 𝒂 (0) ,𝜸 (0) , and set 𝑡 = 1.
5: while not converge do
6: Calculate

𝒁 (𝑡 )
𝑘
← {𝑟𝑘−1 (𝒙𝑞𝑖 )𝚽𝑘 (𝒂 (𝑡−1)⊤𝒙𝑞

𝑖
;𝜸 (𝑡−1) )}𝑛𝑞

𝑖=1,

𝑾 (𝑡 )
𝑘
←

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂 (𝑡−1)⊤

𝑘
𝒙𝑝
𝑖

;𝜸 (𝑡−1) ).

7: Update

𝜷 (𝑡 )
𝑘
←

[
1
𝑛𝑞

𝒁 (𝑡 )⊤
𝑘

𝒁 (𝑡 )
𝑘
+𝜆𝑰 𝐽𝑘

]−1 [
1
𝑛𝑝

𝑾 (𝑡 )
𝑘

]
.

8: Evaluate the loss function

L̂ (𝑡 )
𝑘
← 1

𝑛𝑞
∥𝒁 (𝑡 )
𝑘

𝜷
(𝑡 )
𝑘
∥2− 2

𝑛𝑝
𝜷 (𝑡 )⊤
𝑘

𝑾
(𝑡 )
𝑘
+𝜆𝜷 (𝑡 )⊤

𝑘
𝜷 (𝑡 )
𝑘
.

9: Update (𝒂 (𝑡 )
𝑘
,𝜸 (𝑡 )
𝑘
) with stochastic gradient de-

scent algorithm, such as Adam, with learning rate
𝛿.

10: Update 𝑡← 𝑡 +1
11: end while
12: Update 𝑟𝑘 (𝒙) ← 𝑟𝑘−1 (𝒙) · 𝜷 (𝑡 )⊤𝑘

𝚽𝑘 (𝒂 (𝑡 )⊤𝑘
𝒙;𝜸 (𝑡 )

𝑘
)

13: end for
14: return 𝑟𝐾 (𝒙).

Remark 4.3 (Selection of Tuning Parameters). In practice,
we suggest using cross-validation (CV) to determine the
number of projections 𝐾 as well as other tuning parameters.
Specifically, in experiments and applications, we adopt the
Gaussian basis 𝜙 𝑗 (𝑧) = 𝜙(𝑧;𝛾 𝑗 ) = exp{−(𝑧−𝛾 𝑗 )2/2}, where
𝛾 𝑗 is the location parameter of the Gaussian basis. For each
𝑘 ∈ {1, . . . , 𝐾}, we determine {�̂� 𝑗 }𝐽𝑘𝑗=1, together with �̂�𝑘 and

�̂�𝑘 jointly by minimizing the loss function L̂𝑘 . We monitor
the minimal value of the loss function L̂𝐾 in a validation
set for a gradually growing 𝐾 , and determine the optimal 𝐾
until no further improvement is observed.
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Figure 1. 2-D DRE Experiment. The warmer color represents a
higher estimated density ratio value. The top-left plot in each panel
shows the true density ratio, while the remaining plots illustrate
the estimates using various methods.

5. Experiments and Applications
In this section, we compare our proposed projection pur-
suit density ratio estimation (ppDRE) method with existing
alternatives using experimental and real-world data. The
compared methods include two classical linear sieve meth-
ods, KLIEP (Sugiyama et al., 2007) and uLSIF (Kanamori
et al., 2009), a linear sieve method with dimension reduction,
D3-LHSS (Sugiyama et al., 2011), a probabilistic classifi-
cation approach (Qin, 1998; Bickel et al., 2007) based on
machine learning classifiers, two latest baselines, fDRE
(Choi et al., 2021) and RRND (Nguyen et al., 2024), and
a neural network-based density ratio estimation (nnDRE)
method, which is a variant of our framework in the sense
that it replaces the projection pursuit with a feedforward
neural network to model the density ratio. Detailed descrip-
tions of these baselines and implementation specifics are
provided in Appendix A and Appendix B.

5.1. 2-D DRE Experiment

We first consider a toy example where 𝑝(𝒙) =N(0𝑑 , 𝑰𝑑) and
𝑞(𝒙) =N(0𝑑 ,2𝑰𝑑), where N(𝜇,Σ) denotes a multivariate
Gaussian probability density with mean 𝜇 and covariance
matrix Σ, and 𝑰𝑑 denotes an identity matrix of size 𝑑. We
consider a low-dimensional case with 𝑑 = 2, which facil-
itates visualization of the estimated results. The sample
sizes are 𝑛𝑝 = 𝑛𝑞 = 5000. Estimates of this density ratio
are shown in Figure 1a, and the corresponding contour plot
is presented in Figure 1b. These figures demonstrate that
the proposed ppDRE method and the uLSIF method signifi-
cantly outperform the other baseline approaches, yielding
estimates that closely align with the true density ratio.
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Figure 2. Stabilized weights estimation (𝑑𝑋 = 10). The y-axis
represents the treatment 𝑡 and the x-axis represents 𝒄⊤𝒙. Each
point represents a sample data point, and the color indicates the
magnitude of the estimated density ratio. The top-left plot in
each panel shows the true density ratio, while other plots illustrate
estimates using various methods.

5.2. Application in Causal Inference

We apply our proposed ppDRE method to estimate continu-
ous treatment effects in the framework of Ai et al. (2021).
Let 𝑇 ∈ R denote the observed continuous treatment status
variable, with a PDF 𝑓𝑇 (𝑡). Let 𝑌 ∗ (𝑡) denote the potential
response when treatment 𝑡 is assigned, and let 𝑌 = 𝑌 ∗ (𝑇)
denote the observed response. Let 𝑿 ∈ R𝑑𝑋 denote a vec-
tor of observable covariates. To identify the causal effect,
we assume the unconfoundedness condition that 𝑌 ∗ (𝑡) and
𝑇 are conditionally independent given 𝑿. We assume a
parametric model 𝑔(𝑡;𝜽∗), called the general dose-response
function, for the potential outcome 𝑌 ∗ (𝑡):

𝜽∗ :=argmin
𝜽∈R𝑝

∫
E[𝐿 (𝑌 ∗ (𝑡) −𝑔(𝑡;𝜽))] 𝑓𝑇 (𝑡)𝑑𝑡

=argmin
𝜽∈R𝑝

E[𝜋0 (𝑇,𝑿)𝐿 (𝑌 −𝑔(𝑇 ;𝜽))], (10)

where 𝐿 (·) is a user-specified loss function, the second
equality holds by the unconfoundedness condition, 𝜋0 (𝑡,𝒙)
is called the stabilized weights, defined by

𝜋0 (𝑡,𝒙) :=
𝑓𝑇 (𝑡) 𝑓𝑿 (𝒙)
𝑓𝑇,𝑿 (𝑡,𝒙)

=
𝑓𝑇 (𝑡)

𝑓𝑇 |𝑿 (𝑡 |𝒙)
,

where 𝑓𝑇,𝑿 is the joint PDF of 𝑇 and 𝑿, 𝑓𝑇 |𝑿 is the condi-
tional PDF of 𝑇 given 𝑿, 𝑓𝑇 and 𝑓𝑿 are marginal PDFs of
𝑇 and 𝑿, respectively.

The causal model (10) encompasses a variety of contin-
uous treatment effect parameters of interest. For exam-
ple, with L(𝑣) = 𝑣2, model (10) gives 𝑔(𝑡;𝜽∗) = E{𝑌 ∗ (𝑡)},
the average dose-response function (ADRF). With L(𝑣) =
𝑣{𝜏 − 𝐼 (𝑣 ≤ 0)} for some 𝜏 ∈ (0,1), the model (10) gives
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Figure 3. Average RMSLE over 50 replicates for stabilized weights
estimation with varying dimensions of covariates.

the 𝜏th quantile dose-response function (QDRF) 𝑔(𝑡;𝜽∗) =
𝐹−1
𝑌 ∗ (𝑡 ) (𝜏) = inf{𝑞 : P{𝑌 ∗ (𝑡) ≥ 𝑞} ≤ 𝜏}.

Note that, by definition, the stabilized weights 𝜋0 (𝑡,𝒙) can
be viewed as a density ratio. We compare our method
with different estimators of 𝜋0 (𝑡,𝒙) based on simulated data
sets in Section 5.2.1. In Section 5.2.2, we investigate the
application of DRE in both ADRF and QDRF analysis based
on a semi-synthetic data set.

5.2.1. STABILIZED WEIGHTS ESTIMATION

In this simulation study, we design the treatment assignment
model as 𝑇𝑖 = 𝒄⊤𝑿𝑖 + 𝜖𝑖 , where 𝒄 ∈ R𝑑𝑋 is specified below,
𝑿𝑖

i.i.d.∼ N(0𝑑𝑋 , 𝑰𝑑𝑋 ) and 𝜖𝑖
i.i.d.∼ 𝑁 (0,1). In all simulation

scenarios, the sample size is fixed to be 𝑛 = 5000.

We first investigate the visual performance of the estimators
for a fixed dimension of covariates, 𝑑𝑋 = 10. To facilitate
visualization, we consider two choices of the coefficient:
𝒄 = 0.5𝒆1 and 𝒄 = 2𝒆1, respectively, where 𝒆1 is a vector
with 1 in the first component while others are zeros. In both
scenarios, only the first component of 𝒙 affects the treatment
assignment. The estimated density ratios are visualized in
Figure 2, where the y-axis represents the treatment 𝑡 and the
x-axis is 𝒄⊤𝒙. In both scenarios, the density ratio estimates
produced by our ppDRE method show the closest alignment
with the true density ratios.

We further investigate the estimators’ performances in terms
of the root mean squared logarithmic error (RMSLE) de-
fined in Appendix C.1, for varying dimensions of covariates
𝑑𝑋 ∈ {2,10,30,50,100}. We set 𝒄 = 0.5 · 1𝑑𝑋 to be a 𝑑𝑋-
dimensional vector whose components are all 0.5. Figure
3 presents the average RMSLE values of various estima-
tors over 50 replications. The RMSLE of all estimators
increases as the dimension 𝑑𝑋 grows, but our proposed

ppDRE method consistently outperforms its competitors.
Moreover, the advantage of ppDRE is more pronounced for
a larger dimension of covariates. Additional experimental
results can be found in Appendix C.1.

5.2.2. DOSE RESPONSE FUNCTION ESTIMATION

This section investigates the performance of estimating
both ADRF and QDRF using the semi-synthetic variant
of the Infant Health and Development Program (IHDP)
dataset. The original IHDP dataset (Hill, 2011) consists
of 747 observations, each characterized by 𝑑𝑋 = 25 covari-
ates. Following Nie et al. (2020) and Gao et al. (2023),
we generate the semi-synthetic IHDP-continuous dataset
by leveraging the real-world covariates from the origi-
nal IHDP dataset to simulate continuous dosages and re-
sponses. A detailed description of the data generation pro-
cess can be found in Appendix D.1. Specifically, the ran-
domly assigned treatment 𝑇 is generated from 𝑿 by (12),
and the potential outcome 𝑌 ∗ (𝑡) = ℎ(𝑡,𝑿) + 0.5𝜖 , where
ℎ(𝑡,𝑿) is defined in (13) and 𝜖 ∼ N(0,1). Then the true
ADRF is 𝑔∗ (𝑡) = E𝑿 [ℎ(𝑡,𝑿)], and the true 𝜏-th QDRF is
𝑔∗ (𝑡) = inf [𝑞 : P{ℎ(𝑡,𝑿) +0.5𝜖 ≥ 𝑞} ≤ 𝜏].

We estimate ADRF and QDRFs at various quantile levels
𝜏 = {0.1, ,0.25, 0.5, 0.75, 0.9} using a parametric model
𝑔(𝑡;𝜽) := 𝜃0+𝜃1𝑡+𝜃2𝑡

2+𝜃3𝑡
3+𝜃4𝑡

4, and obtain �̂� by solving
the empirical version of the optimization problem (10). To
measure the accuracy of the estimated dose-response func-
tions across the full dosage range, we compute the average
squared error (ASE):

ASE =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑔(𝑇𝑖; �̂�) −𝑔∗ (𝑇𝑖)

)2
.

The mean and standard error of the ASE computed based on
100 replicates are reported in Table 1. The numerical results
indicate that our ppDRE method attains the lowest mean
ASE in most cases, demonstrating its superior performance
compared to the other alternatives.

5.3. Application in Mutual Information Estimation

The mutual information (MI) is a measure of the mutual
dependence between two continuous random vectors 𝑼 and
𝑽, which is defined by

MI𝑼 ,𝑽 =

∬
𝑓𝑼 ,𝑽 (𝒖, 𝒗) · log

𝑓𝑼 ,𝑽 (𝒖, 𝒗)
𝑓𝑼 (𝒖) 𝑓𝑽 (𝒗)

𝑑𝒖𝑑𝒗.

Given a sample from 𝑓𝑼 ,𝑽 (𝒖, 𝒗), we can create another
sample following the distribution 𝑓𝑼 (𝒖) 𝑓𝑽 (𝒗) by permuting
the 𝒗 vectors across the dataset. This enables the application
of DRE methods to estimate the MI by

M̂I𝑼 ,𝑽 =
1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1

log𝑟 (𝒖𝑖 , 𝒗𝑖),
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Table 1. ASE in dose response function estimation with IHDP-continuous dataset.

Method ARDF
QDRF

𝜏 = 0.1 𝜏 = 0.25 𝜏 = 0.5 𝜏 = 0.75 𝜏 = 0.9
uLSIF 0.112(0.022) 0.338(0.058) 0.130(0.027) 0.045(0.016) 0.090(0.022) 0.278(0.064)

KLIEP 0.112(0.022) 0.339(0.059) 0.130(0.027) 0.045(0.016) 0.089(0.022) 0.278(0.064)

Classification 0.107(0.028) 0.341(0.065) 0.130(0.032) 0.045(0.018) 0.088(0.025) 0.276(0.066)

D3-LHSS 0.110(0.024) 0.336(0.058) 0.128(0.030) 0.045(0.016) 0.088(0.022) 0.279(0.068)

fDRE 0.106(0.026) 0.331(0.056) 0.127(0.029) 0.045(0.016) 0.088(0.021) 0.267(0.061)

RRND 0.117(0.022) 0.307(0.053) 0.125(0.026) 0.043(0.015) 0.090(0.021) 0.408(0.082)

nnDRE 0.107(0.022) 0.333(0.059) 0.126(0.027) 0.043(0.015) 0.089(0.021) 0.297(0.066)

ppDRE 0.091(0.025) 0.338(0.066) 0.124(0.029) 0.041(0.016) 0.079(0.022) 0.266(0.060)

Table 2. MAE in mutual information estimation for varying dimension 𝑝 and correlation coefficient 𝜌.

Method
𝑝 = 2 𝑝 = 10 𝑝 = 20

𝜌 = 0.2 𝜌 = 0.8 𝜌 = 0.2 𝜌 = 0.8 𝜌 = 0.2 𝜌 = 0.8
uLSIF 0.044(0.001) 0.573(0.015) 0.200(0.008) 5.093(0.031) 0.415(0.023) 10.242(0.088)

KLIEP 0.044(0.000) 1.099(0.011) 0.204(0.007) 4.885(0.019) 0.516(0.032) 9.991(0.091)

Classification 0.270(0.006) 0.169(0.019) 0.381(0.015) 2.579(0.062) 0.272(0.021) 7.185(0.044)

D3-LHSS 0.339(0.077) 0.248(0.162) 0.282(0.084) 4.080(0.201) 0.164(0.132) 9.241(0.198)

fDRE 0.043(0.000) 0.907(0.048) 0.199(0.007) 4.283(0.014) 0.487(0.036) 8.710(0.059)

RRND 0.061(0.001) 0.926(0.006) 0.200(0.008) 5.092(0.031) 0.414(0.022) 10.241(0.089)

nnDRE 0.038(0.037) 1.064(0.275) 1.183(1.725) 3.838(1.912) 1.671(2.202) 8.629(2.577)

ppDRE 0.051(0.044) 0.069(0.015) 0.164(0.038) 0.272(0.183) 0.074(0.098) 2.966(1.089)

with 𝑝(𝒖, 𝒗) = 𝑓𝑼 ,𝑽 (𝒖, 𝒗) and 𝑞(𝒖, 𝒗) = 𝑓𝑼 (𝒖) 𝑓𝑽 (𝒗) for
𝑟∗ (𝒖, 𝒗) = 𝑝(𝒖, 𝒗)/𝑞(𝒖, 𝒗).

We adopt the experimental setting in Belghazi et al. (2018);
Rhodes et al. (2020); Choi et al. (2022). Specifically, we con-
sider two standard multivariate Gaussian random vectors,
𝑼 = (𝑈1, ...,𝑈𝑝)⊤ ∈ R𝑝 and 𝑽 = (𝑉1, ...,𝑉𝑝)⊤ ∈ R𝑝, with
component-wise correlation, corr(𝑈𝑖 ,𝑉 𝑗 ) = 𝛿𝑖 𝑗 𝜌, where 𝜌 ∈
(−1,1) and 𝛿𝑖 𝑗 is Kronecker’s delta. Performance is mea-
sured by the mean absolute error, MAE := |M̂I𝑼 ,𝑽 −MI𝑼 ,𝑽 |.
We consider three replicates with sample size 𝑛 = 5000. The
MAE averaged over three runs for various values of 𝑝 and
𝜌 are reported in Table 2. Overall, our proposed ppDRE
method demonstrates superior or comparable performance
in all circumstances, indicating its robustness and effective-
ness in mutual information estimation.

5.4. Application in Covariate Shift Adaptation

Covariate shift refers to the change in the distribution of
the input variables in the training and the test data sets, i.e.
𝑝∗te (𝒙) ≠ 𝑝∗tr (𝒙). In the case of covariate shift, learning a

parameter, 𝜽 in a model 𝑓 (𝒙;𝜽) regarding the probability
distribution of 𝑦 given 𝒙, using standard learning techniques
such as empirical risk minimization (ERM) can become
biased (Sugiyama et al., 2012). To mitigate this issue, the
importance-weighted ERM is widely used. The core idea is
to re-weight the training samples in order to learn a model
that minimizes the loss on the test dataset:

E(𝒙,𝑦)∼𝑝∗te (𝒙,𝑦) [𝐿 ( 𝑓 (𝒙;𝜽), 𝑦)]

= E(𝒙,𝑦)∼𝑝∗tr (𝒙,𝑦)

[
𝑝∗te (𝒙)
𝑝∗tr (𝒙)

𝐿 ( 𝑓 (𝒙;𝜽), 𝑦)
]
,

where 𝐿 (·) is a user-specified loss function, and the density
ratio 𝑟∗ (𝒙) = 𝑝∗te (𝒙)/𝑝∗tr (𝒙) is referred to as the importance,
acting as an adjusting weight during the training process.

To simulate the covariate shift setting, we adopt a biased
sampling scheme as described by Stojanov et al. (2019),
on various classical benchmark regression datasets. In this
setup, we introduce a sample selection variable 𝑠 ∈ {0,1},
and the probability of a sample being selected for the train-
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Table 3. NMSE under covariate shift adaptation on various benchmark datasets.

Method Abalone Billboard Spotify Cancer Mortality Computer Activity Diamond Prices

Unweighted 0.544(0.057) 0.582(0.044) 0.704(0.069) 0.278(0.050) 0.231(0.082)

uLSIF 0.525(0.057) 0.582(0.044) 0.704(0.069) 0.668(0.360) 0.239(0.068)

KLIEP 0.531(0.055) 0.565(0.028) 0.696(0.058) 0.302(0.049) 0.228(0.080)

Classification 0.535(0.049) 0.579(0.042) 0.691(0.067) 0.273(0.051) 0.183(0.056)

D3-LHSS 0.520(0.054) 0.564(0.031) 0.672(0.066) 0.318(0.052) 0.220(0.070)

fDRE 0.586(0.136) 0.615(0.084) 0.664(0.064) 0.294(0.053) 0.233(0.078)

RRND 0.574(0.144) 0.616(0.087) 0.655(0.069) 0.279(0.051) 0.232(0.082)

nnDRE 0.806(0.829) 0.822(0.861) 0.660(0.063) 0.301(0.033) 0.360(0.429)

ppDRE 0.514(0.049) 0.559(0.026) 0.661(0.048) 0.199(0.019) 0.133(0.024)

ing set is given by:

P(𝑠 = 1|𝒙) = 𝑒𝑣

(1+ 𝑒𝑣) , with 𝑣 = 4 · 𝜔
⊤ (𝒙− �̄�)
𝜎𝜔⊤ (𝒙− �̄�)

,

where �̄� is the sample mean of the covariates, 𝜔 is a ran-
dom projection vector uniformly selected from the interval
[−1,1]𝑑 and 𝜎𝜔⊤ (𝒙− �̄�) is the standard deviation. Subse-
quently, we learn a kernel ridge regression model by mini-
mizing the importance-weighted empirical risk:

�̂� = argmin
𝜽

1
𝑛tr

𝑛tr∑︁
𝑖=1
𝑟 (𝒙tr

𝑖 )
{[
𝑓 (𝒙tr

𝑖 ;𝜽) − 𝑦tr
𝑖

]2 +𝜆∥𝜽 ∥2
}
,

where 𝑓 (𝒙;𝜽) = ∑𝑛tr
𝑖=1 𝜃𝑖𝐾 (𝒙,𝒙

tr
𝑖
), 𝐾 (𝒙,𝒙′) = exp{−∥𝒙 −

𝒙′∥2/𝑑} is the kernel basis, and 𝑟 is an estimator of 𝑟∗

based on DRE methods.

To evaluate the performance, we compute the normalized
mean squared error (NMSE) on the test dataset:

NMSE =
1
𝑛te

𝑛te∑︁
𝑖=1

(𝑦te
𝑖
− �̂�te

𝑖
)2

𝜎2
𝑦

,

where 𝑛te is the number of test samples, 𝑦te
𝑖

is the true value
for the 𝑖th sample, �̂�te

𝑖
is the predicted value, and 𝜎2

𝑦 is the
variance of the response variable on the test dataset. Aver-
age NMSE values across 15 random replicates are reported
in Table 3. More details on the datasets can be found in
Appendix D.2.

As shown in Table 3, the unweighted regression model per-
forms poorly across all datasets, underscoring the necessity
for adjustments for the covariate shift problem. In contrast,
our proposed ppDRE method consistently outperforms or
matches the performance of the baseline methods across
various datasets. This highlights the effectiveness of ppDRE
in mitigating the impact of covariate shift, positioning it as
a promising approach for regression tasks affected by this
issue.

6. Conclusion
We propose a novel projection pursuit-based method for
estimating the density ratio function, which does not require
parametric assumptions, enjoys computational convenience,
and can alleviate the curse of dimensionality. The asymp-
totic consistency and the convergence rates are established
to guarantee the validity of the proposed method. Numeri-
cal experiments demonstrate that our method outperforms
existing alternatives in a variety of applications.

Density ratio estimation based on projection pursuit admits
many exciting directions for future work. One particularly
promising direction is the extension of ppDRE to indepen-
dence testing. However, this extension requires rigorous
theoretical development, particularly in establishing the es-
timator’s limiting distributions under the null hypothesis of
independence. Furthermore, the method’s iterative optimiza-
tion process may still face challenges with computational
complexity as the number of projections 𝐾 increases. Devel-
oping adaptive stopping criteria could alleviate the compu-
tational burden by avoiding tuning 𝐾 with cross validation.
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A. Baseline Methods
This section presents the baseline methods used in our numerical studies.

uLSIF The unconstrained Least-Squares Importance Fitting (uLSIF) method, proposed by Kanamori et al. (2009), models
the density ratio 𝑟∗ (𝒙) as follows:

𝑟∗ (𝒙) ≈ 𝜽⊤𝜓(𝒙) =
𝑛𝑝∑︁
ℓ=1

𝜃ℓ𝐾 (𝒙,𝒙𝑝ℓ ), (11)

where 𝐾 (𝒙,𝒙′) is the Gaussian kernel basis, and the definitions of 𝜓(𝒙) and 𝜽 are straightforward. The model parameter 𝜽
is learned by minimizing the squared loss with a ridge penalty. For implementation, we employ the functions provided by
the Python package densratio1.

KLIEP The Kullback-Leibler importance estimation procedure (KLIEP) method, proposed by Sugiyama et al. (2008),
uses the same Gaussian kernel model for approximating 𝑟∗ (𝒙) as that in the uLSIF method (11), but the model parameter 𝜽
is identified by minimizing the unnormalized Kullback-Leibler (UKL) divergence:

UKL∗ (𝑟) = E𝑞 [𝑟 (𝒙)] −E𝑝 [log𝑟 (𝒙)] .

With the fact that E𝑞 [𝑟 (𝒙)] = 1, the estimation is implemented as follows:

max
𝜽

1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1

log(𝜽⊤𝝍(𝒙𝑝
𝑖
)) s.t.

1
𝑛𝑝

𝑛𝑞∑︁
𝑖=1

𝜽⊤𝝍(𝒙𝑞
𝑖
) = 1 and 𝜽 ≥ 0,

where the inequality for vectors is applied in the element-wise manner. The matlab code of the KLIEP method is available
online2.

Probabilistic Classification By assigning the label 𝑦 = +1 to the sample from 𝑝(𝒙) and 𝑦 = −1 to the sample from 𝑞(𝒙)
respectively (Qin, 1998; Bickel et al., 2007), the density ratio function 𝑟∗ (𝒙) = 𝑝(𝒙)/𝑞(𝒙) can be expressed by

𝑟∗ (𝒙) = P(𝒙 |𝑦 = +1)
P(𝒙 |𝑦 = −1) =

P(𝑦 = −1)P(𝑦 = +1|𝒙)
P(𝑦 = +1)P(𝑦 = −1|𝒙) .

Given an estimator of the posterior probability, 𝑝(𝑦 |𝒙), the density ratio estimator 𝑟 (𝒙) can be constructed as

𝑟 (𝒙) =
𝑛𝑞

𝑛𝑝
· 𝑝(𝑦 = +1|𝒙)
𝑝(𝑦 = −1|𝒙) .

In our experiments, we use the LightGBM model as the classifier, which is an ensemble learning algorithm based on gradient
boosting decision trees.

D3-LHSS The Direct Density-ratio estimation with Dimensionality reduction via Least-squares Heterodistributional
Subspace Search (D3-LHSS) method is proposed by Sugiyama et al. (2011). This method assumes that the density ratio can
be identified in a low-dimensional space specified by a projection matrix 𝑼 ∈ R𝑚×𝑑 . Given the projection matrix �̂� obtained
by the LHSS algorithm, the estimator of the density ratio is given by

𝑟 (𝒙) =
𝑏∑︁
ℓ=1

𝜃ℓ𝜓ℓ (�̂�𝒙),

where {𝜃ℓ }𝑏ℓ=1 are the learned using the uLSIF method on the heterodistributional subspace corresponding to �̂�. For more
details, we refer to Sugiyama et al. (2011), whose matlab implementation is available online2.

1https://github.com/hoxo-m/densratio_py
2https://www.ms.k.u-tokyo.ac.jp/sugi/software.html
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fDRE The featurized density ratio estimation (fDRE) framework, proposed by Choi et al. (2021), addresses distributional
discrepancy challenges through feature learning. By employing a normalizing flow model 𝑓𝜃 : X →Z with invertible
transformation properties, this method embeds heterogeneous data distributions into a unified feature space where density
ratios remain preserved. The crucial invariance property is formally expressed as:

𝑟∗ (𝒙) = 𝑝(𝒙)
𝑞(𝒙) =

𝑝′ ( 𝑓𝜃 (𝒙))
𝑞′ ( 𝑓𝜃 (𝒙))

,

where 𝑝′, 𝑞′ are the densities of 𝑓𝜃 (𝒙𝑝) and 𝑓𝜃 (𝒙𝑞) respectively, 𝒙𝑝 ∼ 𝑝(𝒙), and 𝒙𝑞 ∼ 𝑞(𝒙). This preservation enables
direct application of classical density ratio estimators, such as KLIEP, in the transformed spaceZ, often achieving superior
numerical stability compared to native space estimation.

RRND The regularized Radon-Nikodym differentiation estimation (RRND) method, proposed by Nguyen et al. (2024),
introduces a kernel-based regularization framework within reproducing kernel Hilbert spaces (RKHS) for accurate pointwise
estimation of Radon-Nikodym derivatives, which are equivalent to density ratio functions. This approach can extend the
conventional kernel uLSIF through an iterative Lavrentiev regularization scheme, in which the core algorithm operates
through successive approximations as follows:

𝛽
𝜆,0
𝑿 = 0, 𝛽

𝜆,𝑙

𝑿 = (𝜆𝑰 + 𝑆∗𝑋𝑝
𝑆𝑋𝑝
) (𝑆∗𝑋𝑞

𝑆𝑋𝑞
1+𝜆𝛽𝜆,𝑙−1

𝑿 ), 𝑙 ∈ N,

where 𝛽𝜆,𝑙𝑿 is the 𝑙-th iteration of the approximation of 𝑟∗ (𝒙). The methodology leverages two sample operators:

𝑆𝑋𝑝
𝑓 = { 𝑓 (𝒙𝑝1 ), . . . , 𝑓 (𝒙

𝑝
𝑛𝑝 )}, 𝑆𝑋𝑞

𝑓 = { 𝑓 (𝒙𝑞1 ), . . . , 𝑓 (𝒙
𝑞
𝑛𝑞 )},

and two adjoint operators defined through kernel embeddings:

𝑆∗𝑋𝑝
𝑢(·) = 1

𝑛𝑝

𝑛𝑝∑︁
𝑗=1
𝐾 (·,𝒙𝑝

𝑗
)𝑢 𝑗 , 𝑢 ∈ R𝑛𝑝 , 𝑆∗𝑋𝑞

𝑣(·) = 1
𝑛𝑞

𝑛𝑞∑︁
𝑗=1
𝐾 (·,𝒙𝑞

𝑗
)𝑣 𝑗 , 𝑣 ∈ R𝑛𝑞 .

For complete theoretical analysis and convergence properties, readers are directed to the original work by Nguyen et al.
(2024).

nnDRE We present a neural network-based density ratio estimation (nnDRE) method. It differs from our proposed ppDRE
method in that it utilizes a feedforward neural network to model the density ratio, i.e.

𝑟∗ (𝒙) ≈ 𝑟nn (𝒙;𝜽) = exp{𝐹 (𝒙 |𝜽)},

where 𝐹 (·|𝜽) represents the neural network with parameter 𝜽 . The estimation is proceeded by minimizing the squared loss
based on the neural networks:

SQ∗ (𝜽) = E𝑞{[𝑟nn (𝒙;𝜽)]2} −2E𝑝{𝑟nn (𝒙;𝜽)}.

B. Implementation Details and Hyperparameter Selection Process
To ensure rigorous and fair comparisons, we implemented the following protocols.

For our proposed ppDRE method, as mentioned in Remark 4.3, the optimal hyperparameters are identified by the minimal
validation loss in CV. For clarity, we detail our approach as follows: across all experiments, we utilized 5-fold CV with
random sampling. A grid search was conducted over a predefined set of parameter ranges, which are outlined in Table 4.

For open-source baseline methods (e.g., KLIEP, uLSIF, 𝐷3-LHSS), we utilized their official implementations (e.g., Python
densratio package for uLSIF) and default hyperparameter search grids as recommended in their original papers or standard
toolkits. For instance, uLSIF’s hyperparameters (𝜎, 𝜆) were selected from the grid 1e-3:10:1e9, consistent with its standard
implementation. These methods inherently incorporate CV-based hyperparameter selection in their standard workflows. We
preserved these built-in CV mechanisms without modification.

For probabilistic classification approach and nnDRE, we implemented 5-fold CV (aligned with our ppDRE method) to
identify the optimal hyperparameters within the search spaces outlined in Table 5.

14
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Table 4. Search Grid for ppDRE

Parameter Description Search Space

𝐾 Number of PP iterations {5, 10, 15}
𝐽𝑘 Number of basis functions {20, 50, 70, 100, 150}
𝜆 ℓ2-regularization strength {0.5, 1, 5, 10}
𝛿 Gradient descent learning rate {0.001, 0.01, 0.1}

Table 5. Search Grid for Probabilistic Classification approach and nnDRE

Method Parameter Search Space

Classification

n_estimators {100, 300}

learning_rate {0.0001, 0.001, 0.01}

num_leaves {20, 30}

nnDRE

depth {2, 3}

width {8, 32, 64}

learning_rate {0.0001, 0.001, 0.01}

For fDRE, we have implemented a version that employs KLIEP as the second-stage DRE method. Adhering to the guidelines
provided by the official open-source code3 and the original research paper (Choi et al., 2021), we trained the masked
autoregressive flow (MAF) models with the configurations presented in Table 6. For the KLIEP method in the second stage,
we have retained the original hyperparameter settings as per the open-source implementation.

Table 6. Hyperparameter setting for the normalizing flow model in fDRE

Dataset n_blocks n_hidden hidden_size n_epochs

IHDP 5 1 100 100
Regression Benchmarks 5 1 100 100

MI Gaussians 5 1 100 200

For RRND, in the absence of open-source code, we implemented the algorithm by adhering to the implementation details
outlined in the Numerical Illustrations section in Nguyen et al. (2024). The kernel function is assigned as 𝐾 (𝑥, 𝑥′) =
1+ exp{−(𝑥− 𝑥′)2/2}. Utilizing a 5-fold CV, the hyperparameter 𝜆 is chosen based on the quasi-optimality criterion, and
the optimal iteration step 𝑘 is determined by minimizing squared distance loss function in the validation set. Following the
configurations in Nguyen et al. (2024), the search grids are 𝑘 ∈ {1,2, . . . ,10} and 𝜆 ∈ {𝜆ℓ = 𝜆0𝜌

ℓ , ℓ = 1, . . . ,9} with 𝜆0 = 0.9.
The decay factor 𝜌 = (𝜆𝑤/𝜆0)1/𝑙 is derived from the lower bound 𝜆𝑤 = (𝑛−1/2 +𝑚−1/2), where 𝑛,𝑚 are the sample sizes of
the numerator and denominator distributions respectively.

C. Additional Numerical Results
C.1. Stabilized Weights Estimation

Metrics We use the mean squared error (RMSE) and the root mean squared logarithmic error (RMSLE) to evaluate the
performance, which are defined as follows:

RMSE =

√√
1
𝑛

𝑛∑︁
𝑖=1
(𝑟 (𝒙𝑖) − 𝑟∗ (𝒙𝑖))2, RMSLE =

√√
1
𝑛

𝑛∑︁
𝑖=1
(log𝑟 (𝒙𝑖) − log𝑟∗ (𝒙𝑖))2.

3https://github.com/ermongroup/f-dre
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Results We present additional numerical results, including the box plot of RMSLE in Figure 4 and the RMSE values in
Table 7. The box plot of RMSLE in Figure 4 shows the variation of all methods. In Table 7, due to the extremely large
RMSE in some data replications, we report the median of RMSE values in 50 replications, which offers evidence supporting
the superior performance of the ppDRE method.

2 10 30 50 100
Dimension of X

0.5

1.0

1.5

2.0

2.5

3.0

RM
SL

E

uLSIF
KLIEP
Classification
D3-LHSS
nnDRE
ppDRE

Figure 4. Boxplot of RMSLE in stabilized weights estimation for different covariate dimension settings 𝑑𝑋 ∈ {2,10,30,50,100} estimation
across 50 data replications

Table 7. Median RMSE in stabilized weights estimation for different covariate dimension settings 𝑑𝑋 ∈ {2,10,30,50,100}.
(Median) RMSE Dimension of Covariates

Method 2 10 30 50 100

uLSIF 1.864 4.216 2.452 1.875 1.321

KLIEP 1.827 4.222 2.464 1.898 1.39

Classification 1.93 4.217 2.413 1.809 1.208

D3-LHSS 2.604 8.793 2.637 2.454 2.054

nnDRE 2.181 4.739 2.772 2.227 1.549

ppDRE 1.742 3.835 1.777 1.12 0.9

C.2. Computational Cost Evaluation

Through controlled numerical experimentation, we systematically evaluate the computational costs of all competing
methodologies. Maintaining the experimental protocol established in Section 5.2.1, we conduct dimensional scalability
analyses over 𝑑𝑋 ∈ {2,10,30,50,100} and measure absolute wall-clock execution times. The experiments were carried out
on a computing node utilizing dual AMD EPYC 7713 processors, providing a total of 128 CPU cores. Table 8 presents the
mean computational duration across three statistically independent trials, with temporal measurements recorded in minutes.

We obtain the following key observations: (i) when the dimension of the data is low or moderately large (𝑑𝑋 = 2,10), the
computation time of our PPDRE method is comparable to that of the uLSIF, KLIEP, and classification methods, which
are suitable for low-dimensional data. Our computation time is much less than that of the fDRE, RRND, nnDRE and
𝐷3-LHSS methods, some of which are also designed for high-dimensional data. (ii) when the dimension of the data is
large (𝑑𝑋 = 30,50,100), the methods for low-dimensional data fail to work due to the curse of dimensionality. Our PPDRE
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Table 8. Computation Time Comparison

Method 𝑑 = 2 𝑑 = 10 𝑑 = 30 𝑑 = 50 𝑑 = 100

uLSIF 0.38 0.35 0.38 0.43 0.46
KLIEP 0.36 0.39 0.49 0.57 0.72

Classification 0.21 0.16 0.19 0.23 0.40
fDRE 3.78 3.88 3.92 4.28 7.25
RRND 3.78 3.87 3.77 3.82 3.81
nnDRE 5.91 3.84 8.76 6.02 8.63
𝐷3-LHSS 5.95 11.25 10.60 10.79 10.97
ppDRE 0.32 0.91 5.64 10.78 15.22

method consistently outperforms all baseline methods in estimation accuracy, and the computation time is comparable
to that of existing methods for high-dimensional data. The observed increase in computation time is expected, as higher
dimensions naturally require more iterations to reach convergence.

D. Datasets
D.1. Dataset in Dose Response Function Estimation

IHDP-continuous Dataset The original IHDP dataset contains 25 covariates with binary treatments and continuous
outcomes. We follow similar procedure as employed by Nie et al. (2020) and Gao et al. (2023), disregard the treatments and
outcomes, and use the covariates to generate continuous dosages and treatments. Let 𝑋1, . . . , 𝑋𝑑𝑋 denote the first to the last
element of 𝑿, where 𝑑𝑋 = 25. The generating procedure for the semi-synthetic IHDP-continuous dataset is as follows:

Assigned treatment: 𝑇 = (1+ exp(𝑇))−1 , (12)

where 𝑇 =
𝑋1

1+ 𝑋2
+ max{𝑋3, 𝑋4, 𝑋5}

0.2+min{𝑋3, 𝑋4, 𝑋5}
+ tanh

(
5
∑
𝑖∈𝐼1 𝑋𝑖

|𝐼1 |

)
−2+0.5𝜖 ,

Potential outcome: 𝑌 ∗ (𝑡) = ℎ(𝑡,𝑿) +0.5𝜖 ,

where ℎ(𝑡,𝑿) = (1.2− 𝑡2) sin(2𝜋𝑡 −2)
{
0.5tanh

(
5
∑
𝑖∈𝐼2 𝑋𝑖

|𝐼2 |

)
+1.5exp

(
0.2(𝑋1− 𝑋5)

0.1+min{𝑋2, 𝑋3, 𝑋4}

)}
, (13)

where 𝜖 ∼ N(0,1), 𝐼1 = {3,6,7,8,9,10,11,12,13,14} and 𝐼2 = {15,16,17,18,19,20,21,22,23,24}.

D.2. Datasets in Covariate Shift Adaptation

In this section, we introduce the basic information and the regression tasks of the benchmark datasets that are used in the
covariate shift adaption experiments. These datasets are readily accessible via the Ready Tensor platform. The specific
numbers of observations and features for each dataset are detailed in Table 9.

Table 9. Observation and Feature Numbers of Regression Benchmark Datasets

Dataset Abalone Billboard Spotify Cancer Mortality Computer Activity Diamond Prices

Observation 4177 8930 3047 8192 6000

Feature 8 18 31 21 7

Abalone The Abalone dataset, accessible online4, is a popular dataset used in machine learning and statistics to predict
the age of abalone from physical measurements. Abalone age is determined by cutting the shell, staining it, and counting the
number of growth rings. However, this is a destructive process, so a non-destructive method based on physical measurements
is desirable.

4https://www.dcc.fc.up.pt/˜ltorgo/Regression/DataSets.html
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Billboard Spotify The Billboard Spotify dataset represents a comprehensive collection of audio features for songs that
made their mark on various Billboard charts that span the years 1961 through 2022. For each song, the corresponding
audio features were sourced from the Spotify API. The regression task for the Billboard Spotify dataset is to predict the
danceability of a song, which describes how suitable a track is for dancing based on a combination of musical elements
including tempo, rhythm stability, beat strength, and overall regularity.

Cancer Mortality The Cancer Mortality dataset, aggregated from authoritative sources including the American Com-
munity Survey, clinicaltrials.gov, and cancer.gov, is designed for regression tasks to predict cancer mortality rates in US
counties from 2010 to 2016. It incorporates 2013 census data, including county-level features such as population, income,
households, and other demographic attributes.

Computer Activity The Computer Activity databases consist of a collection of metrics related to the activity of computer
systems. The data was collected from a Sun Sparcstation 20/712 with 128 Mbytes of memory running in a multi-user
university department. This dataset, available online4, is utilized to estimate the proportion of time during which central
processing units (CPUs) are engaged in user mode operations, based on the recorded system activity measures.

Diamond Prices The Diamond Prices dataset is accessible via the PyCaret library within the Python programming
environment. The objective of this dataset is to predict diamond prices based on a set of attributes, including carat weight,
cut, color, clarity, polish, symmetry, and the report issued by the grading agency that assessed the diamond’s qualities.

E. 𝐿2-distance Minimization
In this section, we show that minimizing the 𝐿2-distance E𝑞{[𝑟∗ (𝒙) − 𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)]2} w.r.t. 𝑓 or 𝒂 is equivalent to
minimizing 𝐻 ( 𝑓 , 𝒂) := E𝑞{𝑟2

𝑘−1 (𝒙) 𝑓
2 (𝒂⊤𝒙)} −2E𝑝{𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)}.

Note that, by definition, 𝑟∗ (𝒙) = 𝑝(𝒙)/𝑞(𝒙). Then,

E𝑞{[𝑟∗ (𝒙) − 𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)]2}

=E𝑞{[𝑟∗ (𝒙)]2} +E𝑞{[𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)]2} −2
∫
X
𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)𝑟∗ (𝒙)𝑞(𝒙) 𝑑𝒙

=E𝑞{[𝑟∗ (𝒙)]2} +E𝑞{[𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)]2} −2
∫
X
𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)𝑝(𝒙) 𝑑𝒙

=E𝑞{[𝑟∗ (𝒙)]2} +E𝑞{[𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)]2} −2E𝑝{𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)} .

Since the first term E𝑞{[𝑟∗ (𝒙)]2} is independent of either 𝑓 or 𝒂, we have that minimizing E𝑞{[𝑟∗ (𝒙) − 𝑟𝑘−1 (𝒙) 𝑓 (𝒂⊤𝒙)]2}
w.r.t. 𝑓 or 𝒂 is equivalent to minimizing 𝐻 ( 𝑓 , 𝒂).

F. Proof of Theorem 4.2
F.1. Notations and Assumptions

To prove the theorem, we require the following notations and assumptions.

Notations of derivative. For any univariate function 𝑓 , we let 𝑓 ( 𝑗 ) denote its 𝑗 th derivative. For any multivariate function
𝑔(𝜷, 𝒂), we denote 𝜕1𝑔(𝜷, 𝒂) to be its partial derivative with respect to w.r.t. the first argument 𝜷, and 𝜕2𝑔(𝜷, 𝒂) to be its
partial derivative (w.r.t.) the second argument 𝒂.

Notations regarding matrices. Consider 𝑗 = 0,1,2. We let Ω( 𝑗 )
𝐽𝑘
(𝒂) := E[𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙)𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙)⊤], for 𝑗 = 0,1,2, where

the expectation can be taken w.r.t. the probability density 𝑝(·) or 𝑞(·).

For the corresponding empirical version, let {𝒙1, . . . ,𝒙𝑛} be i.i.d. from either the probability density 𝑝(·) (resp. 𝑛 = 𝑛𝑝) or
𝑞(·) (resp. 𝑛 = 𝑛𝑞), we define 𝑷 ( 𝑗 ) (𝒂) = {𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙1), . . . ,𝚽( 𝑗 )𝑘 (𝒂

⊤𝒙𝑛)} ∈ R𝑛×𝐽𝑘 , and Ω̂
( 𝑗 )
𝐽𝑘
(𝒂) = 𝑛−1𝑷 ( 𝑗 ) (𝒂)⊤𝑷 ( 𝑗 ) (𝒂).

Similarly, we define Σ𝐽𝑘 (𝒂) = E𝑞
[
𝑟2
𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤

]
, Σ̂𝐽𝑘 (𝒂) = 𝑛−1

𝑞 𝒁𝑘 (𝒂)⊤𝒁𝑘 (𝒂), Σ̂𝐽𝑘 ,𝜆 (𝒂) = Σ̂𝐽𝑘 (𝒂) +𝜆𝑰𝐽𝑘 ,
where 𝒁𝑘 (𝒂) is defined in Proposition 4.1.
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Moreover, we let 𝜂min (Ω) and 𝜂max (Ω) denote the minimum and maximum eigenvalues of any matrix Ω, respectively.

Notations regarding minimization criteria. Recall the definitions of 𝐻 ( 𝑓 , 𝒂) and L̂𝑘 (𝒂, 𝜷;𝜆) from (2) and (4), respectively.
By definition, for any 𝒂 ∈ A,

𝑓𝒂,𝑘 (𝒂⊤𝒙) = �̂�𝑘 (𝒂)⊤𝚽𝑘 (𝒂⊤𝒙) , and �̂�𝑘 (𝒂) = {Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) . (14)

We define 𝐻∗ (𝜷, 𝒂) := E𝑞 [𝑟2
𝑘−1 (𝒙) · {𝜷

⊤𝚽𝑘 (𝒂⊤𝒙)}2] −2E𝑝 [𝑟𝑘−1 (𝒙) · 𝜷⊤𝚽𝑘 (𝒂⊤𝒙)] to be the approximation of 𝐻 ( 𝑓 , 𝒂) and
the theoretical counterpart of L̂𝑘 . We then define 𝜷∗𝑘 (𝒂) := argmin

𝜷
𝐻∗ (𝜷, 𝒂) for any 𝒂 ∈ A, 𝒂∗

𝑘
= argmin

𝒂∈A
𝐻∗ (𝜷∗𝑘 (𝒂), 𝒂), and

𝑓 ∗𝒂,𝑘 (𝒂
⊤𝒙) = 𝜷∗𝑘 (𝒂)⊤𝚽𝑘 (𝒂⊤𝒙) for any 𝒙 ∈ X.

Assumption F.1. (a) The support X of 𝒙 is a compact subset of R𝑑 . (b) The parameters {𝒂𝑘}𝐾𝑘=1 defined in (7) are in the
interior of a compact set A ⊂ S+

𝑑
.

Assumption F.2. (a) For every 𝒂 ∈ A, there exists a 𝜷𝑘, 𝑗 (𝒂) ∈ R𝐽𝑘 such that

sup
𝒂∈A

sup
𝑧∈Z

��� 𝑓 ( 𝑗 )𝒂,𝑘 (𝑧) − {𝜷𝑘, 𝑗 (𝒂)}
⊤𝚽( 𝑗 )

𝑘
(𝑧)

��� < 𝐶0, 𝑗𝐽
−(𝑠− 𝑗 )
𝑘

, (15)

for some constants 𝐶0, 𝑗 , 𝑠 > 0, and 0 ≤ 𝑗 < 𝑠, where Z := {𝒂⊤𝒙 : 𝒂 ∈ A and 𝒙 ∈ X}; (b) For every 𝑧 ∈ Z, 𝑓𝒂,𝑘 (𝑧) is
continuously differentiable w.r.t. 𝒂, and sup𝑧∈Z

{
|𝜕𝒂 𝑓𝒂,𝑘 (𝑧) |

��
𝒂=𝒂𝑘

}
<∞; (c) 𝑓𝒂,𝑘 (𝑧) are uniformly bounded and bounded

away from 0.

Assumption F.3. (a) The eigenvalues of Ω(0)
𝐽𝑘
(𝒂) are bounded and bounded away from zero uniformly in 𝐽𝑘 and 𝒂 ∈ A. (b)

There exist sequences of constants 𝜁 𝑗 (𝐽𝑘), 𝑗 = 1,2, such that the eigenvalues of Ω( 𝑗 )
𝐽𝑘
(𝒂) are bounded by 𝜁 𝑗 (𝐽𝑘) uniformly

in 𝐽𝑘 and 𝒂 ∈ A (c) There exist sequences of constants 𝜁 𝑗 (𝐽𝑘), 𝑗 = 0,1,2, such that sup 𝑗≤𝑚 sup𝑧∈Z ∥𝚽
( 𝑗 )
𝑘
(𝑧)∥ ≤ 𝜁𝑚 (𝐽𝑘)

for 𝑚 = 0,1,2 and all 𝑘 . (d) As 𝑛𝑝 , 𝑛𝑞 →∞, 𝐽𝑘 →∞, 𝜁0 (𝐽𝑘)2
√︁
𝐽𝑘/(𝑛𝑝 ∧𝑛𝑞) → 0, 𝐽−(𝑠−1)

𝑘
max{𝜁2 (𝐽𝑘), 𝜁0 (𝐽𝑘)2} → 0,

𝜁2 (𝐽𝑘)
√︁
𝐽𝑘/(𝑛𝑝 ∧𝑛𝑞) → 0 and 𝜆 =𝑂 (

√︁
𝐽𝑘/𝑛𝑞).

Assumption F.4. The minimum eigenvalue of 𝜕2
𝒂𝐻
∗ (𝜷∗𝑘 (𝒂), 𝒂)

��
𝒂=𝒂∗

𝑘

is bounded away from 0 uniformly in 𝐽𝑘 .

Assumption F.1 imposes compactness conditions on the densities and parameter spaces. This condition is convenient for
deriving uniform convergence rates. Assumption F.2 includes regularity conditions. Assumption F.2 (a) can be satisfied if
𝑓𝒂,𝑘 (𝑧) is 𝑠-times continuously differentiable w.r.t. 𝑧 ∈ Z for any 𝒂 ∈ A (Lorentz, 1986). Assumption F.3 rules out near
multicollinearity in the approximating basis functions. This condition is familiar in the sieve regression literature (Chen,
2007a). Assumption F.4 requires the Hessian matrix of the approximation of the theoretical minimization criteria to be
positive definite at its minimum, 𝒂∗

𝑘
, which is satisfied if 𝒂∗

𝑘
is in the interior of A.

F.2. Outline of the proof

We prove the results in an inductive way. Note that the initial estimate 𝑓0 (𝒙; 𝜷0) ≡ 1, 𝑟𝑘 (𝒙) = 1 ·Π𝑘
𝑚=1 𝑓𝒂𝑚 ,𝑚 (𝒂⊤𝑚𝒙) and

𝑟𝑘 (𝒙) = 𝑓0 (𝒙, 𝜷0)Π𝑘𝑚=1 𝑓�̂�𝑚 ,𝑚 ( �̂�⊤𝑚𝒙), and 𝑓𝒂,𝑘 is estimated based on 𝑟𝑘−1. Let 𝑟0 (𝒙) = 1 and 𝑟0 (𝒙) = 𝑓0 (𝒙; 𝜷0) = 1. The
following results hold for 𝑘 = 1.

1
𝑛

𝑛∑︁
𝑖=1
|𝑟𝑘−1 (𝒙𝑖) − 𝑟𝑘−1 (𝒙𝑖) |2 =𝑂 𝑝 (𝜉𝑛,𝑘−1) . (16)

We shall show that, for any 𝑘 ∈ {1,2, . . . , 𝐾}, given (16) holds, we have

sup
𝒙∈X
| 𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) − 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) | =𝑂𝑃

(
{𝐽−(𝑠−1)
𝑘

+
√︁
𝜉𝑛,𝑘−1 +

√︁
𝐽𝑘/(𝑛𝑝 ∧𝑛𝑞)} · {

√︃
𝜁1 (𝐽𝑘) ∨ 𝜁2

0 (𝐽𝑘)}
)
, (17)

where 𝜁1 (𝐽𝑘) is the rate of the maximum eigenvalue of Ω(1)
𝐽𝑘
(𝒂) and

√︁
𝜁1 (𝐽𝑘) ∨ 𝜁0 (𝐽𝑘) = max{

√︁
𝜁1 (𝐽𝑘), 𝜁0 (𝐽𝑘)}. Then, using

the fact that 𝜉𝑛,0 = 0, we can inductively derive that

sup
𝒙∈X
|𝑟𝐾 (𝒙) − 𝑟𝐾 (𝒙) | =𝑂 𝑝

(
𝐾∑︁
ℓ=1

[{
𝐽
−(𝑠−1)
ℓ

+
√︄

𝐽ℓ

𝑛𝑞 ∧𝑛𝑝

}
·
𝐾∏
𝑖=ℓ

{√︃
𝜁1 (𝐽𝑖) ∨ 𝜁2

0 (𝐽𝑖)
}])

,
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which establishes the last statement of Theorem 4.2.

Proof of (17). To prove (17), we will need to establish the results in (8) and (9), which are relegated to Sections F.3 and F.4,
respectively. Specifically, we decompose

𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) − 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) = 𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) − 𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) (18)
+ 𝑓�̂�𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) − 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) (19)
+ 𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) − 𝑓�̂�𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) . (20)

For (18), we have sup𝒙∈X | 𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) − 𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) | ≤ sup𝒂∈A sup𝒙∈X | 𝑓𝒂,𝑘 (𝒂⊤𝒙) − 𝑓𝒂,𝑘 (𝒂⊤𝒙) |.

For (19), under Assumption F.2 (b), we can use Taylor’s expansion to expand 𝑓�̂�𝑘 ,𝑘 around 𝑓𝒂𝑘 ,𝑘 and obtain
sup𝒙∈X | 𝑓�̂�𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) − 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) | =𝑂 𝑝 (∥ �̂�𝑘 − 𝒂𝑘 ∥).

For (20), we can first decompose it as

(20) =
{
𝑓𝒂𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) − 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙)

}
+
{
𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) − 𝑓𝒂𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙)

}
+
{
𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) − 𝑓�̂�𝑘 ,𝑘 (𝒂⊤𝑘 𝒙)

}
.

The supremum norm of the first term can be bounded by 𝑂 𝑝 (∥ �̂�𝑘 − 𝒂𝑘 ∥), using Taylor’s expansion expanding 𝑓𝒂𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙)
around 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙). The second and the third term can also be bounded by 𝑂 𝑝 (∥ �̂�𝑘 − 𝒂𝑘 ∥) using the same argument for
(19). Thus, we have

sup
𝒙∈X
| 𝑓�̂�𝑘 ,𝑘 ( �̂�⊤𝑘 𝒙) − 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) | =𝑂 𝑝

(
sup
𝒂∈A

sup
𝒙∈X
| 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) − 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) | + ∥ �̂�𝑘 − 𝒂𝑘 ∥

)
.

Then, using (8) and (9), and noting that 𝜁0 (𝐽𝑘) ≤ 𝐽𝑘 , we then have (17) holds. The outline of the proof is completed.

F.3. Proof of (8)

Recalling the definitions of 𝑓𝒂,𝑘 in (6) and 𝑓 ∗𝒂,𝑘 in Section F.1, we decompose

sup
𝒂∈A

sup
𝑧∈Z

�� 𝑓𝒂,𝑘 (𝑧) − 𝑓𝒂,𝑘 (𝑧)�� ≤ sup
𝒂∈A

sup
𝑧∈Z

�� 𝑓 ∗𝒂,𝑘 (𝑧) − 𝑓𝒂,𝑘 (𝑧)�� (21)

+ sup
𝒂∈A

sup
𝑧∈Z

�� 𝑓𝒂,𝑘 (𝑧) − 𝑓 ∗𝒂,𝑘 (𝑧)�� . (22)

We derive the convergence rates for (21) and (22).

Rate of (21).

We obtain the rate
(21) =𝑂 (𝐽−𝑠𝑘 𝜁0 (𝐽𝑘))

from Lemma F.9.

Rate for (22). By definition, we have

𝜷∗𝑘 (𝒂) = {Σ𝐽𝑘 (𝒂)}
−1E𝑝 [𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)] .

Recalling the representation of 𝑓𝒂,𝑘 in (14), we decompose

sup
𝒂∈A

sup
𝒙∈X
| 𝑓𝒂,𝑘 (𝒂⊤𝒙) − 𝑓 ∗𝒂,𝑘 (𝒂

⊤𝒙) |

= sup
𝒂∈A

sup
𝒙∈X

�����𝚽𝑘 (𝒂⊤𝒙)⊤{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −𝚽𝑘 (𝒂⊤𝒙)⊤{Σ𝐽𝑘 (𝒂)}−1E𝑝 [𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)]

�����
≤ sup

𝒂∈A
sup
𝒙∈X

�����𝚽𝑘 (𝒂⊤𝒙)⊤{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
{𝑟𝑘−1 (𝒙𝑝𝑖 ) − 𝑟𝑘−1 (𝒙𝑝𝑖 )}𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 )

����� (23)

+ sup
𝒂∈A

sup
𝒙∈X

����𝚽𝑘 (𝒂⊤𝒙)⊤{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −𝚽𝑘 (𝒂⊤𝒙)⊤{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1E𝑝 [𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)]

���� (24)

+ sup
𝒂∈A

sup
𝒙∈X

��𝚽𝑘 (𝒂⊤𝒙)⊤
{
{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1− {Σ𝐽𝑘 (𝒂)}−1}E𝑝 [𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)]

�� . (25)
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We derive the rate for (23) to (25) one by one.

Rate for (23). Note that the term in the absolute value sign in (23) is the 𝐿2-projection of {𝑟𝑘−1 (𝒙𝑝) − 𝑟𝑘−1 (𝒙𝑝)} to the
linear space spanned by the sieve basis Φ𝑘 (𝒂⊤𝒙). Given that A and X are compact sets and the sieve basis 𝚽𝑘 is a local

basis, we have (23) ≤ sup𝒂∈A sup𝒙∈X |∥𝚽𝑘 (𝒂⊤𝒙)∥
√︃∑𝑛𝑝

𝑖=1{𝑟𝑘−1 (𝒙𝑝𝑖 ) − 𝑟𝑘−1 (𝒙𝑝𝑖 )}2/𝑛𝑝 =𝑂 𝑝 (𝜁0 (𝐽𝑘)
√︁
𝜉𝑛,𝑘−1) .

Rate for (24). Define 𝑏𝒂 (𝑧) =𝚽𝑘 (𝑧)⊤{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1/∥𝚽𝑘 (𝑧)⊤{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1∥ and S𝐽𝑘 to be the 𝐽𝑘 dimensional unit ball
S𝐽𝑘 := {𝑏 ∈ R𝐽𝑘 : ∥𝑏∥ = 1}. Since, under Assumption F.3,

sup
𝒂∈A

sup
𝒙∈X
∥𝚽𝑘 (𝑧)⊤{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1∥ =𝑂𝑃 (𝜁0 (𝐽𝑘)),

the term (24) can be bounded as follows:

(24) =𝑂𝑃 {𝜁0 (𝐽𝑘)} · sup
𝒂∈A

sup
𝒙∈X

����� 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑏𝒂 (𝒂⊤𝒙)⊤𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −E𝑝 [𝑏𝒂 (𝒂

⊤𝒙)⊤𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)]
�����

≤𝑂𝑃 {𝜁0 (𝐽𝑘)} · sup
(𝑏,𝒂) ∈S𝐽𝑘

×A

����� 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑏⊤𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −E𝑝 [𝑏

⊤𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)]
����� . (26)

Consider the measurable function classH𝑘 := {𝒙 ↦→ 𝑏⊤𝚽𝑘 (𝒂⊤𝒙)} : (𝑏, 𝒂) ∈ S𝐽𝑘 ×A} with its envelope denoted by 𝐻𝑘 (𝒙) :=
sup(𝑏,𝒂) ∈S𝐽𝑘

×A ∥𝑏⊤𝚽𝑘 (𝒂⊤𝒙)∥ = sup𝒂∈A ∥𝚽𝑘 (𝒂⊤𝒙)∥. We denote ∥𝐻∥ 𝑓 := {
∫
𝐻 (𝑥)2 𝑓 (𝑥)𝑑𝑥}1/2 for any function 𝐻 and

density 𝑓 . Then ∥𝐻𝑘 ∥ 𝑝 =𝑂 (𝜁0 (𝐽𝑘)). Note that by the maximal inequality (e.g., Vaart & Wellner, 1996, Theorem 2.14.2 ),

E

[
sup

(𝑏,𝒂) ∈S𝐽𝑘
×A

����� 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑏⊤𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −E𝑝 [𝑏

⊤𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)]
�����
]

≤ 𝐶
√
𝑛𝑝
·
∫ 1

0

√︃
1+ log𝑁[ ] (𝜖 · ∥𝐻𝑘 ∥ 𝑝 ,H𝑘 , ∥ · ∥ 𝑝)𝑑𝜖 · ∥𝐻𝑘 ∥ 𝑝 ,

where 𝑁[ ] (𝜖 ∥𝐻𝑘 ∥ 𝑝 ,H𝑘 , ∥ · ∥ 𝑝) is the minimum number of 𝜖 ∥𝐻𝑘 ∥ 𝑝-brackets needed to coverH𝑘 (Vaart & Wellner, 1996,
Section 2.1). Since ∥𝐻𝑘 ∥ 𝑝 ≤ ∥𝐻𝑘 ∥∞, we have

𝑁[ ] (𝜖,H𝑘 , ∥ · ∥ 𝑝) ≤ 𝑁[ ] (𝜖,H𝑘 , ∥ · ∥∞). (27)

Then, by Lemma F.5 we deduce that ∫ 1

0

√︃
1+ log𝑁[ ] (𝜖 · ∥𝐻𝑘 ∥ 𝑝 ,H𝑘 , ∥ · ∥ 𝑝)𝑑𝜖

≤𝐶
∫ 1

0

√︄
1− 𝐽𝑘 log

(
𝜖 · ∥𝐻𝑘 ∥ 𝑝
𝜁0 (𝐽𝑘)

)
𝑑𝜖

≤𝐶
√︁
𝐽𝑘

∫ 1

0

√︂
1
𝐽𝑘
− log(𝜖)𝑑𝜖 =𝑂 (

√︁
𝐽𝑘).

Hence,

E

[
sup

(𝑏,𝒂) ∈S𝐽𝑘
×A

����� 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑏⊤𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −E𝑝 [𝑏

⊤𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)]
�����
]
=𝑂 𝑝

(√
𝐽𝑘𝜁0 (𝐽𝑘)
𝑛𝑝

)
.

Consequently, by (26), we have

(24) =𝑂𝑃

(√
𝐽𝑘𝜁0 (𝐽𝑘)2√

𝑛𝑝

)
. (28)

Rate for (25).
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Note that, under Assumption F.3 and recalling the definition of 𝜂max (·) and the results in Lemma F.6,

(25) ≤ 𝜁0 (𝐽𝑘) sup
𝒂∈A

𝜂max

(
{Σ̂𝐽,𝜆 (𝒂)}−1{Σ𝐽𝑘 (𝒂)}−1

) 

{Σ𝐽 (𝒂) − Σ̂𝐽,𝜆 (𝒂)}E𝑝 [
𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)

]


=𝑂 𝑝 (𝜁0 (𝐽𝑘)) sup

𝒂∈A

[√︂
𝜂max

({
Σ𝐽 (𝒂) − Σ̂𝐽𝑘 (𝒂)

}2
)
+𝜆

] 

E𝑝 [
𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)

]


≤ 𝑂 𝑝 (𝜁0 (𝐽𝑘)) sup

𝒂∈A

{
𝜆+



Σ𝐽 (𝒂) − Σ̂𝐽𝑘 (𝒂)

} 

E𝑝 [
𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)

]


=𝑂 𝑝

(√︁
𝜉𝑛,𝑘−1𝜁0 (𝐽𝑘)2 +

√
𝐽𝑘𝜁0 (𝐽𝑘)2√

𝑛𝑞

)
· sup
𝒂∈A



E𝑝 [
𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)

]

 , (29)

where the last equality follows from Lemma F.6 and the rate of 𝜆 in Assumption F.3.

Let 𝑉 (𝒂) := E𝑝
[
E𝑝 {𝑟𝑘−1 (𝒙) |𝒂⊤𝒙}𝚽𝑘 (𝒂⊤𝒙)

]
. Under Assumption F.3, we have the eigenvalues of Ω𝐽,𝑝 :=

E𝑝{𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤} are bounded and bounded away from 0 uniformly in 𝒂 ∈ A. Then

sup
𝒂∈A
∥𝑉 (𝒂)∥2 = sup

𝒂∈A
𝑉 (𝒂)⊤𝑉 (𝒂)

=𝑂 (1) · sup
𝒂∈A

𝑉 (𝒂)⊤Ω𝐽,𝑝 (𝒂)−1Ω𝐽,𝑝 (𝒂)Ω𝐽,𝑝 (𝒂)−1𝑉 (𝒂)

=𝑂 (1) · sup
𝒂∈A

E𝑝
[
{𝑉 (𝒂)⊤Ω𝐽,𝑝 (𝒂)−1𝚽𝑘 (𝒂⊤𝒙)}2

]
,

which is the 𝐿2-projection of E𝑝 {𝑟𝑘−1 (𝒙) |𝒂⊤𝒙} to the space linearly spanned by 𝚽𝑘 (𝒂⊤𝒙). Therefore,

sup
𝒂∈A
∥𝑉 (𝒂)∥2 ≤ E𝑝 [E𝑝

{
𝑟𝑘−1 (𝒙) |𝒂⊤𝒙

}2] =𝑂 (1) .

Combining the results of (23) to (25), we have

(22) =𝑂 𝑝

(√︁
𝜉𝑛,𝑘−1𝜁

2
0 (𝐽𝑘) +

𝜁2
0 (𝐽𝑘)

√
𝐽𝑘

√
𝑛𝑝 ∧𝑛𝑞

)
.

Consequently, we have (8).

F.4. Proof of (9)

Consistency. We first show �̂�𝑘
𝑝
→ 𝒂𝑘 as 𝑛𝑝 , 𝑛𝑞→∞. By definition, �̂�𝑘 (resp. 𝒂𝑘) is the unique minimizer of L̂𝑘 (𝒂, �̂�(𝒂);𝜆)

(resp. 𝐻 ( 𝑓𝒂,𝑘 , 𝒂)). From the theory of 𝑀-estimation (Van der Vaart, 2000, Theorem 5.7), if the following condition holds:

sup
𝒂∈A

��L̂𝑘 (𝒂, �̂�(𝒂);𝜆) −𝐻 ( 𝑓𝒂,𝑘 , 𝒂)�� 𝑝
→ 0

as 𝑛𝑝 , 𝑛𝑞→∞, then we have �̂�𝑘
𝑝
→ 𝒂𝑘 . Since

L̂𝑘 (𝒂, �̂�𝑘 (𝒂),𝜆) =
1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
) − 2

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 ) 𝑓𝒂,𝑘 (𝒂

⊤𝒙𝑝
𝑖
) +𝜆 �̂�𝑘 (𝒂)⊤ �̂�𝑘 (𝒂) ,
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we can decompose

sup
𝒂∈A

��L̂𝑘 (𝒂, �̂�(𝒂);𝜆) −𝐻 ( 𝑓𝒂,𝑘 , 𝒂)��
≤ sup

𝒂∈A

����� 1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
) −E𝑞 [𝑟2

𝑘−1 (𝒙) 𝑓
2
𝒂,𝑘 (𝒂

⊤𝒙)]
�����

+2 sup
𝒂∈A

����� 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 ) 𝑓𝒂,𝑘 (𝒂

⊤𝒙𝑝
𝑖
) −E𝑝 [𝑟𝑘−1 (𝒙) 𝑓𝒂,𝑘 (𝒂⊤𝒙)]

����� (30)

+ sup
𝒂∈A

����� 1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1

[
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
) − 𝑟2

𝑘−1 (𝒙
𝑞

𝑖
) 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
)
] �����

+2 sup
𝒂∈A

����� 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1

[
𝑟𝑘−1 (𝒙𝑝𝑖 ) 𝑓𝒂,𝑘 (𝒂

⊤𝒙𝑝
𝑖
) − 𝑟𝑘−1 (𝒙𝑝𝑖 ) 𝑓𝒂,𝑘 (𝒂

⊤𝒙𝑝
𝑖
)
] ����� (31)

+𝜆 sup
𝒂∈A

�̂�𝑘 (𝒂)⊤ �̂�𝑘 (𝒂) . (32)

Rate for (30). As imposed in Assumptions F.1 and F.2, A is compact and 𝑓𝒂,𝑘 (𝒂⊤𝒙) is continuous in 𝒂, applying the
uniform law of large numbers (Newey & McFadden, 1994, Lemma 2.4), we have

(30) =𝑂 𝑝 (1/
√
𝑛𝑞 +1/√𝑛𝑝) = 𝑜𝑝 (1) .

Rate for (31). Note that����� 1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1

[
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
) − 𝑟2

𝑘−1 (𝒙
𝑞

𝑖
) 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
)
] ����� ≤

����� 1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1

[
{𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) − 𝑟2

𝑘−1 (𝒙
𝑞

𝑖
)} 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
)
] �����

+
����� 1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1

[
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
){ 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
) − 𝑓 2

𝒂,𝑘 (𝒂
⊤𝒙𝑞

𝑖
)}

] ����� .
We can apply the same decomposition to the second term of (31).

For any 𝑘 ∈ {1,2, . . . , 𝐾}, given (16) that 𝑛−1
𝑞

∑𝑛𝑞

𝑖=1 |𝑟𝑘−1 (𝒙𝑞𝑖 ) − 𝑟𝑘−1 (𝒙𝑞𝑖 ) |2 = 𝑂 𝑝 (𝜉𝑛,𝑘−1), using (8) and Cauchy-Schwarz
inequality, we can conclude that

(31) =𝑂 𝑝

(
𝐽−𝑠𝑘 𝜁0 (𝐽𝑘) +

√︁
𝜉𝑛,𝑘−1𝜁

2
0 (𝐽𝑘) + 𝜁

2
0 (𝐽𝑘)

√︁
𝐽𝑘/(𝑛𝑞 ∧𝑛𝑝)

)
= 𝑜𝑝 (1) .

Rate for (32). Using the rate of 𝜆 in Assumption F.3 and Lemma F.11, we have (32) = 𝑜𝑝 (1).

Consequently, we have �̂�𝑘 − 𝒂𝑘
𝑝
→ 0.

Convergence Rate. Let ℓ̂𝑘 (𝒂) = L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆). Since �̂�𝑘 is the unique global minimizer of the context function ℓ̂𝑘 (𝒂), by
the first order condition, we have 𝜕𝒂 ℓ̂𝑘 ( �̂�𝑘) = 0. By applying the mean value theorem, we obtain

0 = 𝜕𝒂 ℓ̂𝑘 ( �̂�𝑘) = 𝜕𝒂 ℓ̂𝑘 (𝒂𝑘) + 𝜕2
𝒂 ℓ̂𝑘 ( �̄�𝑘) ( �̂�𝑘 − 𝒂𝑘),

where �̄� lies between �̂�𝑘 and 𝒂𝑘 . Hence,

�̂�𝑘 − 𝒂𝑘 = −𝜕2
𝒂 ℓ̂𝑘 ( �̄�𝑘)−1 · 𝜕𝒂 ℓ̂𝑘 (𝒂𝑘). (33)

Equation (33) implies that the convergence rate of �̂�𝑘 − 𝒂𝑘 is determined by the Hessian matrix 𝜕2
𝒂 ℓ̂𝑘 ( �̄�𝑘) and the score

function 𝜕𝒂 ℓ̂𝑘 (𝒂𝑘). We derive the rate of these terms one by one. Recalling the definition of ℓ̂𝑘 (𝒂) at the beginning of the
subsection and applying the chain rule, we obtain

𝜕𝒂 ℓ̂𝑘 (𝒂) =𝜕1L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) + 𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆)𝜕𝒂 �̂�𝑘 (𝒂)
=𝜕1L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) , (34)
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where for any bivariate function 𝑔(𝑥, 𝑦), 𝜕1𝑔(𝑥, 𝑦) and 𝜕2𝑔(𝑥, 𝑦) denotes the partial derivative of 𝑔 w.r.t. to the first and
the second arguments, 𝑥 and 𝑦, respectively. The second equality follows from the fact that �̂�𝑘 (𝒂) is the unique global
minimizer of the convex function L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) for any 𝒂 ∈ A, so 𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) = 0 for any 𝒂 ∈ A. Then, we have

𝜕2
𝒂 ℓ̂𝑘 (𝒂) = 𝜕2

1 L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) + 𝜕2𝜕1L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) · 𝜕𝒂 �̂�𝑘 (𝒂) . (35)

Asymptotics of the Hessian matrix 𝜕2
𝒂 ℓ̂𝑘 ( �̄�𝑘). Taking derivative on both sides of

𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) = 0 w.r.t. 𝒂 yields

𝜕1𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) + 𝜕2
2 L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆)𝜕𝒂 �̂�𝑘 (𝒂) = 0.

Since 𝜕2
2 L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) = Σ̂𝐽𝑘 ,𝜆 (𝒂), substituting this expression into the above equation, we obtain

𝜕𝒂 �̂�𝑘 (𝒂) = −Σ̂𝐽𝑘 ,𝜆 (𝒂)−1𝜕1𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) . (36)

Thus

𝜕2
𝒂 ℓ̂𝑘 (𝒂) = 𝜕2

1 L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) − 𝜕2𝜕1L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆)Σ̂𝐽𝑘 ,𝜆 (𝒂)−1𝜕1𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) .

Note that

𝜕2
1 L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) =

2
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
){ 𝑓 (1)𝒂,𝑘 (𝒂

⊤𝒙𝑞
𝑖
)}2𝒙𝑞

𝑖
(𝒙𝑞
𝑖
)⊤

+ 2
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) 𝑓𝒂,𝑘 (𝒂⊤𝒙𝑞𝑖 ) 𝑓

(2)
𝒂,𝑘 (𝒂

⊤𝒙𝑞
𝑖
)𝒙𝑞
𝑖
(𝒙𝑞
𝑖
)⊤− 2

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 ) 𝑓

(2)
𝒂,𝑘 (𝒂

⊤𝒙𝑝
𝑖
)𝒙𝑝
𝑖
(𝒙𝑝
𝑖
)⊤ ,

and

𝜕2𝜕1L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆)⊤ = 𝜕1𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆) =
2
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) 𝑓 (1)𝒂,𝑘 (𝒂

⊤𝒙𝑞
𝑖
)𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 ) (𝒙

𝑞

𝑖
)⊤

+ 2
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) 𝑓𝒂,𝑘 (𝒂⊤𝒙𝑞𝑖 )𝚽

(1)
𝑘
(𝒂⊤𝒙𝑞

𝑖
) (𝒙𝑞

𝑖
)⊤− 2

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽

(1)
𝑘
(𝒂⊤𝒙𝑝

𝑖
) (𝒙𝑝

𝑖
)⊤ .

Note that 𝜕2𝜕1L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆)⊤ = 𝜕1𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆). Using calculations similar to those in the derivation for (31), the
results of Lemmas F.6 and F.10, and the rate of 𝜆 in Assumption F.3, we have





𝜕2
1 L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆)−

(
2E𝑞

[
𝑟2
𝑘−1 (𝒙){ 𝑓

∗(1)
𝒂,𝑘 (𝒂

⊤𝒙)}2𝒙(𝒙)⊤
]

+2E𝑞
[
𝑟2
𝑘−1 (𝒙) 𝑓

∗
𝒂,𝑘 (𝒂

⊤𝒙) 𝑓 ∗(2)𝒂,𝑘 (𝒂
⊤𝒙)𝒙 (𝒙)⊤

]
−2E𝑝

[
𝑟𝑘−1 (𝒙) 𝑓 ∗(2)𝒂,𝑘 (𝒂

⊤𝒙)𝒙(𝒙)⊤
] )





=𝑜𝑝 (1) ,



𝜕1𝜕2L̂𝑘 (𝒂, �̂�𝑘 (𝒂);𝜆)−
(
2E𝑞

[
𝑟2
𝑘−1 (𝒙) 𝑓

∗(1)
𝒂,𝑘 (𝒂

⊤𝒙)𝚽𝑘 (𝒂⊤𝒙) (𝒙)⊤
]

(37)

+2E𝑞
[
𝑟2
𝑘−1 (𝒙) 𝑓

∗
𝒂,𝑘 (𝒂

⊤𝒙)𝚽(1)
𝑘
(𝒂⊤𝒙) (𝒙)⊤

]
−2E𝑝

[
𝑟𝑘−1 (𝒙)𝚽(1)𝑘 (𝒂

⊤𝒙) (𝒙)⊤
] )





=𝑜𝑝 (1) ,

and
∥Σ̂𝐽𝑘 ,𝜆 (𝒂) −Σ𝐽𝑘 (𝒂)∥ = 𝑜𝑝 (1) .
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Consequently, we have,

𝜕2
𝒂 ℓ̂𝑘 ( �̄�) = 𝜕2

𝒂𝐻
∗ (𝜷∗𝑘 ( �̄�), �̄�) + 𝑜𝑝 (1) = 𝜕

2
𝒂𝐻
∗ (𝜷∗𝑘 (𝒂𝑘), 𝒂𝑘) + 𝑜𝑝 (1) ,

where the last equality follows from the fact that �̄� lies between �̂�𝑘 and 𝒂𝑘 , and �̂�𝑘 − 𝒂𝑘
𝑝
→ 0 and the continuous mapping

theory.

Using arguments similar to the proof of the consistency of �̂�𝑘 to 𝒂𝑘 , we have 𝒂∗
𝑘
− 𝒂𝑘 → 0. Thus,

𝜕2
𝒂 ℓ̂𝑘 ( �̄�) = 𝜕2

𝒂𝐻
∗ (𝜷∗𝑘 (𝒂

∗
𝑘), 𝒂

∗
𝑘) + 𝑜𝑝 (1) .

Thus, under Assumption F.4, 𝜕2
𝒂 ℓ̂𝑘 ( �̄�) is asymptotically invertible and ∥𝜕2

𝒂 ℓ̂𝑘 ( �̄�)−1∥ =𝑂 𝑝 (1).

Asymptotics of the score function 𝜕𝒂 ℓ̂𝑘 (𝒂𝑘). Note that

𝜕𝒂 ℓ̂𝑘 (𝒂𝑘) =𝜕1L̂𝑘 (𝒂𝑘 , �̂�𝑘 (𝒂𝑘);𝜆)

=
2
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙

𝑞

𝑖
) 𝑓 (1)𝒂𝑘 ,𝑘

(𝒂⊤𝑘 𝒙
𝑞

𝑖
) (𝒙𝑞

𝑖
)⊤− 2

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 ) 𝑓

(1)
𝒂𝑘 ,𝑘
(𝒂⊤𝑘 𝒙

𝑝

𝑖
) (𝒙𝑝

𝑖
)⊤ .

Using (16), Lemmas F.9 and F.10, and the arguments similar to those in the proof of Lemma F.8, we have

𝜕𝒂 ℓ̂𝑘 (𝒂𝑘) =2E𝑞
[
𝑟2
𝑘−1 (𝒙) 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) 𝑓

(1)
𝒂𝑘 ,𝑘
(𝒂⊤𝑘 𝒙) (𝒙)

⊤
]
−2E𝑝

[
𝑟𝑘−1 (𝒙) 𝑓 (1)𝒂𝑘 ,𝑘

(𝒂⊤𝑘 𝒙) (𝒙)
⊤
]

(38)

+𝑂 𝑝

(
{𝐽−(𝑠−1)
𝑘

+
√︁
𝜉𝑛,𝑘−1} ·

√︃
𝜁1 (𝐽𝑘) +

√︃
𝜁1 (𝐽𝑘) · 𝐽𝑘/(𝑛𝑝 ∧𝑛𝑞)

)
.

By the definition in (6), we have, for any 𝒂 ∈ A,

2E𝑞 [𝑟2
𝑘−1 (𝒙) 𝑓𝒂 (𝒂

⊤𝒙)𝜑(𝒂⊤𝒙)] −2E𝑝 [𝑟𝑘−1 (𝒙)𝜑(𝒂⊤𝒙)] = 0 (39)

for all integrable 𝜑 : R ↦→ R. Moreover, by the definition in (7) and chain rule, we have

𝜕1𝐻 ( 𝑓𝒂, 𝒂𝑘) · 𝜕𝒂 𝑓𝒂
���
𝒂=𝒂𝑘

+ 𝜕2𝐻 ( 𝑓𝒂𝑘
, 𝒂)

���
𝒂=𝒂𝑘

= 0 . (40)

Note that, for any 𝒂 ∈ A,

𝜕1𝐻 ( 𝑓𝒂, 𝒂𝑘) · 𝜕𝒂 𝑓𝒂 = 2E𝑞 [𝑟2
𝑘−1 (𝒙) 𝑓𝒂 (𝒂

⊤
𝑘 𝒙)𝜕𝒂 𝑓𝒂 (𝒂

⊤
𝑘 𝒙)] −2E𝑝 [𝑟𝑘−1 (𝒙)𝜕𝒂 𝑓𝒂 (𝒂⊤𝑘 𝒙)] .

Using (39), we have

𝜕1𝐻 ( 𝑓𝒂, 𝒂𝑘) · 𝜕𝒂 𝑓𝒂
���
𝒂=𝒂𝑘

= 0 .

Then (40) implies that

𝜕2𝐻 ( 𝑓𝒂𝑘
, 𝒂)

���
𝒂=𝒂𝑘

= 2E𝑞
[
𝑟2
𝑘−1 (𝒙) 𝑓𝒂𝑘 ,𝑘 (𝒂⊤𝑘 𝒙) 𝑓

(1)
𝒂𝑘 ,𝑘
(𝒂⊤𝑘 𝒙) (𝒙)

⊤
]
−2E𝑝

[
𝑟𝑘−1 (𝒙) 𝑓 (1)𝒂𝑘 ,𝑘

(𝒂⊤𝑘 𝒙) (𝒙)
⊤
]
= 0 ,

which, combined with (38), implies that the score function

𝜕𝒂 ℓ̂𝑘 (𝒂𝑘) =𝑂 𝑝

(
{𝐽−(𝑠−1)
𝑘

+
√︁
𝜉𝑛,𝑘−1} ·

√︃
𝜁1 (𝐽𝑘) +

√︃
𝜁1 (𝐽𝑘) · 𝐽𝑘/(𝑛𝑝 ∧𝑛𝑞)

)
.

Then we have

∥ �̂�𝑘 − 𝒂𝑘 ∥ =𝑂 𝑝

(
{𝐽−(𝑠−1)
𝑘

+
√︁
𝜉𝑛,𝑘−1} ·

√︃
𝜁1 (𝐽𝑘) +

√︃
𝜁1 (𝐽𝑘) · 𝐽𝑘/(𝑛𝑝 ∧𝑛𝑞)

)
.
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F.5. Technical Lemmas

Lemma F.5. For any 𝑘 ∈ {1,2, . . . , 𝐾}, log𝑁[ ] (𝜖,H𝑘 , ∥ · ∥∞) =𝑂
[
𝐽𝑘 log

{
𝜖−1/𝜁0 (𝐽𝑘)

}]
.

Proof. For a fixed 𝜖 > 0, we choose 𝜖/{2𝜁0 (𝐽𝑘)}-balls centering at 𝑏1, . . . , 𝑏𝑀1 ∈ S𝐽𝑘 such that S𝐽𝑘 can be covered, and
𝜖/{2sup𝒙∈X ∥𝒙∥𝜁1 (𝐽𝑘)}-balls centering at 𝒂1, . . . , 𝒂𝑀2 such that A can be covered. Using the triangle inequality and the
mean value theorem, we deduce that, for any (𝑏, 𝒂) ∈ S𝐽𝑘 ×A, there exist 𝑗 ∈ {1, · · · , 𝑀1} and ℓ ∈ {1, · · · , 𝑀2}, such that���𝑏⊤𝚽𝑘 (𝒂⊤𝒙) − 𝑏⊤𝑗𝚽𝑘 (𝒂⊤ℓ 𝒙)

���
≤



𝑏− 𝑏 𝑗

 · 

𝚽𝑘 (𝒂⊤𝒙)


+ 𝜁1 (𝐽𝑘) · ∥𝒙∥ · ∥𝒂− 𝒂ℓ ∥

≤


𝑏− 𝑏 𝑗

 · 𝜁0 (𝐽𝑘) + 𝜁1 (𝐽𝑘) · ∥𝒙∥ · ∥𝒂− 𝒂ℓ ∥ ≤ 𝜖 .

Hence, {[𝑏⊤
𝑗
𝚽𝑘 (𝒂⊤ℓ 𝒙) − 𝜖, 𝑏

⊤
𝑗
𝚽𝑘 (𝒂⊤ℓ 𝒙) + 𝜖]} 𝑗 ,ℓ form a set of 𝜖-brackets that cover the spaceH𝑘 . Because 𝑗 ranges from 1

to 𝑀1, and ℓ ranges from 1 to 𝑀2, we have a total of 𝑀1×𝑀2 brackets. Therefore,

𝑁[ ] (𝜖,H𝑘 , ∥ · ∥∞) ≤𝑀1 ×𝑀2

=𝑁 (𝜖/{2𝜁0 (𝐽𝑘)},S𝐽𝑘 , ∥ · ∥) ×𝑁 (𝜖/{2 sup
𝒙∈X
∥𝒙∥𝜁1 (𝐽𝑘)},A, ∥ · ∥).

Since S𝐽𝑘 is a compact set in R𝐽𝑘 and A is a compact set in R𝑑 , 𝑁 (𝜖,S𝐽𝑘 , ∥ · ∥) ≤ 𝐶𝜖−𝐶𝐽𝑘 and 𝑁 (𝜖,A, ∥ · ∥) ≤ 𝐶𝜖−𝐶𝑑 .
Hence

log𝑁[ ] (𝜖,H𝑘 , ∥ · ∥∞) =𝑂 [−𝑑 log{𝜖/𝜁1 (𝐽𝑘)} − 𝐽𝑘 log {𝜖/𝜁0 (𝐽𝑘)}]
=𝑂 [−𝐽𝑘 log {𝜖/𝜁0 (𝐽𝑘)}] .

□

Lemma F.6. For any 𝑘 ∈ {1,2, . . . , 𝐾}, suppose (16) holds. Under Assumption F.3, for 𝑗 = 0,1,2, we have

sup
𝒂∈A
∥Ω̂( 𝑗 )

𝐽𝑘
(𝒂) −Ω( 𝑗 )

𝐽𝑘 , 𝑝
(𝒂)∥ =𝑂 𝑝 (𝜁 𝑗 (𝐽𝑘)

√︁
𝐽𝑘/𝑛) .

Similarly, we have

sup
𝒂∈A
∥Σ̂𝐽𝑘 (𝒂) −Σ𝐽𝑘 (𝒂)∥ =𝑂 𝑝

(√︁
𝜉𝑛,𝑘−1𝜁0 (𝐽𝑘) +

𝜁0 (𝐽𝑘)
√
𝐽𝑘√

𝑛𝑝 ∧𝑛𝑞

)
.

Furthermore, we have

𝜂min{Ω̂( 𝑗 )𝐽𝑘 (𝒂)} ≥𝜂min{Ω( 𝑗 )𝐽𝑘 (𝒂)} −𝑂 𝑝 (𝜁 𝑗 (𝐽𝑘)
√︁
𝐽𝑘/𝑛) ,

𝜂min{Σ̂𝐽𝑘 (𝒂)} ≥𝜂min{Σ𝐽𝑘 (𝒂)} −𝑂 𝑝

(√︁
𝜉𝑛,𝑘−1𝜁0 (𝐽𝑘) +

𝜁0 (𝐽𝑘)
√
𝐽𝑘√

𝑛𝑝 ∧𝑛𝑞

)
,

𝜂min{Σ̂𝐽𝑘 ,𝜆 (𝒂)} ≥𝜂min{Σ𝐽𝑘 (𝒂)} −𝑂 𝑝

(√︁
𝜉𝑛,𝑘−1𝜁0 (𝐽𝑘) +

𝜁0 (𝐽𝑘)
√
𝐽𝑘√

𝑛𝑝 ∧𝑛𝑞

)
,

and

𝜂max{Ω̂( 𝑗 )𝐽𝑘 (𝒂)} ≤𝜂max{Ω( 𝑗 )𝐽𝑘 (𝒂)} +𝑂 𝑝 (𝜁 𝑗 (𝐽𝑘)
√︁
𝐽𝑘/𝑛) ,

𝜂max{Σ̂𝐽𝑘 (𝒂)} ≤𝜂max{Σ𝐽𝑘 (𝒂)} +𝑂 𝑝

(√︁
𝜉𝑛,𝑘−1𝜁0 (𝐽𝑘) +

𝜁0 (𝐽𝑘)
√
𝐽𝑘√

𝑛𝑝 ∧𝑛𝑞

)
,

𝜂max{Σ̂𝐽𝑘 ,𝜆 (𝒂)} ≤𝜂max{Σ𝐽𝑘 (𝒂)} +𝑂 𝑝

(√︁
𝜉𝑛,𝑘−1𝜁0 (𝐽𝑘) +

𝜁0 (𝐽𝑘)
√
𝐽𝑘√

𝑛𝑝 ∧𝑛𝑞

)
,

uniformly in 𝒂 ∈ A.
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Proof. Under Assumption F.3, we have the eigenvalues of Ω( 𝑗 )
𝐽𝑘

are bounded for 𝑗 = 0,1,2 uniformly in 𝒂 ∈ A. We can then
derive that

sup
𝒂∈A

E
[
∥Ω̂( 𝑗 )

𝐽𝑘
(𝒂) −Ω( 𝑗 )

𝐽𝑘
(𝒂)∥2

]
= sup
𝒂∈A

𝐽𝑘∑︁
𝑗=1

𝐽𝑘∑︁
ℓ=1

E


{

1
𝑛

𝑛∑︁
𝑖=1
𝜙
( 𝑗 )
𝑗
(𝒂⊤𝒙𝑖)𝜙 ( 𝑗 )ℓ (𝒂

⊤𝒙𝑖) −E[𝜙 ( 𝑗 )𝑗 (𝒂
⊤𝒙)𝜙 ( 𝑗 )

ℓ
(𝒂⊤𝒙)]

}2
≤ sup

𝒂∈A

𝐽𝑘∑︁
𝑗=1

𝐽𝑘∑︁
ℓ=1

1
𝑛
E[{𝜙 ( 𝑗 )

𝑗
(𝒂⊤𝒙)}2{𝜙 ( 𝑗 )

ℓ
(𝒂⊤𝒙)}2]

= sup
𝒂∈A

1
𝑛
E


𝐽𝑘∑︁
𝑗=1
{𝜙 ( 𝑗 )

𝑗
(𝒂⊤𝒙)}2

𝐽𝑘∑︁
ℓ=1
{𝜙 ( 𝑗 )
ℓ
(𝒂⊤𝒙)}2


= sup
𝒂∈A

1
𝑛
E

[
𝚽( 𝑗 )
𝑘
(𝒂⊤𝒙)⊤𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙)𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙)⊤𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙)

]
≤
𝜁 𝑗 (𝐽𝑘)2

𝑛
sup
𝒂∈A

tr
(
E

[
𝚽( 𝑗 )
𝑘
(𝒂⊤𝒙)𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙)⊤

] )
=𝑂

(
𝜁 𝑗 (𝐽𝑘)2𝐽𝑘

𝑛

)
.

Thus,
sup
𝒂∈A
∥Ω̂( 𝑗 )

𝐽𝑘
(𝒂) −Ω( 𝑗 )

𝐽𝑘
(𝒂)∥ =𝑂 𝑝 (𝜁 𝑗 (𝐽𝑘)

√︁
𝐽𝑘/𝑛) .

It then follows from the definition of the maximum and minimum eigenvalues that

𝜂min{Ω̂( 𝑗 )𝐽𝑘 (𝒂)} = min
∥𝜷⊤𝜷 ∥=1

{𝜷⊤Ω( 𝑗 )
𝐽𝑘
(𝒂)𝜷+ 𝜷⊤ [Ω̂( 𝑗 )

𝐽𝑘
(𝒂) −Ω( 𝑗 )

𝐽𝑘
(𝒂)]𝜷} ≥ 𝜂min{Ω( 𝑗 )𝐽𝑘 (𝒂)} −𝑂 𝑝 (𝜁 𝑗 (𝐽𝑘)

√︁
𝐽𝑘/𝑛) ,

and
𝜂max{Ω̂( 𝑗 )𝐽𝑘 (𝒂)} ≤ 𝜂max{Ω( 𝑗 )𝐽𝑘 (𝒂)} +𝑂 𝑝 (𝜁 𝑗 (𝐽𝑘)

√︁
𝐽𝑘/𝑛) ,

uniformly in 𝒂 ∈ A.

For Σ̂𝐽𝑘 (𝒂), we first define

Σ̃𝐽𝑘 (𝒂) :=
1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )

⊤ .

Then, we have

Σ̂𝐽𝑘 (𝒂) −Σ𝐽𝑘 (𝒂) =Σ̂𝐽𝑘 (𝒂) − Σ̃𝐽𝑘 (𝒂) + Σ̃𝐽𝑘 (𝒂) −Σ𝐽𝑘 (𝒂)

=
1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
{𝑟𝑘−1 (𝒙𝑞𝑖 ) − 𝑟𝑘−1 (𝒙𝑞𝑖 )}𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )

⊤ (41)

+ 1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )

⊤−E𝑞 [𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤] . (42)

For (41), using (16) and Cauchy-Schwarz inequality, we can derive

sup
𝒂∈A
∥(41)∥ ≤

√√√
1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
{𝑟𝑘−1 (𝒙𝑞𝑖 ) − 𝑟𝑘−1 (𝒙𝑞𝑖 )}2 · sup

𝒂∈A

√︃
𝜂max (Ω̂𝐽𝑘 (𝒂)) · sup

𝒂∈A
sup
𝒙∈X
∥𝚽𝑘 (𝒂⊤𝒙)∥

=𝑂 𝑝

(√︁
𝜉𝑛,𝑘−1 · 𝜁0 (𝐽𝑘)

)
.

For (42), using the same arguments for Ω̂𝐽𝑘 (𝒂), we have

sup
𝒂∈A
∥(42)∥ =𝑂 𝑝 (𝜁0 (𝐽𝑘)

√︁
𝐽𝑘/𝑛𝑞) .
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The result then follows.

The results for Σ̂𝐽𝑘 ,𝜆 (𝒂) follows from the fact that Σ̂𝐽𝑘 ,𝜆 (𝒂) = Σ̂𝐽𝑘 (𝒂) +𝜆𝑰𝐽𝑘 and the rate of 𝜆 in Assumption F.3.

□

Lemma F.7. For any 𝑘 ∈ {1,2, . . . , 𝐾}, suppose Assumptions F.2 – F.4 and (16) hold. Then,

sup
𝒂∈A
∥𝜷∗𝑘 (𝒂) − 𝜷𝑘,0 (𝒂)∥ =𝑂 (𝐽

−𝑠
𝑘 ) .

Proof. Note that 𝐻∗ (𝜷, 𝒂) is convex in 𝜷 under Assumption F.3, and has a unique global minimizer 𝜷∗𝑘 (𝒂). Given a constant
𝑑 > 𝐶 · 𝐽−𝑠

𝑘
for some constant 𝐶 > 0 (to be chosen later), for any 𝜷 satisfying ∥𝜷− 𝜷𝑘,0 (𝒂)∥ = 𝑑, we have(

1−
𝐶𝐽−𝑠

𝑘

𝑑

)
𝐻∗ (𝜷𝑘,0 (𝒂), 𝒂) +

𝐶𝐽−𝑠
𝑘

𝑑
𝐻∗ (𝜷, 𝒂) ≥ 𝐻∗

(
𝜷𝑘,0 (𝒂) −

𝐶𝐽−𝑠
𝑘

𝑑
{𝜷𝑘,0 (𝒂) − 𝜷}, 𝒂

)
.

Then, we have

𝐶𝐽−𝑠
𝑘

𝑑

[
𝐻∗ (𝜷, 𝒂) −𝐻∗ (𝜷𝑘,0 (𝒂), 𝒂)

]
≥𝐻∗

(
𝜷𝑘,0 (𝒂) −

𝐶𝐽−𝑠
𝑘

𝑑
{𝜷𝑘,0 (𝒂) − 𝜷}, 𝒂

)
−𝐻∗ (𝜷𝑘,0 (𝒂), 𝒂)

=𝐻

(
𝑓𝒂,𝑘 −

𝐶𝐽−𝑠
𝑘

𝑑
{𝜷𝑘,0 (𝒂) − 𝜷}⊤𝚽𝑘 , 𝒂

)
−𝐻 ( 𝑓𝒂,𝑘 , 𝒂)

− 𝜉
(
𝐶𝐽−𝑠

𝑘

𝑑
{𝜷𝑘,0 (𝒂) − 𝜷}

)
+ 𝜉 (0) ,

where 𝜉 (𝜽) := 𝐻
(
𝑓𝒂,𝑘 − 𝜽⊤𝚽𝑘 , 𝒂

)
−𝐻∗ (𝜷𝑘,0 (𝒂) − 𝜽 , 𝒂) for any 𝜽 ∈ R𝐽𝑘 . Note that 𝑓𝒂,𝑘 is the minimizer of 𝐻 ( 𝑓 , 𝒂). Under

Assumption F.3, 𝐻 ( 𝑓𝒂,𝑘 − 𝜽⊤𝚽𝑘 , 𝒂) is globally convex in 𝜽 and attains the minimum at 𝜽 = 0. Applying the Taylor’s
expansion of 𝐻 ( 𝑓𝒂,𝑘 − 𝜽⊤𝚽𝑘 , 𝒂) around 𝜽 = 0, we have

inf
{𝜷:∥𝜷−𝜷𝑘,0 (𝒂) ∥=𝑑}

[
𝐻

(
𝑓𝒂,𝑘 −

𝐶𝐽−𝑠
𝑘

𝑑
{𝜷𝑘,0 (𝒂) − 𝜷}⊤𝚽𝑘 , 𝒂

)
−𝐻 ( 𝑓𝒂,𝑘 , 𝒂)

]
= inf
{𝜷:∥𝜷−𝜷𝑘,0 (𝒂) ∥=𝑑}

𝐶2𝐽−2𝑠
𝑘

𝑑2 {𝜷𝑘,0 (𝒂) − 𝜷}⊤E[𝑟2
𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤]{𝜷𝑘,0 (𝒂) − 𝜷}

≥ 𝜂1𝐶
2𝐽−2𝑠
𝑘 ,

where 𝜂1 > 0 is the minimum eigenvalue of E[𝑟2
𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤] under Assumptions F.2 and F.3.

By the definition of 𝜉 (𝜽), we can derive that, for ∥𝜷− 𝜷𝑘,0 (𝒂)∥ = 𝑑,����𝜉 (
𝐶𝐽−𝑠

𝑘

𝑑
{𝜷𝑘,0 (𝒂) − 𝜷}

)
− 𝜉 (0)

���� = ����2𝐶𝐽−𝑠𝑘𝑑 {𝜷𝑘,0 (𝒂) − 𝜷}⊤E𝑞
[
𝑟2
𝑘−1 (𝑥)𝚽𝑘 (𝒂⊤𝒙){ 𝑓𝒂,𝑘 (𝒂⊤𝒙) − 𝜷𝑘,0 (𝒂)⊤𝚽𝑘 (𝒂⊤𝒙)}

] ����
≤2𝜂2𝐶𝐶0𝐽

−2𝑠
𝑘 ,

uniformly in 𝒂 ∈ A and 𝒙 ∈ X, where 𝜂2 is the maximum eigenvalue of E[𝑟2
𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤] under Assump-

tions F.2 and F.3. By choosing 𝐶 ≥ 2𝜂2𝐶0/𝜂1, we have 𝐻∗ (𝜷, 𝒂) −𝐻∗ (𝜷𝑘,0 (𝒂), 𝒂) ≥ 0 for all ∥𝜷− 𝜷𝑘,0 (𝒂)∥ > 𝐶 · 𝐽−𝑠𝑘
uniformly in 𝒂 ∈ A and 𝒙 ∈ X, which implies that 𝐻∗ (𝜷, 𝒂) has a local minimum for ∥𝜷− 𝜷𝑘,0 (𝒂)∥ ≤ 𝐶 · 𝐽−𝑠𝑘 . Since 𝜷∗𝑘 (𝒂)
is the unique global minimizer of 𝐻∗ (𝜷, 𝒂), we have

sup
𝒂∈A
∥𝜷∗𝑘 (𝒂) − 𝜷𝑘,0 (𝒂)∥ ≤ 𝐶 · 𝐽

−𝑠
𝑘 . (43)

□

Lemma F.8. For any 𝑘 ∈ {1,2, . . . , 𝐾}, suppose Assumptions F.2 – F.4 and (16) hold. For any 𝒂 ∈ A, we have

∥ �̂�𝑘 (𝒂) − 𝜷∗𝑘 (𝒂)∥ =𝑂 𝑝

(
𝐽
−(𝑠−1)
𝑘

+
√︁
𝜉𝑛,𝑘−1 +

√
𝐽𝑘√

𝑛𝑞 ∧𝑛𝑝

)
.
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Proof. Recall that

𝜷∗𝑘 (𝒂) = {Σ𝐽𝑘 (𝒂)}
−1E𝑝 [𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)] and �̂�𝑘 (𝒂) = {Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) .

We decompose

�̂�𝑘 (𝒂) − 𝜷∗ (𝒂)

 (44)

=






{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) − 𝜷

∗
𝑘 (𝒂)







≤






{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
{𝑟𝑘−1 (𝒙𝑝𝑖 ) − 𝑟𝑘−1 (𝒙𝑝𝑖 )}𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 )






 (45)

+





{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1

𝑛𝑞

𝑛𝑞∑︁
𝑖=1
{𝑟2
𝑘−1 (𝒙

𝑞

𝑖
) − 𝑟2

𝑘−1 (𝒙
𝑞

𝑖
)}𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 ) 𝑓

∗
𝒂 (𝒂⊤𝒙

𝑞

𝑖
)





 (46)

+





{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 1

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) − {Σ̂𝐽𝑘 ,𝜆 (𝒂)}

−1 1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
)𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )

⊤𝜷∗𝑘 (𝒂)





 (47)

+𝜆


𝜷∗𝑘 (𝒂)

 . (48)

For (45). Defining �̂� = {𝑟𝑘−1 (𝒙𝑝1 ), . . . , 𝑟𝑘−1 (𝒙𝑝𝑛𝑝 )} ∈ R𝑛𝑝 and 𝒓 = {𝑟𝑘−1 (𝒙𝑝1 ), . . . , 𝑟𝑘−1 (𝒙𝑝𝑛𝑝 )} ∈ R𝑛𝑝 , by Lemma F.6, we have
𝜂max ({Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1) =𝑂 (1). Thus,

∥(45)∥2 =𝑛−2
𝑝 tr

(
{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−2𝑷(𝒂)⊤ ( �̂� − 𝒓) ( �̂� − 𝒓)⊤𝑷(𝒂)

)
≤𝑂 𝑝 (𝑛−2

𝑝 )tr
(
𝑷(𝒂)⊤ ( �̂� − 𝒓) ( �̂� − 𝒓)⊤𝑷(𝒂)

)
=𝑂 𝑝 (𝑛−1

𝑝 )tr
(
𝑷(𝒂)⊤ ( �̂� − 𝒓) ( �̂� − 𝒓)⊤𝑷(𝒂) (𝑷(𝒂)⊤𝑷(𝒂))−1

)
=𝑂 𝑝 (𝑛−1

𝑝 )tr
(
( �̂� − 𝒓) ( �̂� − 𝒓)⊤𝑷(𝒂) (𝑷(𝒂)⊤𝑷(𝒂))−1𝑷(𝒂)⊤

)
≤𝑂 𝑝 (𝑛−1

𝑝 ) · ∥ �̂� − 𝒓∥2 =𝑂𝑃
(
𝐽
−2(𝑠−1)
𝑘

+ 𝜉𝑛,𝑘−1 + 𝐽𝑘/(𝑛𝑝 ∧𝑛𝑞)
)
,

where the last inequality follows from the fact that 𝑷(𝒂) (𝑷(𝒂)⊤𝑷(𝒂))−1𝑷(𝒂)⊤ is a projection matrix with maximum
eigenvalue 1, and last equality follows from (16). Using exactly the same arguments and the fact that sup𝒂,𝒙 | 𝑓 ∗𝒂 (𝒂⊤𝒙) | =
𝑂 (1), we have (46) =𝑂 𝑝 ((45)).

For (47), we have

{Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1

{
1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −

1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
)𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )

⊤𝜷∗𝑘 (𝒂)
}

= {Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1

{
1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −E𝑝{𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)}

}
(49)

+ {Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1

{
E𝑞{𝑟2

𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤𝜷∗𝑘 (𝒂)} −
1
𝑛𝑞

𝑛𝑞∑︁
𝑖=1
𝑟2
𝑘−1 (𝒙

𝑞

𝑖
)𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑞𝑖 )

⊤𝜷∗𝑘 (𝒂)
}

(50)

+ {Σ̂𝐽𝑘 ,𝜆 (𝒂)}−1 [
E𝑝{𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)} −E𝑞{𝑟2

𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤𝜷∗𝑘 (𝒂)}
]
. (51)
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Note that

E







 1
𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑟𝑘−1 (𝒙𝑝𝑖 )𝚽𝑘 (𝒂⊤𝒙𝑝𝑖 ) −E𝑝{𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)






2
=

1
𝑛𝑝

E𝑝
[

𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙) −E𝑝{𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)



2
]

≤ 1
𝑛𝑝

E𝑝
[

𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)



2
]

=
1
𝑛𝑝

tr
(
E𝑝 [𝑟2

𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤)𝚽𝑘 (𝒂⊤)⊤]
)
=𝑂

(
𝐽𝑘

𝑛𝑝

)
,

where the last equality follows from Assumptions F.2 and F.3. Thus, by Chebyshev’s inequality, we have

∥(49)∥ =𝑂 𝑝 (
√
𝐽𝑘√
𝑛𝑝
) .

Similarly, we have

∥(50)∥ =𝑂 𝑝 (
√
𝐽𝑘√
𝑛𝑞
) .

For (51), noting that 𝜷∗ (𝒂) is the globally unique minimizer of 𝐻∗ (𝒂, 𝜷) for any 𝒂 ∈ A, by the first order condition, we have

0 = 𝜕1𝐻
∗ (𝜷∗𝑘 (𝒂), 𝒂) = 2

[
E𝑞{𝑟2

𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)⊤𝜷∗𝑘 (𝒂)} −E𝑝{𝑟𝑘−1 (𝒙)𝚽𝑘 (𝒂⊤𝒙)}
]
.

Thus, we have (51) = 0. Consequently, we have

∥(47)∥ =𝑂 𝑝 (
√
𝐽𝑘√

𝑛𝑝 ∧𝑛𝑞
) .

Finally, under Assumption F.3, we have (48) =𝑂 𝑝 (
√︁
𝐽𝑘/𝑛𝑞). Thus, we obtain the result. □

Lemma F.9. For any 𝑘 ∈ {1,2, . . . , 𝐾}, suppose Assumptions F.1 – F.4 and (16) hold. For any 𝒂 ∈ A and 𝑗 = 0,1,

sup
𝒂∈A

sup
𝒙∈X

��� 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙)
��� =𝑂 (

𝐽
−(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)
)
,

E
[
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) |2

]
=𝑂

(
𝐽
−2(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)
)
,

1
𝑛

𝑛∑︁
𝑖=1
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙𝑖) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙𝑖) |2 =𝑂𝑃

(
𝐽
−2(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)
)
.

Proof. Note that by Lorentz (1986, Theorem 8) and Assumption F.2, for 𝑗 < 𝑠1, there exists a 𝜷𝑘, 𝑗 (𝒂) ∈ R𝐽𝑘 such that

sup
𝒂∈A

sup
𝑧∈Z

��� 𝑓 ( 𝑗 )𝒂,𝑘 (𝑧) − {𝜷𝑘, 𝑗 (𝒂)}
⊤𝚽( 𝑗 )

𝑘
(𝑧)

��� < 𝐶0, 𝑗𝐽
−(𝑠− 𝑗 )
𝑘

, (52)

for some constant 𝐶0, 𝑗 > 0. Then, we have

sup
𝒂∈A

sup
𝑧∈Z

��� 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝑧) − 𝑓
( 𝑗 )
𝒂,𝑘 (𝑧)

���
= sup
𝒂∈A

sup
𝑧∈Z

���𝜷∗𝑘 (𝑎)⊤𝚽( 𝑗 )𝑘 (𝑧) − 𝑓 ( 𝑗 )𝒂 (𝑧)
���

≤ sup
𝒂∈A

sup
𝑧∈Z

���(𝜷∗𝑘 (𝒂) − 𝜷𝑘, 𝑗 (𝒂))⊤𝚽( 𝑗 )𝑘 (𝑧)���
+ sup
𝒂∈A

sup
𝑧∈Z

���𝜷𝑘, 𝑗 (𝒂)⊤𝚽( 𝑗 )𝑘 (𝑧) − 𝑓 ( 𝑗 )𝒂,𝑘 (𝑧)
���

≤ sup
𝒂∈A
∥𝜷∗𝑘 (𝒂) − 𝜷𝑘, 𝑗 (𝒂)∥ · 𝜁 𝑗 (𝐽𝑘) +𝑂 (𝐽

−(𝑠− 𝑗 )
𝑘

) . (53)
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For 𝑗 = 0, we have (53) =𝑂 (𝐽−𝑠
𝑘
𝜁0 (𝐽𝑘)) from Lemma F.7.

For 𝑗 = 1, sinceZ is a compact set, using the fundamental theorem of calculus, (52) implies

sup
𝒂∈A

sup
𝑧∈Z

�� 𝑓𝒂,𝑘 (𝑧) − 𝜷𝑘, 𝑗 (𝒂)⊤𝚽𝑘 (𝑧)
�� =𝑂 (

𝐽
−(𝑠− 𝑗 )
𝑘

)
. (54)

Then, using a similar argument in Lemma F.7, we have the following result

sup
𝒂∈A



𝜷∗𝑘 (𝒂) − 𝜷𝑘, 𝑗 (𝒂)

 =𝑂 (
𝐽
−(𝑠− 𝑗 )
𝑘

)
. (55)

Then we have
(53) =𝑂 (𝐽−2(𝑠− 𝑗 )

𝑘
𝜁 𝑗 (𝐽𝑘)𝜁 𝑗 (𝐽𝑘)) .

We next prove E[| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) |2] =𝑂 (𝐽−2(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)).

E
[���(𝜷𝑘, 𝑗 (𝒂) − 𝜷∗𝑘 (𝒂))⊤𝚽( 𝑗 )𝑘 (𝒂⊤𝒙)���2]

= (𝜷𝑘, 𝑗 (𝒂) − 𝜷∗𝑘 (𝒂))
⊤E

[
𝚽( 𝑗 )
𝑘
(𝒂⊤𝒙)𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙)⊤

]
(𝜷𝑘, 𝑗 (𝒂) − 𝜷∗𝑘 (𝒂))

≤ ∥(𝜷𝑘, 𝑗 (𝒂) − 𝜷∗𝑘 (𝒂))
⊤∥2 ·𝑂 (𝜁 𝑗 (𝐽𝑘))

=𝑂

(
∥𝜷𝑘, 𝑗 (𝒂) − 𝜷∗𝑘 (𝒂)∥

2𝜁 𝑗 (𝐽𝑘)
)
=𝑂

(
𝐽
−2(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)
)
. (56)

Thus, using similar decomposition as (53), we obtain

E[| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) |2]

≤ 2E
[��� 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) − 𝜷𝑘, 𝑗 (𝒂)⊤𝚽
( 𝑗 )
𝑘
(𝒂⊤𝒙)

���2]
+E

[���(𝜷𝑘, 𝑗 (𝒂) − 𝜷∗𝑘 (𝒂))⊤𝚽( 𝑗 )𝑘 (𝒂⊤𝒙)⊤���2]
=𝑂

(
𝐽
−2(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)
)
+𝑂

(
𝐽
−2(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)
)
=𝑂

(
𝐽
−2(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)
)
. (57)

We finally prove 𝑛−1 ∑𝑛
𝑖=1 | 𝑓

( 𝑗 )
𝒂,𝑘 (𝒂

⊤𝒙𝑖) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙𝑖) |2 = 𝑂𝑃

(
𝐽
−2(𝑠− 𝑗 )
𝑘

𝜁 𝑗 (𝐽𝑘)
)
. Note that, for large enough 𝐽𝑘 ,

E
[
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) |2

]
≤ 𝐶 · 𝐽−2(𝑠− 𝑗 )

𝑘
𝜁 𝑗 (𝐽𝑘), for some constant 𝐶. Choosing 𝐶 (𝜖) = 2𝐶/𝜖 and using the Markov’s

inequality, we have

P

(
1
𝑛

𝑛∑︁
𝑖=1
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙𝑖) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙𝑖) |2 > 𝐶 · 𝐽−2(𝑠− 𝑗 )

𝑘
𝜁 𝑗 (𝐽𝑘)

)

≤
E

[
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) |2

]
𝐶 (𝜖) · 𝐽−2(𝑠− 𝑗 )

𝑘
𝜁 𝑗 (𝐽𝑘)

≤ 𝜖
2
,

which implies the third result. □

Lemma F.10. For any 𝑘 ∈ {1,2, . . . , 𝐾}, suppose Assumptions F.1 – F.4 and (16) hold. For any 𝒂 ∈ A and 𝑗 = 0,1,2,

sup
𝒙∈X

��� 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙)
��� =𝑂 𝑝

(
{𝐽−(𝑠−1)
𝑘

+
√︁
𝜉𝑛,𝑘−1}𝜁 𝑗 (𝐽𝑘) +

𝜁 𝑗 (𝐽𝑘)
√
𝐽𝑘√

𝑛𝑞 ∧𝑛𝑝

)
,

E
[
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) |2

]
=𝑂 𝑝

(
{𝐽−2(𝑠−1)
𝑘

+ 𝜉𝑛,𝑘−1} · 𝜁 𝑗 (𝐽𝑘) +
𝜁 𝑗 (𝐽𝑘)𝐽𝑘
𝑛𝑞 ∧𝑛𝑝

)
,

1
𝑛

𝑛∑︁
𝑖=1
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙𝑖) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙𝑖) |2 =𝑂 𝑝

(
{𝐽−2(𝑠−1)
𝑘

+ 𝜉𝑛,𝑘−1} · 𝜁 𝑗 (𝐽𝑘) +
𝜁 𝑗 (𝐽𝑘)𝐽𝑘
𝑛𝑞 ∧𝑛𝑝

)
.
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Proof. Under Assumption F.3 and by Lemma F.8, we have

sup
𝒙∈X
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) |

≤ sup
𝒙∈X

���{ �̂�𝑘 (𝒂) − 𝜷∗𝑘 (𝒂)}⊤𝚽( 𝑗 )𝑘 (𝒂⊤𝒙)���
≤∥ �̂�𝑘 (𝒂) − 𝜷∗𝑘 (𝒂)∥ · sup

𝑧∈Z
∥𝚽( 𝑗 )

𝑘
(𝑡, 𝑧)∥

=𝑂𝑃

(
𝜁 𝑗 (𝐽𝑘){𝐽−(𝑠−1)

𝑘
+
√︁
𝜉𝑛,𝑘−1} + 𝜁 𝑗 (𝐽𝑘)

√︄
𝐽𝑘

𝑛𝑞 ∧𝑛𝑝

)
.

Similar to (56), by Lemma F.8, we deduce that∫
X
| 𝑓 ( 𝑗 )𝒂,𝑘 (𝒂

⊤𝒙) − 𝑓 ∗( 𝑗 )𝒂,𝑘 (𝒂
⊤𝒙) |2𝑑𝐹𝑋 (𝒙)

=

∫
X

����̂�𝑘 (𝒂)⊤𝚽( 𝑗 )𝑘 (𝒂⊤𝒙) − 𝜷∗𝑘 (𝒂)⊤𝚽𝑘 (𝒙⊤𝒂)
���2 𝑑𝐹𝑋 (𝒙)

= ( �̂�𝑘 (𝒂) − 𝜷∗𝑘 (𝒂))
⊤ ·E

[
𝚽( 𝑗 )
𝑘
(𝒂⊤𝒙)𝚽( 𝑗 )

𝑘
(𝒂⊤𝒙)⊤

]
· ( �̃�𝑘 (𝒂) − 𝜷

∗( 𝑗 )
𝑘
(𝒂))

=𝑂𝑃

(
∥ �̂�𝑘 (𝒂) − 𝜷∗𝑘 (𝒂)∥

2 · 𝜁 𝑗 (𝐽𝑘)
)
=𝑂𝑃

(
{𝐽−2(𝑠−1)
𝑘

+ 𝜉𝑛,𝑘−1} · 𝜁 𝑗 (𝐽𝑘) +
𝜁 𝑗 (𝐽𝑘)𝐽𝑘
𝑛𝑞 ∧𝑛𝑝

)
.

Similar to the end of the proof of Lemma F.9, using Markov’s inequality, we also have

1
𝑛

𝑛∑︁
𝑖=1

����̂�𝑘 (𝒂)⊤𝚽( 𝑗 )𝑘 (𝒂⊤𝒙𝑖) − 𝜷∗𝑘 (𝒂)⊤𝚽( 𝑗 )𝑘 (𝒙⊤𝑖 𝒂)���2
=𝑂𝑃

(∫
X

����̂�𝑘 (𝒂)⊤𝚽( 𝑗 )𝑘 (𝒂⊤𝒙) − 𝜷∗𝑘 (𝒂)⊤𝚽( 𝑗 )𝑘 (𝒙⊤𝒂)���2 𝑑𝐹𝑋 (𝒙))
=𝑂𝑃

(
{𝐽−2(𝑠−1)
𝑘

+ 𝜉𝑛,𝑘−1} · 𝜁 𝑗 (𝐽𝑘) +
𝜁 𝑗 (𝐽𝑘)𝐽𝑘
𝑛𝑞 ∧𝑛𝑝

)
.

□

Lemma F.11. For any 𝑘 ∈ {1,2, . . . , 𝐾}, suppose Assumptions F.1 – F.4 and (16) hold. We have

sup
𝒂∈A
∥ �̂�𝑘 (𝒂)∥ =𝑂 𝑝 (1) and ∥𝜕𝒂 �̂�𝑘 (𝒂)∥ =𝑂 𝑝 (1) , for any 𝒂 ∈ A .

Proof. First, from (8), we have

sup
𝒂∈A

����∫
X
𝑓 2
𝒂,𝑘 (𝒂

⊤𝒙) − 𝑓 2
𝒂,𝑘 (𝒂

⊤𝒙)𝑝(𝒙) 𝑑𝒙
���� =𝑂 𝑝

(
𝐽
−(𝑠−1)
𝑘

𝜁0 (𝐽𝑘) + 𝜁0 (𝐽𝑘)2
√︁
𝐽𝑘/

√︁
𝑛𝑞 ∧𝑛𝑝

)
= 𝑜𝑝 (1) .

Then, by Lemma F.6,

sup
𝒂∈A
∥ �̂�𝑘 (𝒂)∥2 = sup

𝒂∈A
�̂�𝑘 (𝒂)⊤ �̂�𝑘 (𝒂) ≤ sup

𝒂∈A
𝜂min (Ω(0)𝐽𝑘 (𝒂))

−1 · sup
𝒂∈A

�̂�𝑘 (𝒂)⊤Ω
(0)
𝐽𝑘
(𝒂) �̂�𝑘 (𝒂)

=𝑂 (1) · sup
𝒂∈A

∫
X
𝑓 2
𝒂,𝑘 (𝒂

⊤𝒙)𝑑𝐹𝑋 (𝒙) 𝑑𝒙

≤𝑂 (1) sup
𝒂∈A

∫
X
𝑓 2
𝒂,𝑘 (𝒂

⊤𝒙)𝑑𝐹𝑋 (𝒙) 𝑑𝒙 + 𝑜𝑃 (1)

=𝑂 𝑝 (1) .
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From (36) and (37), using Lemma F.6, we have

∥𝜕𝒂 �̂�𝑘 (𝒂) −Σ𝐽𝑘 (𝒂)−1𝑀 ∥ = 𝑜𝑝 (1) ,

where

𝑀 =2E𝑞
[
𝑟2
𝑘−1 (𝒙) 𝑓

(1) (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙) (𝒙)⊤
]

+2E𝑞
[
𝑟2
𝑘−1 (𝒙) 𝑓 (𝒂

⊤𝒙)𝚽(1)
𝑘
(𝒂⊤𝒙) (𝒙)⊤

]
−2E𝑝

[
𝑟𝑘−1 (𝒙)𝚽(1)𝑘 (𝒂

⊤𝒙) (𝒙)⊤
]

=:𝑀1 +𝑀2 +𝑀3 ,

where the definition of 𝑀1, 𝑀2 and 𝑀3 are clear.

By triangle inequality,

∥Σ𝐽𝑘 (𝒂)−1𝑀 ∥ ≤ ∥Σ𝐽𝑘 (𝒂)−1𝑀1∥ + ∥Σ𝐽𝑘 (𝒂)−1𝑀2∥ + ∥Σ𝐽𝑘 (𝒂)−1𝑀3∥ .

Consider ∥Σ𝐽𝑘 (𝒂)−1𝑀1∥. Define

𝑉 (𝒂⊤𝒙) = E𝑞
[
𝑟2
𝑘−1 (𝒙) 𝑓

(1) (𝒂⊤𝒙)𝚽𝑘 (𝒂⊤𝒙)E𝑞 (𝒙 |𝒂⊤𝒙)⊤
]
Σ𝐽𝑘 (𝒂)−1𝚽𝑘 (𝒂⊤𝒙) ,

which is the 𝐿2 projection of 𝑟𝑘−1 (𝒙) 𝑓 (1) (𝒂⊤𝒙)E𝑞 (𝒙 |𝒂⊤𝒙)⊤ onto the space linearly spanned by 𝚽𝑘 (𝒂⊤). Then we have

∥Σ𝐽𝑘 (𝒂)−1𝑀1∥2 =tr
[
𝑀⊤1 Σ𝐽𝑘 (𝒂)

−2𝑀1
]
≤ 𝜂max (Σ𝐽𝑘 (𝒂)−1)tr

[
𝑀⊤1 Σ𝐽𝑘 (𝒂)

−1Σ𝐽𝑘 (𝒂)Σ𝐽𝑘 (𝒂)−1𝑀1
]

≤𝑂
(
∥E𝑞{𝑉 (𝒂⊤𝒙)𝑉 (𝒂⊤𝒙)⊤}∥

)
≤ 𝑂

(
∥E𝑞{𝑟2

𝑘−1 (𝒙){ 𝑓
(1) (𝒂⊤𝒙)}2E𝑞 (𝒙 |𝒂⊤𝒙)E𝑞 (𝒙 |𝒂⊤𝒙)⊤}∥

)
=𝑂 (1) .

Similarly, under Assumption F.3, we have ∥Σ𝐽𝑘 (𝒂)𝑀2∥ =𝑂 (1) and ∥Σ𝐽𝑘 (𝒂)𝑀3∥ =𝑂 (1). The result follows.

□
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