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ABSTRACT

Proximal policy optimization (PPO) has been widely adopted for training large
language models (LLMs) at the token level in multi-turn dialogue and reasoning
tasks. However, its performance is often unstable and prone to collapse. Through
empirical analysis, we identify two main sources of instability in this setting:
(1) token-level importance sampling, which is misaligned with the natural granular-
ity of multi-turn environments with distinct turn-level stages, and (2) inaccurate
advantage estimates from off-policy samples, where the critic has not learned to
evaluate certain state-action pairs, resulting in high-variance gradients and unstable
updates. To address these challenges, we introduce two complementary stabiliza-
tion techniques: (1) turn-level importance sampling, which aligns optimization
with the natural structure of multi-turn reasoning, and (2) clipping-bias correc-
tion, which normalizes gradients by downweighting unreliable, highly off-policy
samples. Depending on how these components are combined, we obtain three
variants: Turn-PPO (turn-level sampling only), S-PPO (clipping-bias correction
applied to token-level PPO), and ST-PPO (turn-level sampling combined with
clipping-bias correction). In our experiments, we mainly study ST-PPO and S-PPO,
which together demonstrate how the two stabilization mechanisms address com-
plementary sources of instability. Experiments on multi-turn search tasks show
that ST-PPO and S-PPO consistently prevent the performance collapses observed
in large-model training, maintain lower clipping ratios throughout optimization,
and achieve higher task performance than standard token-level PPO. These results
demonstrate that combining turn-level importance sampling with clipping-bias
correction provides a practical and scalable solution for stabilizing multi-turn LLM
agent training.

1 INTRODUCTION

Reinforcement learning (RL) has significantly advanced the reasoning capabilities of large language
models (LLMs), enabling strong performance in domains such as mathematical problem solving
(Jaech et al., 2024; Liu et al., 2024; Yu et al., 2025) and code generation (El-Kishky et al., 2025;
Cui et al., 2025). Beyond these applications, RL has also shown promise in more agentic settings
such as tool learning (Qian et al., 2025; Feng et al., 2025), where models learn to invoke external
tools (e.g., web search engines), execute actions, and interact with real-world environments. Recent
systems such as Deepseek V3 (Liu et al., 2024) and Kimi V2 (Team et al., 2025) have achieved
state-of-the-art performance on both mathematical reasoning (e.g., AIME, Math-500) and agentic
benchmarks (Jimenez et al., 2023). Despite these successes, the computational demands of multi-turn
RL training pose significant practical challenges. These gains rely on numerous interaction samples,
which are costly due to the large number of rollouts and multi-turn tool calls required during training.
In practice, hardware and memory limits force each batch of collected samples to be split into several
mini-batches (Schulman et al., 2017) and updated sequentially. This naturally induces a hybrid update
mechanism where later updates become increasingly off-policy (Chen et al., 2023). To maximize
sample efficiency under computational constraints, practitioners often adopt off-policy pipelines, and
the resulting distribution mismatch is typically corrected using importance sampling (Nachum et al.,
2017).

The shift to off-policy methods, while necessary for computational efficiency, introduces high variance
and can destabilize training (Munos et al., 2016; Precup et al., 2000). To address this challenge,
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Figure 1: Illustration of the four PPO variants. Token-level PPO becomes Turn-level PPO by applying
turn-level importance sampling (Eq. 4). Further adding the clipping bias to normalize gradients yields
S-PPO and ST-PPO (Eq. 8 and Eq. 7). Both variants significantly reduce the probability of extreme
gradient spikes, leading to more stable training.

proximal policy optimization (PPO) (Schulman et al., 2017) constrains policy updates with a clipped
surrogate objective. By limiting the impact of importance sampling ratios, PPO stabilizes learning
even when mini-batch reuse makes later updates effectively off-policy. Building on this principle,
recent advances such as TOPR (Roux et al., 2025), LUFFY (Yan et al., 2025), and GSPO (Zheng et al.,
2025) refine importance sampling and clipping strategies to further enhance stability and efficiency.

Despite these advances, PPO training on multi-turn tasks still suffers from two core deficiencies:
(1) token-level importance sampling misaligns with the natural granularity of multi-turn environments
(Zeng et al., 2025), where reasoning unfolds through distinct turn-level stages (e.g., problem analysis,
query formulation, information processing), and (2) off-policy updates rely on critic-based advantage
estimates that are often unreliable for out-of-distribution tokens (Dorka et al., 2022), leading to
high-variance gradients and potential collapse even under clipping.

To address the first deficiency in off-policy RL, we propose turn-level importance sampling,
as formalized in Lemma 4.1, which establishes the mathematical foundation for turn-level credit
assignment. This formulation aligns optimization with the natural boundaries of reasoning and
retrieval phases, providing more precise credit assignment while preserving stability. It enables the
model to treat different stages of a reasoning trajectory with appropriate emphasis. Such structure-
aware optimization proves particularly valuable for search-augmented reasoning, where the quality
of intermediate decisions directly impacts final outcomes. The intuition behind turn-level importance
sampling lies in balancing granularity and stability: token-level methods are overly noisy, sequence-
level methods overly coarse, while turn-level ratios strike the middle ground by capturing sub-goal
level contributions without amplifying token-level variance.

To further stabilize off-policy training and address the second deficiency, we employ an adjustment
for clipping-induced bias as detailed in Lemma 4.2, which decomposes PPO’s gradient to isolate the
clipping bias term. Retaining token-level information constrains high-variance updates, and turn-level
importance sampling guides credit assignment. This hybrid design uses turn-level credit assignment
and token-level clipping bias for stabilization, achieving a balance between stability and fidelity and
ensuring more conservative and robust policy updates.

Our key contributions are as follows:

1. We empirically diagnose why vanilla PPO becomes unstable when applied to multi-turn LLM
agent training under off-policy updates. Our observations reveal two root causes unique to the
agentic setting: (i) the granularity mismatch between token-level optimization and turn-level
interactions, and (ii) the accumulation of variance from unreliable critic estimates on off-policy
samples, where state-action pairs are poorly evaluated.

2. We propose a PPO variant based on turn-level importance sampling (Turn-PPO) that better matches
the structure of multi-turn reasoning and enables turn-level credit assignment.

3. We propose stabilized turn-level PPO (ST-PPO, see Fig. 1, Section 4), a hybrid algorithm that
combines turn-level ratios for optimization with a clipping-bias correction to normalize gradient
updates. This design reduces highly off-policy updates and leads to more conservative and robust
policy learning.
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These contributions constitute the first tailored adaptation of PPO for multi-turn LLM agents, inte-
grating theoretical insights with algorithmic design. By addressing both the granularity mismatch
and the instability of off-policy updates, our approach provides a principled framework for stable
optimization. Empirically, it mitigates the collapse observed in large-model training and consistently
improves task performance, offering a practical and scalable solution for reinforcement learning with
multi-turn LLM agents.

2 RELATED WORKS

2.1 REINFORCEMENT LEARNING WITH LLM AGENTS

Recent advances in reinforcement learning for large language models (LLMs) have primarily pro-
gressed along two main directions: (1) feedback-driven alignment and policy optimization, and (2)
agentic tool use with long-horizon reasoning.

On the alignment side, RLHF (Ouyang et al., 2022) translates human or rule-based preferences into
reward signals and optimizes policies using policy gradient methods, as exemplified by InstructGPT.
Subsequent approaches such as direct preference optimization (DPO) (Rafailov et al., 2023) avoid
explicit reward modeling, while other RL algorithms—including PPO (Schulman et al., 2017),
GRPO (Shao et al., 2024), and RLOO (Ahmadian et al., 2024)—have been adapted to large models
to balance stability and efficiency.

On the agentic side, methods such as ReAct (Yao et al., 2023) integrate reasoning and acting through
interleaved thought–action steps, while Reflexion (Shinn et al., 2023) leverages self-reflection and
memory to enhance multi-turn decision making. Toolformer (Schick et al., 2023) demonstrates
self-supervised learning of tool usage, and WebGPT (Nakano et al., 2021) introduces browser-based
agents trained with human feedback. More recent systems, such as Search-R1 (Jin et al., 2025b),
WebAgent-R1 (Wei et al., 2025), and WEBRL (Qi et al., 2024), extend this line of research to end-
to-end reinforcement learning for web-based agents, where models are trained to perform retrieval,
reasoning, and action within real-world interactive environments.

2.2 OFF POLICY REINFORCEMENT LEARNING WITH LLM AGENTS

Off-policy reinforcement learning methods differ fundamentally from on-policy approaches by
allowing the agent to learn from data generated by a policy different from the one currently being
improved. This characteristic enables greater flexibility and data efficiency, as off-policy algorithms
can reuse past experiences or observations collected under different policies. This property is
particularly important in scenarios where data collection is costly or limited.

Recent work has extended these ideas to policy gradient methods tailored for off-policy learning in
complex environments. The tapered off-policy REINFORCE (TOPR) algorithm (Roux et al., 2025)
builds on the classic REINFORCE method (Williams, 1992) by introducing a tapered importance
sampling scheme for the policy gradient. This tapering reduces the variance and instability that
commonly arise in naive off-policy gradient methods, as it asymmetrically adjusts the importance
weights to better balance learning from positive and negative examples. However, because TOPR
relies heavily on trajectory-level rewards, it is not well-suited for scenarios that require more fine-
grained credit assignment.

Another research line explores off-policy extensions of GRPO. ARPO (Lu et al., 2025) incorporates
a replay buffer into GRPO’s sampling process, mixing on-policy and replayed samples to alleviate
the zero-advantage issue, while RePO (Li et al., 2025a) reuses past outputs as off-policy samples with
tailored replay strategies (e.g., recency-based, reward-oriented) to improve data efficiency and stability.
Although these methods enhance sample utilization, they still require substantial training time, and
their trajectory-level credit assignment often leads to slower convergence on multi-turn tasks.

2.3 REINFORCEMENT LEARNING IN MULTI-TURN TASKS

Recent advances in LLMs have increasingly leveraged reinforcement learning to enhance multi-
turn reasoning and tool use capabilities (Chen et al., 2025; Cheng et al., 2025; Li et al., 2025b).
The work on turn-level credit assignment by Zeng et al. (2025) introduces a novel RL framework
that models multi-turn interactive tasks as Markov decision processes, enabling fine-grained credit
allocation to individual reasoning and tool-use steps within a trajectory. Complementing this, the
Search-R1 framework proposed by Jin et al. (2025b;a) similarly harnesses RL to train LLMs to reason
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about when and how to use external search engines interactively. By framing the reasoning and
search process as an end-to-end decision-making problem, Search-R1 encourages LLMs to generate
informative queries and iteratively refine answers based on real-time feedback from the search
tool. This work emphasizes the importance of multi-turn interactions to bridge the gap between
internal textual reasoning and external information retrieval, demonstrating improved reasoning
robustness and answer quality over traditional single-turn or passive retrieval approaches. Despite
these advances, there remains a lack of algorithms specifically tailored to stabilize PPO in multi-turn
LLM off-policy training. Our work addresses this gap by introducing a customized PPO variant that
explicitly leverages turn-level structure, leading to more stable and scalable training.

3 PRELIMINARIES

Notation. An autoregressive language model parameterized by θ is defined as a policy πθ. We use x
to denote a query and D as the query set. Given a response y to a query x, its likelihood under the
policy πθ is denoted as πθ(y | x) = ∏|y|

t=1 πθ(yt | x, y<t), where |y| denotes the number of tokens
in y. A query-response pair (x, y) can be scored by a verifier r, resulting in a reward r(x, y) ∈ [0, 1].

Turn-level MDP. We model multi-turn interactions as a Markov decision process
M = (S,A,P,R, γ) defined at the granularity of turns. A turn is denoted by yk := (ytstart

k
, . . . , ytend

k
),

and a full trajectory can be written as y := (y1; . . . ; yn) for n turns, where ‘;’ denotes token con-
catenation. Each state sk ∈ S corresponds to the dialogue context at the beginning of turn k, which
we define as sk := (x, y1, y2, . . . , yk−1). The transition P(sk+1 | sk, ak) updates the context with
environment feedback (e.g., results from a tool call), and the reward R(sk, ak) evaluates the quality
of the turn. The discount factor γ ∈ (0, 1] balances present and future rewards. Unlike token-level
MDPs, the unit of interaction here is the turn, with boundaries [tstart

k , tend
k ], aligning credit assignment

with the natural structure of reasoning and retrieval phases.

Proximal Policy Optimization (PPO). Using samples generated from the old policy πθold , PPO
constrains the policy update within a proximal region of the old policy through the clipping mechanism.
This allows for multiple gradient updates to the policy using the same batch of samples. Specifically,
PPO employs the following objective for policy optimization:

JPPO(θ) = Ex∼D, y∼πθold
(·|x)


 1

|y|

|y|∑

t=1

min
(
wt(θ)Ât, clip (wt(θ), 1− ϵ, 1 + ϵ) Ât

)

 , (1)

where the importance ratio of the token yt is defined as

wt(θ) =
πθ(yt |x, y<t)

πθold(yt |x, y<t)
, (2)

where Ât denotes the token-level advantage estimated by GAE based on the critic model V̂ . As
discussed in related work, PPO has been widely used in many agentic tasks and performs well in
single-turn settings. However, its performance in multi-turn settings is often unstable and prone to
collapse; for example, Yuan et al. (2025) show that PPO can fail in long reasoning tasks. In multi-turn
settings, reward signals are typically provided only at the end of a long interaction. This delayed
feedback leaves value predictions at intermediate states poorly constrained, and the resulting errors
propagate backward through temporal-difference updates, compounding over many steps (Arjona-
Medina et al., 2019). Such delayed and sparse rewards substantially increase bias and variance in
value estimation. In addition, under off-policy updates the critic must evaluate state–action pairs that
may be rarely or never visited by the current policy, further exacerbating estimation errors (Munos
et al., 2016; Dorka et al., 2022). To summarize, PPO deficiencies in multi-turn environments can be
summarized as follows:

1. PPO trains at the token level, which does not match the turn-level structure of multi-turn reasoning.
Under off-policy updates, this mismatch becomes more pronounced and often increases the
variance of the importance weights.

2. Off-policy samples in multi-turn tasks frequently contain state-action pairs that the critic has not
learned to evaluate well. This leads to unreliable advantage estimates, highly off-policy gradients,
and in practice, unstable training even with clipping.
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(c) Policy gradient.
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(d) Success rate.

Figure 2: Observations from a failed run with Qwen2.5-7B base model when running token-level
PPO. From left to right, we show the estimated advantage, the ratio of valid actions (whether the tool
is successfully called), the L2 norm of the policy gradient, and the success rate of the search task.
Each metric is recorded for every training batch.

To further probe instability, we examine a failed run of Qwen2.5-7B under token-level PPO (Fig. 2)
in multi-turn search tasks. The results highlight two critical issues: (1) around steps 250–300, the
critic assigns highly variable advantages while the ratio of valid actions collapses, a typical signature
of reward hacking; and (2) these unreliable samples trigger an explosion in the policy gradient
norm, which rapidly degrades performance and causes a collapse in task success rate. This evidence
confirms that critic estimation errors and variance accumulation can destabilize off-policy updates in
multi-turn settings, motivating the need for stabilization mechanisms beyond turn-level scaling.

4 PROPOSED ALGORITHM

In this section, we present our approach for stabilizing PPO in multi-turn LLM training. Based on
the deficiencies identified in Section 3, we first introduce a turn-level variant of PPO that better
matches the granularity of multi-turn reasoning and interaction (Section 4.1). We then propose a
stabilization mechanism that leverages clipping bias to adaptively downweight highly off-policy
updates (Section 4.2).

4.1 TURN-LEVEL PPO FORMULATION

We begin by examining how these deficiencies limit the performance of standard PPO and then
introduce a turn-level variant designed to address them For K total turns, with [tstart

k , tend
k ] denoting

the token positional boundaries for turn k ∈ {1, . . . ,K}, we propose the turn-level PPO formulation:

JTurn−PPO(θ) = Ex∼D,y∼πθold
(·|x)


 1

|y|
K∑

k=1

tend
k∑

t=tstart
k

min
{
wturn

k (θ)Ât, clip(wturn
k (θ), 1−ϵ, 1+ϵ)Ât

}

 ,

(3)

where wturn
k is a turn-level importance sampling weight. Inspired by the sequence-level weight used

by Zheng et al. (2025), we define a turn-level variant as:

wturn
k (θ) :=

(
πθ(y

k | x, y<k)

πθold(y
k | x, y<k)

) 1

|yk|

= exp


 1

|yk|

tend
k∑

t=tstart
k

log
πθ(yt | x, y<t)

πθold(yt | x, y<t)


 , (4)

where the ratio is scaled by the length of the kth turn, |yk|, to stabilize the objective across turns of
varying lengths. At first glance, this modification appears minimal, as it only alters the computation
of importance weights relative to the original PPO formulation in Eq. 1. However, as we formalize
below, it fundamentally changes the structure of credit assignment. To prepare for this analysis, we
define the events under which clipping is inactive for the turn-level objective in Eq. 3:

B+
turn := { (k, t) : Ât ≥ 0, wturn

k (θ) ≤ 1 + ϵ }, B−
turn := { (k, t) : Ât < 0, wturn

k (θ) ≥ 1− ϵ }.

Let Bturn := B+
turn ∪ B−

turn. When Bturn holds, the PPO objective reduces to the unclipped form wtÂt,
so the update is fully determined by the critic’s advantage estimates. In contrast, when Bc

turn occurs
(clipping is active), it indicates a mismatch between the reference and current policies, and gradients
of the corresponding tokens are set to zero.
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(d) Norm of clipping bias.

Figure 3: Comparison of token-level versus turn-level PPO training on Qwen2.5-1.5B for the search
task (results averaged over 5 runs). (a) Success rates demonstrate that turn-level PPO outperforms
compared to token-level PPO. (b) L2 norms of policy gradients show that turn-level PPO exhibits
greater training stability. (c–d) Additional diagnostic metrics for token-level PPO: (c) the L2 norm of
the PPO loss function remains stable throughout training due to gradient clipping, while (d) the L2
norm of the clipping bias term grows exponentially over time, validating Lemma 4.2.

Lemma 4.1. The gradient of the objective function in Eq. 3 is given by

∇θJTurn−PPO(θ) = E




1

|y|
K∑

k=1

wturn
k (θ)

Âk

|yk|︸ ︷︷ ︸
Turn-Level Credit

∇θ log πθ(y
k|x, y<k)


 , (5)

where |yk| = tend
k − tstart

k + 1 and Âk :=
∑tend

k

t=tstart
k
1{(k,t)∈Bturn} Ât.

Proof. We refer to Appendix A.2 for the proof of Lemma 4.1.

Remark. Lemma 4.1 highlights the effect of modifying the importance sampling ratio from the
token level to the turn level. As shown in Eq. 5, all tokens within a turn share the same aggregated
advantage Âk, even though both the advantages and the clipping mechanism are still computed
token-wise. The turn-level structure arises because tokens in the same turn use a common geometric
mean importance ratio, and the final gradient is obtained by aggregating the unclipped token-level
contributions within Bturn. Consistent with our following experiments and prior studies (Zhou et al.,
2024; Zeng et al., 2025), incorporating turn-level credit assignment generally leads to improved
performance on multi-turn tasks.

Validation. We first evaluate the performance of token-level PPO in Eq. 1 and turn-level PPO in
Eq. 3 on the search task using the Qwen2.5-1.5B base model. Fig. 3 reports the average results over
five runs. As shown in Fig. 3a, turn-level PPO achieves a higher performance (success rate) than
token-level PPO, confirming that eliminating the granularity mismatch improves task performance.
Moreover, Fig. 3b shows that the average policy gradient norm of turn-level PPO is consistently
lower, suggesting that turn-level scaling helps stabilize training.

These results demonstrate that turn-level PPO alleviates part of the instability. However, when
tested with larger models such as Qwen2.5-7B, we observe that both token-level and turn-level PPO
still suffer from collapse. This observation motivates the development of additional stabilization
mechanisms, which we introduce in the next section.

4.2 STABILIZING OFF-POLICY TRAINING VIA CLIPPING-BIAS CORRECTION

While turn-level importance sampling improves stability, it does not fully prevent collapse, as highly
off-policy or unreliable samples can still destabilize updates. To address this, we decompose the
gradient of the token-level PPO objective by first defining the events under which clipping is inactive.
Specifically, we begin by defining the events under which clipping is inactive:

B+
token := { t : Ât ≥ 0, wt(θ) ≤ 1 + ϵ }, B−

token := { t : Ât < 0, wt(θ) ≥ 1− ϵ }.

Let Btoken := B+
token∪B−

token. With this notation in place, we can formally decompose the PPO gradient
as follows:

6
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Algorithm 1: Multi-turn PPO with Token- and Turn-Level Importance Sampling (ST-PPO)
Input: Initialize policy π0, step size η, dataset D, and maximum generation length L.
for iteration k = 0, 1, . . . ,K − 1 do

Data Sampling I: Sample a batch of queries x ∼ D and generate agent trajectories τ := y0:L ∼ πk.
Data Sampling II: For each trajectory, split it into turn-level state–action pairs (s0, a0), (s1, a1), . . . (e.g.,
using a loss mask or <eot> tokens).
Gradient Estimation: Compute the Turn-PPO gradient as in Eq. 3.
Surrogate Gradient: Use token-level importance sampling to compute the clipping-error norm and form
the surrogate gradient in Eq. 7.
Policy Improvement: Update the policy using the surrogate gradient in Eq. 7.
Policy Evaluation: Update the critic using the temporal difference (TD) error.

end for

Lemma 4.2. The PPO gradient can be decomposed as

∂JPPO(θ)

∂ log πθ
= E


 1

|y|

|y|∑

t=1

wt A
π
t




︸ ︷︷ ︸
Off-Policy term

+E


 1

|y|

|y|∑

t=1

wt

(
Ât −Aπ

t

)



︸ ︷︷ ︸
Advantage Estimation Error Term

−E


 1

|y|

|y|∑

t=1

1t∈Bc
token

wt Ât




︸ ︷︷ ︸
C(θ): Clipping Bias Term

,

(6)

where Ât denotes the advantage estimate by the critic using the GAE method, while Aπ denotes the
advantage estimated by the ground-truth value function V π .

Proof. We refer to Appendix A.3 for the proof of Lemma 4.2.

From the gradient decomposition, we see that the PPO gradient consists of three terms. The first is the
off-policy term, corresponding to the gradient of the vanilla policy gradient algorithm without clipping,
where all tokens contribute equally to the update. The second is the advantage estimation error term,
which captures the discrepancy between the critic’s estimated advantages and the ground-truth ones,
thereby introducing both variance and systematic bias. The third is the clipping bias term, arising
directly from the indicator 1t∈Bc

token
in the clipped objective: while clipping stabilizes training by

suppressing large updates, it also discards certain token contributions and hence introduces bias.

We call the third term in Eq. 6 the clipping bias term. To examine its behavior, we conduct an
experiment with token-level PPO on the Qwen2.5-7B base model and track the L2 norm of this
term across training iterations. For comparison, we also report the L2 norm of PPO’s standard loss
(Fig. 3c) and the clipping bias norm (Fig. 3d). As expected, the standard PPO loss remains relatively
stable across iterations since clipping suppresses extreme updates. In contrast, the clipping bias grows
exponentially and exhibits large oscillations, indicating that a subset of generations contain outlier
tokens with extreme values, rendering these samples unreliable even after clipping.

By focusing updates on more stable, low-error samples, the optimization becomes conservative
and avoids destabilizing spikes. Motivated by this observation, we propose a surrogate gradient
estimator that reweights each sampled generation according to its clipping error, thereby ensuring
stable policy updates. From a scaling perspective, turn-level importance sampling treats each turn
as a whole, with a weight given by the turn-level importance ratio multiplied by the cumulative
unclipped advantage and normalized by the turn length. To further enhance stability, we incorporate
an additional scaling factor derived from the clipping bias term, which downweights highly off-policy
or risk-prone samples. This leads to a surrogate objective with distinct clipping-bias corrections for
token-level and turn-level PPO, denoted Ctoken(θ) and Cturn(θ), respectively:

Ctoken(θ) := E


 1

|y|

|y|∑

t=1

1t∈Bc
token

wt Ât


 , Cturn(θ) := E


 1

|y|

|y|∑

t=1

1t∈Bc
turn

wturn
t Ât


 .
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Based on these definitions, the surrogate gradients are given by

∇θJST-PPO(θ) :=
1

∥Cturn(θ)∥2
∇θJTurn-PPO(θ), (7)

∇θJS-PPO(θ) :=
1

∥Ctoken(θ)∥2
∇θJPPO(θ). (8)

Fig. 1 illustrates the relations among the four PPO variants we study. Together with S-PPO (clipping-
bias correction at the token level), these variants complete the set of four algorithms: Token-PPO,
Turn-PPO, S-PPO, and ST-PPO. Since Turn-PPO mainly serves as an intermediate variant, our
experiments focus on Token-PPO, S-PPO, and ST-PPO. The overall pipeline is summarized in
Algorithm 1.

Turn-Level Credit Assignment. From Lemma 4.1, after revising the importance sampling, our
algorithm is able to assign turn-level credit to each interaction, independent of the specific choice of
advantage estimator (e.g., GAE or Monte Carlo). This removes the mismatch between the level of
interaction (turns) and the level at which credit is assigned.

Optimality. In Eqs. 7 and 8, we stabilize the gradient by normalizing it with the clipping bias term.
For each sample, both the original turn-level PPO and ST-PPO update along gradient directions that
are aligned, differing only by normalization. As a result, ST-PPO preserves the same optimality
conditions as Turn-PPO while providing more stable policy improvement.

Generality. The formulation is flexible enough to recover existing LLM training methods (e.g.,
GRPO, RLOO) through specific choices of advantage design. This generality allows algorithms
developed for advantage estimation to be directly applied as special cases within our framework.

5 EXPERIMENTS

We conduct comprehensive numerical evaluations of our proposed ST-PPO algorithm (Algorithm 1)
and compare its performance against the state-of-the-art baseline, Search-R1 Jin et al. (2025b). Our
experimental results demonstrate two key advantages of the proposed approach: (1) the combination
of turn-level importance sampling and clipping-bias correction significantly enhances training stability
compared to standard PPO, preventing the performance collapses commonly observed in multi-turn
agent training, and (2) ST-PPO and S-PPO maintain consistently lower clipping ratios throughout
training, indicating more reliable gradient updates and improved sample efficiency.

Experimental Setup. Following the experimental setup of Search-R1 Jin et al. (2025b), we con-
duct our experiments using the Qwen-2.5-7B (Base) model (Bai et al., 2023) as the base policy.
For retrieval, we employ the 2018 Wikipedia dump (Karpukhin et al., 2020) as our knowledge
source and the E5 embeddings (Wang et al., 2022) as the retriever. To ensure fair comparison with
existing methods, we follow Lin et al. (2023) and consistently retrieve three passages across all
retrieval-based approaches. We evaluate ST-PPO on two benchmark datasets: (1) Natural Questions
(NQ)(Kwiatkowski et al., 2019) and (2) HotpotQA(Ho et al., 2020). These datasets present diverse
multi-hop reasoning and search challenges that require effective coordination between information
retrieval and reasoning steps, making them ideal testbeds for evaluating the stability and effectiveness
of our turn-level optimization approach. For complete implementation details, refer to Appendix A.4.

Evaluation. For evaluation, we evaluate on the test sets of the NQ and HotpotQA datasets to
assess model performance on each domain. Exact Match (EM) is used as the primary evaluation
metric, which measures the percentage of predictions that exactly match the ground-truth answers
after standard normalization. EM provides a strict assessment of whether our multi-turn approach
successfully retrieves and synthesizes correct information through the search and reasoning process.

Training Stability and Performance. Fig. 4 compares the training dynamics of Token-level PPO,
ST-PPO, and S-PPO on the NQ and HotpotQA datasets. All methods demonstrate rapid initial
improvement, confirming that PPO can identify effective policies early in training. However, their
long-term behaviors diverge dramatically. Token-level PPO exhibits marked instability: after reaching
peak performance, we observe sharp performance collapses that render the learned policy significantly
worse than earlier checkpoints. This degradation pattern aligns with our theoretical analysis, where
we identified that critic estimation errors on tokens with high importance weights can destabilize
gradient updates. Such instability necessitates careful early stopping to preserve the best-performing

8
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(a) Scores on the NQ dataset.
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(b) Scores on the HotpotQA dataset.

Figure 4: Experimental results of Qwen-2.5-7B policy models, with the value model also trained
from Qwen-2.5-7B. Results are averaged over three trials. We report the average success rate on the
NQ and HotpotQA datasets.
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(a) Clipping Ratio on the HotpotQA dataset.
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(b) KL divergence on the HotpotQA dataset.

Figure 5: We also report (a) the clipping ratio and (b) the KL divergence during policy optimization.
Both ST-PPO and S-PPO achieve lower clipping ratios and KL divergence compared to vanilla PPO,
indicating more stable training dynamics.

checkpoint, complicating the training process. In contrast, ST-PPO and S-PPO maintain consistent
upward progress throughout the entire optimization horizon without performance collapses.

Fig. 5a further shows that both ST-PPO and S-PPO achieve significantly lower clipping ratios than
PPO, while Fig. 5b demonstrates consistently smaller KL divergence during optimization. These
results confirm that our methods reduce the magnitude of unstable updates and improve training
safety. In Appendix A.5, we conduct an experiment under a more off-policy setting, and the results
show that our method remains more stable than the baseline algorithm.

This stability stems from two key mechanisms: (1) the turn-level importance sampling aligns credit
assignment with the natural structure of reasoning-search interactions, reducing the granularity
mismatch that contributes to instability, and (2) the clipping-bias correction adaptively scales gradient
updates based on sample reliability, reducing the influence of tokens with high variance or poor critic
estimates. As a result, ST-PPO and S-PPO achieve both competitive peak performance and robust
convergence without requiring early stopping or careful checkpoint selection.

6 CONCLUSION

In this work, we analyzed why PPO becomes unstable in multi-turn LLM agent training and identified
two main causes: the mismatch between token-level optimization and turn-level credit assignment,
and the high variance from off-policy tokens. Through a theoretical decomposition of PPO’s gradient
updates, we showed how these factors lead to unstable convergence and occasional collapse. To
address this, we proposed ST-PPO, which integrates token- and turn-level importance sampling
with clipping-bias correction to yield more conservative and stable updates. Empirically, ST-PPO
produced consistently smooth training curves, whereas PPO often required early stopping. These
results highlight the value of matching optimization granularity with task structure and point toward
safer reinforcement learning methods for multi-turn LLM agents.
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A APPENDIX

A.1 LLM USAGE

In this work, LLM were used solely for polishing the writing. No part of the technical content,
experimental design, or analysis relied on LLMs. The responsibility for the correctness and originality
of the ideas, methods, and results remains entirely with the authors.

A.2 PROOF OF LEMMA 4.1

The proof establishes turn-level credit assignment by first reformulating the PPO objective with
indicator functions, then computing how the gradient with respect to a single token depends only on
its containing turn due to locality. The key insight is that the turn-level importance weight derivative
yields a scaling factor of wturn

k (θ)
|yk| , where the 1

|yk| term arises from the geometric mean structure of
the turn-level importance ratio. Finally, aggregating over all tokens via the multivariable chain rule
produces the claimed gradient form where each turn receives credit proportional to wturn

k (θ) Âk

|yk| ,
combining importance weighting, accumulated advantage, and length normalization.

We now proceed with the lemma proof. We derive the gradient of the Turn-PPO objective
JTurn−PPO(θ) defined in Eq. 3. Beginning with the objective in expanded form:

JTurn−PPO(θ)

= Ex∼D, y∼πθold
(·|x)


 1

|y|
K∑

k=1

tend
k∑

t=tstart
k

min
{
wturn

k (θ)Ât, clip(wturn
k (θ), 1− ϵ, 1 + ϵ)Ât

}



= Ex∼D, y∼πθold
(·|x)


 1

|y|
K∑

k=1

tend
k∑

t=tstart
k

(
1(k,t)∈Bturnw

turn
k (θ)Ât + 1(k,t)∈Bc

turn
clip(wturn

k (θ), 1−ϵ, 1+ϵ)Ât

)

,

(9)

where1 Eq. 9 follows from decomposing the min function using indicator functions. The indicator
function 1(k,t)∈Bturn = 1, if the token index t within turn k belongs to the set Bturn and 0 otherwise.
The set Bturn = B+

turn ∪ B−
turn represents the indices of tokens within turns where clipping is inactive.

Together, the set Bturn and its complement Bc partition the space of token indices across all turns,
satisfying Bturn ∪ Bc

turn = {1, 2, . . . , |y|} and Bturn ∩ Bc
turn = ∅. For token indices (k, t) ∈ Bturn, the

min operation selects the unclipped term wturn
k (θ)Ât; otherwise, for t ∈ Uc, it selects the clipped term

clip(wturn
k (θ), 1− ϵ, 1 + ϵ)Ât.

Taking the gradient with respect to log πθ(yt′ |x, y<t′) where t′ ∈ [tstart
k′ , tend

k′ ] (i.e., token t′ belongs to
turn k′), we get

∂JTurn−PPO(θ)

∂ log πθ(yt′ |x, y<t′)
= E


 1

|y|
K∑

k=1

tend
k∑

t=tstart
k

1(k,t)∈Bturn

∂wturn
k (θ)

∂ log πθ(yt′ |x, y<t′)
Ât


 (10)

= E


 1

|y|

tend
k′∑

t=tstart
k′

1(k,t)∈Bturn

∂wturn
k′ (θ)

∂ log πθ(yt′ |x, y<t′)
Ât


 , (11)

where Eq. 10 follows since clipped terms have zero gradients by definition of the clipping function;
and Eq. 11 follows since wturn

k (θ) depends only on tokens within turn k. Since token t′ belongs to
turn k′, we have ∂wturn

k (θ)
∂ log πθ(yt′ |x,y<t′ )

= 0 for all k ̸= k′ due to disjoint turn boundaries.

1For notational brevity, we drop the expectation subscript in what follows, with all expectations taken over
the same joint distribution where x ∼ D and y ∼ πθold(·|x).
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Next, we evaluate the derivative of wturn
k′ (θ) with respect to the log probability. Recall that wturn

k′ (θ) is
defined as

wturn
k′ (θ) =

(
πθ(y

k′ |x, y<k′
)

πθold(y
k′ |x, y<k′)

) 1

|yk′ |

=




tend
k′∏

t=tstart
k′

πθ(yt|x, y<t)

πθold(yt|x, y<t)




1

|yk′ |

= exp


 1

|yk′ |

tend
k′∑

t=tstart
k′

[log πθ(yt|x, y<t)− log πθold(yt|x, y<t)]




= exp


− 1

|yk′ |

tend
k′∑

t=tstart
k′

log πθold(yt|x, y<t)


 · exp


 1

|yk′ |

tend
k′∑

t=tstart
k′

log πθ(yt|x, y<t)


 , (12)

where the first exponential term in Eq. 12 is constant with respect to θ. We can write
wturn

k′ (θ) = κ · exp (f(θ)) where

κ = exp


− 1

|yk′ |

tend
k′∑

t=tstart
k′

log πθold(yt|x, y<t)


 ,

f(θ) =
1

|yk′ |

tend
k′∑

t=tstart
k′

log πθ(yt|x, y<t). (13)

Consequently, the derivative of wturn
k′ (θ) with respect to the log probability is evaluated as

∂wturn
k′ (θ)

∂ log πθ(yt′ |x, y<t′)
= κ · exp (f(θ)) · ∂f(θ)

∂ log πθ(yt′ |x, y<t′)
(14)

= wturn
k′ (θ) · ∂

∂ log πθ(yt′ |x, y<t′)


 1

|yk′ |

tend
k′∑

t=tstart
k′

log πθ(yt|x, y<t)




= wturn
k′ (θ) · 1

|yk′ | ·
∂ log πθ(yt′ |x, y<t′)

∂ log πθ(yt′ |x, y<t′)
(15)

= wturn
k′ (θ) · 1

|yk′ | , (16)

where Eq. 14 follows from the chain rule; and Eq. 15 follows since only the term with index t = t′ in
the summation depends on log πθ(yt′ |x, y<t′). Substituting Eq. 16 back into Eq. 11, we get

∂JTurn−PPO(θ)

∂ log πθ(yt′ |x, y<t′)
= E


 wturn

k′ (θ)

|y| · |yk′ |

tend
k′∑

t=tstart
k′

1(k,t)∈BturnÂt


 . (17)
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Finally, from Eq. 9, the full gradient is given by

∇θJTurn−PPO(θ) =

K∑

k=1

tend
k∑

t=tstart
k

∂JTurn−PPO(θ)

∂ log πθ(yt|x, y<t)
∇θ log πθ(yt|x, y<t) (18)

=

K∑

k=1

tend
k∑

t=tstart
k

E


wturn

k (θ)

|y| · |yk|

tend
k∑

j=tstart
k

1(k,j)∈BturnÂj


∇θ log πθ(yt|x, y<t) (19)

= E




K∑

k=1

wturn
k (θ)

|y| · |yk|




tend
k∑

j=tstart
k

1(k,j)∈BturnÂj




tend
k∑

t=tstart
k

∇θ log πθ(yt|x, y<t)




= E




K∑

k=1

wturn
k (θ)

|y| · |yk|




tend
k∑

j=tstart
k

1(k,j)∈BturnÂj


∇θ log πθ(y

k|x, y<k)


 (20)

= E

[
1

|y|
K∑

k=1

wturn
k (θ)

Âk

|yk|∇θ log πθ(y
k|x, y<k)

]
, (21)

where Eq. 18 applies the multivariable chain rule; Eq. 19 follows from Eq. 17; Eq. 20 uses the chain
rule identity ∇θ log πθ(y

k|x, y<k) =
∑tend

k

t=tstart
k

∇θ log πθ(yt|x, y<t); and Eq. 21 follows by defining

Âk :=
∑tend

k

j=tstart
k
1(k,j)∈BturnÂj . This completes the proof of Lemma 4.1. ■

A.3 PROOF OF LEMMA 4.2

The token-level PPO objective function can be expressed as

JPPO(θ) = Ex∼D, y∼πθold
(·|x)


 1

|y|

|y|∑

t=1

min(wt(θ)Ât, clip(wt(θ), 1− ϵ, 1 + ϵ)Ât)




= Ex∼D, y∼πθold
(·|x)


 1

|y|

|y|∑

t=1

(
1t∈Btoken · wt(θ)Ât + 1t∈Bc

token
· clip(wt(θ), 1− ϵ, 1 + ϵ)Ât

)

,

(22)

where Eq. 22 follows from the definition of the event Btoken and

clip(w, 1− ϵ, 1 + ϵ) = max(min(w, 1 + ϵ), 1− ϵ) =





1− ϵ if w < 1− ϵ,

w if 1− ϵ ≤ w ≤ 1 + ϵ,

1 + ϵ if w > 1 + ϵ.

(23)

Taking the gradient with respect to θ, we obtain

∇θJPPO(θ) = E


 1

|y|

|y|∑

t=1

(
1t∈Btoken · ∇θwt(θ)Ât + 1t∈Bc

token
· ∇θ clip(wt(θ), 1− ϵ, 1 + ϵ)Ât

)



= E


 1

|y|

|y|∑

t=1

1t∈Btoken · ∇θwt(θ)Ât


 (24)

= E


 1

|y|

|y|∑

t=1

1t∈Btokenwt(θ)∇θ log πθ(yt|x, y<t)Ât


 , (25)

where Eq. 24 follows from the definition of the event Bc that yields

1t∈Bc
token

· ∇θclip(w, 1− ϵ, 1 + ϵ)Ât =

{
∇θ(1− ϵ)Ât = 0 if Ât < 0 and wt < 1− ϵ,

∇θ(1 + ϵ)Ât = 0 if Ât ≥ 0 and wt > 1 + ϵ;
(26)
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and Eq. 25 readily follows from the definition of wt(θ) that leads to

∇θwt(θ) = ∇θ
πθ(yt|x, y<t)

πold(yt|x, y<t)
= wt(θ)∇θ log πθ(yt|x, y<t). (27)

Finally, we verify that RHS of Lemma 4.2 is equal to Eq. 25 as follows:

E


 1

|y|

|y|∑

t=1

wt∇θ log πθA
π
t


+ E


 1

|y|

|y|∑

t=1

wt∇θ log πθ(Ât−Aπ
t )


− E


 1

|y|

|y|∑

t=1

1t∈Bc
token

wt∇θ log πθÂt




= E


 1

|y|

|y|∑

t=1

wt∇θ log πθÂt


− E


 1

|y|

|y|∑

t=1

1t∈Bc
token

wt∇θ log πθÂt




= E


 1

|y|

|y|∑

t=1

1t∈Btokenwt∇θ log πθÂt


 , (28)

where Eq. 28 follows from (1− 1t∈Bc
token

) = 1t∈Btoken . This completes the proof of Lemma 4.2. ■

A.4 IMPLEMENTATION DETAILS

Retrieval System. A local retriever service is deployed and accessed via an HTTP interface. For each
user query, we consistently return the top three passages. The dialogue is restricted to a maximum of
three interaction turns.

Training Process. All experiments are run on 8 NVIDIA H100 GPUs. We activate gradient
checkpointing and train under a Fully Sharded Data Parallel (FSDP) setup with offloading enabled
for parameters, gradients, and optimizers. The policy network is optimized with a learning rate
of 1 × 10−6, while the critic is trained with 1 × 10−5. Optimization proceeds for 4 epochs, with
warm-up ratios of 0.285 (policy) and 0.015 (critic). The effective batch size is 512, subdivided into
mini-batches of 256 and micro-batches of 64 for policy updates and 8 for critic updates. Generalized
Advantage Estimation (GAE) is employed with λ = 1 and γ = 1. Input sequences are truncated to
at most 4,096 tokens, with limits of 500 tokens for responses, 2,048 tokens for the initial context,
and 500 tokens for retrieved passages. We adopt turn-level importance sampling combined with
variance-reduction detachment to improve training stability. Regularization follows PPO conventions
with a KL coefficient of 0.001 and a clipping threshold of 0.2. Rollouts are generated using vLLM
with tensor parallel size 4, GPU memory utilization set to 0.6, temperature fixed at 1.0, and top-p
sampling of 1.0. The rollout and reference log-probability calculations both use a micro-batch size
of 128.

Turn Boundary Identification. To implement turn-level importance sampling, we need to identify
turn boundaries within the multi-turn trajectories. In our search task setup, we use the loss mask to
distinguish between agent-generated content and environment responses: LLM-generated reasoning
and query formulation steps are marked with 1 in the loss_mask, while retrieved document content
is marked with 0. We define turn boundaries by grouping consecutive tokens with loss_mask = 1
as complete turns (corresponding to the agent’s actions in our turn-level MDP), while consecutive 0s
represent states (i.e., retrieved content that provides environmental feedback). These identified turn
boundaries enable our algorithm to apply turn-level importance sampling and credit assignment.

A.5 SUPPLEMENTARY EXPERIMENTS

In the following experiments, we set the training batch size to 512 and the mini-batch size to 128,
which results in one on-policy update and three subsequent off-policy updates per batch. Under this
more off-policy setting, our method demonstrates greater stability and more controlled performance
compared to the baseline.

Figure 6 shows that the clipping bias grows steadily throughout training, indicating that the influence
of off-policy data becomes increasingly significant. This growth is mainly driven by two factors:
the variance of importance sampling ratios increases as the training distribution drifts away from
the current policy, and the critic provides less accurate estimates on off-policy batches. As a result,
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Figure 6: Experimental results of Qwen-2.5-7B policy models, with the value model also trained
from Qwen-2.5-7B. Results are averaged over three trials. Left: Success Rate, Right: The norm of
Clipping Bias.

the discrepancy between the true gradient and the clipped surrogate objective becomes amplified,
leading to large and persistent bias in later stages of training. This observation highlights the necessity
of employing the clipping ratio to reweight samples, as it counteracts the variance explosion of
importance sampling and mitigates the critic’s misestimation on off-policy data, thereby maintaining
more stable optimization.
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