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ABSTRACT

Chain-of-Thought (CoT) reasoning has significantly enhanced the ability of Large
Multimodal Models (LMMs) to tackle complex image–text tasks, establishing it-
self as a cornerstone of multimodal learning. Despite significant progress, the
impact of CoT on LMMs still lacks objective evaluation and in-depth research.
Current CoT evaluation paradigms rely on powerful LLMs as judges of free-form
text, but this introduces bias and hallucination from the evaluator itself. More-
over, it may penalize models for stylistic variations rather than genuine reasoning
failures, thereby undermining the fairness and reliability of the assessment. To ad-
dress this gap, we introduce ATOM-Bench, a CoT evaluation framework built on
objective atomic questions. ATOM-Bench decomposes complex reasoning tasks
into a series of atomic nodes, covering 570 high-resolution real-world images and
2,920 questions across 4 cognitive dimensions, and 12 domains, including archi-
tecture, text, transportation, culture, climate, and geology. Our benchmark intro-
duces three novel quantitative metrics to objectively analyze reasoning faithful-
ness, consistency, and robustness. Extensive experiments with 22 LMMs validate
the effectiveness of our framework. The results reveal that even the strongest
models often exhibit a mismatch between surface-level correctness of final an-
swers and their underlying evidence comprehension, while also exposing cogni-
tive rigidity when faced with objective facts.We believe that ATOM-Bench, as a
more objective and diagnostic tool, will advance LMMs toward more reliable and
faithful reasoning.

1 INTRODUCTION

With the development of large language models, Chain-of-Thought (CoT) prompting was introduced
to tackle complex reasoning tasks in purely textual settings (Wei et al., 2022; Wang et al., 2022).
This technique significantly improved models’ ability to perform multi-step reasoning and problem-
solving by guiding them through a sequence of coherent logical steps. Building on the success of
CoT in text domains, large multimodal models (LMMs) have extended this approach into visual do-
mains, achieving notable advances in image understanding, video reasoning, and geolocation (Guo
et al., 2025; Dou et al., 2024; Hong et al., 2025; Xiaomi et al., 2025; Lu et al., 2025; Team et al.,
2025). By leveraging both visual and textual cues within their reasoning chains, LMMs demonstrate
considerable potential as general-purpose multimodal reasoners.

The prevailing CoT evaluation paradigm, which relies on a powerful LLM (Jiang et al., 2025; Qiang
et al., 2025; Jiang et al., 2025) as a “judge” to score free-form reasoning, faces two key challenges:

• Judge Models are also Unreliable. LLM-based scoring strategy introduces a “Black-box evalu-
ating a Black-box” problem, where the objectivity of the assessment is compromised by the judge
model’s own biases and potential for hallucination.

• Biased Evaluation. LLM-based scoring often conflates writing with reasoning, penalizing mod-
els for omitted clues due to style rather than capability, thereby hindering reproducibility and
obscuring what is truly measured.

To address these limitations, we introduce ATOM-Bench, a process-oriented benchmark that eval-
uates CoT reasoning in LMMs using objective atomic questions. The dataset consists of 570 high-
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Figure 1: Typical samples from ATOM-Bench illustrate paired clue-level questions with images,
alongside their decomposed atomic clues and corresponding GT annotations. ATOM-Bench evalu-
ates models across diverse fields, ensuring a comprehensive evaluation of their capabilities.

resolution images, 1,696 annotated visual cues, and 2,920 multiple-choice questions across clue-
level and result-level tasks. Each question has a unique ground-truth answer, enabling determin-
istic scoring without LLM judges. The questions are organized into 4 cognitive dimensions and
12 domains. By breaking complex tasks into atomic questions, ATOM-Bench enables fine-grained
supervision, tracing how micro-decisions lead to final conclusions and shifting CoT evaluation to
evidence-grounded, statistically robust diagnostics. We apply this framework to single-image ge-
olocation for two reasons: 1) The task is fundamentally a complex reasoning problem, requiring
LMMs to synthesize diverse visual cues from architecture to language and culture; 2) The logical
steps in this reasoning process are inherently decomposable, allowing the construction of a ground-
truth-based evaluation using objective atomic questions.

We decompose complex problems into atomic questions and employ 3 diagnostic metrics, RCS, HI,
and RRS, to transform the vague CoT evaluation of LLM judges into clear and reproducible mea-
sures of reasoning behavior. By breaking down reasoning into verifiable subproblems, this frame-
work overcomes the “black-box evaluating a black-box” pitfall of LLM-judge methods and avoids
conflating writing fluency with reasoning ability or introducing narrative bias. RCS links conclu-
sions to evidential support, HI reveals cases where correct answers rest on faulty evidence, and
together they quantify the coupling between atomic-level accuracy and final predictions. RRS cap-
tures whether models can revise errors when confronted with ground-truth clues. Collectively, these
metrics shift reasoning evaluation from subjective semantic matching to transparent, evidence-based
diagnosis, providing a more reliable alternative to prior CoT assessment paradigms and objectively
revealing whether models genuinely master the logical foundations of their predictions or merely
rely on brittle heuristics.

Using ATOM-Bench, we evaluate 22 mainstream LMMs, finding that even state-of-the-art models
misalign final accuracy with atomic reasoning and exhibit cognitive rigidity. Our contributions are:

• We propose a novel atomic-question-based CoT evaluation framework as an objective, repro-
ducible alternative to the current mainstream paradigm of “LLMs judging CoT.”

• We validate the framework on a carefully chosen, highly challenging task and construct the first
high-resolution, process-oriented CoT benchmark.
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• We evaluate state-of-the-art LMMs using our proposed metrics, revealing persistent gaps in rea-
soning faithfulness and cognitive flexibility, and offer insights. We hope this work will inspire
future research toward more reliable LMMs.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Table 1: Dataset statistics.
Statistic Number Percentage

Total Images 570 -
Total questions 2920 -
- Clue level questions 1696 58.08%
- Location level questions 1224 41.92%
- Multi-step reasoning 3616 17.99%
Total Categories/Fields/Subfields 2/4/12 -

Clue level questions fields:
- Built Environment Interpretation 450 26.53%
- - Architectural style 230
- - Regional Architecture 106
- - Unique Structures 114
- Social Characteristic Awareness 393 23.17%
- - Clothing and customs 58
- - Street characteristics 190
- - Transportation 145
- Structured Symbolic Analysis 617 36.38%
- - Currency and flags 52
- - License plates 102
- - Language on signs 463
- Natural Characteristic Understanding 236 13.92%
- - Geographical features 186
- - Natural landmarks 10
- - Climate 40

Questions with Images 2920 100%
Questions with answer label 2920 100%
Average question length 154.84 -
Average option length 90.94 -
Average questions per image 5.12 -

Multimodal artificial intelligence has advanced
rapidly (Radford et al., 2021; Li et al., 2022;
OpenAI, 2023; 2024), extending language
models (Touvron et al., 2023; Lin et al., 2023;
Qwen Team, 2024; Liu et al., 2023b; Zhu
et al., 2023; 2024; Dai et al., 2023; Xia
et al., 2024c;d) to visual–language reason-
ing. Private models (OpenAI, 2024; 2023;
Comanici et al., 2025; OpenAI, 2025b) ex-
hibit strong visual understanding, but restrict
broader innovation. Progress is driven by richer
datasets (Chen et al., 2024a; Liu et al., 2024b;
Wang et al., 2023; Ye et al., 2023), improved
alignment (Dong et al., 2024; Li et al., 2024c;
Liu et al., 2024a; Wang et al., 2024b), and
efficient adaptation methods like LoRA (Hu
et al., 2022). Open-source models (Liu et al.,
2023a; Chen et al., 2024f; Bai et al., 2023;
Yang et al., 2025; Zhu et al., 2025; Bai et al.,
2025) further strengthen multimodal reason-
ing and are widely adopted. Recently, GPT-
5 (OpenAI, 2025b), o1 (Jaech et al., 2024), and
o3 (OpenAI, 2025c) highlight a shift toward en-
hanced reasoning, with works such as Wang
et al. (2024c) improving robustness and Yao
et al. (2024) identifying valid reasoning paths.
Multi-step CoT approaches (Team, 2024; Du
et al., 2025) echo o1-style iterative reflection and verification, yielding strong results in emerging
LMMs (Guo et al., 2025; Hong et al., 2025; Xiaomi et al., 2025; Lu et al., 2025; Team et al., 2025).

2.2 MLLM REASONING BENCHMARKS

While multimodal learning has advanced rapidly, evaluation benchmarks remain limited. Early work
focused on perceptual abilities of LVLMs (Lu et al., 2022; Gurari et al., 2018), such as GQA (Hudson
& Manning, 2019), but lacked depth for higher-order reasoning. More recent benchmarks broadened
the scope: Golovneva et al. (2022); Prasad et al. (2023) evaluated reasoning chains in text, while
others targeted scientific domains or final-answer tasks (Dou et al., 2024; He et al., 2024). General-
purpose reasoning benchmarks, including MMStar Chen et al. (2024b), MMMU (Yue et al., 2024),
and MME (Fu et al., 2023; Zhang et al., 2024c), extended evaluation to vision tasks, and later ef-
forts such as LlamaV-o1 (Thawakar et al., 2025), MME-CoT (Jiang et al., 2025), MMIE (Xia et al.,
2024b), and VER-Bench (Qiang et al., 2025) assessed multimodal reasoning chains and interleaved
vision–language tasks. Yet, most adopt the “LLM-as-judge” paradigm (Li et al., 2024b; Zhang
et al., 2023; Liu et al., 2023b;c; Yu et al., 2023; Chen et al., 2024c; Xia et al., 2024a; Jiang et al.,
2024; Zhang et al., 2024a;b; Jiang et al., 2025), where stronger models semantically score free-form
CoT. This “black-box evaluating a black-box” approach introduces bias, hallucination, and insta-
bility, undermining objectivity and reproducibility. To overcome this, we present ATOM-Bench,
which decomposes complex reasoning into verifiable atomic problems, bypassing LLM judges and
enabling transparent, objective, and reproducible evaluation.
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Figure 2: The construction of ATOM-Bench follows 4 steps: data collection; two-stage atomic
question generation; rigorous human review and refinement; and final expert verification.

3 ATOM BENCH

3.1 OVERVIEW

In this section, we introduce ATOM-Bench, a benchmark for evaluating CoT reasoning in LMMs us-
ing atomic multiple-choice questions. Comprising 2,920 questions from 570 high-resolution images
across 4 cognitive dimensions and 12 subtasks, ATOM-Bench enables evaluation of evidence under-
standing, reasoning faithfulness, and cognitive robustness. Unlike prior methods relying on LLM
judges, it offers an objective framework for diagnosing LMMs. Dataset statistics are in Table 1.

3.2 ANNOTATION PIPELINE AND REVIEW

The images in ATOM-Bench are collected from public and online sources, primarily depicting real-
world scenarios. As shown in Fig. 2, benchmark construction followed a systematic pipeline. The
annotation team included six domain experts: 4 doctoral students and 2 senior research scientists.

Step1: Data Curation and Quality Control. Our data collection aimed to find images reflecting
real-world complexity and rich in reasoning cues. We gathered 5,000 high-resolution images from
public datasets and social media, prioritizing street scenes with dense details. Each image was man-
ually reviewed for suitability to be deconstructed into atomic questions, ensuring diverse reasoning
cues. After curation, 570 images were retained for annotation.

Step 2: Automated Question Generation. To create a challenging question set, we used a two-
stage pipeline with Gemini-2.5-Pro. First, the model inferred the image’s location and listed key
visual clues, forming a preliminary evidence set. Second, these clues were used to generate ques-
tion–option–answer triplets: (1) Clue-Level (CLQs), with three multiple-choice questions per clue to
assess fine-grained understanding, and (2) Conclusion-Level (CoLQs), with 2–3 per image, asking
for the location or the most decisive clue. Prompt templates are in Appendix E.

Step 3: Answer and Visual Evidence Verification. This stage involves a human-in-the-loop ver-
ification to refine automatically generated question–answer–evidence triplets, ensuring objectivity,
accuracy, and challenge. Despite Gemini-2.5-Pro’s strong generation capabilities, its black-box
nature introduces errors, hallucinations, and post-hoc fallacies, necessitating human validation. Ex-
pert annotators reviewed 15 candidate questions per image based on three principles: (1) evidence
grounding:cited clues must be visibly present and externally verified; (2) adversarial distractor de-
sign:options crafted from real but irrelevant text, confusable alternatives, or hallucinations as “bait”;
(3) quality and relevance:coherent, task-aligned questions are retained, with low-quality ones rewrit-
ten. This ensures all dataset questions are human-vetted with high value. Details are in Appendix C.

Step 4: Final Expert Cross-Validation. In the final annotation stage, expert annotators cross-
validated all QA pairs by (1) verifying the presence of visual clues and eliminating hallucinations,
and (2) ensuring the reasoning linking clues to answers was logically sound and aligned with real-
world knowledge. These steps ensure each atomic question is a valid part of the reasoning chain.

4
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Table 2: Accuracy results on ATOM-Bench. Best scores are highlighted in bold, with orange for

private models, blue for open-source models, and green for open-source thinking models.

Model LLM CLQAcc CoLQAcc RCS HI RRS Avg
Private Models

Gemini-2.5-Pro (Comanici et al., 2025) - 74.16 84.42 65.96 31.24 67.06 72.07
GPT-5 (OpenAI, 2025b) - 65.87 78.89 55.98 41.37 59.51 63.78
GPT-4.1 (OpenAI, 2025a) - 63.65 77.68 55.63 42.28 59.00 62.74

Open-Source Models
Qwen2.5-VL-72B (Bai et al., 2025) Qwen2.5-72B 61.51 70.91 49.82 46.98 24.53 51.96
InternVL3-78B Zhu et al. (2025) Qwen2.5-72B 60.44 65.17 46.99 48.44 20.04 48.84
Qwen2.5-VL-32B (Bai et al., 2025) Qwen2.5-32B 57.77 67.67 46.10 50.10 18.51 47.99
InternVL3.5-38B (Wang et al., 2025) Qwen3-32B 56.13 58.86 41.67 53.56 17.59 44.14
InternVL2.5-78B (Chen et al., 2024d) Qwen2.5-72B 52.43 58.64 39.36 55.78 15.55 42.04
InternVL3-8B Zhu et al. (2025) Qwen2.5-7B 49.78 59.14 37.05 58.78 19.43 41.32
InternVL2.5-38B (Chen et al., 2024d) Qwen2.5-32B 48.98 53.53 34.22 60.29 8.62 37.01
Llama-3.2-11B-Vision (Dubey et al., 2024) Llama-3.1-8B 47.99 54.06 34.57 60.84 6.88 36.53
Qwen2.5-VL-7B (Bai et al., 2025) Qwen2.5-7B 43.69 57.72 29.08 67.20 18.61 36.38
LLaVA-OneVision-72B (Li et al., 2024a) Qwen2-72B 45.73 47.23 30.67 62.23 13.00 34.88
InternVL3.5-8B (Wang et al., 2025) Qwen3-8B 43.25 46.59 28.37 65.22 11.98 32.99
MiniCPM-o2.6-8B (Team, 2025) Qwen2.5-7B 40.88 46.65 28.73 66.25 12.49 32.50
InternVL2.5-8B (Chen et al., 2024d) InternLM-7B 43.66 48.83 26.58 68.02 8.52 31.91
InternVL2-8B (Chen et al., 2024e) InternLM-7B 36.51 36.42 21.63 72.27 5.56 25.57
LLaVA-OneVision-7B (Li et al., 2024a) Qwen2-7B 34.94 40.24 19.49 74.71 2.91 24.57
Qwen2-VL-7B (Wang et al., 2024a) Qwen2-7B 8.25 35.57 11.81 84.28 6.99 15.67

Open-Source Thinking Models
GLM-4.1V-9B-Thinking (Hong et al., 2025) GLM-4-9B-0414 60.58 65.69 47.52 48.76 18.10 48.63
MiMo-VL-7B-SFT-2508 (Xiaomi et al., 2025) MiMo-7B 57.15 65.77 44.50 51.54 17.08 46.59
Ovis2.5-9B (Lu et al., 2025) Qwen3-8B 56.91 63.85 42.73 52.09 16.37 45.55

3.3 DATA COMPOSITION AND CATEGORIZATION

To diagnose LMMs’ reasoning in complex real-world scenarios, ATOM-Bench introduces a multi-
dimensional taxonomy. Unlike prior domain-based benchmarks, it deconstructs geospatial reasoning
into fundamental cognitive abilities. We posit that reliable reasoning requires mastery of multiple,
largely orthogonal dimensions. All atomic questions in ATOM-Bench are mapped into 4 categories:

Built Environment Interpretation. Captures reasoning over human-made structures, including
architectural styles, regional architecture, and unique structures, reflecting cultural, historical, and
geographic constraints essential for localization.

Social Characteristic Awareness. Encompasses human activities and customs visible in the envi-
ronment, including clothing and customs, street characteristics, and transportation. Such cues reveal
socio-cultural context often decisive for geolocation.

Structured Symbolic Analysis. Evaluates the ability to decode formal symbol systems tied to
explicit rules, such as currency and flags, license plates, and language on signs. These structured
cues link directly to geopolitical and institutional knowledge.

Natural Characteristic Understanding. Involves reasoning about the natural world governed by
physical and environmental principles. Fine-grained cues include geographic features, natural land-
marks, and climate, which provide strong geographic signals.

The final dataset contains 2,920 questions and 1,696 visual cues from 570 diverse images, spanning
street scenes, sports events, natural landscapes, and urban architecture. Covering 12 clue types, it
offers high information diversity, enabling comprehensive evaluation across cognitive dimensions.

4 AUTOMATED EVALUATION METRIC

Evaluating LMMs requires moving beyond final-answer accuracy to diagnosing their CoT. Existing
CoT evaluations, often judged by stronger LLMs, introduce bias and conflate reasoning with writing
ability. ATOM-Bench addresses this by decomposing complex reasoning into structured atomic
questions, enabling objective evaluation of both reasoning faithfulness and cognitive robustness.
4.1 COT REASONING FAITHFULNESS

This component quantifies the logical consistency between a model’s final conclusion and its grasp
of the atomic evidence supporting it. It addresses the key question: To what extent is the final
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answer grounded in correct evidence comprehension? A faithful model should only reach the correct
conclusion through accurate understanding of each necessary logical step. As detailed in Section 3.2,
each instance i includes an image Ii, one conclusion-level question Qri, and Ni clue-level questions
Qci =

{
qc

(1)
i , . . . , qc

(Ni)
i

}
. For a LMM, let M(q, Ii) denote its answer to question q. The result-

level answer correctness CoLQi and the clue-level answer accuracy CLQi are defined as:

CoLQi = I(M(Qri, Ii) is correct) , CLQi =
1

Ni

Ni∑
j=1

I
(
M(qc

(j)
i , Ii) is correct

)
(1)

We introduce the Reasoning Consistency Score (RCS) to quantify the likelihood that a model
reaches the correct conclusion for the right reasons. For dataset D, RCS is the expected joint event
where the conclusion is correct and clue accuracy exceeds a threshold τ (τ=0.75):

RCS = Ei∈D [CoLQi · I(CLQi > τ)] (2)

To capture post-hoc fallacies and pattern-based guessing, we define the Hallucination Index (HI).
HI measures the conditional probability that, in the model’s correct conclusion cases, its conclusion
is correct while the clue-level accuracy falls below threshold τ . Formally, let D denote the set of
instances where the conclusion is correct (CoLQi = 1), and B is the set where clue accuracy does
not exceed τ (CLQi ≤ τ ) (τ = 0.75):

HI =
|D ∩ B|
|D| (3)

High HI value provides a clear indication that the model’s correct conclusions are largely decoupled
from their evidentiary basis, revealing a significant lack of faithfulness in its reasoning process.

4.2 COT COGNITIVE ROBUSTNESS

This component evaluates the rigidity of a model’s reasoning and its ability to correct errors when
confronted with objective facts. We operationalize it through a “golden evidence cross-examination”
experiment, asking: How resistant is a model’s reasoning to revision under indisputable evidence?

The evaluation proceeds in two stages. First, the model answers the conclusion-level question Qri
for an image Ii, getting its first output Ofirst. Second, it is given the ground-truth clue set GTi and
asked again, producing final output Ofinal. To capture robustness, we define the Robust Reasoning
Score (RRS), which assigns higher weight to corrections on harder questions. The dataset D is
divided into Dhard (n = 157), Dmedium (n = 423), and Deasy (n = 644), with respective weights
of 3, 2, and 1. The difficulty level for each instance was determined based on a consensus among
multiple annotators, where the final classification reflects the intersection of their judgments.

We define a behavioral value function β to score the four possible outcomes of the experiment. Let
Cfirst and Cfinal denote the correctness of the first answers Ofirst and final answers Ofinal. β as-
signs +1 when the model remains correct (steadfast correctness) or corrects an error (evidence-based
correction), and −1 when it persists in error (cognitive rigidity) or shifts from correct to incorrect
(logical confusion). The RRS for a model M on dataset D is then computed as the difficulty-
weighted sum of β, normalized by the maximum achievable score.

RRS =

∑
i∈D ω(i) · β(Cfirst,i, Cfinal,i)∑

i∈D ω(i)
× 100% (4)

The RRS provides a holistic measure of cognitive robustness by capturing both a model’s ability to
correct errors and its performance across varying levels of task difficulty.

4.3 ACCURACY EVALUATION STRATEGY

To mitigate random guessing in the multiple-choice format, we adopt a Penalty-Adjusted Scoring
Mechanism, inspired by standardized tests such as the SAT. Each correct answer yields 1 point,
while an incorrect one incurs a penalty of − 1

n−1 , with n denoting the number of choices; unanswered
questions score 0. This ensures that random guessing has an expected score of zero, offering a fairer
measure of model ability. The final standardized score CoLQAcc and CLQAcc:

CoLQAcc =

∑
i∈D Score(M, Qri)

|D| , CLQAcc =

∑
i∈D Score(M, Qci)

|D| (5)
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Table 3: Evaluation Results of Clue Class Accuracy for Different Models in ATOM-Bench .
Best performance is marked in bold with orange for private models, blue for open-source models,
and green for open-source thinking models.

Model Arch.
Styles

Reg.
Arch.

Unique
Struct.

Cloth.
& Cust.

Street
Chars.

Trans-
port.

Curr.
& Flags

Lang-
uage

Lic.
Plates

Cli-
mate

Geo-
graphy

Nat.
Land.

Built Environ. Social Chars. Struct. Symbol Nat. Chars.

Private Models
Gemini-2.5-Pro (Comanici et al., 2025) 77.88 76.34 77.24 81.75 74.52 79.56 72.85 68.91 69.84 83.96 72.54 86.67
GPT-5 (OpenAI, 2025b) 73.43 74.06 64.44 81.90 64.74 67.66 59.87 59.18 53.34 70.83 70.52 86.67
GPT-4.1 (OpenAI, 2025a) 70.60 71.54 56.26 75.14 69.47 67.66 59.87 55.44 54.57 67.50 66.89 86.67

Open-Source Models
Qwen2.5-VL-72B (Bai et al., 2025) 70.02 63.92 51.73 77.16 60.53 64.25 52.34 55.84 59.39 64.17 66.22 73.33
InternVL3-78B Zhu et al. (2025) 69.99 49.21 56.55 81.90 61.32 55.99 52.18 55.55 52.93 64.17 70.38 73.33
Qwen2.5-VL-32B (Bai et al., 2025) 63.17 57.63 56.48 72.70 52.24 54.30 62.28 56.01 45.25 57.71 64.11 86.67
InternVL3.5-38B (Wang et al., 2025) 65.06 46.78 54.06 68.10 57.11 62.58 60.19 48.42 46.35 57.71 63.35 86.67
InternVL2.5-78B (Chen et al., 2024d) 63.86 57.86 44.82 70.26 56.40 49.74 47.05 45.27 43.94 63.75 54.17 46.67
InternVL3-8B Zhu et al. (2025) 56.98 42.92 36.71 72.84 53.67 48.58 47.05 41.26 47.90 57.71 63.35 60.00
InternVL2.5-38B (Chen et al., 2024d) 56.40 45.44 42.41 70.40 48.71 55.95 44.49 40.66 42.72 60.83 57.04 46.67
Llama-3.2-11B-Vision (Dubey et al., 2024) 52.99 47.72 45.99 75.00 39.65 46.83 52.02 45.94 37.52 47.71 51.88 86.67
LLaVA-OneVision-72B (Li et al., 2024a) 56.81 38.84 32.79 70.40 47.94 50.66 34.07 40.17 29.95 57.50 53.23 46.67
InternVL3.5-8B (Wang et al., 2025) 58.08 40.49 36.78 47.56 42.37 48.58 41.92 39.54 34.88 44.37 47.32 6.67
Qwen2.5-VL-7B (Bai et al., 2025) 49.91 42.69 41.05 56.75 36.08 44.21 47.05 42.46 46.59 34.17 43.90 46.67
InternVL2.5-8B (Chen et al., 2024d) 55.75 31.60 36.64 56.75 43.82 45.11 46.89 34.95 37.49 47.71 56.94 60.00
MiniCPM-o2.6-8B (Team, 2025) 45.83 41.59 38.71 54.31 40.35 41.43 42.08 36.10 41.17 37.71 44.09 33.33
InternVL2-8B (Chen et al., 2024e) 51.65 31.53 34.37 58.91 43.86 35.02 26.70 28.00 16.82 37.50 42.56 46.67
LLaVA-OneVision-7B (Li et al., 2024a) 42.99 30.42 28.45 52.30 37.53 33.33 36.79 27.94 27.03 31.04 45.43 60.00
Qwen2-VL-7B (Wang et al., 2024a) 8.93 7.94 7.40 20.11 4.81 0.37 13.88 7.95 0.89 20.83 13.26 33.33

Open-Source Thinking Models
MiMo-VL-7B-SFT-2508 (Xiaomi et al., 2025) 63.17 55.42 46.86 72.99 58.42 56.14 54.74 53.53 42.47 64.38 66.85 73.33
Ovis2.5-9B (Lu et al., 2025) 67.14 48.74 54.11 75.14 59.25 58.69 62.44 50.34 40.27 64.17 61.96 86.67
GLM-4.1V-9B-Thinking (Hong et al., 2025) 64.99 65.17 59.84 68.25 61.89 48.30 65.00 56.50 52.80 60.83 71.24 73.33

5 EXPERIMENTS

In this section, we evaluate various models on ATOM-Bench, addressing three questions: (1) Are
conclusions grounded in evidence or driven by shortcuts? (2) Do models exhibit cognitive rigid-
ity when presented with evidence? (3) Does process-level evaluation offer deeper insights than
outcome-based scoring? Section 5.1 details the setup, and Section 5.2 presents results.

5.1 EXPERIMENT SETUP

Evaluation Models. To evaluate ATOM-Bench, we tested a wide range of models, including pri-
vate models such as GPT-5 (OpenAI, 2025b), GPT-4.1 (OpenAI, 2025a) and Gemini-2.5-Pro (Co-
manici et al., 2025). We also assessed leading open-source models, including InternVL3.5 (8B,
38B) (Wang et al., 2025), Qwen2.5-VL (7B, 32B,72B) (Bai et al., 2025), Qwen2-VL (7B) (Wang
et al., 2024a), InternVL3 (8B,38B) (Zhu et al., 2025), InternVL2.5 (8B,38B,78B) (Chen et al.,
2024d), InternVL2 (8B) (Chen et al., 2024e) and MiniCPM-o-2.6 (8B) (Team, 2025), and LLaVA-
OneVision (7B,72B) Li et al. (2024a). In addition, we included recent “thinking” models such as
MiMo-VL-7B-SFT-2508 (Xiaomi et al., 2025), Ovis2.5-9B (Lu et al., 2025) and GLM-4.1V-9B-
Thinking (Hong et al., 2025). Open-source models were run on 8 NVIDIA A100 40G GPUs via the
MS-Swift framework, while private models were accessed through APIs.

5.2 FINE-GRAINED ANALYSIS AND FINDINGS

In this section, we present the comprehensive evaluation on ATOM-Bench . The detailed perfor-
mance of LMMs is shown in Table 2 and Table 3. Our analysis and key findings are as follows:

Faithful Reasoning Remains Elusive. As shown in Table 2 and Fig. 3(c-d), all model families
achieve higher accuracy on conclusion questions (CoLQ) than on clue questions (CLQ). For exam-
ple, Gemini-2.5-Pro reaches 84.42% CoLQ but only 74.16% CLQ, and Qwen2.5-VL-72B records
70.91% and 61.51%. This gap suggests models are better at producing final answers than analyz-
ing evidence. We quantify it with the evidence–conclusion spread (ECS = CoLQ − CLQ), where
smaller values imply stronger evidential grounding. As shown in Fig.5, “thinking” models achieve
relatively high CLQ despite smaller scale, suggesting process supervision benefits evidence com-
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Figure 3: (a) Error rates grouped by scope level. (b) Matrix illustrating error frequencies across
reasoning steps. (c) Model scores across 5 metrics, 4 cognitive domains, and 12 atomic clues. (d)
Models tend to score higher on conclusions than evidence, indicating reliance on shortcut reasoning.

prehension more than scaling. Correlation analysis (ρ=0.91) confirms CLQ and CoLQ are generally
aligned, while their negative correlation with ECS (ρ=−0.27) underscores that evidence understand-
ing, not final accuracy, reduces the gap. Detailed results are in AppendixA.1.

Models Fall into the Trap of Post Hoc Fallacy. To strengthen our evaluation, we assess logical
pitfalls through the Reasoning Consistency Score (RCS) and Hallucination Index (HI). As shown in
Fig. 6 and Fig. 7, models with high CoLQ but low RCS often rely on unsupported conclusions, and
larger evidence–conclusion gaps (ECS) correlate with higher hallucination rates. The joint distribu-
tion of RCS and HI exposes systematic post-hoc bias: models frequently treat correct answers as
evidence of valid reasoning, even when the underlying causal chain is flawed. For example, GPT-5
achieves 78.89% CoLQ but only 55.98% RCS with 41.37% HI, while Qwen2.5-VL-72B shows a
similar gap. Qwen2-VL-7B is extreme, with HI reaching 84.28%, meaning most of its “correct”
answers lacked evidential grounding. In contrast, smaller “thinking” models such as GLM-4.1V-
9B-Thinking deliver more balanced results, suggesting process supervision improves alignment be-
tween reasoning and evidence. These findings reveal that hallucinations are not rare anomalies but
systematic byproducts of training objectives that reward confidence over uncertainty, echoing obser-
vations in prior work (Kalai et al., 2025). Models often “bluff” when uncertain, producing plausible
but unsupported answers. Even Gemini-2.5-Pro, with the highest RCS (65.96%), still shows a non-
negligible HI of 31.24%, suggesting dual reasoning modes: faithful inference when evidence is
strong, and overconfident guessing when it is weak. Overall, RCS and HI highlight that achieving
correctness is not equivalent to reasoning faithfully, reinforcing the need for models that internalize
the principle that truth requires proof. Detailed results can be found in Appendix A.2.

Golden Evidence Method Reveals that LMMs Resist to Hallucinations. RCS and HI show that
LMMs often commit post-hoc fallacies, raising the question: can hallucinations be corrected with
indisputable evidence? To test this, we employ a prompt-based method that supplies GT clue an-
swers and evaluate model behavior with the RRS. As shown in Table2, Gemini-2.5-Pro achieves the
highest RRS, while the best open-source model, Qwen2.5-VL-72B, reaches only 24.53%, under-
scoring the persistence of false reasoning once established. Notably, smaller “thinking” models like
GLM-4.1V-9B-Thinking (18.10%) outperform larger baselines, suggesting process supervision may
curb hallucinations more effectively than scale. Error-correction rates (Fig.8) are modest: even with
full evidence, nearly half of hallucinations persist. GPT models correct most effectively, whereas
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Qwen2.5-VL-72B and GLM-4.1V-9B-Thinking show limited gains, suggesting process supervision
curbs persistence more than it boosts correction. See AppendixA.3 for details.

Model Performance across Different Clue Fields. As shown in Table 3 and Fig.3(c), two trends
validate the diagnostic value of our atomic-question framework.Models perform well on categories
like Regional Architecture, Seasons and Weather, Natural Landmarks, and Architectural Style, in-
dicating strength in macro-level semantics. In contrast, accuracy drops sharply in fine-grained or
knowledge-intensive tasks. Language and License Plates fall below 70%, reflecting OCR and small-
object limitations, while Currency and Flags further expose reliance on external world knowledge.
Overall, models excel at broad scene understanding but remain weak in detailed perception and
domain-specific reasoning. Improving OCR, symbol recognition, and knowledge integration will
be key for advancing localization and visual reasoning. As shown in Fig. 3(b), models show rising
error rates in later reasoning steps. More details are in Appendix A.4.

6 ERROR ANALYSIS

Question: <image 1> The license plate ... how does it help us determine the vehicle's 
registration location?
Option: 
(A) The license plate has 'Nevada' in cursive at the top ... location may be Las Vegas or Reno.
(B) The license plate has 'California' in cursive at the top, and the bottom includes the DMV 
website, confirming its California affiliation.
(C) ... designed with a white background and blue text, with 'New York' at the top, ... New 
York State ...
(D) The license plate number is '5CNT180', and this white background with deep blue letters 
and the format of one digit followed by three letters and three digits is a typical license plate 
style for California.

Ground Truth: (D) Answer : Zooming in on the dark sedan’s rear plate, 
you can see the red cursive word “California” across 
the top and the small “dmv.ca.gov” text along the 
bottom, with blue alphanumeric characters on a white 
background. Those are distinctive elements of a 
California standard plate, confirming the car is 
registered in California. Thus, option (B) is correct. 
Options (A), (C) don’t match the visible design, and 
while (D) describes a common CA format. The 
clearest identifying detail is the ‘California’ script 
and DMV URL.

Error Reason: The model correctly recognized that the license plate style pointed 
to California, but it fabricated additional details, such as the cursive “California” 
text and the DMV website. Those are not actually legible in the image. The model 
overlooked that the decisive evidence is the alphanumeric format “5CNT180” on a 
white plate with blue letters, which uniquely corresponds to California.

<image 1>

Post Hoc Fallacy

Figure 4: A basic post-hoc fallacy error. More
cases can be found in Appendix D.

Post Hoc Fallacy. One recurring error is the
fabrication of visual evidence to support a cho-
sen conclusion. As shown in Fig. 4, the model
falsely reported seeing “California” in cursive
and a DMV website on a license plate, though
only the sequence “5CNT180” is legible. This
illustrates a post-hoc fallacy: the model an-
chored on California and retroactively invented
supporting evidence. Such behavior aligns with
the high HI, where models often “guess cor-
rectly” or “justify incorrectly” by fabricating
details. The finding highlights a core weak-
ness: under ambiguity, LMMs rarely admit un-
certainty but instead produce overconfident rea-
soning chains, undermining reliability.

Symbolic Anchoring Bias. Another major er-
ror is the model’s overreliance on superficial
symbolic patterns while neglecting stronger
contextual evidence. As shown in Fig. 9, the model misread “3842.2169” as a phone number “3842-
2169” and treated it as decisive regional evidence, despite such formats being common outside
Brazil. At the same time, the more discriminative clue “Ragazzi Transportes” was dismissed as an
advertisement. This reflects a structural bias toward plausibility over validity, where models priori-
tize familiar symbols over contextually stronger cues.

Perceptual Limitation in Fine-grained Clues. Another recurring error arises from misinterpreting
fine-grained cues. As shown in Fig. 17, the model read a clock as 10:10 AM instead of 11:50 AM.
Unlike humans, who integrate contextual signals such as shop openings or pedestrian density to off-
set perceptual uncertainty, the model rigidly anchors on the misread detail. As a result, LMMs tend
to overcommit to erroneous perceptual inputs rather than fall back on broader contextual reasoning,
underscoring persistent limits in small-object recognition and fine-grained understanding.

7 CONCLUSION

This paper introduces ATOM-Bench the first diagnostic benchmark that decomposes complex mul-
timodal reasoning into atomic questions, providing an objective alternative to LLM-as-judge eval-
uation. Built on 570 real-world images and 2,920 questions across four cognitive dimensions and
twelve domains, it enables fine-grained assessment of evidence comprehension and conclusion rea-
soning. We further propose three metrics to diagnose consistency, hallucination, and cognitive rigid-
ity. Experiments on 22 LVLMs reveal reliance on shortcuts and post-hoc fallacies, highlighting the
gap between correctness and faithful reasoning. Beyond benchmarking, ATOM-Bench provides
insights for optimizing geolocation models by identifying weaknesses in fine-grained perception,
symbolic grounding, and reasoning robustness. It offers a transparent and objective foundation for
advancing both reliable multimodal reasoning and practical geospatial AI.
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ETHICS STATEMENT

This paper presents a diagnostic benchmark for evaluating CoT reasoning in large multimodal mod-
els (LMMs). This dataset contains 570 high-resolution images spanning multiple domains. The
dataset was curated following ethical guidelines to ensure that no sensitive information is included
and to minimize bias during the annotation process. The evaluation process aims to be transparent
and reproducible, adhering to high standards of research integrity and ethical conduct. No personally
identifiable data was collected or processed.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made considerable efforts to provide all nec-
essary details and materials. Specifically, we have included a comprehensive description of the
dataset creation process in Section 3, including annotation guidelines and data collection methods,
and further elaborated in Appendix C. The evaluation procedures and results analysis are described
in detail in Section 5 and Appendix A, with the metrics used clearly defined to facilitate independent
verification.
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Figure 5: Correlation between CLQ and CoLQ. Heatmap (left) shows strong CLQ–CoLQ corre-
lation and the role of ECS.

A FINE-GRAINED ANALYSIS AND FINDINGS

A.1 ANALYSIS OF CLQ AND COLQ PERFORMANCE

As shown in Fig. 5, Fig. 3 and the results in Table 2, across both private and open-source mod-
els, CoLQ accuracy consistently surpasses CLQ accuracy. For instance, Gemini-2.5-Pro (Comanici
et al., 2025) achieves 84.42% CoLQ vs. 74.16% CLQ, while GPT-5 (OpenAI, 2025b) (78.89% vs.
65.87%) and GPT-4.1 (OpenAI, 2025a) (77.68% vs. 63.65%) show similar gaps. Among open-
source families, Qwen2.5-VL-72B (Bai et al., 2025) performs best with 70.91% CoLQ but still lags
at 61.51% CLQ. This pattern reveals a shared tendency: models are stronger at producing final
answers than at analyzing intermediate evidence faithfully.

We quantify this mismatch through ECS = CoLQ − CLQ, which measures how much “conclu-
sion correctness” outpaces “evidence correctness.” Models with smaller ECS (e.g. Gemini-2.5-Pro
10.26%) exhibit more faithful reasoning, whereas large spreads indicate shortcut reasoning. No-
tably, some open-source models show extreme ECS values: Qwen2-VL-7B (Wang et al., 2024a)
has an ECS of 27.32%, suggesting its correct conclusions are rarely grounded in solid evidence.
This aligns with our Hallucination Index (HI) analysis, where such models often “guess right for the
wrong reasons.”

The heatmap on the left of the Fig. 5 confirms a strong overall correlation between CLQ and CoLQ
(ρ = 0.91), meaning models that understand evidence better also tend to produce better conclusions.
However, The correlation coefficient between ECS and CLQ is ρ=−0.27, which means ECS corre-
lates negatively with CLQ, indicating that higher evidence comprehension reduces the faithfulness
gap. The correlation coefficient between CLQ and Params is ρ = 0.42, indicating a positive corre-
lation between model scale and clue comprehension, though significantly weaker than that between
CLQ and CoLQ. This suggests that scaling parameters alone cannot substantially resolve evidence
comprehension challenges and far less effective than the training approach of the “Thinking Model”.
The correlation coefficient between CoLQ and Params is ρ = 0.37. This indicates that while increas-
ing the size of the model through larger training datasets and more training parameters does improve
prediction accuracy to some extent, it is not a decisive factor. All of the results imply that simply
increasing CoLQ is insufficient: progress hinges on improving CLQ.

The scatter plot on the right of the Fig. 5 further illustrates this trend. While most models cluster
along the regression line, several outliers deviate significantly. For example, Qwen2-VL-7B (Wang
et al., 2024a) achieves CoLQ near 57% but with CLQ barely above 29%, highlighting severe shortcut
reasoning. In contrast, thinking models like GLM-4.1V-9B-Thinking (Hong et al., 2025) (CLQ
60.58%, CoLQ 65.69%) achieve tighter alignment between evidence and conclusion, even at smaller
parameter scales. This suggests that explicit process supervision, rather than scaling alone, is more
effective in boosting faithful reasoning.

A.2 ANALYSIS OF RCS AND HI RESULTS

RCS refers to the criterion where a model is recorded as correct only when it simultaneously answers
the conclusion question correctly and answers over 75% of the clue questions correctly on the same
image. As shown in Fig. 6(a), bubble size indicates HI, where larger bubbles correspond to higher
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illusion ratios. Bubble color represents the difference between CoLQ and RCS conclusions. To
highlight discrepancies between atomic evidence and conclusions, darker colors indicate greater
divergence between conclusions and evidence. Most models fall above the diagonal line (CoLQ ¿
RCS), indicating a gap in their performance. While they perform well on conclusion-level questions,
their RCS scores remain low. This suggests that the evaluated LMMs models fail to fully grasp
the clue atom questions corresponding to the key nodes involved in answering the final question,
resulting in poor consistency.

The private models occupy the upper–right of the plane but still separate from the ideal diagonal.
Gemini-2.5-Pro (Comanici et al., 2025) attains a conclusion accuracy of 84.42% with a reasoning
consistency of 65.96 percent, and its hallucination index remains 31.24%. GPT-5 (OpenAI, 2025b)
follows a similar pattern with 78.89% on conclusions, 55.98 percent on consistency, and 41.37%
hallucination. These numbers show that even the strongest models continue to deliver many “right
answers for the wrong reasons”: the surface prediction is correct more often than the chain of
evidence that supposedly supports it.

The Open-source models behave similarly but with a larger evidence deficit. Qwen2.5-VL-72B (Bai
et al., 2025) achieves 70.91 percent on conclusions but only 49.82 percent on consistency, and its
hallucination index rises to 46.98 percent, indicating that nearly half of its correct conclusions are not
supported by sufficiently accurate clue interpretation. At the small-scale end, Qwen2-VL-7B (Wang
et al., 2024a) is an outlier in the worst direction: its hallucination index reaches 84.28 percent, which
means the model’s rare successes almost never come from valid evidence chains. In contrast, the
“thinking-oriented” GLM-4.1V-9B-Thinking (Hong et al., 2025) exhibits a more balanced profile,
with moderate conclusion accuracy paired with comparatively tighter consistency, suggesting that
explicit process supervision can align evidence and conclusions more effectively than sheer param-
eter count.

ECS measures the size of evidence gaps when a model’s conclusion is correct, while HI quanti-
fies how often a model produces ’correct conclusions but flawed evidence’. Together, they reveal
whether a model relies on ’shortcut reasoning’ rather than genuine evidence analysis. As shown
in Fig. 6(b), the scatter plot exhibits a clear positive correlation. As ECS increases, HI often rises
accordingly. This suggests that models with larger discrepancies between conclusions and evidence
are more susceptible to the ’post hoc fallacy’: treating a correct conclusion as proof of the valid-
ity of the reasoning process. This trend is not merely a statistical coincidence, but rather a logical
misalignment. Models appear to have adopted the flawed paradigm of ’self-validating results’: as-
suming that the reasoning process is sound simply because it yields a seemingly correct answer.
Notably, the distribution of different models on this graph reveals distinct reasoning patterns. Those
in the lower-left quadrant (low ECS, low HI) more faithfully ground their conclusions in evidence,
whereas those in the upper-right quadrant (high ECS, high HI) tend to rely on ’guessing correctly
rather than reasoning correctly’. This divergence reflects the convergence of statistical shortcuts
and logical fallacies: under the current evaluation mechanisms, models are incentivised to optimise
answer accuracy without constraints on the validity of their reasoning chains.

We adjusted the RCS threshold from 0% to 100% and plotted evidence support curves, where the
horizontal axis represents the evidence threshold and the vertical axis indicates the proportion of
cases that maintain both correct conclusions and sufficient evidence at that threshold. As shown
in Fig. 7(c), the evidence support curve captures robustness under stricter evidence scrutiny. As
we raised the threshold for defining instances as “evidence-supported,” the consistency of reason-
ing declined across all models. Gemini 2.5 Pro (Comanici et al., 2025) demonstrates the strongest
resilience, exhibiting a gradual decline in RCS even with heightened evidence demands. The three
thinking models, GLM-4.1V-9B-Thinking (Hong et al., 2025), Ovis 2.5-9B (Lu et al., 2025), and
MiMo-VL-7B-SFT-2508 (Xiaomi et al., 2025), though not reaching the highest overall levels, show
slow curve declines. This highlights the importance and robustness of process supervision during
training thinking models. Qwen2-VL-7B (Wang et al., 2024a) performed worst, with the steepest
and largest decline in its curve and the smallest area under the curve. This indicates that Qwen2-VL-
7B’s conclusions are largely detached from verifiable atomic evidence, with most correct answers
lacking understanding of atomic questions and atomic evidence. These curves clearly demonstrate
that improvements reported at individual operating points may mask underlying fragility: only a
handful of models maintain stability when we demand tighter consistency between clues and con-
clusions.
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Figure 6: Multi-view evaluation of reasoning faithfulness. (a) CoLQ–RCS bubble plot shows
models with large, red bubbles often guess conclusions without solid evidence. (b) ECS–HI scatter
reveals a positive trend: wider evidence–conclusion gaps align with higher hallucination rates.

Figure 7: Evidence Support Curve. Assessing the robustness of LMMs at different RCS thresh-
olds, where flatter curves indicate more reliable inference.

A.3 ANALYSIS OF RRS UNDER “GOLDEN EVIDENCE”

We probe how models behave when all clue answers are revealed and conclusions are re-elicited.
Table 2 shows a clear stratification. Gemini-2.5-Pro attains the highest RRS at 67.06%, meaning
that, once grounded evidence is supplied, it most often either preserves correct answers or upgrades
wrong ones, while rarely flipping correct answers to wrong. GPT-5 and GPT-4.1 form the next
tier (RRS 59.51% and 59.00%), indicating a solid but less decisive willingness to revise earlier,
potentially illusory chains. Among open-source systems, Qwen2.5-VL-72B leads with 24.53%, the
large gap from proprietary models signals pronounced cognitive rigidity and/or logical confusion
once false chains are established; several baselines perform far lower (e.g., LLaVA-OneVision-7B
at 2.91%, InternVL2.5-8B at 4.52%), suggesting that conditioning on gold facts can even destabilize
earlier answers when the original chain relied on spurious clues.

Fig. 8 reports the error-correction rate (fraction of wrong→right after evidence). GPT-4.1 and GPT-
5 are strongest, a broad middle—including Gemini-2.5-Pro—sits near 0.50, and many open-source
models cluster at 0.42–0.46. The contrast with RRS is instructive: although Gemini does not max-
imize flips, it achieves the top RRS by combining steadfast correctness on hard items with low
right→wrong confusion; conversely, models with modest flips and very low RRS both resist cor-
rection and destabilize under evidence. The Evidence Support Curves in Fig. 7(c) corroborate
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Figure 8: Error Improvement Rate Bar Chart. Demonstrated improvements across different
models after providing evidence.

this: as the evidence threshold tightens, all curves drop, with Gemini most pressure-resistant, GPT-
5/InternVL3-78B moderately robust, mid-scale open-source models degrading early, and Qwen2-
VL-7B collapsing. In summary, RRS complements flip rates by rewarding evidence-grounded sta-
bility under pressure; truly robust systems must maintain correct answers, upgrade wrong ones when
clues warrant it, and avoid spurious flips—rather than merely “fixing more mistakes.”

A.4 EXTENDED ANALYSIS OF CLUE-LEVEL RESULTS

Table 3 and Fig. 3 provide a fine-grained breakdown of model performance across clue categories,
offering deeper insight into how different architectures and training strategies affect reasoning over
diverse evidence types.

Private models. Gemini-2.5-Pro clearly dominates across nearly all categories, reaching top ac-
curacy in Architectural Styles (77.88%), Regional Architecture (76.34%), Street Characteristics
(74.52%), and Natural Landmarks (86.67%). Its consistent advantage indicates strong high-level
feature extraction and robust training on culturally diverse data. GPT-5 performs more competi-
tively in Clothing & Customs (81.90%) and maintains balanced accuracy across Built Environment
and Natural Characteristics, though it lags behind Gemini in symbolic categories such as Currency
& Flags (59.87%) and Language (59.18%). GPT-4.1 trails slightly further, particularly in Unique
Structures (56.26%) and License Plates (54.57%), suggesting limited gains in fine-grained symbolic
recognition compared to its successors.

Large open-source models. Among open-source systems, Qwen2.5-VL-72B consistently leads,
achieving 70.02% in Architectural Styles, 77.16% in Clothing & Customs, and 64.25% in Trans-
portation. However, it still struggles with License Plates (59.39%) and Language (55.84%), mirror-
ing the broader limitations of OCR-heavy tasks. InternVL3-78B shows complementary strengths: it
excels in Clothing & Customs (81.90%) and Street Characteristics (61.32%), rivaling private models
in social-context reasoning. Conversely, its weakness in Regional Architecture (49.21%) highlights
persistent fragility in region-specific cues. Qwen2.5-VL-32B and InternVL3.5-38B demonstrate
strong accuracy in Currency & Flags (62.28% and 60.19%) and Natural Landmarks (86.67%), re-
flecting that scaling improves knowledge-linked categories, though they underperform in License
Plates and Unique Structures.

Mid-scale and smaller open-source models. InternVL2.5-78B (70.26% in Clothing & Customs,
63.75% in Climate) and InternVL3-8B (72.84% in Clothing & Customs, 57.71% in Climate) high-
light the benefit of scaling within the InternVL family. Yet, these models remain notably weaker
in symbolic cues: most scores for Language and License Plates remain below 50%. LLaVA-
OneVision-72B further exposes this weakness, dropping to 34.07% in Currency & Flags and 29.95%
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in License Plates, indicating instability in structured symbolic reasoning despite large scale. At the
lower end, Qwen2-VL-7B performs poorly across nearly all categories, with accuracies under 15%
in most symbolic tasks, underscoring the limits of smaller-scale pretraining without specialized su-
pervision.

Open-source “thinking” models. Models with explicit process supervision exhibit more balanced
performance. Ovis2.5-9B achieves strong results in Architectural Styles (67.14%), Clothing & Cus-
toms (75.14%), and Natural Landmarks (86.67%), surpassing several larger open-source baselines.
GLM-4.1V-9B-Thinking shows competitive accuracy in Currency & Flags (65.00%) and Geogra-
phy (71.24%), highlighting its advantage in knowledge-intensive categories where symbolic cues
must be linked with external world knowledge. MiMo-VL-7B-SFT-2508 remains more moderate
but achieves respectable accuracy in Climate (64.38%) and Macro-level cues, showing that smaller
thinking models can reduce hallucination but still trail in high-difficulty symbolic reasoning.

Category-level insights. Across all models, the easiest categories are macro-level cues such as
Natural Landmarks and Climate, where most models achieve >70% accuracy. In contrast, Language
and License Plates remain the hardest, with most models <60%. These two categories exemplify the
combined challenge of fine-grained perception, OCR under unconstrained conditions, and domain-
specific symbolic grounding (e.g., matching plate formats or distinguishing scripts). Currency &
Flags also highlights deficiencies in linking subtle visual features with external knowledge, where
even top private models remain below 73%.

Error progression along reasoning steps. As illustrated in Fig. 3(b), models show rising error
rates in later reasoning steps. Early questions emphasize macro, high-certainty cues (e.g., climate,
landmarks), yielding higher accuracy. Later steps involve micro-level, low-certainty clues such as
signage or license plates, where errors accumulate rapidly. LLaVA-OneVision-72B and MiMo-VL-
7B-SFT-2508 are particularly sensitive, with error rates exceeding 50% at Step 6, while Gemini-2.5-
Pro and GPT-5 remain more stable but still degrade significantly. This validates the design principle
of ATOM-Bench: human-curated question ordering from macro to micro cues reveals how models
falter as perceptual demands shift from global semantics to local symbolic evidence.

Private models excel in broad scene understanding and maintain stronger resilience across clue
types, while open-source models demonstrate competitive performance in select categories but re-
main inconsistent overall. Thinking models highlight that process supervision offers meaningful
gains in robustness, particularly for knowledge-intensive symbolic reasoning. Nonetheless, the per-
sistent weaknesses in OCR-heavy and fine-grained symbolic categories underscore the need for fu-
ture work on improving multimodal models’ ability to integrate detailed perception with structured
external knowledge.

A.5 MORE DETAILED ANALYSIS

Fig. 3(b) and Table 4 provide deeper insights into why error rates increase with the number of rea-
soning steps. We ordered the atomic problems in ATOM-Bench according to the sequence of human
understanding scenarios, starting from macro-level, high-certainty clues and gradually transitioning
to micro-level details.

Representative models exhibit relatively low error rates in the initial steps, consistent with their
strong grasp of global semantics such as architectural styles, climate, or social environments. How-
ever, as reasoning progresses to steps 3–6, micro-level or ambiguous symbolic cues—such as license
plates, text fragments, and fine-grained traffic features—become dominant, causing error rates to
surge sharply. For instance, LLaVA-OV and MiMo-VL exhibit late-stage peaks exceeding 48% to
53%, reflecting the difficulty in maintaining reliability when attention shifts from holistic scene an-
chors to fine-grained, low-certainty elements. The certainty dimension further reinforces this trend.
Across models, high-certainty clues achieve the best accuracies, but performance deteriorates sub-
stantially for medium- and especially low-certainty items.

The rising error rates along reasoning steps are not merely artifacts of longer inference chains but
reflect structural weaknesses in handling micro-level and low-certainty evidence. Current MLLMs
are optimized to exploit global scene regularities yet remain brittle when confronted with ambiguous,
fine-grained cues.
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Table 4: Scope and Certainty Accuracy for Different Models in ATOM-Bench. Best results are
highlighted in orange (private), blue (open-source), and green (thinking). Models are sorted by
Macro accuracy (high → low).

Model Macro Mid-level Micro High Medium Low

Scope Certainty

Private Models
Gemini-2.5-Pro (Comanici et al., 2025) 0.84 0.81 0.77 0.84 0.72 0.36

GPT-5 (OpenAI, 2025b) 0.81 0.76 0.67 0.77 0.64 0.39
GPT-4.1 (OpenAI, 2025a) 0.81 0.73 0.67 0.75 0.64 0.30

Open-Source Models
Qwen2.5-VL-72B (Bai et al., 2025) 0.77 0.72 0.65 0.74 0.62 0.32

InternVL3-78B Zhu et al. (2025) 0.78 0.70 0.65 0.73 0.61 0.41
Qwen2.5-VL-32B (Bai et al., 2025) 0.74 0.69 0.62 0.71 0.58 0.36

InternVL3.5-38B (Wang et al., 2025) 0.72 0.69 0.60 0.70 0.57 0.30

InternVL2.5-78B (Chen et al., 2024d) 0.71 0.67 0.56 0.67 0.56 0.20

InternVL2.5-38B (Chen et al., 2024d) 0.71 0.63 0.53 0.65 0.50 0.25

InternVL3-8B Zhu et al. (2025) 0.71 0.63 0.55 0.65 0.52 0.20

LLaVA-OneVision-72B (Li et al., 2024a) 0.67 0.61 0.51 0.61 0.52 0.18

Llama-3.2-11B-Vision (Dubey et al., 2024) 0.65 0.62 0.55 0.63 0.53 0.27

Qwen2.5-VL-7B (Bai et al., 2025) 0.62 0.58 0.53 0.61 0.45 0.25

MiniCPM-o-2.6 (Team, 2025) 0.62 0.55 0.51 0.58 0.45 0.20

InternVL2-8B (Chen et al., 2024e) 0.61 0.54 0.43 0.54 0.44 0.25

LLaVA-OneVision-7B (Li et al., 2024a) 0.57 0.53 0.44 0.53 0.43 0.25

Qwen2-VL-7B (Wang et al., 2024a) 0.33 0.30 0.29 0.33 0.24 0.07

Open-Source Thinking Models
GLM-4.1V-9B-Thinking (Hong et al., 2025) 0.78 0.71 0.64 0.73 0.62 0.34
MiMo-VL-7B-SFT-2508 (Xiaomi et al., 2025) 0.74 0.69 0.61 0.71 0.57 0.30

Ovis2.5-9B (Lu et al., 2025) 0.73 0.70 0.60 0.69 0.63 0.34

B THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were used solely for
writing assistance. Specifically, they were employed to enhance the clarity, grammar, and flow of
the text, as well as to assist with language polishing. LLMs also generated initial annotations for
ATOM-Bench , but all final annotations were meticulously labeled by professional annotators to
ensure accuracy and quality. Importantly, the use of LLMs was limited to language refinement and
initial annotation, and they did not contribute to the intellectual or research content of the paper. All
conceptual contributions, analyses, and conclusions were independently generated by the authors,
with LLMs serving only as a tool for textual improvement.

C HUMAN-IN-THE-LOOP VERIFICATION AND REFINEMENT

To guarantee the diagnostic rigor and factual reliability of ATOM-Bench, we incorporated a human-
in-the-loop verification and refinement stage after automated question generation. Although Gemini-
2.5-Pro proved effective at producing diverse question–answer–evidence triplets, its black-box gen-
eration process frequently introduced factual inaccuracies, hallucinated visual details, and post-hoc
fallacies—fabricated evidence retroactively used to justify predetermined answers. Without careful
human review, such issues would compromise both the validity and objectivity of the benchmark.

Our team of expert annotators systematically reviewed each of the approximately 15 candidate clue-
level and conclusion-level questions generated for each image. This review process was grounded
in three complementary principles:

Evidence Grounding and Factual Accuracy. Annotators verified that every cited clue was unam-
biguously present in the image and grounded in observable visual evidence. For example, refer-
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ences to signs, architectural features, or clothing had to be visually identifiable, not imagined. When
ground-truth answers relied on external world knowledge (e.g., associating a specific license plate
pattern with its country of origin), annotators performed targeted web searches to confirm correct-
ness. This procedure ensured that the “atomic questions” themselves remained free of hallucinatory
evidence and that all answers had firm empirical grounding.

Adversarial Distractor Design. A central innovation of ATOM-Bench is the adversarial construc-
tion of distractor options to resist shortcut learning. Annotators were instructed to design distractors
that were (i) visually plausible but semantically incorrect (e.g., numbers or symbols appearing else-
where in the image), (ii) semantically or geographically confusable alternatives (e.g., neighboring
countries or similar regional features), or (iii) hallucination-derived distractors, repurposed from
model-generated false evidence in the automated stage. This last type functioned as a “hallucination
bait,” deliberately exposing whether models would fall for fabricated but superficially convincing
clues. Importantly, annotators also ensured that distractors avoided trivial elimination (e.g., implau-
sible or irrelevant regions) to maintain diagnostic difficulty.

Question Quality and Task Relevance. From the generated pool, annotators retained only ques-
tions that were coherent, unambiguous, and aligned with the benchmark’s cognitive categories. Cri-
teria included: (1) strong alignment with the targeted sub-task (e.g., symbolic recognition, cultural
awareness); (2) avoidance of ambiguous references to objects, especially when multiple instances
were present; and (3) clarity of phrasing to ensure answerability. For a minority of cases where
generated questions could not be salvaged through refinement, annotators manually authored new
items, ensuring that every question in the dataset was human-vetted and diagnostically meaningful.

This meticulous verification process ensured that all retained questions are both empirically
grounded and adversarially challenging. As a result, ATOM-Bench does not merely measure
surface-level correctness but probes whether models can resist hallucinations, avoid shortcut strate-
gies, and genuinely anchor their reasoning in observable evidence.
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D ERROR ANALYSIS

Question: <image 1> Analyzing the content in the graffiti can help narrow down the location, 
finding visual evidence to support this inference?
Option: 
(A) No need to analyze the graffiti, 'Câmara Municipal' and 'Titan' are enough to narrow 
down the location to Brasília.
(B) Can narrow down to the southeastern and southern regions, the graffiti says 'Ragazzi 
Transportes'.
(C) Can narrow down to the southeastern and southern regions, the graffiti says '009 BOY' 
and '3842.2169'.
(D) Can directly lock the location, the graffiti says 'Rua 15 de Novembro'.

Ground Truth: (B) Answer : The scene is clearly in Brazil. The only actual 
graffiti that can be read is the one on the wall saying 
“009 BOY” and a phone number “3842‑2169”. This 
kind of fixed‑line number block (3xxx‑xxxx) is 
characteristic of municipalities found in the 
South/Southeast of Brazil, which helps narrow the 
region. Option A is wrong (Brasília doesn’t have a 
‘Câmara Municipal’, ‘Titan’ is not location‑specific), B 
cites an advertisement rather than graffiti and is not a 
reliable regional marker, and D mentions text that is not 
visible. Therefore the best answer is C.

Error Reason: The model misread the wall text “3842.2169” as a phone number 
“3842‑2169” and treated it as decisive regional evidence. The notation is not 
necessarily a phone number, may be EPSG, and even if it were, the 3xxx‑xxxx 
format is not unique to Brazil but occurs in many regions. Meanwhile, the more 
discriminative clue “Ragazzi Transportes” was overlooked.

<image 1>

Symbolic Anchoring Bias

Figure 9: A sample error case of Symbolic Anchoring Bias.
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Question: <image 1> In the picture, we can see a restaurant. Are there any clues that can help 
us further determine the location?
Option: 
(A) The Spanish menu at the restaurant entrance and the obscured black and white 'errD' 
sign"
(B) The clearly visible store in the picture and the GLACIAR on the chair's backrest
(C) The San Miguel beer brand and the 'trella' on the billboard
(D) The 'Estrella Damm' and 'San Miguel' on the sign as well as GLACIAR

Ground Truth: (C) Answer : The storefront sign reading GLACIAR is 

clearly visible under the arch, and the café umbrellas 

display the Spanish/Catalan beer brands Estrella Damm 

and San Miguel—clues that point to Barcelona (notably 

Plaça Reial’s Café Glaciar). These match option (D): 

The 'Estrella Damm' and 'San Miguel' on the sign as 

well as GLACIAR.

Error Reason: The model tends to imagine things, inventing details not present in 

the image, which makes it unreliable. No Estrella Damm can be seen in the picture; 

only the blurred letters “trella” are visible.

<image 1>

Symbolic Anchoring Bias

Figure 10: A sample error case of Symbolic Anchoring Bias.
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Question: <image 1> The foreground of the photo is the wide City Gate River, while the 
background features densely vegetated mountains. Based on this combination of urban and 
natural elements, how does this help us narrow down the geographical scope?
Option: 
(A) This scene of a high‑density urban area adjacent to steep, lush mountains is a typical 
geographical feature of Hong Kong ...
(B) Many inland cities in South China, such as Guangdong or Fujian, are built in river valleys 
surrounded by similar green hills ...
(C) This is a typical island or peninsula landform; to save precious flat land, cities are forced 
to build along the foothills, ... like Singapore, HongKong or Busan.",
(D) This is likely a large urban wetland park, ... a natural recreational space ...

Ground Truth: (C) Answer : The photo shows a dense cluster of high‑rise 
apartments and institutional buildings pressed right up 
against steep, heavily vegetated hills. This juxtaposition 
of very limited flat land, water channels with 
promenades, and abrupt mountains is characteristic of 
Hong Kong’s terrain—especially in the New Territories. 
While river‑valley cities in South China can look 
somewhat similar, the combination of extreme density, 
steep green hills immediately behind the city edge, and 
the coastal‑estuarine setting is most typical of Hong 
Kong. 

Error Reason: The model preemptively identified this location as Hong Kong and 
forced interpretations based on these uncertain clues. However, such geographical 
features could also exist in Singapore or other developed Southeast Asian nations. 
Natural geographical characteristics alone cannot definitively confirm this as Hong 
Kong.

<image 1>

Post Hoc Fallacy

Figure 11: A sample error case of Post Hoc Fallacy.
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Question: <image 1> The white building on the right edge of the image presents a unique 
shape. How does its architectural style help us locate the city?
Option: 
(A) The building is the ArtScience Museum in Singapore, and its lotus‑shaped design 
resonates with the local multiculturalism.
(B) The building is the Museum of the Future in Dubai, UAE ... represents the city's futuristic 
architecture.
(C) The building is the Heydar Aliyev Center in Baku, Azerbaijan, ... a landmark of the city.
(D) The building is the Hazrat Sultan Mosque in Nur‑Sultan, Kazakhstan ... Central Asia.
(E) The building is mostly obscured and hard to recognize, but it can be identified as the 
Heydar Aliyev Center through the foosball table and the grass in the background.

Ground Truth: (E) Answer : The white structure on the right edge has 
flowing, wave‑like curves typical of Zaha Hadid’s 
design for the Heydar Aliyev Center. The surrounding 
skyline of modern residential towers and the park‑like 
setting also match Baku. Other options: Singapore’s 
ArtScience Museum is lotus‑shaped, Dubai’s Museum 
of the Future is a torus with calligraphy, and the Hazrat 
Sultan Mosque features domes and minarets. Therefore 
the city is Baku, Azerbaijan. Correct choice: C) The 
building is the Heydar Aliyev Center in Baku, 
Azerbaijan, a landmark of deconstructivist architecture.

Error Reason: This is a classic case of the post hoc fallacy. The model identified 
the structure as the Heydar Aliyev Center in Baku, Azerbaijan, based on pattern 
matching and memory. However, the building on the right is heavily obscured, 
making its details indistinguishable. Despite this, the model claims the white 
structure on the right exhibits smooth, wavy curves—a signature feature of the 
Aliyev Center. Furthermore, online searches confirm the building on the right is not 
part of the Aliyev Center. The model fabricated evidence.

<image 1>

Post Hoc Fallacy

Figure 12: A sample error case of Post Hoc Fallacy.
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Question: <image 1> What is the text on the plastic bottle next to the low wall on the left side 
of the image? How does this clue help us infer the geographical location?
Option: 
(A) The bottle has the text 'Badamiı', which is a popular beverage brand in Turkey, suggesting 
the location might be in Turkey.
(B) The bottle has the text 'Borjomi', which is a famous Georgian mineral water ... in Georgia.
(C) The bottle has the text 'Badaınlı', which is a Georgian juice brand, ... in Georgia.
(D) The bottle has the text 'Badamlı', which is a mineral water brand originating from 
Azerbaijan, strongly indicating the location is in Azerbaijan.
(E) The bottle has the text 'bonaqua', which is available everywhere, making it impossible to 
infer the location.

Ground Truth: (E) Answer : On the left next to the low wall, the plastic 
bottle’s blue label reads “Badamlı.” Badamlı is a 
well‑known Azerbaijani mineral water brand (from 
the Nakhchivan region), and the use of the 
Azerbaijani/Turkic letter ı on the label further 
supports this. Therefore, the clue strongly indicates 
the scene is in Azerbaijan. Choice: The bottle has the 
text 'Badamlı', which is a mineral water brand 
originating from Azerbaijan, strongly indicating the 
location is in Azerbaijan.

Error Reason: The model struggles with recognizing fine‑grained clues, as the 
label on the bottle is not “Badamlı.” When confronted with such ambiguous clues, 
the model resorts to post hoc rationalization—it identifies the location as Azerbaijan 
and fabricates a local brand name.

<image 1>

Post Hoc Fallacy & Perceptual Limitation

Figure 13: A sample error case of Post Hoc Fallacy and Perceptual Limitation.
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Question: <image 1> Carefully observe the license plates of the silver and black cars in the 
picture; the numeric area on the right is crucial for precise location. What do these numbers 
indicate?
Option: 
(A) The numbers '25' and '125' are vehicle emission ... Moscow and Saint Petersburg.
(B) The numbers '25' and '125' are codes for the subjects of the Russian Federation ... 
(C) The license plate has a white background with black characters, with the vehicle number 
on the left and '25' and '125' as the region codes on the right, ... Russian Federation, but 
installed on a right‑hand drive Toyota. This suggests it is from the Russian Far East.
(D) The number '25' is the code for Almaty Region in Kazakhstan, while '125' is the code for a 
neighboring area ... Central Asia.
(E) The numbers '25' and '125' are lucky numbers ... fixed geographical meaning.

Ground Truth: (C) Answer : B. On Russian license plates, the small 
number on the right is the regional code of registration. 
The numbers 25 and 125 correspond to Primorsky Krai 
(Vladivostok area) in the Russian Far East. This 
matches the Cyrillic signage and Far East context in the 
photo. Options A, D, and E misidentify the meaning of 
the numbers, and while C notes the format correctly, 
the added inference about a right‑hand‑drive Toyota is 
unnecessary; the key point is that 25/125 are Primorsky 
Krai region codes."

Error Reason: The model identified this location as Vladivostok, Russia, based 
solely on the license plate. However, this determination is not conclusive, as such 
plates are common in many parts of Russia. The model failed to combine the 
license plate information with the clue of the right‑hand drive vehicle visible in the 
image.

<image 1>

Post Hoc Fallacy

Figure 14: A sample error case of Post Hoc Fallacy.
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Question: <image 1> The sign of the store on the right side of the image displays various 
textual clues. By carefully observing the spelling and characteristics of these texts, how do 
they help us determine the geographical location?
Option: 
(A) The 'Peevi' on the right white sign and 'apuvälineet' on the glass are in Finnish ... parts of 
Finland, Sweden, Norway, Estonia, and Russia.
(B) The 'Peevi' on the right blue sign and the black small text 'apuvälineet sekä hoitotuotteet'‑
... Finland.
(C) The 'Peevi' on the right white sign and 'apuvälineet' ... in Estonia.
(D) The 'Peevi' on the right blue sign and the 'apuvälineet sekä hoitotuotteet' below, along 
with the green 'AVOINNA' on the door ... to Finland or the Åland Islands.

Ground Truth: (A) Answer : The texts visible on the right storefront are 
Finnish. You can read “apuvälineet sekä hoitotuotteet” 
on the window and “AVOINNA” (open) on the door; 
these are unambiguously Finnish words (Swedish 
would be ‘hjälpmedel …’ and ‘öppet’, Estonian would 
be ‘abivahendid’). “Peevi” appears to be a brand/shop 
name and doesn’t determine the language, but the other 
words do. Therefore the location is in Finland (Åland 
would be less likely because Swedish is dominant 
there). Among the choices, option D best matches the 
linguistic evidence.

Error Reason: The model exhibits poor fine‑grained recognition capabilities; the 
door in the image does not bear the inscription “AVOINNA.” When faced with 
ambiguous clues, the model relies on memorization to determine geographical 
locations and fabricates evidence to substantiate its claims. Furthermore, Finnish 
alone is insufficient to definitively identify this location.

<image 1>

Post Hoc Fallacy & Perceptual Limitation

Figure 15: A sample error case of Post Hoc Fallacy and Perceptual Limitation.
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Question: <image 1> The text on the store door and inside the window provides more 
information. What conclusion can be drawn from the analysis of the green 'AVOINNA' on 
the door and 'APUVÄLINEET' inside the window?
Option: 
(A) The 'AVOINNA' ... 'hoitotuotteet' ... are two different languages, ... border area, such as 
the border between Finland and Russia.
(B) The 'AVOINNA' on the door and 'APUVÄLINEET' inside the window are in Finnish ...
(C) The 'AVOINA' ... 'APUVÄLINEET' inside the window are in Latvian ... Baltic states.
(D) There is no green 'AVOINNA' on the door; the green sign on the left store door is 
KRIPPS, and the right store window has 'APUVÄLINEET' written on it, which is Finnish, 
narrowing the location down to Finnish‑speaking areas.

Ground Truth: (D) Answer : B. The green 'AVOINNA' on the door is 
Finnish for 'open', and 'APUVÄLINEET' in the window 
is Finnish for 'aids/assistive devices'. These match the 
Finnish context of the other signage, reinforcing that 
the location is in Finland.

Error Reason: The model's fine‑grained recognition capability is poor; the door in 
the image does not actually have “AVOINNA” written on it. This is the model's 
own interpretation based on its conclusion.

<image 1>

 Perceptual Limitation

Figure 16: A sample error case of Perceptual Limitation.
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Question: <image 1> Based on the time displayed on the clock in the image, which shows 
approximately 10:10 AM, combined with the activity status of nearby shops and pedestrians, 
what information can be inferred about this area?
Option: 
(A) This is an area primarily focused on nightlife, with few people during the day.
(B) The clock shows approximately 10:10 AM, indicating that this is a mixed area of office 
buildings and shops, with stores starting to open and peak times for workers and tourists.
(C) The clock shows 11:50 AM, indicating that this is a commercial and leisure area, with 
people finishing work and tourists going out, entering an active business period.
(D) The clock shows approximately 10:50 AM, indicating that this is a pedestrian street with 
many tourists ...

Ground Truth: (C) Answer : The street clock reads about 10:10 AM. The 
scene shows a busy commercial street with many 
storefront signs and several pedestrians, consistent with 
shops beginning to open and people commuting or 
browsing in a mixed office–retail area. Options C and 
D cite different times, and A suggests a nightlife‑
focused area with few daytime pedestrians, which 
doesn’t match the activity seen. Therefore, (B) is the 
best inference.

Error Reason: The model misread the clock as 10:10 AM, whereas it actually 
shows 11:50 AM—a distinction that, combined with the bustling street activity, is 
crucial for correct inference. This failure arises because the clock hands are small 
and visually ambiguous, making the model unable to parse them reliably.

<image 1>

 Perceptual Limitation

Figure 17: A sample error case of Perceptual Limitation.
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Question: <image 1> The handwritten text on ... sign in the picture is the key to positioning. 
Which of the following inferences ... most cautious?
Option: 
(A) The sign says '廣西的', the traditional character '廣' does not match the surrounding 
simplified character environment, which may be an intentionally created retro art installation.
(B) The blurry handwriting on the sign looks like '湛江的', combined with the '五羊牌' ice 
cream, it should refer to the Zhanjiang area in western Guangdong.
(C) The sign says '广西的', this direct geographical identifier limits the scope to the Guangxi 
Zhuang Autonomous Region, which is a decisive textual clue.
(D) The blue small sign in the middle shop says pepsi, which is a global brand and does not 
have geographical orientation, thus not being the key to positioning.

Ground Truth: (C) Answer : The key sign is the small board with white 
handwriting. Its text is blurry and cannot be read with 
certainty. Option A treats the reading cautiously: even 
if it reads as ‘廣西的’, the use of the traditional ‘廣’ in 
a mostly simplified‑character environment suggests it 
might be a stylized/retro sign and thus should not be 
taken as a decisive locator. Options B and C both assert 
specific readings (‘湛江的’ or ‘广西的’) and make 
strong geographic claims from unclear text, while D 
misidentifies a different (Pepsi) sign and ignores the 
prompt. Therefore, A is the most cautious inference.

Error Reason: The model exhibits poor fine‑grained recognition capabilities and 
struggles to identify the most valuable subtle clues within images as effectively as 
humans do.

<image 1>

 Perceptual Limitation

Figure 18: A sample error case of Perceptual Limitation.
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E PROMPT TEMPLATE

Question Generation Prompt Stage 1

You are a geolocation detective tasked with thoroughly analyzing 
all visible objects in the image and using these clues to deduce the 
location where the photo was taken.

INPUT FORMAT:
1. Problem: The original geolocation task
2. The High-resolution image

OUTPUT FORMAT:
JSON FORMAT:
[
    {
        “reasoning”: “<Your overall reasoning logic for the image   
         placement, along with a brief explanation of why these clues 
         were selected for the question>”,         
        “identified_clues(Group clues of the same type 
         together and indicate their locations for manual verification)”:         
         [ 
            “<Identified textual clue>: xxx,xxx,xxx”,           
            “<Identified second potential clue>”,        
            “<Identified third potential clue>”,        
            “...”    
          ]
      }
]
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Question Generation Prompt Stage 2

I will provide you with an image, along with its reasoning process and clues. You need to 
design questions for each clue (if a clue contains extensive information, you may break it 
down into further questions; you may also discover additional clues).

SPECIAL NOTES:
1. Construct options with phrasing similar to the correct answer.
2. Questions should ask things like “What is xxx like? How do the details help narrow the 
geographic range?” (not limited to this format). Options should use similar phrasing.
3. Questions should focus on how clues help infer location.
4. Maintain consistent length across options (avoid excessive length), otherwise test-takers 
may tend to choose the longest option among three shorter ones.
5. If textual clues are present, ensure every character on the sign appears in the options. 
For textual clues, construct similar words in options (e.g., “Brrier” and “Bmior”) to 
maximize interference.
6. Option content must relate to the image, even for incorrect distractors.
7. Do not describe clue characteristics in the question itself. These features should reside 
within the options, where distractors are strategically placed to create confusion and 
challenge the solver!

INPUT FORMAT:
1. Reasoning process and clues
    JSON format:
    [
       {
          “reasoning”: {reasoning},
          “identified_clues(clues of the same type grouped together, indicating their locations 
for manual   
            verification)”: 
           {clues_text}
        }
      ]
2. The High-resolution image

OUTPUT FORMAT:
Output returns in JSON format:
[{{
      “questions”: 
      [{{
            “question”: ... ,
            “options”: {{...}},
            “answer”: ... ,
            “design_rationale”: ...
         }... }]
}}]

Output strictly according to the above JSON format without adding any additional text or 
explanations
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Evaluation Prompt

[Image] [Question] The choices are listed below: 
(A) [Choice A] 
(B) [Choice B] 
(C) [Choice C] 
(D) [Choice D] 
...
Analyze the image and question, then provide your reasoning process 
and conclusion. If there is no correct answer, explain why. 
Output in JSON format: 
[
  {
     "answer": "your analysis and your solution"
   }
]
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Evaluation Prompt
ROLE AND TASK
You are a meticulous geolocation analysis expert. Your task now is to: 
Based on the correct answers to clue questions, answer the location 
question.

CORRECT ANSWERS TO CLUE QUESTIONS
The following are the CORRECT answers to clue questions in this 
image:
{gt_clue_summary}

[Image]

ANSWER THE LOCATION QUESTIONS
Now, please strictly base your answers on the CORRECT judgments 
regarding the clue questions listed above, and answer the location 
question in this image. Select the final conclusion that best aligns 
with the evidence chain from the following options.
{choices_text}

Analyze the image and question, then provide your reasoning process 
and conclusion based on the correct clue evidences provided. If there 
is no correct answer, explain why. 

OUTPUT FORMAT:
Output in JSON format: 
[
  {
     "answer": "your analysis and solution"
   }
]
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