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Abstract

Atom-centred neural networks represent the state-of-the-art for approximating the quantum chemical
properties of molecules, such as internal energies. While the design of machine learning architectures
that respect chemical principles has continued to advance, the final atom pooling operation that
is necessary to convert from atomic to molecular representations in most models remains relatively
undeveloped. The most common choices, sum and average pooling, compute molecular representa-
tions that are naturally a good fit for many physical properties, while satisfying properties such as
permutation invariance which are desirable from a geometric deep learning perspective. However,
there are growing concerns that such simplistic functions might have limited representational power,
while also being suboptimal for physical properties that are highly localised or intensive. Based
on recent advances in graph representation learning, we investigate the use of a learnable pooling
function that leverages an attention mechanism to model interactions between atom representations.
The proposed pooling operation is a drop-in replacement requiring no changes to any of the other
architectural components. Using SchNet and DimeNet++ as starting models, we demonstrate con-
sistent uplifts in performance compared to sum pooling and a recent physics-aware pooling operation
designed specifically for orbital energies, on several datasets, properties, and levels of theory, with up
to 85% improvements depending on the specific task.

1 Introduction

Geometric deep learning (GDL) approaches are increasingly used across the life sciences, with remarkable
potential and achievements in computational biology (analysing single-cell sequencing data [1, 2]), struc-
tural biology (prediction of protein structures [3] and protein sequence design [4]), drug discovery [5] and
simulating rigid and fluid dynamics [6] being only a few examples. The simple but powerful formulation
of GDL methods such as graph neural networks (GNN) motivated the investigation of long-standing
problems from a new perspective, particularly in fields such as computational chemistry where the GDL
abstractions can be naturally applied to objects like atoms and molecules (nodes and graphs), as well as
their interactions (edges).

Approximating quantum mechanical properties using machine learning (ML) is of significant interest
for applications in catalysis, material and drug design [7, 8]. However, traditional physics-based methods
are severely limited by computational requirements that scale poorly with system size [9]. In the pursuit
of accurate, scalable, and generalisable ML models, several different strategies have been proposed. One
way to support this vision is by taking a purely data-driven approach and developing quantum machine
learning (QML) models based on accurate physical methods such as density functional theory (DFT)
combined with large and diverse collections of data (e.g. QM9 [10], QMugs [11], nablaDFT [12] and
QM7-X [13]). Another approach is to devise transfer learning datasets and algorithms that can extract
useful patterns from less accurate, but cheaper and more scalable simulations that ultimately benefit
predictions at a higher fidelity level ([11, 8, 14]). At the same time, advances in GNN architectures and
the ability to exploit specific features of quantum data such as atom positions and directional informa-
tion such as bond angles and rotations are an active area of research that have produced state-of-the-art
models ([15, 16, 17, 18]).

Most of the GNN advances have focused on more expressive ways of defining atom (node) representa-
tions and local interactions in increasingly large neighbourhoods centred on each of the nodes (‘k-hops’).
For example, SchNet [15] starts with atom embeddings based on the atom type and atom-wise layers
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Figure 1: A common step in most atom-centred neural networks is the aggregation or pooling of learnt
atom features into a molecule-level representation through a dedicated function (highlighted with a dashed
box). Traditionally, simple functions that satisfy permutation invariance such as sum, mean, or maximum
are used for this step. Alternatively, a more expressive molecular representation can be computed by
neural networks, for example using attention to discover the most relevant atomic features.

implemented as linear transformations that are combined with convolutional layers satisfying rotational
invariance. DimeNet [16] formulates the task as a message passing exercise, while also introducing dir-
ectionality by considering the angles between atoms. Instead of atom embeddings, DimeNet computes
directional embeddings between pairs of atoms j, i that incorporate atomic distances and angles by aggreg-
ating other embeddings directed towards the source atom j. The construction also guarantees invariance
to rotations. Furthermore, instead of using raw angles, DimeNet represents distances and angles through
a spherical 2D Fourier-Bessel basis, a physics-inspired decision that was also empirically found to be
preferable. The original DimeNet architecture was subsequently updated to a faster and more accurate
model denoted DimeNet++ by replacing costly operations with fast and expressive alternatives [17].
Recently, GDL architectures that are invariant to translations, rotations, and reflections such as E(n)
GNNs have proven competitive in the prediction of quantum mechanical properties [18].

Even with the accelerated development of QML methods and the heterogeneity of recent approaches, a
common element for most QML models is that they naturally operate at the level of atom represent-
ations, for example through message passing steps. However, many prediction targets of interest are
formulated at the molecular level. e.g. total energy, dipole moment, highest occupied molecular orbital
(HOMO) energy, (lowest unoccupied molecular orbital) LUMO energy, etc. Thus, an aggregation scheme
must be used to combine the atom representations into a single molecule-level representation. This task
is typically handled with simple fixed pooling functions like sum, average, or maximum. Despite their
appealing simplicity, there are growing concerns regarding the representational power of this class of
functions [19, 20]. In the following section, we also discuss the concurrently-developed Orbital Weighted
Average (OWA), a physics-based method designed specifically for orbital properties and which also seeks
to improve upon the standard pooling operators by exploiting the local and intensive character of the
target property [20]. Buterez et al. also highlighted the lacklustre performance of standard pooling
functions in a variety of settings, but particularly on challenging molecular properties [21]. As an altern-
ative to standard pooling, the authors proposed replacing the fixed functions with learnable functions
implemented as neural networks. When applied to conventional message passing architectures (GCN [22],
GAT [23] and GATv2 [24], GIN [25], PNA [26]) that operate on the molecular graph with node features
extracted from the SMILES [27] representation, neural pooling functions provided significant uplifts in
performance and faster convergence times.

Apart from expressive power, the standard pooling functions are also widely used thanks to being per-
mutation invariant with respect to the order of the atom representations that are being aggregated.
Furthermore, these simple operations are also usually aligned with fundamental physical principles. For
example, the total energy, a molecular property, can be obtained as the sum of the atom energies. In
general, molecular properties that scale linearly with the number of atoms can be well approximated by
fixed functions such as sum or average. However, it is not uncommon for the target property to behave
non-linearly or be localised around a small subset of atoms which determine its value. Bioaffinity (the
achieved level of inhibition or activation of a drug-like molecule against a protein target) is a property
where we can reasonably expect that most of the effect comes from an active group of atoms [21]. In
QML, a canonical example of a localised property is the HOMO energy.
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In this work, we investigate the use of an attention-based pooling function on atomistic systems for the
prediction of general and localised quantum properties with state-of-the-art 3D-coordinate aware models
(the high-level workflow is illustrated in Figure 1). The chosen design satisfies a collection of desirable
features, some of which were previously mentioned, namely (i) permutation invariance with respect to
node (atom) order, (ii) increased representational power compared to standard pooling operators thanks
to the underlying neural networks, (iii) the ability to model arbitrary, potentially long-range or localised
relationships due to the attention mechanism, and (iv) generality and simplicity; the proposed method
is applicable to any molecular property (including quantum properties), and can be used as drop-in re-
placement on any architecture that uses traditional pooling methods without any modifications to the
model itself.

The current work represents an extension to previous work which considered only 2D molecular graphs,
but demonstrated the potential of attention-based pooling for predicting properties such as the HOMO
energy [21]. Here, we demonstrate consistent uplifts in performance (as measured by the Mean Abso-
lute Error – MAE) compared to sum pooling, chosen as a representative of the established methods, on
a selection of standard datasets of different sizes and simulated at different levels of theory, including
QM7b (7,211 molecules) [28, 29, 30], QM8 (21,786 molecules) [31, 32], QM9 (130,831 molecules) [31,
10], QMugs (665K molecules) [11], and the CCSD and CCSD(T) datasets from MD17 (1,500 molecules
for Aspirin, Benzene, Malonaldehyde, Toluene, and 2,000 for Ethanol) [33]. Sum pooling is the default
choice in many implementations (e.g. SchNet, DimeNet), usually outperforming mean and maximum
pooling [19] or matching them [21]. We also evaluate the proposed methods against OWA on the OE62
[34] dataset and conclude that attention-based pooling can match and outperform OWA depending on
the configuration (e.g. number of attention heads). While our method introduces a large number of
learnable parameters, this is normal for a standard attention implementation and does not significantly
affect training times or introduce overfitting.

2 Methodology

2.1 Pooling functions

We start by assuming an atomistic model that operates on positional inputs (distances, angles, etc.) and
which computes individual representations that require aggregation into a single molecule-level embed-
ding. The specifics of the architecture or the implementation do not matter as long as the assumptions
hold. For example, many message passing neural networks can be summarised into the following generic
formulation that computes node-level features hu [35]:

ha = ϕ

(
xa,

⊕
v∈Na

ψ(xa,xv)

)
(1)

where a, v are nodes (atoms), xi are atom representations, Ni is the 1-hop neighbourhood of atom i,
⊕ is a node-level aggregation function such as sum or average, and ϕ, ψ are learnable functions such as
multi-layer perceptrons (MLPs). It should be noted that there are many variations and extensions of
Equation (1), and this is only an example of a possible architecture. Importantly, once the message passing
steps or equivalent updates are done, the atom-level representations are aggregated into a molecule-level
representation hm =

⊕
i∈V (hi), where V is the collection of atoms in the molecule (note that this

⊕
can be different from the one in Equation (1)). This operation is often called an aggregation, pooling, or
readout function.

2.2 Attention-based pooling

To design an expressive pooling function that considers the entire context of the molecule (i.e. all
computed atom representations) and is self-contained (does not require any additional inputs), we leverage
the existing Set Transformer framework introduced by Lee et al. for set modelling [36], and proposed by
Buterez et al. for use in node aggregation [21]. In other words, the pooling operation is reframed as a
set summarisation task, with an output that corresponds to the desired molecular embedding. This is
achieved by assembling building blocks defined using a standard multi-head attention mechanism:

Attention(Q,K, V ) = ω(QK⊤)V (2)

MultiHeadAttention(Q,K, V ) = Concatenate(H1, ...,Hm)WO (3)

where Hi = Attention(QWQ
i ,KW

K
i , V WV

i ) (4)

3



The standalone attention module Attention(·, ·, ·) receives input query, key, and value vectors, of di-
mension dk, dk, and dv respectively and gathered in matrices Q,K, V , respectively. With ω(·) =
softmax(·/

√
dk), the attention operation computes a weighted sum of the values where a large query-

key dot product assigns a larger weight to the corresponding value. In multi-head attention, Q,K, V
are projected to new dimensions by learnt projections WQ

i , WK
i , WV

i , respectively, for a total of m
independent times. The results are processed by an attention module, with the concatenated output
attention heads being projected with WO.

Following the original Set Transformer implementation, we use the lower-level multihead and set at-
tention blocks (MABs, respectively SABs) and pooling by multihead attention (PMA) to define an
encoder-decoder architecture that embeds input atom vectors into a chosen dimension d, then learns to
aggregate or compress the encoded representations into a single vector, the molecule representation. The
encoder is defined as

MAB(X,Y ) = H + Linearϕ(H) (5)

H = X +MultiHeadAttention(X,Y, Y ) (6)

SAB(X) = MAB(X,X) (7)

Encoder(X) = SABn (X) (8)

with a decoder:

PMAk(Z) = MAB(Sk,Linearϕ(Z)) (9)

Decoder(Z) = Linearϕ (SABn (PMAk(Z))) (10)

Here, Linearϕ denotes a linear layer followed by an activation function ϕ, SABn(·) represents n subsequent
applications of a SAB, and Sk is a collection of learnable k seed vectors that are randomly initialised
(PMAk outputs k vectors). The resulting Set Transformer module can be used as a pooling function
by encoding all the atomic representations into features Z that are transformed into a single-vector
representation by the decoder. Here, we refer to this pooling function as attention-based pooling (ABP):

ABP(X) = Decoder(Encoder(X)) (11)

2.3 Orbital Weighted Average pooling

Chen et al. have concurrently observed that the standard pooling functions (sum, average, maximum)
might not accurately describe physical properties that are highly localised and intensive, such as orbital
properties, and in particular the HOMO energy [20]. Instead, they discuss the importance of pooling
functions that can attribute different weights or ‘importance’ for a subset of atomic representations. For

example, the softmax function softmax(ϵ1, ..., ϵn) =
∑n

i=1
exp (ϵi)∑n

j=1 exp (ϵj)
, where ϵi are atomic representa-

tions of an n-atom system that in this case are assumed to be scalars. The general form is given by
weighted average (WA) pooling:

fWA =

n∑
i=1

wiϵi (12)

where additionally we assume that the learnable weights wi are normalised by softmax to sum to 1.

From a physical perspective, the weights that the neural network will learn for HOMO energy prediction
should tend towards the orbital coefficients li that describe the fraction of the orbital that is localised
on a given atom i. To incorporate this idea into the pooling function, Chen et al. propose the following
strategy:

1. Pre-compute the orbital coefficients for the dataset (offline)

2. Use a separate atomistic model to learn the weights for fWA, which are forced to be close to the
pre-computed coefficients by an updated loss function:

LOWA =
1

ntrain

α ntrain∑
A=1

(
EA

HOMO −
nA∑
i=1

w(A,i)ϵ(A,i)

)2

+ β

ntrain∑
A=1

nA∑
i=1

(l(A,i) − w(A,i))
2

 (13)

where ntrain denotes the number of training systems A in the dataset, nA is the number of atoms in a
system A, and EA

HOMO is the target HOMO energy for a system A. The resulting pooling function with
the learnt weights is denoted by fOWA (orbital weighted average).
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3 Design and implementation

As stated in Methodology, the proposed attention-based pooling function can be applied to a variety of
atomistic modelling algorithms. Here, we chose to evaluate our methods using two architectures: SchNet
and DimeNet++, which were briefly discussed in the introduction. Both models are widely-known and
used, making them easily accessible in general purpose deep learning libraries such as PyTorch Geometric
(used here) [37, 38]. Furthermore, DimeNet++ is a particularly competitive model which outperforms
both contemporary and newer models (e.g. E(n) GNNs [18]).

For our evaluation, we chose sum pooling as a representative of the standard pooling methods. It is
the default choice for SchNet and DimeNet++, and in our previous extensive evaluation of graph pooling
functions we did not observe significantly better performance for any of the three functions [21]. Fur-
thermore, from a physical perspective sum pooling can be considered a natural choice for approximating
certain quantum properties.

Here, we have used the PyTorch Geometric implementations of SchNet and DimeNet++, modified to
support attention-based pooling. As of PyTorch Geometric version 2.3.0 (available at the time of writ-
ing), the proposed pooling function is natively available as SetTransformerAggregation (based on our
implementation). Unless otherwise noted, we use relatively deep models to ensure that the atom-level
representations learnt before pooling are expressive enough. In particular, we use SchNet models with
256 filters, 256 hidden channels (hidden embedding size), and 8 interaction blocks, and otherwise default
parameters (total parameter count before pooling: 2.3 million), and DimeNet++ models with 256 hidden
channels (hidden embedding size), 6 interaction blocks, an embedding size of 64 in the interaction blocks,
a basis embedding size of 8 in the interaction blocks, an embedding size of 256 for the output blocks, and
otherwise default parameters (total parameter count before pooling: 5.1 million). The models chosen here
are larger than the defaults in PyTorch Geometric and the original DimeNet study [16]. In addition, while
it is common to output scalar representations for the atoms, we keep the same dimension for the atom
representations as used inside the models (before output), i.e. 256. This ensures that the attention-based
pooling can benefit from the full representation, although in principle it is possible to apply it to scalars.
We follow the output of attention-based pooling with a small MLP, obtaining a scalar prediction.

We evaluate our methods on all the properties of the QM7b and QM8 datasets, on HOMO and LUMO
energy prediction for QM9 and QMugs, as well as on energy prediction tasks from MD17, which provide a
challenging setting due to the limited amount of data. We have also considered total energy prediction for
QMugs as an example of a non-local property on the largest and most diverse of the available datasets.
Results are provided for both SchNet and DimeNet++, with sum and attention-based pooling, i.e. 4
results per (property, dataset) pair. A batch size of 128 is used for all models. To ensure an accurate
and self-contained comparison, we randomly generate 5 different train, validation, and test splits for each
dataset using a ratio of 80%/10%/10%, and report the average MAE ± standard deviation. The MAE is
used as it is widely used in the literature to evaluate atomistic models on quantum property prediction.
Since ABP introduces several hyperparameters compared to standard functions, we evaluate a small set
of common hyperparameter choices and select the best configurations according to the validation set.

We also compare attention-based pooling with OWA on the OE62 dataset used by Chen et al. on both
HOMO and LUMO energy. For this comparison, we use the provided OWA source code as a starting
point, and use the same underlying SchNet implementation provided by the schnetpack 1.0.1 library [39],
including the same SchNet hyperparameters (embedding size of 128, 128 filters, 64 Gaussian functions,
6 interaction blocks, a cutoff radius of 5, followed by 4 atom-wise layers with an input of 128 features).
A batch size of 40 was used, as larger models would run out of memory when using hardware equipped
with 32GB of video memory. For attention-based pooling, we modified the atom-wise component to
output representations of the same dimensionality as the inputs, as described above. We also generated
5 random splits using the same ratio as Chen et al. (32,000 molecules for train, 19,480 for validation,
and 10,000 for test), and report both the MAE and the RMSE (root mean squared error).

4 Results

Our results indicate that attention-based pooling outperforms sum pooling on the majority of datasets
and quantum properties, including properties computed at different levels of theory (Table 1). On QM7b,
using ABP on top of SchNet results in an average decrease (across all tasks) in MAE of 50.5%, with the
highest decrease on the ‘Polarizability (self-consistent screening)’ task (85.13%). The smallest decrease in
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Figure 2: SchNet and DimeNet++ models evaluated on HOMO energy prediction on different datasets
(QM7 with different levels of theory, QM9, and QMugs), with the mean absolute error reported on test
sets corresponding to five different random splits for each dataset. The metrics of some datasets are
scaled by 10 to ensure a similar scale for all datasets (indicated by ‘(x10)’ or ‘(÷10)’). The exact metrics
are reported in Tables 1 and 2.

MAE is observed for ‘Atomization energy (DFT/PBE0)’ (23.98%). When using DimeNet++, there is a
more modest average decrease in MAE of 14.64%, with the most improved task being ‘Atomization energy
(DFT/PBE0)’ (58.41%). The only QM7b task where ABP does not improve performance is ‘Maximal
absorption intensity (ZINDO)’ (−0.37%) when using DimeNet++. The ABP-based DimeNet++ models
generally matches the ABP-based SchNet models, suggesting that we are reaching the performance ceiling
for these model configurations and tasks.

On QM8, there is an average decrease in MAE of 19.23% across all tasks for SchNet, and all tasks
are improved when using ABP. The most improved task is ‘E2-PBE0/def2SVP’ (25.07%), and the least
is ‘f2-CC2’ (13.15%). When using DimeNet++, the average decrease in MAE due to ABP is of 2.31%,
with the most improved task being ‘E1-CAM’ (7.69%). We observed slightly worse performance when
using ABP for only two tasks: ‘f2-CAM’ (−1.11%) and ‘f2-PBE0/def2TZVP’ (−0.48%). In general, for
both SchNet and DimeNet++, the least improved tasks when using ABP involve the oscillator strength f2.

For the larger quantum datasets (QM9 and QMugs), we train and evaluate models for the HOMO
and LUMO energy prediction tasks. For HOMO, on QM9 we notice decreases in MAE of 21.67% and
9.89% for SchNet and DimeNet++, respectively. On QMugs, the decreases are of 24.77% and 3.92% for
SchNet and DimeNet++, respectively. Similar uplifts are observed for LUMO. Interestingly, total energy
prediction on QMugs is improved by a large amount (58.97%) on SchNet, and by a moderate amount on
DimeNet++ (19.34%), despite not being a local property like the HOMO or LUMO energies.

For the small MD17 datasets, we observe a decrease in MAE for Aspirin of 15.25% and 8.38% for SchNet
and DimeNet++, respectively, for Benzene of 36.37% and 5.01%, for Ethanol of −9.58% and 6.45%, for
Malonaldehyde of −5.23% and −0.27%, and for Toluene of 37.21% and 2.45%. For these smaller datasets,
we used SchNet with 128 filters, 128 hidden channels, and 4 interaction blocks, and DimeNet++ models
with 128 hidden channels, 4 interaction blocks, and an embedding size of 128 for the output blocks. For
the cases where using ABP did not improve the MAE (e.g. SchNet on Ethanol), we noticed that different
underlying architectures can help improve upon the sum pooling result (usually more complex models
with more interaction blocks).

To further validate the performance of ABP compared to sum pooling for each algorithm (i.e. SchNet and
DimeNet++ in Table 1), we performed Wilcoxon signed-rank tests as the data is not normally distributed
according to the normaltest function available in scipy: p = 3.58×10−11 (SchNet sum), p = 2.4×10−12

(SchNet ABP), p = 5.73× 10−9 (DimeNet++ sum), p = 8.54× 10−9 (DimeNet++ ABP). The Wilcoxon
tests indicated statistical significance for SchNet (p = 5.4× 10−6) and DimeNet++ (p = 1.65× 10−5).

When compared to OWA pooling for HOMO energy prediction (Table 2), attention-based pooling matches
or even slightly outperforms OWA depending on the ABP configuration, despite not leveraging pre-
computed orbital coefficients. This can be observed both in terms of RMSE (the metric chosen by Chen
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Table 1: Test MAE (mean ± standard deviation from 5 data random splits) for QM7b, QM8, QM9, QMugs,
and MD17 (best MAEs in bold). Abbreviations: maximal absorption, MA; self-consistent screening, SCS;
atomization, atom.; excitation, exc.; ionization, ion.; units, u.; malondialdehyde, MDA.

QM7b SchNet DimeNet++

Task – level of theory (unit) Sum ABP Sum ABP

Atom. energy – ZINDO/s (meV) 3.859 ± 1.526 3.113 ± 0.803 4.268 ± 0.806 2.694 ± 0.401

Electron affinity – ZINDO (meV) 2.045 ± 0.240 1.260 ± 0.176 1.358 ± 0.074 1.236 ± 0.057

Exc. energy at MA – ZINDO (meV) 40.196 ± 2.018 29.916 ± 1.118 32.359 ± 0.681 29.696 ± 0.658

First exc. energy – ZINDO (meV) 2.429 ± 0.124 1.493 ± 0.064 1.571 ± 0.130 1.422 ± 0.049

HOMO – GW (meV) 3.311 ± 0.190 2.405 ± 0.065 2.475 ± 0.085 2.342 ± 0.037

HOMO – PBE0 (meV) 3.039 ± 0.131 2.178 ± 0.078 2.224 ± 0.056 2.022 ± 0.055

HOMO – ZINDO/s (meV) 2.639 ± 0.191 1.752 ± 0.098 1.849 ± 0.236 1.678 ± 0.046

Ion. potential – ZINDO/s (meV) 4.145 ± 0.326 2.697 ± 0.183 3.131 ± 0.206 2.647 ± 0.152

LUMO – GW (meV) 3.198 ± 0.313 2.201 ± 0.180 2.267 ± 0.179 2.190 ± 0.144

LUMO – PBE0 (meV) 2.042 ± 0.153 1.499 ± 0.052 1.610 ± 0.136 1.484 ± 0.092

LUMO – ZINDO/s (meV) 1.783 ± 0.164 1.008 ± 0.091 1.022 ± 0.083 0.947 ± 0.061

MA intensity – ZINDO (arbitrary u.) 0.062 ± 0.004 0.050 ± 0.004 0.050 ± 0.003 0.051 ± 0.002

Polarizability – DFT/PBE0 (Å
3
) 0.055 ± 0.013 0.031 ± 0.002 0.041 ± 0.007 0.034 ± 0.006

Polarizability – SCS (Å
3
) 0.040 ± 0.010 0.022 ± 0.002 0.038 ± 0.007 0.029 ± 0.003

QM8 Sum ABP Sum ABP

E1-CAM (meV) 2.528 ± 0.105 2.066 ± 0.054 2.017 ± 0.137 1.873 ± 0.042

E1-CC2 (meV) 2.961 ± 0.089 2.486 ± 0.058 2.356 ± 0.087 2.268 ± 0.045

E1-PBE0/def2SVP (meV) 2.744 ± 0.098 2.282 ± 0.033 2.213 ± 0.092 2.111 ± 0.068

E1-PBE0/def2TZVP (meV) 2.811 ± 0.122 2.328 ± 0.048 2.198 ± 0.060 2.121 ± 0.041

E2-CAM (meV) 3.675 ± 0.066 2.982 ± 0.066 2.976 ± 0.129 2.906 ± 0.063

E2-CC2 (meV) 4.775 ± 0.339 3.924 ± 0.077 3.866 ± 0.153 3.859 ± 0.107

E2-PBE0/def2SVP (meV) 3.992 ± 0.176 3.192 ± 0.038 3.275 ± 0.110 3.137 ± 0.077

E2-PBE0/def2TZVP (meV) 3.873 ± 0.121 3.190 ± 0.076 3.173 ± 0.067 3.134 ± 0.063

f1-CAM (meV) 8.887 ± 0.747 7.548 ± 0.435 6.782 ± 0.378 6.721 ± 0.486

f1-CC2 (meV) 10.116 ± 0.237 8.514 ± 0.612 7.787 ± 0.258 7.773 ± 0.397

f1-PBE0/def2SVP (meV) 8.500 ± 0.585 7.227 ± 0.390 6.612 ± 0.560 6.473 ± 0.453

f1-PBE0/def2TZVP (meV) 8.375 ± 0.542 7.309 ± 0.594 6.919 ± 0.284 6.547 ± 0.461

f2-CAM (meV) 21.171 ± 0.813 17.784 ± 0.610 16.108 ± 0.799 16.289 ± 0.546

f2-CC2 (meV) 25.029 ± 0.825 22.120 ± 0.601 20.698 ± 1.039 20.424 ± 1.136

f2-PBE0/def2SVP (meV) 19.163 ± 1.141 16.329 ± 1.101 14.930 ± 0.762 14.923 ± 0.693

f2-PBE0/def2TZVP (meV) 19.679 ± 0.490 17.049 ± 1.080 15.455 ± 0.709 15.529 ± 0.781

QM9 Sum ABP Sum ABP

HOMO – DFT (meV) 35.985 ± 1.071 29.577 ± 0.517 23.711 ± 0.303 21.577 ± 0.459

LUMO – DFT (meV) 33.505 ± 0.885 26.960 ± 0.873 20.832 ± 0.667 20.488 ± 0.522

QMugs Sum ABP Sum ABP

HOMO – DFT (meV) 65.094 ± 1.243 52.172 ± 0.475 24.536 ± 0.260 23.610 ± 1.212

LUMO – DFT (meV) 62.022 ± 0.830 47.371 ± 0.916 21.492 ± 0.558 20.953 ± 0.376

Total Energy – DFT (Eh) 9.051 ± 2.848 3.714 ± 1.358 3.402 ± 1.810 2.744 ± 1.694

MD17 (energies) Sum ABP Sum ABP

Aspirin – CCSD (kcal/mol) 3.935 ± 0.128 3.414 ± 0.058 2.537 ± 0.061 2.341 ± 0.076

Benzene – CCSD(T) (kcal/mol) 0.486 ± 0.295 0.357 ± 0.080 0.290 ± 0.034 0.276 ± 0.070

Ethanol – CCSD(T) (kcal/mol) 0.676 ± 0.035 0.748 ± 0.024 0.617 ± 0.063 0.580 ± 0.034

MDA – CCSD(T) (kcal/mol) 0.937 ± 0.082 0.989 ± 0.050 1.058 ± 0.026 1.061 ± 0.051

Toluene – CCSD(T) (kcal/mol) 1.529 ± 0.494 1.114 ± 0.252 1.159 ± 0.055 1.132 ± 0.097
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Table 2: Test MAE and RMSE (mean ± standard deviation from 5 data random splits) for SchNet-based
HOMO energy prediction on the OE62 dataset, including the number of learnable parameters for the attention-
based pooling (ABP). The ABP configuration is reported as ‘ABP(embedding size, number of attention heads,
number of SABs)’. The number of learnable parameters for the underlying SchNet model (not including the
readout) is 480,002. The smallest MAE/RMSE values are highlighted in bold. The unit used for energy is eV,
as used by Chen et al.

Readout MAE RMSE # ABP parameters

Sum 0.2656 ± 0.0177 0.4032 ± 0.0168 N/A

Average 0.1437 ± 0.0016 0.2043 ± 0.0009 N/A

OWA 0.1135 ± 0.0019 0.1670 ± 0.0021 N/A

ABP(64, 4, 2) 0.1158 ± 0.0020 0.1697 ± 0.0021 995,456

ABP(64, 8, 2) 0.1130 ± 0.0019 0.1660 ± 0.0028 3,694,720

ABP(64, 16, 2) 0.1119 ± 0.0022 0.1655 ± 0.0045 14,205,056

ABP(64, 16, 3) 0.1124 ± 0.0006 0.1648 ± 0.0015 18,403,456

Table 3: Test MAE and RMSE (mean ± standard deviation from 5 data random splits) for SchNet-based
LUMO energy prediction on the OE62 dataset. The smallest MAE/RMSE values are highlighted in bold. The
unit used for energy is eV, as used by Chen et al. The naming conventions and numbers of parameters are
reported in Table 2.

Readout MAE RMSE

Sum 0.1654 ± 0.0083 0.2374 ± 0.0097

Average 0.1393 ± 0.0059 0.2037 ± 0.0097

OWA 0.1281 ± 0.0030 0.1858 ± 0.0056

ABP(64, 8, 2) 0.1050 ± 0.0024 0.1630 ± 0.0047

ABP(64, 16, 2) 0.1010 ± 0.0011 0.1580 ± 0.0033

Table 4: Test MAE for the QM7b dataset (HOMO energies) including WA pooling, which does not use
pre-computed orbital coefficients (best MAEs in bold). The unit used for the energies is meV.

QM7b SchNet

Task (level of theory) Sum WA ABP

HOMO (GW) 3.311 ± 0.190 2.951 ± 0.112 2.342 ± 0.037

HOMO (PBE0) 3.039 ± 0.131 2.748 ± 0.174 2.022 ± 0.055

HOMO (ZINDO/s) 2.639 ± 0.191 2.353 ± 0.163 1.678 ± 0.046

et al.) and MAE (used throughout the rest of the paper). Here, we also study LUMO energy prediction
which is not considered by Chen et al., but is available in the OE62 dataset. We find that OWA offers a
smaller improvement with respect to average pooling on LUMO energy prediction (8.04%) compared to
HOMO energy (21.02%), as given by the MAE, with similar trends for the RMSE (Table 3). Furthermore,
whereas for HOMO the attention-based pooling offered a small but noticeable improvement compared to
OWA, for LUMO we observe a more significant improvement of 21.16% for ABP.

When not using orbital coefficients for a dataset such as QM7b (Table 4) where they are not readily
available, we find that weighted average pooling still outperforms sum pooling by a noticeable amount
(around 10%); however, ABP improves even further, with decreases in MAE between 41% and 57%.
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5 Discussion

The presented results suggest that attention-based pooling is preferable to sum-based pooling for intens-
ive, localised properties such as HOMO and LUMO energy prediction. Perhaps less expected is the uplift
in performance on other properties that are not as localised as the HOMO and LUMO energies, for ex-
ample total energy prediction on QMugs or energy prediction on the small MD17 datasets. In this latter
case, it is also remarkable that a data-driven method like ABP is able to often outperform standard pool-
ing when training with around 1,000 data points. Apart from the physical motivation behind improving
localised property prediction, it should be noted that the attention mechanism adds an additional layer
of expressivity to the network, enabling better approximation of general-purpose properties. Moreover,
although we have presented the ‘main’ network such as SchNet or DimeNet++ and the pooling function
as separate components, they work synergistically, especially for highly-expressive learnable and differ-
entiable pooling functions. It is not unlikely that the patterns learnt at the pooling-level can propagate
to the main model and lead to an improved holistic model behaviour.

When compared to OWA on the diverse OE62 dataset for HOMO energy prediction (Table 2), attention-
based pooling can match and even outperform it depending on the attention configuration (i.e. number
of attention heads and hidden dimensions). Under the same conditions, we observe a more than 20%
improvement for ABP on LUMO energy prediction (Table 3). This is an interesting conclusion as OWA
requires the pre-computation of orbital coefficients and their explicit incorporation in the loss function.
Since this additional information is not required by our method, it suggests that most of the information
that is required to reach this level of performance is already available in the network, but it is not fully
exploited. Interestingly, Chen et al. noticed that WA can occasionally outperform OWA with the actual
orbital coefficients, most likely due to the increased network flexibility. Thus, models that deviate from
or even omit physical references can sometimes be preferable.

Although OWA is an innovative and physically-based approach, its scalability and applicability might
limit its full potential. These methods requires the pre-computation of orbital coefficients, which are not
generally available for most published datasets. Furthermore, the OWA weights are learnt by a second
atomistic model which is inherently not scalable as it imposes a doubling of the model’s requirements
and an additional model must be added for each new property to be predicted in a multi-task scen-
ario. Perhaps most limiting, the OWA approach is engineered specifically for orbital properties, with no
straightforward analogue for properties that do not have a well-defined orbital basis.

We illustrate this last point by considering HOMO energy prediction tasks on the QM7b dataset without
pre-computing the orbital coefficients (Table 4). The OWA method thus takes the more general, non-
orbital specific WA form of Equation (12). The results indicate that attention-based pooling outperforms
WA by about the same margin as WA pooling outperforms sum pooling. We also take the opportunity
to highlight the similarity between the (O)WA methods and the well-known Deep Sets framework that
considers sum-decomposable functions, where individual items are processed by simple neural networks
such as MLPs before being summed [40]. Although Deep Sets offers a theoretically sound construction,
our work has previously suggested and exemplified that Deep Sets-style pooling does not match the per-
formance of attention-based pooling [21].

Overall, the replacement of simple pooling functions with an attention-based pooling function (here,
the Set Transformer) has empirically proven to be the optimal choice in the majority of evaluated set-
tings. Attention is particularly well-suited for tasks involving non-linear or localised patterns, although
it is often effective for properties of different natures. In theory, an expressive and permutation-invariant
module such as the Set Transformer can also learn to represent functions like sum, average, or maximum
if necessary, although the amount and quality of data also becomes a consideration in such a scenario.
Practically, the proposed pooling function acts as a drop-in replacement for existing pooling operations
and does not require any pre-computations or modifications to the underlying network. Although the
standard attention mechanism that we used here has quadratic time and memory scaling, we did not ob-
serve significantly larger training times or prohibitive increases in consumed memory for any of the shown
experiments. We also did not notice overfitting or divergence due to the large number of parameters.
Although a more efficient attention implementation is beyond the scope of this work, such alternatives
already exist, including for the Set Transformer in the form of induced set attention blocks [36].
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6 Code availability

The source code that enables all experiments to be reproduced is hosted on GitHub:
https://github.com/davidbuterez/attention-based-pooling-for-quantum-properties.

7 Data availability

All the datasets used throughout the paper are publicly available through different hosting services, as
indicated in the main text. For ease of use, we provide pre-processed versions of certain datasets which
are accessible by following the instructions included in the source code.
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Reuter, Patrick Rinke and Harald Oberhofer. ‘Atomic structures and orbital energies of 61,489
crystal-forming organic molecules’. In: Scientific Data 7.1 (Feb. 2020), p. 58. issn: 2052-4463. doi:
10.1038/s41597-020-0385-y. url: https://doi.org/10.1038/s41597-020-0385-y.

[35] Michael M. Bronstein, Joan Bruna, Taco Cohen and Petar Velickovic. ‘Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges’. In: CoRR abs/2104.13478 (2021). arXiv: 2104.
13478. url: https://arxiv.org/abs/2104.13478.

[36] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi and Yee Whye Teh. ‘Set
Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks’. In: Pro-
ceedings of the 36th International Conference on Machine Learning. 2019, pp. 3744–3753.

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
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