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Abstract001

Large language models (LLMs) have shown002
strong syntax understanding capability in rich-003
source languages. However, their performances004
decline sharply when directly apply to low-005
resource languages. The key challenge is the006
data deviation and weak alignment across the007
source and target languages. To alleviate these008
issues, we propose a novel rethinking and col-009
laborative learning approach for cross-lingual010
dependency parsing. On the one hand, we ex-011
ploit a progressive thinking technique to guide012
LLMs to generate diverse and aligned synthetic013
data, thus making up for the data shift draw-014
back. On the other hand, we introduce a col-015
laborative learning strategy to further activate016
the alignment ability of both traditional cross-017
lingual models and LLMs by making full use018
of our synthetic data. Experiments on vari-019
ous benchmark datasets show that our proposed020
method outperform all strong baselines, leading021
to new state-of-the-art results on all language.022
Detailed comparison demonstrates that our syn-023
thetic data is extremely useful for enhancing the024
alignment between source and target languages.025
In-depth analysis reveals that both rethinking026
and collaborative learning can boost the cross-027
lingual parsing performance.028

1 Introduction029

Dependency parsing is a foundational natural030

language processing (NLP) task that aims to an-031

alyze the syntactic structure of an input sentence032

(Kondratyuk and Straka, 2019b). It first identifies033

the head word for each word in the input sentence,034

and then obtains the syntactic relationship between035

head and modifier words based on grammatical036

rules (Kulmizev et al., 2019). This process is essen-037

tial for various NLP applications, such as machine038

translation (Ahmad et al., 2019), automatic sum-039

marization (Zhang et al., 2020), sentiment analysis040

(Droganova et al., 2021), and information retrieval041

(Osa et al., 2023).042
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b. Generated dependency trees by LLMs
Figure 1: Examples of dependency trees where orange
color and red color represent wrong relation labels and
root nodes, respectively.

Recently, dependency parsing in rich-resource 043

languages has made significant advancements. 044

However, cross-lingual dependency parsing re- 045

mains challenging due to data deviation and weak 046

alignment between rich-resource source and low- 047

resource target languages. The cross-lingual depen- 048

dency parsing approaches are mainly categorized 049

into two lines, i.e., data augmentation and feature 050

transformation. The key idea of data augmenta- 051

tion is automatically generating target language 052

dependency trees to alleviate the data shift prob- 053

lem of low-resource target languages (Feng et al., 054

2021; Shorten et al., 2021; Bayer et al., 2022; Wang 055

et al., 2024; Sapkota et al., 2025). Recent studies 056

highlight the promising potential of large language 057

models (LLMs) in data augmentation (Wu et al., 058

2023; Yoo et al., 2021; Ko et al., 2023). Zhang 059

et al. (2025) uses grammar and lexical information 060

to help LLMs create subtrees, and then hybridize 061
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them with existing source-domain subtrees to aug-062

ment the diversity of training data. The goal of063

feature transformation is to learn beneficial fea-064

ture representations from high-resource languages,065

enabling the model to adapt to low-resource tar-066

get languages (Basu Roy Chowdhury et al., 2019;067

Xu et al., 2020). Liu et al. (2025a) design the068

dynamic syntactic feature filtering and injecting069

networks to enhance the language-invariant and070

language-specific feature presentations and achieve071

outstanding performances on cross-lingual depen-072

dency parsing.073

Motivated by these works, we first analyze the074

relevance of source and target languages. As shown075

in Figure 1 (a), we can see that although the aligned076

positions between English words “good essay”077

and Vietnamese words “ăn xuôi (essay) hài lòng078

(good)” are changed, they still own the same re-079

lation label “amod”. Then, we leverage LLMs to080

directly generate the dependency trees in both rich-081

resource English and low-resource Vietnamese. As082

described in Figure 1 (b), we find that the generated083

Vietnamese tree contains multiple erroneous rela-084

tion labels and root nodes, indicating LLMs have a085

strong syntax understanding of English, while their086

ability obviously declines in Vietnamese. There-087

fore, it becomes the key challenge to alleviate data088

deviation and enhance aligned knowledge.089

To address this issue, we propose a novel ap-090

proach improving cross-lingual dependency pars-091

ing via LLM rethinking and collaborative learning.092

First, we exploit LLMs and traditional parsers to093

generate aligned multi-lingual dependency trees.094

Then, we design a rethinking chain to guide LLMs095

to self-optimize aligned multilingual dependency096

trees. Finally, we propose a multilingual coopera-097

tive learning algorithm to effectively utilize both098

our aligned dependency trees and existing mul-099

tilingual dependency trees. Experiments on the100

benchmark datasets demonstrate that our proposed101

model significantly improves cross-lingual depen-102

dency parsing performance, leading to new state-103

of-the-art results on all languages. Comparison104

experiments validate the effectiveness of different105

marginal knowledge.106

2 Related Work107

Cross-lingual dependency parsing aims to learn108

useful information from rich-resource source lan-109

guages to boost the parsing accuracy of low-110

resource target languages. Typical cross-lingual111

dependency parsing methods can be categorized 112

into two lines, i.e., data augmentation and feature 113

transfer. 114

Data augmentation aims to alleviate the data 115

scarcity problem in low-resource languages by au- 116

tomatically generating pseudo corpora that approx- 117

imate realistic data distributions. Traditional ap- 118

proaches include hierarchical augmentation, back- 119

translation, and paraphrasing (Yu et al., 2019; Sen- 120

nrich et al., 2016; Dai et al., 2025; Cegin et al., 121

2023, 2024; Wang et al., 2025). For instance, Sen- 122

nrich et al. (2016) generate synthetic data through 123

back-translation, while Yu et al. (2019) apply hier- 124

archical attention to crop and concatenate salient 125

sentence segments. More recent methods leverage 126

large language models’(LLMs) strong generative 127

and understanding abilities to further improve data 128

quality and diversity (Lewis, 2020; et al., 2024b; Li 129

et al., 2024; et al., 2024a, 2025; Anonymous, 2025; 130

Liu et al., 2025b). LLM-based augmentation tech- 131

niques include zero-shot prompting (Ubani et al., 132

2023), classifier-based filtering of unfaithful sam- 133

ples (Sahu et al., 2022), and LLM-guided few-shot 134

data synthesis for downstream tasks like NER (Ye 135

et al., 2024). 136

Feature transfer aims to transfer learned knowl- 137

edge from a source domain to improve model per- 138

formance in a target domain. The main approach 139

includes parameter transfer, feature distribution 140

transfer and knowledge distillation(Long et al., 141

2013; Yin et al., 2019; Lu et al., 2020; Yu et al., 142

2024; Fu et al., 2024; Gou et al., 2021). Chen et al. 143

(2022) propose a parameter-efficient transfer learn- 144

ing method combining low-rank adaptation (LoRA) 145

and prompt-tuning, achieving strong performance 146

with minimal updates in low-resource NLP tasks. 147

Wang et al. (2023) introduce Feature Correlation 148

Matching (FCM), aligning cross-domain feature 149

distributions to improve domain adaptation. Hou 150

et al. (2024) develop Online Knowledge Distilla- 151

tion (OKD), combining contrastive learning and 152

memory replay for robust performance in dynamic 153

learning scenarios. 154

Despite the strong syntactic understanding ca- 155

pabilities of LLMs in resource-rich languages, the 156

complexity of long sentences and data scarcity in 157

low-resource languages remain key challenges for 158

LLM-based dependency parsing in data augmen- 159

tation and transfer learning. To tackle these is- 160

sues, we propose a novel leverages the multilingual 161

alignment ability of LLMs to transfer more effec- 162

tive features from multiple source languages. This 163
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approach not only boosts parsing accuracy in the164

target language but also enhances the overall pars-165

ing capabilities of large models.166

3 Our Approach167

To enhance the cross-lingual dependency parsing168

performance, this work proposes a novel large lan-169

guage model (LLMs) rethinking and multi-lingual170

co-training approach. The basic idea is to acti-171

vate the multilingual alignment ability of LLMs,172

thus transferring more effective features from mul-173

tiple source languages to boost the target language174

parsing accuracy. As shown in Figure 2, our ap-175

proach contains two stages, i.e., Two-step pro-176

gressive thinking for multi-lingual aligned depen-177

dency trees generation and Multi-lingual coopera-178

tive training.179

In the first stage, we exploit both traditional180

parsers and LLMs to generate accurate and aligned181

multi-lingual dependency trees. In the second182

stage, we propose a multi-lingual cooperative train-183

ing method to enhance the alignment and pars-184

ing capability of all cross-lingual models by ef-185

fectively leveraging our constructed aligned and186

existing multi-lingual dependency trees.187

3.1 Two-step Progressive Thinking for188

Multi-lingual Aligned Dependency Trees189

Generation190

Since the syntax understanding capability of ex-191

isting LLMs for low-resource languages is limited,192

directly LLM-based corpus annotation leads to var-193

ious incorrect dependency relation labels and root194

nodes, especially for complex sentences. To al-195

leviate this drawback, we propose a multilingual196

aligned trees generation approach using a two-step197

progressive thinking. Concretely, we first obtain198

publicly released multi-lingual aligned unlabeled199

sentences. Then, each sentence in the source or tar-200

get language is annotated by both traditional pars-201

ing models and LLMs. Intensively, the traditional202

parsing model relies on language-specific knowl-203

edge, enabling it to accurately handle basic syntac-204

tic structures, while LLMs benefit from extensive205

multilingual knowledge to more effectively cap-206

ture complex semantic dependencies. Ultimately,207

we design a progressive thinking strategy to guide208

LLMs to filter out the best dependency tree based209

on outputs from traditional parsers and LLMs.210

Pseudo corpus generation. To obtain rich and211

accurate aligned trees, we adopt two classic meth-212

ods for dependency tree annotation, i.e., the tradi- 213

tional parser and LLM. 214

For traditional parser based corpus generation, 215

we adopt the BiAffine parser as our baseline model 216

and enhance its representational capacity by inte- 217

grating the multilingual pre-trained language model 218

XLM-RoBERTa. As the top block of Figure 2, 219

we first utilize target language training data to up- 220

date the initial parameters of the BiAffine parser. 221

Then, the pre-trained BiAffine parser is leveraged 222

to predict unlabeled data of the target language, 223

thus obtaining the original traditional parser based 224

corpus. Specifically, each input sentence is trans- 225

formed into a sequence of dense vectors xi, where 226

each vector is constructed by concatenating a word- 227

level and a character-level representation. The word 228

representation is formed by summing the averaged 229

outputs from the last four layers of XLM-RoBERTa 230

repXLM-R and a randomly initialized word embed- 231

ding embword. The character-level representation 232

wordchar is derived from a BiLSTM network that 233

encodes the character sequence of each word. The 234

final input vector is defined as Equation 1. 235

xi =(repXLM-R + embword)⊕wordchar (1) 236

Subsequently, a three-layer BiLSTM is employed 237

as the encoder to generate contextualized rep- 238

resentations. These representations are then 239

passed through two separate multilayer perceptrons 240

(MLPs) to obtain low-dimensional syntactic vec- 241

tors corresponding to heads (hi) and dependents 242

(di). Finally, a BiAffine transformation is applied 243

to compute each arc score between head word wi 244

and dependent word wj as in Equation 2. 245

arci←j =

[
di

1

]T
U1hj (2) 246

Meanwhile, the parser uses another MLP and Bi- 247

Affine to obtain the label score labeli←j . Finally, 248

for each position i, if the gold-standard head of 249

word wi is word wj and its corresponding gold re- 250

lation label is l, the parsing loss Ltra is computed 251

as follows, 252

Ltra =− log
earci←j∑

0≤k≤n,k ̸=i

earci←k

− log
elabeli←j∑

label′∈L elabel
′
i←j

(3) 253

where L is the set of labels. 254

3



-

Step1.2 Synthetic data optimization by re-thinking

LLMs

Step1.Two-step Progressive Thinking for Multi-lingual Aligned Dependency Trees Generation

Step1.1 Pseudo corpus generation

LLM based
corpus

Tra based
 corpus

Traditional parser based corpus generation

Chinese

English

Other languages 

Alignment 
unlabeled data Chinese 

English 

Other languages

② Unlabeled data input

Traditional parser

LLM based corpus generation  by fine-grained thinking

Chinese 

Other languages

English

Unlabeled data

LLM based
corpus

Tra based
corpus

Chinese

English

Synthetic 
data

Other
languages

Golden
 data

②  Joint optimization 
pre-training

Fine-tuning
②  Joint optimization 

fine-tuning

Target language  training data

Analyze  differences;
refine LLM
based corpus with 
Tra based corpus.

Process the 
unlabeled data 
synthetic data 

Unlabeled data

LLM-based 
data optimization

LLM prompts

COT

Tra based corpus

LLM based corpus

Traditional model 

Un Fine-tuning LLM Fine-tuning LLM

Chunking

Sentence
segmentation

Chunking 1

Chunking 2

Chunking n

........

Main
clause 

Subordinate
clause

subtree 1

subtree n

subtree 2....

①  Train

Step2. Multi-lingual Cooperative Training

Chinese 

English 

Other languages 

Input

BiLSTM

MLP

FulSha

BiAffine

BiLSTM

Input

MLP

LanEmb

Lan-emb

BiAffine

①  Joint optimization 
pre-training

①  Joint optimization 
fine-tuning

③ Parse

Figure 2: The overall architecture of our method on both traditional parsers and LLMs.

For LLMs based corpus generation by fine-255

grained thinking, we design a special two-stage256

chain-of-thought (CoT) prompt for guide LLMs to257

reason fine-grained grammatical knowledge, thus258

yielding an original LLMs-based corpus. In the259

first stage, LLMs need to segment sentences into260

meaningful linguistic units, such as chunks and261

clause boundaries. In the second stage, LLMs sys-262

tematically process each linguistic unit, which first263

derives local subtrees based on chunks and clause264

boundaries, and then compositionally assembling265

these subtrees into a complete yet grammatically266

valid dependency tree.267

Synthetic data optimization by rethinking. To268

enhance the synthetic corpus quality, we introduce269

another CoT prompt to boost LLM in-depth re-270

thinking and reconstruct more reliable dependency271

trees. In the practical application, LLMs are more272

effective for handling complex or unofficial sen-273

tences, while traditional parsers have outstanding274

performance in sentences with standardized gram- 275

mar. Therefore, we fist obtain two heterogeneous 276

dependency trees for each target language sentence 277

by traditional models and LLMs. Then, LLMs in- 278

depth rethink to incorporate the advantages of tra- 279

ditional models and LLMs based on heterogeneous 280

trees. Finally, a more accurate tree is reconstructed 281

through the rethinking results. 282

3.2 Multilingual Collaborative Learning 283

To balance data deviation and align grammati- 284

cal knowledge in cross-lingual dependency parsing 285

models, we propose a multilingual collaborative 286

learning algorithm as Algorithm 1. Specifically, 287

at each training or fine-tuning step, we first alter- 288

nately sample mini-batches from Chinese, English, 289

and the target low-resource language. Then, model 290

parameters are updated by minimizing the parsing 291

loss Lpar in a joint fashion. Finally, the training or 292

fine-tuning process continues until convergence or 293
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Algorithm 1 multilingual collaborative learning
Input: Chinese data Ch, English data En, low-resource target
language data T
Parameters: total iterations k
Output: updated model
1: Initialize iter ← 0
2: while iter < k and not converged do
3: Select mini-batch x alternately from Ch, En, or T
4: if x ∈ Ch then
5: Compute parsing loss Ltra or LLLM
6: else if x ∈ En then
7: Compute parsing loss Ltra or LLLM
8: else
9: Compute parsing loss Ltra or LLLM

10: end if
11: Update model parameters by minimizing Ltra or LLLM
12: iter ← iter + 1
13: end while

an early stopping criterion is met.294

In this work, we adopt two typical traditional295

cross-lingual dependency parsing models and two296

LLMs as our strong baseline models to verify the297

effectiveness of our collaborative learning.298

For traditional cross-lingual dependency299

parsing models, we first sample LLM-optimized300

multilingual aligned dependency trees iteratively301

for model pre-training, and then the parameters302

of pre-trained models are updated by leveraging303

multilingual golden training data. Two typical tra-304

ditional cross-lingual dependency parsing models305

include Full shared model (FulSha) and Language306

embedding model (LanEmb). Concretely, the Ful-307

Sha model is first utilized by Peng et al. (2017)308

for cross-domain dependency parsing, which treats309

all training data equally and shares all model pa-310

rameters. Here, we also share all parameters of311

the BiAffine parser, no matter which language the312

data comes from. The LanEmb model is demon-313

strated to be extremely useful for cross-domain314

dependency parsing by Li et al. (2019b), which in-315

corporates domain embeddings as additional input316

to indicate the domain type of each word. Here,317

we exploit language embeddings as auxiliary input318

to enhance the cross-lingual dependency parsing319

performance.320

For LLM-based cross-lingual dependency321

parsing models, we adopt the widely-used fine-322

tuning strategy (low-rank adaptation, LoRA) to op-323

timize parameters of LLMs efficiently with mini-324

mum resource consumption (Hu et al., 2022). First,325

each sentence from source or target languages are326

mapped into dense input vectors x. Second, these327

input vectors are fed into multiple-layer Trans-328

former blocks to obtain contextualized representa-329

tions y. The LoRA strategy introduces trainable 330

low-rank matrices into each Transformer block and 331

keeps the original pre-trained weights W frozen, 332

which is defined as 333

y = Wx+BAx, (4) 334

where weight matrixes W ∈ Rd×k, B ∈ Rd×r, 335

and A ∈ Rr×k with rank r ≪ min(d, k). Dur- 336

ing the fine-tuning process, we compute the cross- 337

entropy loss over the predicted heads and depen- 338

dency labels, which is calculated as follows, 339

LLLM = −
H∑
i=1

hi log(ĥi)−
L∑

j=1

lj log(l̂j) (5) 340

w here hi and lj are the gold-standard distribu- 341

tions of heads and labels, and ĥi and l̂j are the 342

predicted probabilities of heads and labels gener- 343

ated by LLMs. We select two widely-used open- 344

source LLMs to demonstrate the effect of col- 345

laborative learning, i.e., Qwen2.5-7B-Instruct and 346

Qwen2.5-14B-Instruct. Specifically, the Qwen2.5- 347

7B-Instruct model contains about 7 billion param- 348

eters and also owns remarkable Southeast Asian 349

languages understanding capability, such as Chi- 350

nese, Vietnamese, and Tamil. In contrast, the 351

Qwen2.5-14B-Instruct model has more parame- 352

ters and stronger linguistic comprehensive ability, 353

specially for low-resource languages. In practi- 354

cal experiments, we further mix all synthetic and 355

golden training data to align linguistic knowledge 356

between source and target languages in these LLMs 357

by simple LoRA fine-tuning. 358

Dataset Train Dev Test All
UD public datasets

Chinese(GSDSimp) 3,997 500 500 4,997
English (EWT) 12,544 2,001 2,077 16,622
Vietnamese (VTB) 1,400 1,123 800 3,323
Tamil (TTB) 400 80 120 600
Telugu (MTG) 1051 131 146 1,328
Maltese (MUDT) 1,123 433 518 2,074

FLORES-200 Parallel Corpus Datasets
Chinese 2,000 - - 2,000
English 2,000 - - 2,000
Vietnamese 2,000 - - 2,000
Tamil 2,000 - - 2,000
Telugu 2,000 - - 2,000
Maltese 2,000 - - 2,000

ALT Parallel Corpus Datasets
Vietnamese 6,000 - - 6,000

Table 1: Dataset statistics in sentence number.

5



Model Synthetic Data Vietnamese Tamil Telugu Maltese AVG

Source Count LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS
Results of previous works

UDify (2019a) - - 66.00 74.11 68.29 78.34 83.91 92.23 75.56 83.07 73.44 81.94
ESR (2023) - - 60.80 70.21 66.40 74.12 80.10 81.60 74.20 82.34 70.38 77.07
Dynamic (2025a) - - 66.75 80.03 69.18 79.09 - - 76.19 83.28 70.71 80.80

Results of traditional model
FulSha - - 62.97 77.86 63.65 75.51 80.99 90.70 70.51 79.65 69.53 80.93
LanEmb - - 66.08 80.25 68.27 78.43 83.63 92.37 76.89 83.77 73.72 83.71
Our FulSha GPT 2000 65.27 79.43 66.12 76.42 83.36 92.93 74.98 82.15 72.93 83.50
Our LanEmb GPT 2000 67.14 81.38 68.23 78.69 81.28 91.82 75.77 83.07 73.11 83.23
Our FulSha Qwen 2000 65.46 79.74 66.67 76.83 82.39 92.10 74.58 87.92 72.77 84.15
Our LanEmb Qwen 2000 67.02 80.99 67.67 78.48 83.08 92.93 77.18 83.85 73.74 84.56

Fine-tuning Results
Qwen2.5-7B-Instrcut
LoRA - - 38.27 51.52 33.82 47.23 63.10 79.63 50.03 59.35 46.56 59.43
Our LoRA Qwen 2000 61.86 74.19 53.58 64.37 76.42 86.96 67.38 74.19 64.81 74.93
Qwen2.5-14B-Instruct
LoRA - - 41.98 55.79 36.62 49.97 65.25 83.03 51.63 60.98 48.87 62.44
Our LoRA Qwen 2000 63.74 77.99 59.54 71.77 78.50 89.74 72.67 78.97 68.61 79.62

Table 2: Main results on the test dataset, where “Qwen” represents “Qwen2.5-7B-instruct”, and “GPT” means
“GPT-4o-mini”.

4 Experiments359

4.1 Experimental Setups360

Datasets 1) For training traditional parsers. We361

collect gold-standard dependency trees for Chi-362

nese (zh), English (en), Vietnamese (vi), Tamil363

(ta), Telugu (te), and Maltese (mt) to train tradi-364

tional parsing models, which are obtained from the365

Universal Dependencies (UD) v2.13 corpus 1. 2)366

For LLM-based syntactic data generation. We uti-367

lize high-quality parallel unlabeled sentences from368

the ALT 2 and FLORES-200 3 datasets to construct369

synthetic dependency trees for the six languages370

above. Detailed statistics are provided in Table 1.371

It is worth noting that ALT data is used only for the372

comparative analysis in Table 4, whereas all other373

experiments are conducted using data derived from374

FLORES-200 exclusively.375

Evaluation We utilize Labeled Attachment376

Score (LAS) and Unlabeled Attachment Score377

(UAS) as evaluation metrics (Li et al., 2019a). All378

models are trained for up to 500 iterations, and their379

performance is evaluated on the UD development380

dataset after each iteration. Training is stopped if381

no improvement is observed for 50 consecutive it-382

erations. As shown in Table 2, we add our synthetic383

data to the initial UD training dataset to train tradi-384

tional parsers and fine-tune LLMs, then test their385

1https://universaldependencies.org/
2http://www2.nict.go.jp/astrec-att/member/

mutiyama/ALT/
3https://github.com/facebookresearch/flores/

performance on the UD test set. 386

4.2 Main results of experiments 387

Table 2 presents the main results of all base- 388

line models and our approaches on both traditional 389

models and LLMs across four low-resource lan- 390

guages. 391

For traditional models, we first find that their 392

parsing accuracy has a significant improvement by 393

adding our synthetic data, illustrating that our syn- 394

thetic data can provide accurate syntax knowledge. 395

Then, the synthetic data stemming from the Qwen 396

series outperforms the one that comes from GPT. 397

For large language models, our LoRA method out- 398

performs the normal LoRA across all languages, 399

demonstrating that our synthetic data can implic- 400

itly contain rich yet useful language-specific syntax 401

knowledge to enhance the dependency parsing per- 402

formance of LLMs. 403

In addition, we compare our approach with sev- 404

eral previous works, i.e., UDify (Kondratyuk and 405

Straka, 2019a), ESR (Effland and Collins, 2023), 406

and Dynamic (Liu et al., 2025a). UDify utilize 407

a shared multilingual encoder trained on univer- 408

sal treebanks to enable cross-lingual dependency 409

parsing. ESR introduces regularization based on 410

expected syntactic statistics to guide the parser in 411

low-resource settings. Dynamic dynamically fil- 412

ters and injects syntactic features from source lan- 413

guages to improve cross-lingual transfer. Our mod- 414

els outperform most baseline models, verifying the 415

robustness and generalizability of our multi-lingual 416
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Priori knowledge source Vietnamese

LAS UAS

None 16.51 32.69
Chunks data 23.35 42.51
Clause data 24.42 44.06
Traditional parser results 38.33 59.66
Chunking and Clause data 40.26 60.12
Our method 58.51 75.31

Table 3: Effectiveness of prior knowledge on Viet-
namese parsing.

Synthetic data Vietnamese

Lang Source Count LAS UAS

zh FLORES-200 2000
57.66 74.38en FLORES-200 2000

vi FLORES-200 2000

vi ALT 6000 60.06 76.67

Table 4: Scores are summarized for every group of
synthetic data.

collaborative training approach. These results high-417

light the potential of combining synthetic data gen-418

eration with cross-lingual transfer techniques to419

improve parsing performance for low-resource lan-420

guages.421

4.3 Ablation Study422

Table 3 presents the ablation study results on423

Vietnamese development data. First, the addi-424

tion of syntactic boundaries information (chunk425

and clause) can effectively improve parsing per-426

formance. Then, combining chunking and clause427

data further boosts the parsing accuracy, demon-428

strating the complementary nature of these two429

types of structural guidance. In addition, using430

the outputs of a traditional parser as soft super-431

vision significantly enhances the syntax structure432

and semantic understanding of LLMs. Finally, our433

proposed method integrates all the above sources434

of prior knowledge, achieving the highest perfor-435

mance. This confirms the effectiveness of com-436

bining multiple types of linguistic priors in guid-437

ing LLMs’ dependency parsing, especially in low-438

resource settings.439

4.4 Multi-lingual Cooperative Training Study440

Table 4 investigates whether using aligned high-441

resource languages can effectively assist low-442

resource languages in dependency parsing under443

the same amount of training data. First, we se-444

lect 2000 aligned sentences from the FLORES-200445

Traditional model Reference LAS UAS

None 40.26 60.12
English Parser 46.34 69.98
Vietnamese Parser 58.51 75.31

Table 5: Impact of different pre-trained parsers on Viet-
namese dependency parsing. Better pseudo-data im-
proves LLMs generation quality.

dataset in Chinese (zh), English (en), and Viet- 446

namese(vi), respectively, and additionally sample 447

6000 unlabeled Vietnamese sentences from the 448

ALT corpus. Second, we generate correspond- 449

ing dependency parsing trees using our proposed 450

method for both configurations. Then, these pars- 451

ing trees are used to train traditional parsers, and 452

the performance is evaluated on the Vietnamese test 453

set from the UD dataset. Finally, although using 454

only 6000 multilingual sentences does not outper- 455

form the 6000 monolingual Vietnamese setup, the 456

performance gap remains small. This demonstrates 457

that the existence of common syntactic knowledge 458

across languages can complement the lack of syn- 459

tactic information in low-resource languages, thus 460

improving their parsing performance. 461

4.5 Comparative Study 462

Table 5 verifies the impact of using different 463

reference syntax trees generated by various tradi- 464

tional parsers in our method. First, we employ the 465

high-resource language (English) training data to 466

train a traditional parser, then utilize the trained 467

parser to obtain the target low-resource language 468

(Vietnamese) parsing syntax tree. Next, we use 469

these trees as reference syntax trees to enhance 470

LLMs’ parsing capability. As the results show, 471

although the English parser does not outperform 472

the Vietnamese-specific parser, it still provides an 473

outstanding improvement over using no reference 474

syntax tree at all. This suggests that when stan- 475

dard training data is unavailable for a low-resource 476

target language, leveraging parsers trained on high- 477

resource languages can be a viable strategy, which 478

proves that a cross-lingual parser can leverage the 479

common syntax knowledge from the source lan- 480

guages to parse the target languages accurately. 481

4.6 Error Analysis 482

To assess the quality of the synthetic data, we 483

conducted a manual evaluation comparing depen- 484

dency trees generated directly by large language 485

models (LLMs) with those produced by our pro- 486

7



Figure 3: Proportion of head node errors in the final
result.

Figure 4: Proportion of root errors in the final result.

Figure 5: Proportion of label errors in the final result.

posed method. Concretely, the evaluation focuses487

on three main types of errors, i.e., dependency head488

errors, dependency label errors, and dependency489

root errors. First, Figure 3 reports statistics on490

invalid head word distribution in the dependency491

trees, including cases where the head word index492

exceeds the sentence length or introduces cyclic493

structures (violation of the single concatenation494

rule for syntactic trees). These structural errors495

compromise the integrity of the syntactic tree. Fig-496

ure 4 analyzes root-related errors, including cases497

where a tree contains multiple roots or no root498

at all, which are critical violations in dependency499

parsing that signal incomplete or invalid syntactic500

structures. Figure 5 focuses on label-related issues,501

identifying non-standard or unknown dependency 502

labels such as mark, sortof, case, multi-nsubj, and 503

others. These labels are not part of the standard 504

Universal Dependencies tagset, indicating semantic 505

confusion or label misuse during generation. 506

Overall, the results show that our method signif- 507

icantly reduces all types of errors compared to the 508

direct LLM-based generation method, with error 509

rates dropping by more than half on average. No- 510

tably, root and head errors see the most dramatic re- 511

duction. This highlights the effectiveness of incor- 512

porating prior syntactic knowledge and structure- 513

aware constraints into the LLMs syntax parsing 514

process. Our approach enables the LLMs to bet- 515

ter identify fine-grained sentence components and 516

construct more accurate dependency trees. 517

5 Conclusion 518

We propose a novel rethinking and collabora- 519

tive learning enhanced cross-lingual dependency 520

parsing approach to alleviate the data deviation 521

and weak alignment problem. Benchmark experi- 522

ments demonstrate that our approach consistently 523

improves cross-lingual dependency parsing per- 524

formance on both traditional models and LLMs, 525

leading to state-of-the-art results. An in-depth com- 526

parison shows that traditional parser-based pseudo 527

samples are more effective on standard sentences, 528

while LLM-based ones are better on unofficial ones 529

since LLMs own stronger generation and reason- 530

ing capabilities. Furthermore, manual evaluations 531

confirm that LLM re-thinking is extremely useful 532

for combining the strengths of traditional parser- 533

based and LLM-based pseudo data, thus yielding 534

more accurate and higher-quality synthetic data. 535

Detailed analysis indicates that our collaborative 536

learning is extremely useful to align the linguistic 537

community across source and target languages. 538

Limitations 539

First, our experiments cover only a limited num- 540

ber of large language models. In addition, the exter- 541

nal knowledge for injecting large language models 542

is not comprehensive enough. We will supplement 543

the current shortcomings with in-depth research in 544

our further work. 545
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System Prompt
[Role] dependency parsing expert.
[Task] Chunk sentences into syntactic phrases (
5 words).
[Instructions]
• Single-line output, no explanations.
[Example]
Input: ABCDEF
Output: (NP A) (VP B) (NP CD) (PP E) (NP
F)

User Prompt
[Input] Andrea Maisi ...
[Output] (NP Andrea Maisi) ...

Table 6: Chunking Prompt Structure

A Appendix761

A.1 Prompt Template in Aligned Trees762

Generation763

In this section, we provide the prompt templates764

used in the Aligned Tree Generation. Table 6765

presents the prompt used for chunking, where the766

input sentence is segmented into syntactic phrases767

with a maximum length of five words, each en-768

closed in labeled brackets such as (NP ...), (VP ...),769

etc. Table 7 shows the prompt designed for clause770

identification, which extracts the main and sub-771

ordinate clauses from the sentence in a structured772

format. Finally, Table 8 illustrates the prompt used773

to drive the first-round dependency tree genera-774

tion using CoT reasoning. This prompt takes the775

original sentence along with its chunked phrases776

and clause structures as reference information and777

guides the model to generate a simplified CoNLL-778

U formatted dependency tree. All prompts empha-779

size format consistency, strict input-output align-780

ment, and eliminate unnecessary explanations to781

ensure the model follows precise syntactic logic782

during parsing.783

A.2 Prompt Template in Synthetic Data784

Optimization Based on LLMs785

In this section, we present the prompt template786

used in the Synthetic Data Optimization phase787

driven by LLMs. As shown in Table 10, the prompt788

guides the model to perform structured comparison789

between the two trees, identify issues such as in-790

correct head assignments or invalid dependencies,791

and merge the strengths of both results to produce792

a high-quality dependency tree. The final output793

System Prompt
[Role] dependency parsing expert.
[Task] Identify main and subordinate clauses in
sentences.
[Instructions]
• Output [Main Clause] and [Subordinate
Clause] separately.
• If no subordinate clause, only return [Main
Clause].
• No explanation, follow strict format.
[Example]
Input: AB Output: [Main Clause]: A
[Subordinate Clause]: B

User Prompt
[Input] Andrea Maisi ...
[Output] [Main Clause]: Andrea Maisi...
[Subordinate Clause]: ...

Table 7: Clause Prompt Structure

must follow the simplified CoNLL-U format with 794

strict rules, including the presence of a single root, 795

use of standard dependency labels, and structural 796

validity of the tree. 797

A.3 Prompt Template in Fine-tuning 798

In this section, we present the fine-tuning tem- 799

plate as table 9. Specifically, we provide segmented 800

input sentences along with their corresponding an- 801

notated outputs. A similar template is used in the 802

final evaluation phase, where the outputs are gen- 803

erated by the large language model. 804
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System Prompt
[Role] dependency parsing expert.
[Task] Parse the input sentence and output in
simplified CoNLL-U format.
[Reference Info]
• Raw sentence, Chunking, Clause structure,
Model info
[Reasoning]
1. Identify main verb as root.
2. Use chunking to verify phrase boundaries.
3. Build dependency tree.
4. Refine with external parser.
5. Output in final format.
[Output Rules]
• Use tab-separated fields.
• Single root per sentence.
• All dependencies must be labeled and acyclic.
[Format]
1. ID 2. Word 3. UPOS 4. Head 5.
Relation
Only output the final CoNLL-U. No explana-
tion.
[Example]
Input: AB Output: [Main Clause]: A
[Sub Clause]: B

User Prompt
[Input]
[Raw] Andrea Maisi ...
[Reference Info] ...
[Output]
.....

Table 8: Parsing Prompt Structure

System Prompt
[Role] dependency parsing expert.
[Task] Parse the segmented sentence into
CoNLL-U syntactic universal format.

[Example]
Input: Mòểât \t hai \t cÕánh tay \t ,

\t mòệỄt \ mòểẳt \t .

[Output]
1\tM òểât\tVERB \t 0\troot
2\thai \tNUM \t 3\tnummod
...
7\t .\tPUNCT \t 1\tpunct

Table 9: Example of fine-tuning

System Prompt
[Role] dependency parsing expert.
[Task] Analyze and compare two dependency
trees (from LLM and traditional parser), then
output a final optimized tree in simplified
CoNLL-U format.
[Reference Info]
• Raw sentence, LLM parse, Traditional parser
parse, Parsing rules
[Reasoning Steps]
1. Preliminary Check: Examine both trees for
correctness in label usage, head selection, tree
integrity (non-cyclicity, single root).
2. Comparative Reasoning: Retain LLM outputs
when valid; use traditional parser results when
more linguistically accurate.
3. Final Synthesis: Merge the best parts of both
trees to produce a consistent, valid, high-quality
structure.
[Output Rules]
• Use tab-separated fields.
• Sentence must have exactly one root.
• Dependency labels must follow standard syntax
roles.
• Output must be acyclic and structurally valid.
[Format]
1. ID 2. Word 3. UPOS 4. Head 5.
Relation
Only output the final CoNLL-U. No reason-
ing, no explanation.
[Example]
Input: [LLM Tree]: ... [Traditional Tree]: ...

User Prompt
[Input]
[Raw] Andrea Maisi ...
[LLM Tree] ...
[Traditional Tree] ...
[Output]
.....

Table 10: Parsing Prompt Structure for Secondary Con-
templation
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