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Abstract

Large language models (LLMs) have shown
strong syntax understanding capability in rich-
source languages. However, their performances
decline sharply when directly apply to low-
resource languages. The key challenge is the
data deviation and weak alignment across the
source and target languages. To alleviate these
issues, we propose a novel rethinking and col-
laborative learning approach for cross-lingual
dependency parsing. On the one hand, we ex-
ploit a progressive thinking technique to guide
LLMs to generate diverse and aligned synthetic
data, thus making up for the data shift draw-
back. On the other hand, we introduce a col-
laborative learning strategy to further activate
the alignment ability of both traditional cross-
lingual models and LLMs by making full use
of our synthetic data. Experiments on vari-
ous benchmark datasets show that our proposed
method outperform all strong baselines, leading
to new state-of-the-art results on all language.
Detailed comparison demonstrates that our syn-
thetic data is extremely useful for enhancing the
alignment between source and target languages.
In-depth analysis reveals that both rethinking
and collaborative learning can boost the cross-
lingual parsing performance.

1 Introduction

Dependency parsing is a foundational natural
language processing (NLP) task that aims to an-
alyze the syntactic structure of an input sentence
(Kondratyuk and Straka, 2019b). It first identifies
the head word for each word in the input sentence,
and then obtains the syntactic relationship between
head and modifier words based on grammatical
rules (Kulmizev et al., 2019). This process is essen-
tial for various NLP applications, such as machine
translation (Ahmad et al., 2019), automatic sum-
marization (Zhang et al., 2020), sentiment analysis
(Droganova et al., 2021), and information retrieval
(Osa et al., 2023).
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Figure 1: Examples of dependency trees where
and red color represent wrong relation labels and
root nodes, respectively.

Recently, dependency parsing in rich-resource
languages has made significant advancements.
However, cross-lingual dependency parsing re-
mains challenging due to data deviation and weak
alignment between rich-resource source and low-
resource target languages. The cross-lingual depen-
dency parsing approaches are mainly categorized
into two lines, i.e., data augmentation and feature
transformation. The key idea of data augmenta-
tion is automatically generating target language
dependency trees to alleviate the data shift prob-
lem of low-resource target languages (Feng et al.,
2021; Shorten et al., 2021; Bayer et al., 2022; Wang
et al., 2024; Sapkota et al., 2025). Recent studies
highlight the promising potential of large language
models (LLMs) in data augmentation (Wu et al.,
2023; Yoo et al., 2021; Ko et al., 2023). Zhang
et al. (2025) uses grammar and lexical information
to help LLMs create subtrees, and then hybridize



them with existing source-domain subtrees to aug-
ment the diversity of training data. The goal of
feature transformation is to learn beneficial fea-
ture representations from high-resource languages,
enabling the model to adapt to low-resource tar-
get languages (Basu Roy Chowdhury et al., 2019;
Xu et al., 2020). Liu et al. (2025a) design the
dynamic syntactic feature filtering and injecting
networks to enhance the language-invariant and
language-specific feature presentations and achieve
outstanding performances on cross-lingual depen-
dency parsing.

Motivated by these works, we first analyze the
relevance of source and target languages. As shown
in Figure 1 (a), we can see that although the aligned
positions between English words “good essay”
and Vietnamese words “dn xudi (essay) hai long
(good)” are changed, they still own the same re-
lation label “amod”. Then, we leverage LLMs to
directly generate the dependency trees in both rich-
resource English and low-resource Vietnamese. As
described in Figure 1 (b), we find that the generated
Vietnamese tree contains multiple erroneous rela-
tion labels and root nodes, indicating LL.Ms have a
strong syntax understanding of English, while their
ability obviously declines in Vietnamese. There-
fore, it becomes the key challenge to alleviate data
deviation and enhance aligned knowledge.

To address this issue, we propose a novel ap-
proach improving cross-lingual dependency pars-
ing via LLM rethinking and collaborative learning.
First, we exploit LLMs and traditional parsers to
generate aligned multi-lingual dependency trees.
Then, we design a rethinking chain to guide LLMs
to self-optimize aligned multilingual dependency
trees. Finally, we propose a multilingual coopera-
tive learning algorithm to effectively utilize both
our aligned dependency trees and existing mul-
tilingual dependency trees. Experiments on the
benchmark datasets demonstrate that our proposed
model significantly improves cross-lingual depen-
dency parsing performance, leading to new state-
of-the-art results on all languages. Comparison
experiments validate the effectiveness of different
marginal knowledge.

2 Related Work

Cross-lingual dependency parsing aims to learn
useful information from rich-resource source lan-
guages to boost the parsing accuracy of low-
resource target languages. Typical cross-lingual

dependency parsing methods can be categorized
into two lines, i.e., data augmentation and feature
transfer.

Data augmentation aims to alleviate the data
scarcity problem in low-resource languages by au-
tomatically generating pseudo corpora that approx-
imate realistic data distributions. Traditional ap-
proaches include hierarchical augmentation, back-
translation, and paraphrasing (Yu et al., 2019; Sen-
nrich et al., 2016; Dai et al., 2025; Cegin et al.,
2023, 2024; Wang et al., 2025). For instance, Sen-
nrich et al. (2016) generate synthetic data through
back-translation, while Yu et al. (2019) apply hier-
archical attention to crop and concatenate salient
sentence segments. More recent methods leverage
large language models’(LLMs) strong generative
and understanding abilities to further improve data
quality and diversity (Lewis, 2020; et al., 2024b; Li
et al., 2024; et al., 2024a, 2025; Anonymous, 2025;
Liu et al., 2025b). LLM-based augmentation tech-
niques include zero-shot prompting (Ubani et al.,
2023), classifier-based filtering of unfaithful sam-
ples (Sahu et al., 2022), and LLM-guided few-shot
data synthesis for downstream tasks like NER (Ye
et al., 2024).

Feature transfer aims to transfer learned knowl-
edge from a source domain to improve model per-
formance in a target domain. The main approach
includes parameter transfer, feature distribution
transfer and knowledge distillation(Long et al.,
2013; Yin et al., 2019; Lu et al., 2020; Yu et al.,
2024; Fu et al., 2024; Gou et al., 2021). Chen et al.
(2022) propose a parameter-efficient transfer learn-
ing method combining low-rank adaptation (LoRA)
and prompt-tuning, achieving strong performance
with minimal updates in low-resource NLP tasks.
Wang et al. (2023) introduce Feature Correlation
Matching (FCM), aligning cross-domain feature
distributions to improve domain adaptation. Hou
et al. (2024) develop Online Knowledge Distilla-
tion (OKD), combining contrastive learning and
memory replay for robust performance in dynamic
learning scenarios.

Despite the strong syntactic understanding ca-
pabilities of LLLMs in resource-rich languages, the
complexity of long sentences and data scarcity in
low-resource languages remain key challenges for
LLM-based dependency parsing in data augmen-
tation and transfer learning. To tackle these is-
sues, we propose a novel leverages the multilingual
alignment ability of LLMs to transfer more effec-
tive features from multiple source languages. This



approach not only boosts parsing accuracy in the
target language but also enhances the overall pars-
ing capabilities of large models.

3 Our Approach

To enhance the cross-lingual dependency parsing
performance, this work proposes a novel large lan-
guage model (LLMs) rethinking and multi-lingual
co-training approach. The basic idea is to acti-
vate the multilingual alignment ability of LLMs,
thus transferring more effective features from mul-
tiple source languages to boost the target language
parsing accuracy. As shown in Figure 2, our ap-
proach contains two stages, i.e., Two-step pro-
gressive thinking for multi-lingual aligned depen-
dency trees generation and Multi-lingual coopera-
tive training.

In the first stage, we exploit both traditional
parsers and LLMs to generate accurate and aligned
multi-lingual dependency trees. In the second
stage, we propose a multi-lingual cooperative train-
ing method to enhance the alignment and pars-
ing capability of all cross-lingual models by ef-
fectively leveraging our constructed aligned and
existing multi-lingual dependency trees.

3.1 Two-step Progressive Thinking for
Multi-lingual Aligned Dependency Trees
Generation

Since the syntax understanding capability of ex-
isting LLMs for low-resource languages is limited,
directly LLM-based corpus annotation leads to var-
ious incorrect dependency relation labels and root
nodes, especially for complex sentences. To al-
leviate this drawback, we propose a multilingual
aligned trees generation approach using a two-step
progressive thinking. Concretely, we first obtain
publicly released multi-lingual aligned unlabeled
sentences. Then, each sentence in the source or tar-
get language is annotated by both traditional pars-
ing models and LLMs. Intensively, the traditional
parsing model relies on language-specific knowl-
edge, enabling it to accurately handle basic syntac-
tic structures, while LLLMs benefit from extensive
multilingual knowledge to more effectively cap-
ture complex semantic dependencies. Ultimately,
we design a progressive thinking strategy to guide
LLMs to filter out the best dependency tree based
on outputs from traditional parsers and LLMs.

Pseudo corpus generation. To obtain rich and
accurate aligned trees, we adopt two classic meth-

ods for dependency tree annotation, i.e., the tradi-
tional parser and LLM.

For traditional parser based corpus generation,
we adopt the BiAffine parser as our baseline model
and enhance its representational capacity by inte-
grating the multilingual pre-trained language model
XLM-RoBERTa. As the top block of Figure 2,
we first utilize target language training data to up-
date the initial parameters of the BiAffine parser.
Then, the pre-trained BiAffine parser is leveraged
to predict unlabeled data of the target language,
thus obtaining the original traditional parser based
corpus. Specifically, each input sentence is trans-
formed into a sequence of dense vectors x;, where
each vector is constructed by concatenating a word-
level and a character-level representation. The word
representation is formed by summing the averaged
outputs from the last four layers of XLM-RoBERTa
rep*"M-R and a randomly initialized word embed-
ding emb"°"!. The character-level representation
word™™ is derived from a BiLSTM network that
encodes the character sequence of each word. The
final input vector is defined as Equation 1.

x; :(rerLM—R + embword) ® Wordchar (1)

Subsequently, a three-layer BiILSTM is employed
as the encoder to generate contextualized rep-
resentations.  These representations are then
passed through two separate multilayer perceptrons
(MLPs) to obtain low-dimensional syntactic vec-
tors corresponding to heads (h;) and dependents
(d;). Finally, a BiAffine transformation is applied
to compute each arc score between head word w;
and dependent word w; as in Equation 2.

T
arcj; = [ (12 ] Uih; ()

Meanwhile, the parser uses another MLP and Bi-
Affine to obtain the label score label;. ;. Finally,
for each position ¢, if the gold-standard head of
word w; is word w; and its corresponding gold re-
lation label is [, the parsing loss Ly, is computed
as follows,

eBICij
Etra = lOg Z e3rCik
0<k<n.,k#1i (3)
elabel“_j
— log

D taperrer, €40 i

where L is the set of labels.
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Figure 2: The overall architecture of our method on both traditional parsers and LLMs.

For LLMs based corpus generation by fine-
grained thinking, we design a special two-stage
chain-of-thought (CoT) prompt for guide LLMs to
reason fine-grained grammatical knowledge, thus
yielding an original LLMs-based corpus. In the
first stage, LLMs need to segment sentences into
meaningful linguistic units, such as chunks and
clause boundaries. In the second stage, LLMs sys-
tematically process each linguistic unit, which first
derives local subtrees based on chunks and clause
boundaries, and then compositionally assembling
these subtrees into a complete yet grammatically
valid dependency tree.

Synthetic data optimization by rethinking. To
enhance the synthetic corpus quality, we introduce
another CoT prompt to boost LLM in-depth re-
thinking and reconstruct more reliable dependency
trees. In the practical application, LL.Ms are more
effective for handling complex or unofficial sen-
tences, while traditional parsers have outstanding

performance in sentences with standardized gram-
mar. Therefore, we fist obtain two heterogeneous
dependency trees for each target language sentence
by traditional models and LLMs. Then, LLMs in-
depth rethink to incorporate the advantages of tra-
ditional models and LLMs based on heterogeneous
trees. Finally, a more accurate tree is reconstructed
through the rethinking results.

3.2 Multilingual Collaborative Learning

To balance data deviation and align grammati-
cal knowledge in cross-lingual dependency parsing
models, we propose a multilingual collaborative
learning algorithm as Algorithm 1. Specifically,
at each training or fine-tuning step, we first alter-
nately sample mini-batches from Chinese, English,
and the target low-resource language. Then, model
parameters are updated by minimizing the parsing
loss £P" in a joint fashion. Finally, the training or
fine-tuning process continues until convergence or



Algorithm 1 multilingual collaborative learning

Input: Chinese data C'h, English data E'n, low-resource target
language data T’
Parameters: total iterations &k
Output: updated model
1: Initialize iter <— 0
2: while iter < k and not converged do
3 Select mini-batch x alternately from Ch, En, or T’
4 if x € Ch then
5: Compute parsing 10ss Ly or LM
6: else if - € E'n then
7.
8
9

Compute parsing loss Lua Or Liim

else
: Compute parsing loss Lua Or Liim
10: end if
11: Update model parameters by minimizing Ly, or Liim

12: iter < iter + 1
13: end while

an early stopping criterion is met.

In this work, we adopt two typical traditional
cross-lingual dependency parsing models and two
LLMs as our strong baseline models to verify the
effectiveness of our collaborative learning.

For traditional cross-lingual dependency
parsing models, we first sample LLM-optimized
multilingual aligned dependency trees iteratively
for model pre-training, and then the parameters
of pre-trained models are updated by leveraging
multilingual golden training data. Two typical tra-
ditional cross-lingual dependency parsing models
include Full shared model (FulSha) and Language
embedding model (LanEmb). Concretely, the Ful-
Sha model is first utilized by Peng et al. (2017)
for cross-domain dependency parsing, which treats
all training data equally and shares all model pa-
rameters. Here, we also share all parameters of
the BiAffine parser, no matter which language the
data comes from. The LanEmb model is demon-
strated to be extremely useful for cross-domain
dependency parsing by Li et al. (2019b), which in-
corporates domain embeddings as additional input
to indicate the domain type of each word. Here,
we exploit language embeddings as auxiliary input
to enhance the cross-lingual dependency parsing
performance.

For LLM-based cross-lingual dependency
parsing models, we adopt the widely-used fine-
tuning strategy (low-rank adaptation, LoRA) to op-
timize parameters of LLMs efficiently with mini-
mum resource consumption (Hu et al., 2022). First,
each sentence from source or target languages are
mapped into dense input vectors x. Second, these
input vectors are fed into multiple-layer Trans-
former blocks to obtain contextualized representa-

tions y. The LoRA strategy introduces trainable
low-rank matrices into each Transformer block and
keeps the original pre-trained weights W frozen,
which is defined as

y = Wx + BAXx, 4)

where weight matrixes W € R¥>* B ¢ R",
and A € R"™* with rank 7 < min(d, k). Dur-
ing the fine-tuning process, we compute the cross-
entropy loss over the predicted heads and depen-
dency labels, which is calculated as follows,

H L
Lim =— Y hilog(h) =) lilog(l;)  (5)
i=1 =1

w here h; and [; are the gold-standard distribu-
tions of heads and labels, and ﬁi and l} are the
predicted probabilities of heads and labels gener-
ated by LLMs. We select two widely-used open-
source LLMs to demonstrate the effect of col-
laborative learning, i.e., Qwen2.5-7B-Instruct and
Owen?2.5-14B-Instruct. Specifically, the Qwen2.5-
7B-Instruct model contains about 7 billion param-
eters and also owns remarkable Southeast Asian
languages understanding capability, such as Chi-
nese, Vietnamese, and Tamil. In contrast, the
Owen2.5-14B-Instruct model has more parame-
ters and stronger linguistic comprehensive ability,
specially for low-resource languages. In practi-
cal experiments, we further mix all synthetic and
golden training data to align linguistic knowledge
between source and target languages in these LLMs
by simple LoRA fine-tuning.

Dataset Train Dev Test All
UD public datasets
Chinese(GSDSimp) 3,997 500 500 4,997
English &w 12,544 2,001 2,077 16,622
Vietnamese (VTB) 1,400 1,123 800 3,323
Tamil (r1B) 400 80 120 600
Telugu mtG) 1051 131 146 1,328
Maltese mupT) 1,123 433 518 2,074
FLORES-200 Parallel Corpus Datasets
Chinese 2,000 - - 2,000
English 2,000 - - 2,000
Vietnamese 2,000 - - 2,000
Tamil 2,000 - - 2,000
Telugu 2,000 - - 2,000
Maltese 2,000 - - 2,000
ALT Parallel Corpus Datasets
Vietnamese 6,000 - - 6,000

Table 1: Dataset statistics in sentence number.



Model Synthetic Data Vietnamese Tamil Telugu Maltese AVG

Source Count LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS
Results of previous works

UDity(2019a) - - 66.00 74.11 6829 7834 8391 9223 7556 83.07 73.44 81.94

ESR (2023) - - 60.80 7021 6640 74.12 80.10 81.60 7420 8234 7038 77.07

Dynamic(2025a) - - 66.75 80.03 69.18 79.09 - - 76.19 83.28 70.71 80.80

Results of traditional model

FulSha - - 62.97 77.86 63.65 7551 8099 90.70 70.51 79.65 69.53 80.93

LanEmb - - 66.08 80.25 6827 7843 8363 9237 76.89 8377 7372 83.71

Our FulSha GPT 2000 6527 7943 66.12 7642 8336 9293 7498 82.15 7293 83.50

Our LanEmb GPT 2000 67.14 81.38 6823 78.69 81.28 91.82 7577 83.07 73.11 83.23

Our FulSha Qwen 2000 6546 7974 66.67 76.83 8239 92.10 74.58 87.92 7277 84.15

Our LanEmb Qwen 2000 67.02 80.99 67.67 7848 83.08 9293 77.18 8385 73.74 84.56

Fine-tuning Results

Qwen2.5-7B-Instrcut

LoRA - - 3827 51.52 33.82 4723 63.10 79.63 50.03 59.35 4656 59.43

Our LoRA Qwen 2000 61.86 74.19 5358 6437 7642 8696 67.38 74.19 6481 74.93

Qwen2.5-14B-Instruct

LoRA - - 4198 5579 36.62 4997 6525 83.03 51.63 06098 4887 62.44

Our LoRA Qwen 2000 63.74 7799 59.54 71.77 7850 89.74 72.67 7897 68.61 79.62

Table 2: Main results on the test dataset, where “Qwen” represents “Qwen2.5-7B-instruct”’, and “GPT” means

“GPT-40-mini”.

4 Experiments

4.1 Experimental Setups

Datasets 1) For training traditional parsers. We
collect gold-standard dependency trees for Chi-
nese (zh), English (en), Vietnamese (vi), Tamil
(ta), Telugu (te), and Maltese (mt) to train tradi-
tional parsing models, which are obtained from the
Universal Dependencies (UD) v2.13 corpus . 2)
For LLM-based syntactic data generation. We uti-
lize high-quality parallel unlabeled sentences from
the ALT ? and FLORES-200 ? datasets to construct
synthetic dependency trees for the six languages
above. Detailed statistics are provided in Table 1.
It is worth noting that ALT data is used only for the
comparative analysis in Table 4, whereas all other
experiments are conducted using data derived from
FLORES-200 exclusively.

Evaluation We utilize Labeled Attachment
Score (LAS) and Unlabeled Attachment Score
(UAS) as evaluation metrics (Li et al., 2019a). All
models are trained for up to 500 iterations, and their
performance is evaluated on the UD development
dataset after each iteration. Training is stopped if
no improvement is observed for 50 consecutive it-
erations. As shown in Table 2, we add our synthetic
data to the initial UD training dataset to train tradi-
tional parsers and fine-tune LLMs, then test their

"https://universaldependencies.org/

http://www2.nict.go.jp/astrec-att /member/
mutiyama/ALT/

https://github.com /facebookresearch /flores/

performance on the UD test set.

4.2 Main results of experiments

Table 2 presents the main results of all base-
line models and our approaches on both traditional
models and LLMs across four low-resource lan-
guages.

For traditional models, we first find that their
parsing accuracy has a significant improvement by
adding our synthetic data, illustrating that our syn-
thetic data can provide accurate syntax knowledge.
Then, the synthetic data stemming from the Qwen
series outperforms the one that comes from GPT.
For large language models, our LoRA method out-
performs the normal LoRA across all languages,
demonstrating that our synthetic data can implic-
itly contain rich yet useful language-specific syntax
knowledge to enhance the dependency parsing per-
formance of LLMs.

In addition, we compare our approach with sev-
eral previous works, i.e., UDify (Kondratyuk and
Straka, 2019a), ESR (Effland and Collins, 2023),
and Dynamic (Liu et al., 2025a). UDity utilize
a shared multilingual encoder trained on univer-
sal treebanks to enable cross-lingual dependency
parsing. ESR introduces regularization based on
expected syntactic statistics to guide the parser in
low-resource settings. Dynamic dynamically fil-
ters and injects syntactic features from source lan-
guages to improve cross-lingual transfer. Our mod-
els outperform most baseline models, verifying the
robustness and generalizability of our multi-lingual


https://universaldependencies.org/
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- Vietnamese Traditional model Reference LAS UAS
Priori knowledge source
LAS UAS None 40.26 60.12
English Parser 46.34 69.98
None 16.51 32.69 SO ]
Chunks data 7335 4251 Vietnamese Parser 58.51 75.31
Clause data 24.42 44.06 ] ] ]
Traditional parser results 38.33 359.66 Table 5: Impact of different pre-trained parsers on Viet-
Chunking and Clause data 40.26 60.12 namese dependency parsing. Better pseudo-data im-
Our method 58.51 75.31

Table 3: Effectiveness of prior knowledge on Viet-
namese parsing.

Synthetic data Vietnamese
Lang Source Count LAS UAS
zh FLORES-200 2000
en FLORES-200 2000 57.66 74.38
vi FLORES-200 2000
vi ALT 6000 60.06 76.67

Table 4: Scores are summarized for every group of
synthetic data.

collaborative training approach. These results high-
light the potential of combining synthetic data gen-
eration with cross-lingual transfer techniques to
improve parsing performance for low-resource lan-
guages.

4.3 Ablation Study

Table 3 presents the ablation study results on
Vietnamese development data. First, the addi-
tion of syntactic boundaries information (chunk
and clause) can effectively improve parsing per-
formance. Then, combining chunking and clause
data further boosts the parsing accuracy, demon-
strating the complementary nature of these two
types of structural guidance. In addition, using
the outputs of a traditional parser as soft super-
vision significantly enhances the syntax structure
and semantic understanding of LLMs. Finally, our
proposed method integrates all the above sources
of prior knowledge, achieving the highest perfor-
mance. This confirms the effectiveness of com-
bining multiple types of linguistic priors in guid-
ing LLMs’ dependency parsing, especially in low-
resource settings.

4.4 Multi-lingual Cooperative Training Study

Table 4 investigates whether using aligned high-
resource languages can effectively assist low-
resource languages in dependency parsing under
the same amount of training data. First, we se-
lect 2000 aligned sentences from the FLORES-200

proves LLMs generation quality.

dataset in Chinese (zh), English (en), and Viet-
namese(vi), respectively, and additionally sample
6000 unlabeled Vietnamese sentences from the
ALT corpus. Second, we generate correspond-
ing dependency parsing trees using our proposed
method for both configurations. Then, these pars-
ing trees are used to train traditional parsers, and
the performance is evaluated on the Vietnamese test
set from the UD dataset. Finally, although using
only 6000 multilingual sentences does not outper-
form the 6000 monolingual Vietnamese setup, the
performance gap remains small. This demonstrates
that the existence of common syntactic knowledge
across languages can complement the lack of syn-
tactic information in low-resource languages, thus
improving their parsing performance.

4.5 Comparative Study

Table 5 verifies the impact of using different
reference syntax trees generated by various tradi-
tional parsers in our method. First, we employ the
high-resource language (English) training data to
train a traditional parser, then utilize the trained
parser to obtain the target low-resource language
(Vietnamese) parsing syntax tree. Next, we use
these trees as reference syntax trees to enhance
LLMs’ parsing capability. As the results show,
although the English parser does not outperform
the Vietnamese-specific parser, it still provides an
outstanding improvement over using no reference
syntax tree at all. This suggests that when stan-
dard training data is unavailable for a low-resource
target language, leveraging parsers trained on high-
resource languages can be a viable strategy, which
proves that a cross-lingual parser can leverage the
common syntax knowledge from the source lan-
guages to parse the target languages accurately.

4.6 Error Analysis

To assess the quality of the synthetic data, we
conducted a manual evaluation comparing depen-
dency trees generated directly by large language
models (LLMs) with those produced by our pro-
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posed method. Concretely, the evaluation focuses
on three main types of errors, i.e., dependency head
errors, dependency label errors, and dependency
root errors. First, Figure 3 reports statistics on
invalid head word distribution in the dependency
trees, including cases where the head word index
exceeds the sentence length or introduces cyclic
structures (violation of the single concatenation
rule for syntactic trees). These structural errors
compromise the integrity of the syntactic tree. Fig-
ure 4 analyzes root-related errors, including cases
where a tree contains multiple roots or no root
at all, which are critical violations in dependency
parsing that signal incomplete or invalid syntactic
structures. Figure 5 focuses on label-related issues,

identifying non-standard or unknown dependency
labels such as mark, sortof, case, multi-nsubj, and
others. These labels are not part of the standard
Universal Dependencies tagset, indicating semantic
confusion or label misuse during generation.
Overall, the results show that our method signif-
icantly reduces all types of errors compared to the
direct LLM-based generation method, with error
rates dropping by more than half on average. No-
tably, root and head errors see the most dramatic re-
duction. This highlights the effectiveness of incor-
porating prior syntactic knowledge and structure-
aware constraints into the LLMs syntax parsing
process. Our approach enables the LLMs to bet-
ter identify fine-grained sentence components and
construct more accurate dependency trees.

5 Conclusion

We propose a novel rethinking and collabora-
tive learning enhanced cross-lingual dependency
parsing approach to alleviate the data deviation
and weak alignment problem. Benchmark experi-
ments demonstrate that our approach consistently
improves cross-lingual dependency parsing per-
formance on both traditional models and LLMs,
leading to state-of-the-art results. Anin-depth com-
parison shows that traditional parser-based pseudo
samples are more effective on standard sentences,
while LLM-based ones are better on unofficial ones
since LLMs own stronger generation and reason-
ing capabilities. Furthermore, manual evaluations
confirm that LLM re-thinking is extremely useful
for combining the strengths of traditional parser-
based and LLM-based pseudo data, thus yielding
more accurate and higher-quality synthetic data.
Detailed analysis indicates that our collaborative
learning is extremely useful to align the linguistic
community across source and target languages.

Limitations

First, our experiments cover only a limited num-
ber of large language models. In addition, the exter-
nal knowledge for injecting large language models
is not comprehensive enough. We will supplement
the current shortcomings with in-depth research in
our further work.
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System Prompt

[Role] dependency parsing expert.

[Task] Chunk sentences into syntactic phrases (
5 words).

[Instructions]

* Single-line output, no explanations.
[Example]

Input: ABCDEF

Output: (NP A) (VP B) (NP CD) (PP E) (NP
F)

User Prompt
[Input] Andrea Maisi ...

[Output] (NP Andrea Maisi) ...

Table 6: Chunking Prompt Structure

A Appendix

A.1 Prompt Template in Aligned Trees
Generation

In this section, we provide the prompt templates
used in the Aligned Tree Generation. Table 6
presents the prompt used for chunking, where the
input sentence is segmented into syntactic phrases
with a maximum length of five words, each en-
closed in labeled brackets such as (NP ...), (VP ..),
etc. Table 7 shows the prompt designed for clause
identification, which extracts the main and sub-
ordinate clauses from the sentence in a structured
format. Finally, Table 8 illustrates the prompt used
to drive the first-round dependency tree genera-
tion using CoT reasoning. This prompt takes the
original sentence along with its chunked phrases
and clause structures as reference information and
guides the model to generate a simplified CoNLL-
U formatted dependency tree. All prompts empha-
size format consistency, strict input-output align-
ment, and eliminate unnecessary explanations to
ensure the model follows precise syntactic logic
during parsing.

A.2 Prompt Template in Synthetic Data
Optimization Based on LL.Ms

In this section, we present the prompt template
used in the Synthetic Data Optimization phase
driven by LLMs. As shown in Table 10, the prompt
guides the model to perform structured comparison
between the two trees, identify issues such as in-
correct head assignments or invalid dependencies,
and merge the strengths of both results to produce
a high-quality dependency tree. The final output
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System Prompt

[Role] dependency parsing expert.

[Task] Identify main and subordinate clauses in
sentences.

[Instructions]

e Qutput [Main Clause] and [Subordinate
Clause] separately.

e If no subordinate clause, only return [Main
Clause].

* No explanation, follow strict format.
[Example]

Input: AB  Output:
[Subordinate Clause]: B

[Main Clause]: A

User Prompt

[Input] Andrea Maisi ...
[Output] [Main Clause]:
[Subordinate Clause]: ...

Andrea Maisi...

Table 7: Clause Prompt Structure

must follow the simplified CoNLL-U format with
strict rules, including the presence of a single root,
use of standard dependency labels, and structural
validity of the tree.

A.3 Prompt Template in Fine-tuning

In this section, we present the fine-tuning tem-
plate as table 9. Specifically, we provide segmented
input sentences along with their corresponding an-
notated outputs. A similar template is used in the
final evaluation phase, where the outputs are gen-
erated by the large language model.



System Prompt

[Role] dependency parsing expert.

[Task] Parse the input sentence and output in
simplified CoNLL-U format.

[Reference Info]

* Raw sentence, Chunking, Clause structure,
Model info

[Reasoning]

1. Identify main verb as root.

2. Use chunking to verify phrase boundaries.

3. Build dependency tree.

4. Refine with external parser.

5. Output in final format.

[Output Rules]

* Use tab-separated fields.

* Single root per sentence.

* All dependencies must be labeled and acyclic.
[Format]

1. ID 2. Word
Relation

Only output the final CoNLL-U. No explana-
tion.
[Example]
Input: AB
[Sub Clause]: B

3. UPOS 4. Head 5.

Output: [Main Clause]: A

User Prompt

[Input]

[Raw] Andrea Maisi ...
[Reference Info] ...

[Output]

Table 8: Parsing Prompt Structure

System Prompt

[Role] dependency parsing expert.

[Task] Parse the segmented sentence into
CoNLL-U syntactic universal format.

[Example]
Input: Moéat \t hai \t cOanh tay \t ,

22

\t moeEt \ modit \t .

[Output]
1\tM oéat\tVERB \t 0\troot
2\thai \tNUM \t 3\tnummod

7\t .\tPUNCT \t 1\tpunct

Table 9: Example of fine-tuning

System Prompt
[Role] dependency parsing expert.

[Task] Analyze and compare two dependency
trees (from LLLM and traditional parser), then
output a final optimized tree in simplified
CoNLL-U format.

[Reference Info]

* Raw sentence, LLM parse, Traditional parser
parse, Parsing rules

[Reasoning Steps]

1. Preliminary Check: Examine both trees for
correctness in label usage, head selection, tree
integrity (non-cyclicity, single root).

2. Comparative Reasoning: Retain LLM outputs
when valid; use traditional parser results when
more linguistically accurate.

3. Final Synthesis: Merge the best parts of both
trees to produce a consistent, valid, high-quality
structure.

[Output Rules]

* Use tab-separated fields.

* Sentence must have exactly one root.

* Dependency labels must follow standard syntax
roles.

* Output must be acyclic and structurally valid.
[Format]

1. ID 2. Word
Relation

Only output the final CoNLL-U. No reason-
ing, no explanation.
[Example]

Input: [LLM Tree]: ...

3. UPOS 4. Head 5.

[Traditional Tree]: ...

User Prompt

[Input]

[Raw] Andrea Maisi ...
[LLM Tree] ...
[Traditional Tree] ...

[Output]

Table 10: Parsing Prompt Structure for Secondary Con-
templation
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