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Abstract

Irregular data in the real world are usually organized as heterogeneous graphs
consisting of multiple types of nodes and edges. However, current heterogeneous
graph research confronts three fundamental challenges: i) Benchmark Deficiency,
ii) Semantic Disalignment, and iii) Propagation Degradation. In this paper, we
construct a large-scale, universal, and joint multi-domain heterogeneous graph
dataset named UniHG to facilitate heterogeneous graph representation learning and
cross-domain knowledge mining. Overall, UniHG contains 77.31 million nodes
and 564 million directed edges with thousands of labels and attributes, which is
currently the largest universal heterogeneous graph dataset available to the best
of our knowledge. To perform effective learning and provide comprehensively
benchmarks on UniHG , two key measures are taken, including i) the semantic
alignment strategy for multi-attribute entities, which projects the feature description
of multi-attribute nodes and edges into a common embedding space to facilitate
information aggregation; ii) proposing the novel Heterogeneous Graph Decoupling
(HGD) framework with a specifically designed Anisotropy Feature Propagation
(AFP) module for learning effective multi-hop anisotropic propagation kernels.
These two strategies enable efficient information propagation among a tremendous
number of multi-attribute entities and meanwhile mine multi-attribute association
adaptively through the multi-hop aggregation in large-scale heterogeneous graphs.
Comprehensive benchmark results demonstrate that our model significantly out-
performs existing methods with an accuracy improvement of 28.93%. And the
UniHG can facilitate downstream tasks, achieving an NDCG@20 improvement
rate of 11.48% and 11.71%. The UniHG dataset and benchmark codes have been
released at https://github.com/Yide-Qiu/UniHG.

1 Introduction

Heterogeneous Graphs (HGs), also known as Heterogeneous Information Networks (HINs), consist
of multiple types of nodes and links. Compared to homogeneous graphs, the heterogeneity in
multi-attribute nodes and graph topology makes HGs carry richer semantics and be more suitable
to characterize a variety of complex real-world systems such as academic networks and social
networks. For this reason, methods that focus on representation learning on HGs have drawn
increasing attention in recent years, and have been applied to tackle numerous tasks in diverse
domains, including recommendation systems Gao et al. (2022); Wu et al. (2022), malware detection
systems Zhang et al. (2022a), and healthcare systems Cao et al. (2022).
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Table 1: Statistics for the proposed UniHG and other heterogeneous graph datasets.

Datasets #Nodes #Node Types #Edges #Edge Types #Task #Labels #Domain

ACM 10,942 4 547,872 8 Node Level 3 Citation
IMDB 21,420 4 86,642 6 Node Level 5 Recommendation
DBLP 26,128 4 239,566 6 Node Level 4 Citation

LastFM 20,612 3 141,521 3 Edge Level 2 Social Network
PubMed 63,109 4 244,986 10 Edge Level 2 Medicine

Freebase-book 180,098 8 1,057,688 36 Node Level 7 Recommendation
Amazon Review 102,699,417 2 571,544,897 2 Node Level 33 Recommendation

MAG240M 244,160,499 3 1,728,364,232 3 Node Level 153 Citation
UniHG (ours) 77,312,474 1 564,425,621 2,082 Node Level 74,666 Universal

Existing HG-related works involve both the construction of HG datasets and the design of effective
learning methods, where an encyclopedic HG dataset may be especially crucial to promote HG
learning. Regarding HG dataset construction, previous studies Tang & Liu (2009); Ma et al. (2011);
Sun et al. (2011a); Cantador et al. (2010); Sen et al. (2008) focus on constructing small-scale or
domain-specific HG datasets. For instance, IMDB, which contains 10,942 nodes, is a small-scale
recommendation system dataset. While MAG240M, despite containing more than 244 million nodes,
only encompasses three types of nodes and edges. For the learning methods on HGs, existing
approaches can be categorized into aggregation-based methods Hu et al. (2020b); Veličković et al.
(2017); Hong et al. (2020); Yang et al. (2021) and meta-path-based methods Wang et al. (2020); Huang
et al. (2016); Sun et al. (2011b); Chang et al. (2022), depending on how they capture semantic structure.
Aggregation-based methods primarily focus on iteratively aggregating multi-hop neighbor information
from sampled subgraphs to understand heterogeneous topological characteristics. Moreover, meta-
path-based methods aim to explore representative patterns from multiple sampled meta-paths to learn
heterogeneous topological representations. For more detailed expositions on related work, please
refer to Appendix B.
Although existing works on HGs have achieved notable successes, there are still several challenges
to be addressed. One critical issue is the lack of a large-scale universal HG dataset that can express
comprehensive real-world knowledge. For existing HG datasets, the types of entities and relationships
are rather limited, which greatly limits their capacity to facilitate heterogeneous graph representation
and abundant real-world knowledge extraction. Additionally, there remains a deficiency of methods
that are both effective and efficient on large-scale universal HG. The process of sampling and
aggregating subgraphs of existing aggregation-based methods usually leads to the loss of topology
information or the introduction of additional processing times when dealing with large-scale HGs with
numerous relations. Similarly, as the number of association types increases, the quantity of meta-paths
can grow exponentially, which results in these methods facing challenges in accurately perceiving
heterogeneous topology. Therefore, there is an urgent need for a large-scale universal HG dataset that
encompasses sufficient types of real-world entities and relations, along with comprehensive effective
benchmarks.
To address the aforementioned challenges and provide the comprehensive benchmark, we propose
a novel universal HG dataset, UniHG, along with a corresponding learning method called Hetero-
geneous Graph Decoupling (HGD). The overall pipeline is illustrated in Figure 5. The proposed
dataset is constructed by extracting a vast number of multi-attribute entities and relations from
Wikidata contributors (2024). Specifically, UniHG comprises more than 77.31 million nodes and
564 million directed edges with 2082 diverse association types. To enable effective learning on such
a large-scale HG dataset, two key strategies are employed. i) we introduce a semantic alignment
strategy, projecting the feature descriptions of multi-attribute entities and relations from Wikidata
into a common HG embedding space. ii) we propose a novel HGD framework with a specially
designed Anisotropic Feature Propagation (AFP) module for learning effective multi-hop anisotropic
propagation kernels. These strategies enable efficient representation learning and comprehensive
benchmark on large-scale universal HGs. We conduct extensive benchmark on UniHG using HGD
and eight existing baseline methods. The experimental results demonstrate that our proposed HGD
achieves state-of-the-art performance and is approximately 22.1 times faster than existing methods.
Furthermore, we transfer the universal knowledge learned from UniHG to recommendation tasks.
The corresponding experiments validate the effectiveness of generalizing to graph downstream tasks.
Our contributions can be summarized as follows:
1) We construct a large-scale universal heterogeneous graph dataset, UniHG, to support HG learning.
Compared to existing HG, UniHG provides an advantage in universal knowledge representation.
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Figure 1: Overall architecture of UniHG construction. We describe this process by the example
of phones and tablets. First, all structured information is fed into a text reorganization module. It is
organized into paragraphs with a consistent structure. Then, the effective attributes of entities are
processed through a pre-trained language model to derive their node representations. On the top
of the figure, the ‘instance of’ relation is used to generate node labels via a label cluster mapping
module. Other relations are transformed into directed edges by the graph builder. In the quality
evaluation at the bottom of the figure, we record four metrics to evaluate UniHG.

2) We propose the novel Heterogeneous Graph Decoupling (HGD) framework, featuring a specially
designed Anisotropic Feature Propagation (AFP) Module for efficient learning on large-scale HGs.
3) Comprehensive benchmark validates the effectiveness of the proposed UniHG and HGD models,
as well as the transferability of universal knowledge from UniHG.

2 UniHG Construction

2.1 Overview

In this section, we introduce the construction of the large-scale universal graph dataset, Universal
Heterogeneous Graph (UniHG), including the construction process, data statistics, and dataset
evaluations. We adhere to the principle of semantic maximization and follow an automated pipeline
of ‘Entity/Relation Extraction and Filtering - Semantic Alignment - Node Annotation’. Firstly,
compare to Wikidata, the key differences are summarized as follows: i) Structural Differences:
Publicly available Wikidata consists of entities and relationships represented by structured text,
rather than an explicit graph structure. In contrast, UniHG is a large-scale, universal heterogeneous
graph dataset, constructed through comprehensive processing and manual refinement. ii) Application
Scenario Differences: Wikidata is primarily utilized for knowledge retrieval tasks and is not designed
for graph learning. Conversely, UniHG is specifically tailored for graph neural network research,
supporting learning on large-scale heterogeneous graphs. iii) Storage Overhead Differences:
Wikidata, comprising structured text, results in a complete JSON storage file exceeding 1.7TB.
This massive size limits its wide applicability for deep learning. In contrast, UniHG is constructed
using low-dimensional dense node feature tensors. The complete feature tensor matrix requires only
37.52GB, significantly reducing the storage overhead and making it more suitable for broad use.
In summary, UniHG is a large-scale, cross-domain, multi-attribute universal heterogeneous graph
containing 77,312,474 nodes and 564,425,621 directed edges of 2,082 different types. Please see
Figure 1 and Table 6 for the overall architecture and statistics of UniHG construction.

2.2 Entity/Relation Extraction
Extracting semantically enriched entities and relationships from the vast web-scale knowledge graph
is a critical step in UniHG construction. However, mining the valuable attributes of each entity
from billions of intricately structured data entries in Wikidata presents a formidable challenge.
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Format of Entities: Feature node. ID: <Content>; Label: <Label content>; Description: <Description
content>.
Example: Feature node. ID: Q31; Label: Belgium; Description: Country in western Europe.
Example: Feature node. ID: Q34660; Label: J. K. Rowling; Description: British author and philan-
thropist (born 1965).

To address this hurdle, we design a standardized extraction format to capture textual depiction
of each entity and relation, which aims to excavate and synthesize textual descriptions capable of
comprehensively portraying entities with semantic attributes. Furthermore, Wikidata hosts a multitude
of semantically inconsequential links, such as ‘external-ids’, which need to filtrate. While other
associations deemed semantic will be integrated into UniHG as typed directed edges. The formats for
entity and relationship extraction and illustrative examples are presented.

Format of Relations: Feature edge. Triplet: <Content>; Label: <Label content>; Description:
<Description content>.
Example: Feature edge. Triplet: <Q31, P1344, Q1088364>; Label: Participant in; Description: Q31
Participant in Q1088364.
Example: Feature edge. Triplet: <Q34660, P800, Q8337>; Label: notable work; Description: Q34660
notable work Q8337.

2.3 Semantic Alignment
Consistent text structure and common representation space benefit language model understanding
and training. Thus we design a text structure reorganization-based alignment strategy, so that entities
with different text structures and associations can be embed into a common representation space.
Considering the fragmentation and disordering of information extraction, the textual features of
nodes are described as a ordered sentence with a specific structure ‘<entity info>, <relationship1
info>, <relationship2 info>, ... ’. The ‘<entity info>’ is represented as ‘Label be Description’ and
<relationship info>denotes the corresponding relational Description. In this way, each entity is
automatically organized into a consistent structure of feature descriptions. We depict each node using
entity description and related relationship descriptions rather than relying solely on single words.
This approach aggregates local semantics at the text level and mitigates the problems of synonymy
and polysemy. Then, the CLIP Radford et al. (2021) text encoder is used to projects the feature
descriptions of all entities and relations into a common representation space. Through consistent
textual structure and text embedding extractor, we align the feature space of each nodes and edges.

Text Structure of Nodes: <Entity info>, <Relation1 info>, <Relation2 info>, ...
Example: Belgium be Country in western Europe. Belgium Participant in Battle of The Lys...
Example: J. K. Rowling be British author and philanthropist (born 1965). J. K. Rowling notable work
Harry Potter...

2.4 Node Annotation Consolidation
The dataset requires precise annotation and verification. Firstly, we observe that Wikidata utilizes
the ‘instance of (P31)’ property to represent entity annotations. However, these annotations are
often overly redundant, such as ‘fictional character’, ‘conceptual character’, ‘fictional character in a
musical work’, and ‘imaginary character’. Such synonym redundancy may confuse the distribution
of label semantics with feature semantics, potentially misleading model training. Furthermore, there
are a total of 74,666 annotations in Wikidata, leading to exceedingly long predicted probability
vectors, which introduces significant computational overhead and hinders model convergence. To
construct the training labels for UniHG, we adopt a strategy combining a ‘self-supervised clustering
algorithm and a large language model’, and invest significant human resources for annotation checks.
Specifically, we design a label clustering and mapping module to consolidate highly similar categories.
The process is as follows: i) (extract text representation) we use the text encoder from CLIP Radford
et al. (2021) to extract the text representations of the original labels. ii) (representation cluster)
these representations are then clustered in a self-supervised manner into several label clusters. iii)
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Products Recommendation
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Fraud Detection
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“Research has found that this 
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Figure 2: Comparison between isolated datasets and universal datasets. For example, according to
the ‘Research has found that this Cat possess this characteristic due to two specific gene.’ in Wikidata,
we can construct a new universal relationship among a citation in the Citation Recommendation
dataset, a cat in the Species Classification dataset, and a gene fragment (as well as a gene fragment
outside of the dataset) in the Genomic Analysis dataset.

(text-to-text generation) the textual descriptions of the label clusters are generated using GPT-4.0
based on the text of the original labels. Subsequently, we manually verify the mapping relationships
between the original and cluster labels. In this process, 37 researchers are hired, each reviewing 150
mapping relationships at a rate of $1 per relationship. Each mapping is checked by at least three
researchers. A mapping is consider correct if all manual checks are positive; otherwise, it is flagged
for further review and correction by additional researchers. This process follows a standard dataset
construction protocol Ratner et al. (2016), and the number of cluster can be further adjusted based on
manual verification. After multiple iterations of the label clustering and mapping module, the 74,666
labels are consolidated into 2,000 cluster labels, serving as the supervisory signal for representation
learning. As a result, each node is annotated with two vectors (one is the original multi-label vector
with size R1×74666 and another is the training multi-label vector with size R1×2000), and each edge
is annotated with a vector of size R1×2082, where 2,082 corresponds to the number of relation types
in Wikidata. Additional annotation details, including original labels, mapping examples, verification
logs, and GPT prompts, are provided in the Anonymous GitHub link.

2.5 Quality Evaluation
To evaluate the quality of UniHG, we conduct a comprehensive evaluation of the following aspects:
i) Category distribution of entities in UniHG. ii) Word cloud visualization of the original label texts.
The top three frequently occurring words are ‘compounds’, ‘occurrence’, and ‘genre’. iii) Numerical
statistics of UniHG and its two subsets. iv) Four dataset statistical metrics. The Entities Coverage
Rate is quantified at 0.73, indicating that UniHG includes most of the entities in Wikidata. The
Relations Coverage Rate is 0.19, due to 63% of the relations are external-ids types. And the Labels
Coverage Rate stands at 0.87, indicating that the scope of knowledge approximates the Wikidata.
Furthermore, the Edges Homophily Rate is computed to be 0.58. Please see Figure 3 for these
statistics.

2.6 Visualization of Comparison with Isolated Datasets
A comparative analysis between UniHG and existing domain-specific datasets (referred to as isolated
datasets). Figure 2 illustrates that, in contrast to existing isolated datasets, UniHG leverages the
multi-attribute associations of cross-domain entities sourced from Wikidata. These associations serve
as bridges connecting disparate isolated datasets, thereby facilitating the establishment of meaningful
relationships between entities spanning diverse domains. This integration of rich cross-domain
associations transcends the constraints of existing isolated datasets, thereby offering significant
support for the future research.
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(a) (b) (c)

Figure 3: (a) The statistics of UniHG, (b) the word cloud figure of label texts, and (c) the four
statistical indicators of UniHG-full.

2.7 Dataset Update
Frequent whole graph updates to UniHG may require high overhead. To update the text embeddings,
we design the following update strategy: i) Adding a New Node/Edge: The UniHG construction
process allows direct updates using the extraction module and the frozen language model. For
pre-trained node embeddings, only embeddings within a 2-hop neighborhood of the new node/edge
need to be updated, which reduces the update cost. ii) Updating a Large Number of Nodes or Edges:
A global update of UniHG is performed when necessary. On a single RTX 4090 GPU, a global update
takes approximately 70 hours.

3 Heterogeneous Graph Decoupling

Figure 4: Distribution of node categories of UniHG.

To provide comprehensive benchmark on
large-scale universal heterogeneous graphs,
we further propose a novel representation
learning framework, Heterogeneous Graph
Decoupling (HGD), for effectively learn-
ing the multi-attribute representation of con-
structed UniHG. This framework primar-
ily consists of two processes: train-free
anisotropic feature propagation and graph-free
feature mapping. Specifically, the anisotropic
feature propagation is designed to embed
multi-attribute structural information into
multi-hop propagation features. This enables
the feature mapping learning of information-
rich multi-hop propagation features to approx-
imate full graph convolution in the neighbor-
hood direction. Please see Appendix A for the
complete notation.
Anisotropic Feature Propagation We firstly present the definition of one-hop anisotropic feature
propagation: propagating one-hop messages in advance along distinct heterogeneous edges in CPU
without trainable parameters, which can be extended to multi-hop propagation accordingly.

Specifically, for a given heterogeneous graph G = (V, E), where V and E represent the sets of nodes
and edges, respectively. Each node vi ∈ V and each edge ei ∈ E is associated with only one specific
type. Assuming that heterogeneous graph’s node and edge information can be mapped into the
common space, the adjacency matrix A ∈ RN×N can be represented as a relation-aware adjacency
matrix Â ∈ RN×N×d. Therefore, the paradigm of anisotropic feature propagation can be formulated
as:

Z = δ([X|C1|C2| . . . |CK ]), (1)

where K is the number of anisotropic feature propagation steps. For each hop k ∈ [1,K], Ck ∈
RN×d denotes the anisotropic propagation matrix of the k-th hop. The function δ encompasses both
learning and non-learning aggregation schemes for multi-hop features. The propagation of each hop
can be formulated as an iterative function f(·). Thus, we have Ck+1 = f(Â,Ck) and C0 = X,
where X is the input node feature matrix. To accelerate this process in parallel on large-scale graphs,
we first upgrade the dimension of each C as follows: Ĉi, j, · = Ci, · for all i, j ∈ 1, 2, . . . , n. Then
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Table 2: Results of comparison experiments on UniHG-1M, UniHG-10M, and UniHG-full. Our
proposed method HGD and the best performances are highlighted in bold.

Methods Param. UniHG-1M UniHG-10M UniHG-full

Accuracy Recall F1 score Accuracy Recall F1 score Accuracy Recall F1 score

GCN Chen et al. (2018) 1.48M 23.68 25.26 21.89 22.86 25.66 23.19 26.72 24.19 23.26
GAT Veličković et al. (2017) 1.49M 29.12 34.02 27.76 33.73 37.48 29.88 31.02 35.07 26.92

HGT Hu et al. (2020b) 411M 51.28 55.30 51.55 52.09 56.52 53.03 55.36 61.91 56.47
MTMP Pei et al. (2024) 2.36M 47.52 47.48 60.79 59.95 61.33 72.81 65.67 66.15 67.74
SGC Wu et al. (2019) 0.61M 42.56 42.11 55.12 56.32 57.78 67.95 62.15 63.88 73.21

SIGN Frasca et al. (2020) 1.73M 56.73 55.54 69.41 73.58 84.17 80.30 69.04 70.49 81.48
GAMLP Zhang et al. (2022c) 0.64M 44.55 43.74 56.92 59.47 61.32 70.02 64.23 66.05 74.34

HGD (ours) 1.51M 75.41 75.95 82.64 89.03 90.11 93.05 93.16 93.83 96.09

we propose to utilize the Dimension Adaptive Tensor Product Gerstner & Griebel (2003) to compute
f(Â, Ĉk), which can be formulated as:

Hk+1 = f(Â, Ĉk) = Â×2 Ĉ
k, (2)

where ×2 denotes the adaptive tensor product along the second dimension. The Hk+1 represents the
message passing matrix along edge features for each node. Considering the adaptive information ag-
gregation for in-degree messages, we apply a row-wise softmax function along the second dimension
of Hk+1, followed by an l2-norm on the vectors in the third dimension:

Ck+1 = Softmax(||Hk+1||2). (3)

Finally, the k-hop representation can be obtained through Zk = ζk(Ck), where the ζ represents a
MLP encoder. AFP module’s convergence upper bound can be proved as:

∥Ck −C∗∥F =
Lk

1− L
∥C0 −C1∥F , (4)

where C∗ is a unique fixed point. Please see the C.1 for detailed derivation.

Graph-free Feature Mapping The feature mapping process aims to learn effective representations
from multi-hop propagation features. Considering each node may pay different attention to multi-hop
features, we introduce a hop-wise attention mechanism. This mechanism computes the weighted
sum of multi-hop representations with the diagonal attention matrix Sun et al. (2020) to adaptively
aggregate multi-hop information, which reduces the dependence on graph topology information and
can be approximated as graph-free mapping. This process can be formalized as:

Zout = ξ(
∑K

k=0Θ
kZk + XWr), (5)

where ξ denotes an encoder with a step connection matrix Wr, Θk represents the k-th diagonal
attention matrix. To effectively learn the probability distribution of nodes across multi-labels, the
widely used Binary Cross-Entropy (BCE) loss is employed as the learning objective:

L = − 1

N

N∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)] , (6)

where N is the number of nodes, yi and ŷi denote the ground truth label vector and the predicted
label vector of node i. Please see the appendix C.3 for the spatiotemporal complexity analysis.

4 Experiments
The experimental section evaluates the potential of HGD framework and the transfer effectiveness of
UniHG dataset by answering the following questions: Q1: How does the proposed HGD effectively
learn node representations on such a large-scale heterogeneous graph? Q2: How does anisotropic
feature propagation affect GNN performance? Q3: How much are the spatial cost and temporal
cost of the decoupling framework on UniHG? Q4: How does the universal knowledge in UniHG
facilitate downstream graph tasks? By answering these questions, we validate the capability of
HGD in addressing large-scale heterogeneous graph representation learning tasks and the significant
potential of transferring universal knowledge of UniHG to enhance various downstream graph tasks.
Please see Appendix D for more experiments and training details.
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Table 3: Results of the ablation experiments of AFP module on UniHG-1M, UniHG-10M,
and UniHG-full. ‘-AFP’ means ‘using the pre-calculated feature of AFP module’ and the better
performances are highlighted in bold.

Methods UniHG-1M UniHG-10M UniHG-Full

Accuracy Recall F1 score Accuracy Recall F1 score Accuracy Recall F1 score

SGC 42.56 42.11 55.12 56.32 57.78 67.95 62.15 63.88 73.21
SGC-AFP (ours) 44.18 42.75 57.65 64.25 65.21 76.67 69.84 71.40 81.45

SIGN 56.73 55.54 69.41 73.58 84.17 80.30 69.04 70.49 81.48
SIGN-AFP (ours) 66.69 65.27 77.16 77.52 80.18 81.38 75.45 76.42 85.71

GAMLP 44.55 43.74 56.92 59.47 61.32 70.02 64.23 66.05 74.34
GAMLP-AFP (ours) 47.24 46.80 60.85 60.99 62.70 73.38 72.89 74.95 83.51

Datasets Overall, we utilized six datasets, including UniHG-1M, UniHG-10M, and UniHG-full for
multi-label node classification tasks, and Amazon Book, Yelp2018, and Citeulike-a for downstream
recommendation tasks (knowledge transfer experiments). UniHG-1M and UniHG-10M are subsets
of UniHG. These subsets are created by applying Snowball Sampling Goodman (1960) to sample
over 1 million nodes or 10 million nodes from UniHG. Table 6 shows the statistics of the three scales
of UniHG. Each UniHG dataset is randomly split into training, validation, and test sets with a ratio of
8:1:1.

Evaluation Metrics For the multi-label node classification task, we employ the popular metrics such
as ‘Accuracy’, ‘Recall’, and ‘F1 Score’. Specifically, we use ‘Subset Accuracy’ as ‘Accuracy’ metric,
which measures the proportion of nodes for which the predicted labels exactly match the ground
truth labels. For the recommendation task, we utilize widely-used metrics including ‘Precision@20’,
‘Recall@20’, and ‘NDCG@20’ (Normalized Discounted Cumulative Gain).

4.1 Node Classification Tasks for UniHG
Experiment Setting To answer Q1-Q3, we conduct experiments using HGD and various baseline
methods on the semi-supervised multi-label node classification task on UniHG. Specifically, we
evaluate three different scales of UniHG: UniHG-1M, UniHG-10M, and UniHG-full. UniHG-1M
and UniHG-10M are subsets of UniHG, constructed by applying Snowball Sampling Goodman
(1960) to sample over 1 million and 10 million nodes, respectively. Table 6 provides the statistics for
these three scales of UniHG. For baseline methods, we employ three convolution-based methods:
GCNChen et al. (2018), GATVeličković et al. (2017), and HGTHu et al. (2020b), as well as three
decoupling-based methods: SGCWu et al. (2019), SIGNFrasca et al. (2020), and GAMLPZhang
et al. (2022c). Please see Appendix D.2 for the discussion of other two baselines.

Experiment Analysis From the results shown in Tables 2, Tables 3 and Figure 7 in Appendix, we
have the following observations: i) (for Q1) The proposed HGD outperforms all baseline methods on
all three scales of UniHG, indicating that HGD can effectively learn representations from large-scale
heterogeneous graphs, which are typically challenging for GNNs. ii) (for Q2) AFP successfully
enables decoupled methods to perform effectively on all scales of UniHG. All backbone models with
the anisotropic feature propagation module perform well on UniHG. This suggests that anisotropic
decoupling allows multi-attribute relational features to be well-aggregated into node features. Meth-
ods that can learn multi-hop features more thoroughly may have the potential to further improve
performance. We believe the effectiveness of AFP requires further investigation and leave it to our
future works. iii) (for Q3) The HGD framework achieves more better balance between computational
efficiency and model performance. Although GCN and GAT infer faster due to fewer parameters,
their performance is poorer across all dataset scales. This may be due to feature distribution biases on
both each relation subgraphs and batch subgraphs. HGT incurs significant computational overhead,
which may be due to the storage and learning of multi-head attention parameter matrices for each
relation, which hinders its learning on UniHG. In contrast, the fast approximate tensor product
implementation in AFP exhibits few overheads. Graph-free feature mapping is simpler and faster
than multi-head attention learning for each relation, making the inference speed of HGD over 22.1
times faster than HGT. For the current experiments, we have compared classic and effective methods,
such as traditional graph convolution methods (GCN and GAT) and graph decoupling methods (SGC,
SIGN, and GAMLP). Due to the classical nature of computational theory, these methods can serve as
representatives of the series of network architectures. Please see Appendix D.2 for discussions on
other methods (ieHGCN Yang et al. (2021), SeHGNN Yang et al. (2023) and HINormer Mao et al.
(2023)), where ieHGCN and SeHGNN represent a series of meta-path based methods.
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Table 4: Results of knowledge transfer experiments on recommendation system. The ‘Method-UniHG’
means performance improvement ratio of using universal knowledge from UniHG-full on Amazon-
book, Yelp2018, and Citeulike-a.

Methods Amazon-book Yelp2018 Citeulike-a

Precision@20 Recall@20 NDCG@20 Precision@20 Recall@20 NDCG@20 Precision@20 Recall@20 NDCG@20

LightGCN 0.01716 0.06191 0.04106 0.00433 0.01123 0.00849 0.02329 0.07188 0.05064
LightGCN-UniHG +2.797% +1.712% +0.803% +6.467% +7.925% +5.535% +3.521% +3.116% +1.935%

NGCF 0.01115 0.04530 0.02805 0.00374 0.00958 0.00725 0.01570 0.04374 0.03168
NGCF-UniHG +3.139% +4.327% +4.528% +13.636% +12.735% +11.310% +4.713% +8.802% +6.787%

CSCF 0.01540 0.06278 0.04142 0.00318 0.00596 0.00533 0.03992 0.11455 0.09264
CSCF-UniHG +14.675% +17.776% +27.764% +6.918% +31.543% +9.005% +0.601% +1.422% +1.759%

PSCF 0.01536 0.06333 0.04247 0.00239 0.00475 0.00412 0.04119 0.11618 0.09437
PSCF-UniHG +15.169% +17.116% +21.427% +7.531% +5.684% +7.282% +0.048% +3.408% +3.157%

JSCF 0.01899 0.07694 0.05477 0.00333 0.00661 0.00521 0.03770 0.11094 0.08975
JSCF-UniHG +1.421% +1.546% +2.921% +19.365% +29.728% +25.432% -1.405% +0.252% +1.225%

Table 5: The average Recall and NDCG performance improvement rates after universal and domain-
specific knowledge transfer. Bold represents better improvement.

Methods Amazon-book Yelp2018
Recall@20 NDCG@20 Recall@20 NDCG@20

KGAT Wang et al. (2019a) +8.95% +10.05% +7.18% +5.54%
UniHG +8.46% +11.48% +17.52% +11.71%

4.2 Recommendation Tasks for Knowledge Transfer

Experiment Setting To answer the Q4, we design a knowledge transfer scenario ‘pre-training,
retrieval of knowledge embeddings, self-supervised learning objectives’ for UniHG and downstream
tasks. Amazon-Book, Yelp2018, and Citeulike-a are used as downstream task datasets which
inject universal knowledge. Specifically, we employ HGD to pre-train all node representations.
Subsequently, multiple pre-trained knowledge embeddings will be retrieved for each item of the three
downstream datasets. These embeddings will be considered as additional self-supervised signals
in the recommendation tasks. For embedding retrieval, we collect raw text data of Amazon-Book,
Yelp2018, and Citeulike-a. However, due to incomplete coverage of text data, performance might
differ from other reported results. To ensure a fair comparison, we adopt the settings from He et al.
(2020) for the Amazon Book and Yelp2018 datasets, and from Bogers & Van den Bosch (2008) for
the CITEULIKE-a dataset. Please see Table 6 for the statistics of these datasets.

Experiment Analysis Table 4 and Table 5 show that: (i) The performance of all collaborative
filtering methods improves with the introduction of universal knowledge. This indicates that universal
semantic representations and out-domain interaction information between users and items can benefit
downstream recommendation tasks. (ii) Compared to the domain-specific knowledge transfer ap-
proach employed by KGAT Wang et al. (2019a), UniHG achieves higher average recall enhancement
and greater average NDCG improvement rates on both the Amazon-Book and Yelp datasets. This
observation suggests that universal knowledge transfer may outperform domain-specific knowledge
transfer due to the semantic consistency across domains. For instance, in a recommendation system,
a new buyer without prior purchase history in a specific domain poses a challenge to domain-specific
algorithms due to the ‘cold start’ problem Yin & Luo (2021). However, leveraging universal knowl-
edge from additional prior information (e.g., user experience, profiles, or identity) may enhance
preliminary recommendations. This implies that universal knowledge may provide more comprehen-
sive information, which is often missing in domain-specific knowledge. We believe that to further
tackle the task of cross-domain knowledge transfer, fostering the interaction between universal and
domain-specific knowledge could be a promising research direction. This ‘one for all’ approach to
universal knowledge transfer requires further exploration and remains the focus of our future work.

5 Conclusion
The absence of standardized evaluation protocols for large-scale universal heterogeneous graph
analysis motivates our construction of UniHG – the first encyclopedic HG benchmark spanning multi-
domain knowledge through a semantics-optimized automated pipeline. To address the representation
learning challenges posed by UniHG’s scale and attribute heterogeneity, we propose HGD, a frame-
work featuring adaptive anisotropic feature propagation that dynamically adjusts propagation weights.
Extensive benchmarks demonstrate the superiority: i) It achieves 24.1% accuracy gain on billion-edge
subgraphs; ii) The learned representations show exceptional cross-domain adaptability, facilitating
recommendation systems (11.4% NDCG gain) and link prediction (3.1% Acc. improvement) tasks
through universal knowledge transfer.
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A Notation

A graph can be defined as G = (V, E), in which V and E represent the sets of nodes and edges,
respectively. Each node vi ∈ V and each edge ei ∈ E is associated with a only one specific type.
Formally, a heterogeneous graph (or heterogeneous information network) can be defined as follows:

G = (V, E ,A,R, ϕv, ϕe),

where:

• V = {v1, v2, . . . , vN} denotes the set of nodes, and N is the total number of nodes.

• E = {eij} denotes the set of directed edges between nodes.

• A = {a1, a2, . . . , aQ} is the set of node classes, and Q is the total number of node types.

• R = {r1, r2, . . . , rM} is the set of edge types, and M is the total number of edge types.

• ϕv : V → {a1, a2, . . . , aQ} represents the node labeling function that maps entities to their
corresponding classes.

• ϕe : E → {r1, r2, . . . , rM} represents the edge type function that maps edges to their
corresponding types.

B Related Work

In this section, we review the previous works about HG datasets, then introduce works related to
representative GNN methods.

B.1 Heterogeneous Graph datasets

Various elevant works have been proposed Sharma et al. (2022); Chen et al. (2023); Ahrabian et al.
(2023); Jang et al. (2022); Zhang et al. (2019) to construct domain-specific HG datasets, with the aim
of facilitating research in the relevant fields. For instance, in the field of computer science, ACM Tang
& Liu (2009) and DBLP Sun et al. (2011a) are utilized for classification tasks by leveraging computer-
related literature information. IMDB Ma et al. (2011) is a movie dataset composed of information such
as movies, actors, directors, and more. Its objective is to predict movie genre labels. LastFM Cantador
et al. (2010) is a dataset sourced from the online music platform Last.fm, comprising users, artists,
and artist tags, utilized for tasks such as link prediction. PubMed Sen et al. (2008) serves as a
benchmark dataset for assessing heterogeneous graph embedding within biomedical literature, aiding
researchers in gaining deeper insights into the heterogeneity of literature within the PubMed database.
On the other hand, there are large-scale datasets such as Microsoft Academic Graph (MAG). The
MAG is a heterogeneous graph containing records of scientific publications, consisting of billions of
nodes and edges, making it at least an order of magnitude larger than the other CS (e.g., DBLP) and
Med (e.g., Pubmed Kipf & Welling (2016)) academic datasets that are commonly used in existing
heterogeneous GNN and heterogeneous graph mining studies. MAG provides a rich data resource for
academic research and data-driven scientific analysis.

B.2 Graph Neural Networks Methods

In recent years, HG methods are given more attention and can be divided into two categories. On one
hand, meta-path-based methods have achieved success. Meng et al. Meng et al. (2015) pioneers the
exploration of meta-paths to uncover meaningful patterns and dependencies in the graph structure.
With the advent of GNNs, researchers integrate meta-path information into the learning process.
Approaches such as MAGNN Fu et al. (2020) leverage GNN architectures to effectively propagate
information along meta-paths, enabling the model to learn intricate patterns. On the other hand,
aggregation-based methods Hu et al. (2020b); Veličković et al. (2017); Hong et al. (2020); Yang et al.
(2021) for large-scale HGs employ sampling strategies similar to homogeneous graphs for aggregating
each sampled subgraph. For instance, HGT Hu et al. (2020b) sets up multi-head transformers for
modeling complex relationships between different node types on each relation. GAT Veličković
et al. (2017) proposes to capture associations between different types through node-level attention
mechanism. ieHGCN Yang et al. (2021) adopts the GCN framework and introduces inductive
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neighbor sampling to enhance scalability on large-scale graphs. Meanwhile, HetSANN Hong et al.
(2020) utilizes self-attention mechanisms to flexibly adjust the weights of node representations.

In contrast, our dataset is large-scale and generic-domain, and our method can adaptively mine
multi-attribute association relationships without repeated sampling, achieving higher performance
while reducing overhead.

C Theoretical Analysis

C.1 Convergence Analysis of AFP

Consider the iterative propagation process:

Ck+1 = Softmax
(
∥Â×2 Ĉ

k∥2
)
, (7)

where the Â ∈ RN×N×d is the relation-aware adjacency tensor, the ×2 denotes the tensor product,
and the Ĉk ∈ RN×N×d is the expanded feature tensor at step k.

Assume that the anisotropic feature propagation obeys the following theorem:

1. Lipschitz Continuity: The propagation operator f(Â,Ck) is L-Lipschitz continuous (L <
1):

∥f(Â,Ck)− f(Â,Ck−1)∥F ≤ L∥Ck −Ck−1∥F , ∀k ≥ 1, (8)

2. Normalized Adjacency Tensor: Each frontal slice Â:,:,i satisfies:

∥Â:,:,i∥2 ≤ 1, ∀i ∈ {1, ..., d}. (9)

Under the above propagation process and assumptions, we can derive the convergence upper bound
of AFP.

Theorem 1 (Convergence Upper Bound) Under the above assumptions. the iterative sequence
Ck converges exponentially to a unique fixed point C∗ with:

∥Ck −C∗∥F ≤ Lk

1− L
∥C0 −C1∥F (10)

Proof For the relation-aware adjacency tensor Â ∈ RN×N×d, each relation slice satisfies:

∥Â:,:,m∥2 ≤ γ <
1√
2
, ∀m ∈ {1, . . . , d}, (11)

where γ is a predefined spectral radius upper bound. Using the submultiplicativity of Frobenius norm,
we have:

∥Â×2 Ĉ
k∥F ≤

d∑
m=1

∥Â:,:,mĈk
:,:,m∥F ≤

d∑
m=1

∥Â:,:,m∥2∥Ĉk
:,:,m∥F ≤ γ∥Ĉk∥F . (12)

Then the linear propagation component Hk+1 = Â×2 Ĉ
k satisfies:

Llinear ≜ sup
Ĉ̸=Ĉ′

∥Â×2 (Ĉ− Ĉ′)∥F
∥Ĉ− Ĉ′∥F

≤ γ. (13)

Based on the L2-Norm Non-expansiveness lemma, for any tensors H,H′ ∈ RN×N×d, we have:

∥∥H∥2 − ∥H′∥2∥F ≤ ∥H−H′∥F . (14)

The composite nonlinear operation ϕ(H) = Softmax(∥H∥2) satisfies:

Lnonlinear ≜ sup
H̸=H′

∥ϕ(H)− ϕ(H′)∥F
∥H−H′∥F

≤
√
2, (15)
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∥ϕ(H)− ϕ(H′)∥F ≤
√
2∥∥H∥2 − |H′∥2∥F ≤

√
2∥H−H′∥F . (16)

Then the complete propagation operator f(Â,Ck) = ϕ(Â×2 Ĉ
k) satisfies:

Ltotal ≤ Lnonlinear · Llinear ≤
√
2γ, (17)

which constitutes a contraction mapping when γ < 1√
2

. Using the composition property of Lipschitz
constants:

∥f(Ck)−f(C
′k)∥F ≤ Lnonlinear∥Â×2(Ĉ

k−Ĉ
′k)∥F ≤ LnonlinearLlinear∥Ĉk−Ĉ

′k∥F ≤
√
2γ∥Ck−C

′k∥F
(18)

Thus for any k ≥ 1, we have:

∥Ck+1 −Ck∥F = ∥f(Â,Ck)− f(Â,Ck−1)∥F ≤ L∥Ck −Ck−1∥F , (19)

where the f(·) forms a contraction mapping with factor L < 1. By Banach Fixed-Point theorem,
there exists a unique C∗ such that C∗ = f(Â,C∗). Thus, for any k ≥ 0, we have:

∥Ck −C∗∥F ≤
∞∑
i=k

∥Ci −Ci+1∥F ≤
∞∑
i=k

Li∥C0 −C1∥F =
Lk

1− L
∥C0 −C1∥F . □ (20)

C.2 Theoretical Guarantees for Heterogeneous Graphs

Considering the stability under edge perturbations, let ∆A be a perturbation to the adjacency tensor.
The perturbed propagation becomes:

C̃k+1 = Softmax
(
∥(Â+∆A)×2 Ĉ

k∥2
)
. (21)

Theorem 2 (Topological Robustness) For any perturbation ∆A satisfying ∥∆A∥F ≤ ϵ, the output
perturbation ∆Zout = ∥Zout − Z̃out∥F is bounded by:

∥∆Zout∥F ≤ ϵ · ξLip

K∑
k=0

∥Θk∥2 +O(ϵ2), (22)

where ξLip is the Lipschitz constant of the encoder ξ(·).

Proof From the above assumption and Equ. 10, we have

∥∆Ck∥F = ∥C̃k −Ck∥F ≤ Lk∥∆A∥F . (23)

The perturbed output of attention aggregation module can be calculated by:

∆Zout = ξ

(
K∑

k=0

Θk(Zk +∆Zk)

)
−ξ

(
K∑

k=0

ΘkZk

)
≤ ξLip

K∑
k=0

∥Θk∥2∥∆Zk∥F ≤ ξLip

K∑
k=0

∥Θk∥2Lk∥∆A∥F .

(24)
Since L < 1, the geometric series converges is

∑K
k=0 L

k ≤ 1
1−L . Thus the first-order term scales

linearly with ∥∆A∥F .

C.3 Complexity Analysis

For an undirected graph G = (V, E), Kipf et al. Kipf & Welling (2016) demonstrated that in a Graph
Convolutional Network (GCN), layer-wise message aggregation can be formulated as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W(l)

)
, (25)

where Ã = A+ IN , where A represents the adjacency matrix and IN is the identity matrix. Thus,
Ã is the adjacency matrix with added self-loops. The diagonal degree matrix D̃ is defined as
D̃ii =

∑
j Ãij , where D̃ represents the degree matrix of the vertices. W(l) denotes the weight matrix
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Figure 5: Overall pipeline. We pre-process structured knowledge from Wikidata and construct
a large-scale heterogeneous graph through a series of operations (please see Figure 1 for detailed
construction processes). Then, we propose a novel HGD framework to pre-train the UniHG node
representations. Subsequently, we transfer the pre-trained knowledge embeddings from UniHG as
universal knowledge to downstream recommendation system tasks.

of the l-th layer, σ(·) is the activation function, and H(l) ∈ RN×d represents the embedding matrix of
the l-th layer. N is the number of nodes, and d is the hidden dimension. The time complexity of the
convolution operation is O(KN2d), and the feature transformation has a complexity of O(KNd2),
where K is the number of convolutional layers. If G is a sparse graph, the convolution operation can
be reduced to O(K|E|) via sparse matrix multiplication, resulting in an overall time complexity of
O(K(|E|+Nd2)), where |E| represents the number of edges. The K-layer hidden embeddings and
adjacency matrix are stored on the GPU, and using sparse matrix multiplication can further reduce
the computational cost on the GPU. The overall space complexity is O(KNd+ |E|). In our HGD
framework, the feature propagation process can be expressed as:{

Zk+1 = ζ(Softmax(||Hk+1||2)),

Zout = ξ(
∑K

k=0Θ
kZk + XWr),

(26)

where ξ denotes an encoder with a step connection matrix Wr, Θk represents the k-th diagonal
attention matrix. The unfolding process involves replicating each row of matrix C and collecting
them into multiple slices of a new three-dimensional tensor Ĉ. During the experiments, we adjusted
the dimensions of H, and then performed a row-wise softmax operation along the second dimension.
The aforementioned formulation describes how matrix H is first normalized along the last dimension,
followed by a dimension swap. The row-wise softmax is then applied to aggregate neighborhood
information into the target node’s features. This process is executed only once on the CPU, and
the computational overhead of the fast tensor multiplication per iteration is negligible compare to
full training. The resulting feature propagation matrix Zk ∈ Rn×d undergoes multiple projection
transformations on the GPU. In each layer of the HGD network, Zk is only multiplied by a weight
matrix W(l) ∈ Rd×d. Consequently, the time complexity and space complexity of HGD are
O(KNd2) and O(KNd), respectively.

In summary, using the HGD framework, the time complexity is reduced from O(K|E| +KNd2)
to O(KNd2), and the space complexity is reduced from O(|E|+KNd) to O(KNd). This makes
HGD particularly advantageous for handling large-scale graphs, as shown in Table 2 and Figure 7.

D More Experiments

D.1 Baselines

We select 12 methods as baselines. Specifically, for the node classification task, on the one hand,
we employ GCN Chen et al. (2018), GAT Veličković et al. (2017), HGT Hu et al. (2020b), and

17



Table 6: Statistics of three scales of the utilized graph datasets.
Datasets #Nodes #Users #Items #Edges #Classes #Dimension #Relations

UniHG-1M 1,002,988 - - 24,475,405 2,000 128 178
UniHG-10M 10,044,777 - - 216,295,022 2,000 128 729
UniHG-full 77,312,474 - - 564,425,621 2,000 128 2082
Citeulike-a - 5,551 16,980 210,537 - 128 1

Amazon-book - 52,643 65,865 2,090,149 - 128 39
Yelp-2018 - 44,907 137,597 2,346,409 - 128 42

MTMP Pei et al. (2024) to aggregate neighbor information for each node on each sampled relation
subgraph. On the other hand, we utilize SGC Wu et al. (2019), SIGN Frasca et al. (2020), and
GAMLP Zhang et al. (2022c) to learn isotropic propagation features. Notably, the HGT is designed
for large-scale HGs, while the others are not. To extend them to UniHG, we employ sampling
and simplification techniques. Specifically, for GCN and GAT, we implement the HGSampling
technique proposed by HGT Hu et al. (2020b). For SGC, SIGN and GAMLP, we apply the
simplification designs proposed by OGB Hu et al. (2020a), treating UniHG as a homogeneous graph.
For recommendation system tasks, we categorize popular model-based collaborative filtering methods
into two types: graph-based methods LightGCN He et al. (2020) and NGCF Wang et al. (2019b), and
sequence-based methods, CSCF Salton G (1983), PSCF Shardanand & Maes (1995), JSCF Jaccard
(1901).

D.2 Discussions of Meta-path-based Baselines

�1 �2 �3 �4 �1 �2 �3 �4

Single association type Multiple association types

Sampled paths (Red → Blue → Red → Blue):

�1 → �2 → �3 → �4

�1 → �2 → �1 → �2

�1 → �2 → �3 → �4

�1 → �2 → �1 → �2

�1 → �2 → �3 → �2

Sampled paths (Red → Blue → Red → Blue):

�1 → �2 → �3 → �2

�1 → �2 → �3 → �43 in total

57 in total

Figure 6: Examples of meta-path construction. Sin-
gle relation type graph situation (left) and multiple
relation type graph situation (right).

In this section, we discuss the challenges
encountered when applying meta-path-based
methods for representation learning on
UniHG. First, meta-path-based approaches re-
quire the construction of sequences of node
types connected by edge types, based on pre-
defined recognition patterns. As illustrated in
Figure 6, if the recognition pattern is set as
(Red → Blue → Red → Blue), for a single-
relation graph (left), a path L of length 4 start-
ing from node n1 can generate three meta-
paths. However, for a multi-relational graph
(right), the same path L can generate 57 meta-
paths. As the number of relation types in-
creases, the number of meta-paths grows ex-
ponentially, which poses significant challenges for meta-path-based methods when applied to UniHG,
especially in scenarios where relation types cannot be ignored. We take SeHGNN Yang et al. (2023)
as an example to illustrate the encountered out-of-memory (OOM) issue. SeHGNN has demonstrated
excellent performance on the OGBN-MAG dataset. However, due to the complexity of UniHG (77.31
million nodes, 564 million edges, and 2,082 relation types), applying SeHGNN to UniHG incurs
substantial time and space costs, far exceeding those required for OGBN-MAG (1.9 million nodes,
21 million edges, and 7 relation types). SeHGNN propagates node features along meta-paths to
compute node feature matrices for each meta-path view. The space complexity of this process is
O(RNd), where R is the number of meta-path types. In MAG, R = 7 (considering only second-order
meta-paths), while in UniHG, R = 2, 082 (similarly considering second-order meta-paths). N is
the number of nodes, which is 77,312,474 for UniHG, and d = 256 is the node feature dimension,
consistent with MAG. Under this setup, the memory required to compute the heterogeneous meta-path
features of UniHG is approximately 2082× 77312474× 256× 2B ≈ 74.95TB (assuming float16).
Such a high space overhead is impractical. In contrast, the proposed HGD incurs approximately 270
GB of memory when training on UniHG, which is over 284 times smaller than SeHGNN (and in
practice, the difference is even larger, as we only compared the feature matrix size for SeHGNN).
Furthermore, we evaluate the representation learning capability of the meta-path-based method
ieHGCN Yang et al. (2021) on the UniHG-1M dataset, ignoring the edge-type information. As
shown in Table 7, after the same number of iterations, ieHGCN achieved an accuracy of 40.47%, a

18



recall of 41.88%, and an F1-score of 37.18. These results, along with the discussions, demonstrate
that meta-path-based methods are not well-suited for large-scale heterogeneous graphs like UniHG.
Additionally, we experiment with methods not designed for large-scale heterogeneous graphs, such

Table 7: Results compared to ieHGCN on UniHG-1M. The best performances are highlighted in
bold.

Methods Accuracy Recall F1 Score

ieHGCN Yang et al. (2021) 40.47 41.88 37.18
HGD (ours) 75.41 75.95 82.64

Table 8: Hyperparameters for main experiments.

Methods num_hops layers n_layers_1 num_heads hidden_channels lr epochs α seed

GCN - 3 - 8 256 0.01 300 - 2025
GAT - 3 - 8 256 0.01 300 - 2025
HGT - 3 - 8 256 0.01 300 - 2025

SGC - 3 - - 256 0.01 300 - 2025
SIGN 4 3 - - 256 0.01 300 - 2025

GAMLP 5 3 1 1 256 0.01 300 0.5 2025
HGD 5 3 - 1 256 0.01 300 - 2025

Table 9: Hyperparameters for recommendation tasks.

Methods regs embed_size layers lr batch_size epochs node_drop mess_drop recons decay recdim topks seed

LightGCN - - 3 1e-3 - - - - - 1e-4 256 20 2025
NGCF 1e-5 64 3 5e-4 1024 220 0.1 0.1 True - - - 2025

as HINormer Mao et al. (2023). Detailed observations are as follows: HINormer is not designed for
large-scale heterogeneous graphs, making its application in such contexts challenging. HINormer
utilizes breadth-first search (BFS) to generate node sequences as input to the Transformer model. In
large-scale graphs, high average degrees result in nodes being predominantly located within the 1-hop
neighborhood of the target node. This leads to over-smoothing of node features after message passing.
When training a Transformer with overly long sequences, attempts to alleviate over-smoothing by
increasing the length of random walk sequences introduce significant time and space overheads, along
with convergence difficulties.

D.3 Semi-supervised Experiments

Considering that semi-supervised learning may be more practical for real-world applications, we
further evaluate HGD and other graph decoupling baseline methods on UniHG-1M under a semi-
supervised setup (by removing 30% of the labels compared to the fully-supervised training set). From
the results in the table 10, it can be observed that the proposed HGD method consistently achieves
performance improvements, even with reduced label availability.

D.4 Link Prediction Experiments under the Domain Transfer Setting

To rigorously validate the cross-domain generalization capacity of our proposed methodology, we
conducted systematic benchmarking across heterogeneous graph domains following the experimental
protocols established in References Chamberlain et al. (2022); Zhang & Chen (2018). Our evaluation
encompasses five representative datasets spanning distinct network typologies: citation networks
(Cora, Citeseer, PubMed), collaborative networks (ogbl-collab), and biomedical interaction graphs
(ogbl-ddi). As detailed in Table 11, the implemented UniHG framework demonstrates consistent
performance enhancements through domain-adaptive transfer learning.
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Table 10: Results of Semi-supervised comparison experiments on UniHG-1M. The best performances
are highlighted in bold.

Methods Accuracy Recall F1 Score

SGC Wu et al. (2019) 43.39 42.61 57.12
SIGN Frasca et al. (2020) 52.56 50.12 65.71

GAMLP Zhang et al. (2022b) 33.37 31.73 46.37
HGD (ours) 70.16 72.53 77.01

Table 11: Results of link prediction experiments under the domain transfer setting.
Method CORA Citeseer Pubmed ogbl-collab ogbl-ddi

BUDDY Chamberlain et al. (2022) 84.50 89.52 69.56 68.49 79.62
BUDDY-UniHG 85.39 91.02 72.65 68.97 79.97
ELPH Chamberlain et al. (2022) 86.28 88.80 73.56 OOM 31.64
ELPH-UniHG 86.38 89.39 73.42 OOM 31.99
SEALGIN Zhang & Chen (2018) 72.26 75.33 64.02 – –
SEALGIN-UniHG 72.56 76.19 65.25 – –
SEALGCN Zhang & Chen (2018) 72.05 74.56 65.83 – –
SEALGCN-UniHG 72.75 76.19 66.91 – –
SEALSAGE Zhang & Chen (2018) 67.42 76.14 60.39 – –
SEALSAGE-UniHG 70.09 76.87 61.03 – –

D.5 Runtime Experiments

To quantitatively benchmark the computational efficiency of our proposed Heterogeneous Graph
Diffusion (HGD) framework, we theoretical compare the complexity, and conduct rigorous runtime
analyses under standardized multi-label node classification settings.

Complexity Comparison For large-scale graphs, the key contribution of feature propagation is to
reduce complexity. Our AFP module further proposes an anisotropic design for heterogeneous data
to handle large-scale heterogeneous graphs with complex attributes containing more than 2000 edge
types. Table 12 shows the comparison of time and space complexity and heterogeneity processing.

Table 12: Computational complexity comparison of heterogeneous graph processing paradigms (N:
nodes, E: edges, d: feature dimension, K: layers, R: relation types)

Method Time Complexity Space Complexity Heterogeneity Handling
Global Convolution O(K(RE+RNd)) O(E+KNd) Meta-path dependent
Vanilla Propagation O(KNd) O(KNd) Isotropic
AFP (Ours) O(KNd) O(KNd) Relation-aware anisotropic

Runtime Analyses As depicted in Figure 7 and Table 13, our evaluation encompasses three scaled
UniHG datasets (106–109 nodes). Key findings reveal fundamental limitations in existing paradigms:
i) HGT exhibits prohibitive quadratic time complexity O(R2) with respect to relation types (R=2082
in UniHG-Full), requiring 108.58±8.71 second per epoch for million-node graphs (mean ± std.
dev., 5 runs). ii) HGD demonstrates sublinear scaling O(R) via our diffusion operator and achieves
2.8–22.1× acceleration over HGT. The empirical evidence establishes HGD as a effective solution for
large-scale heterogeneous graph processing, achieving an balance between computational tractability
(38.78s/epoch for 106 nodes) and model fidelity (96.09 F1 score).

D.6 Dynamic Graph Experiments

To rigorously evaluate the dynamic adaptation capabilities of our HGD framework, we conducted
temporal graph benchmarking following the standardized evaluation protocol of Temporal Graph
Benchmark (TGB) Huang et al. (2023). As shown in Table 14, HGD achieves statistically significant
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Table 13: Runtime comparison four baseline methods on three datasets.
Method UniHG-1M UniHG-10M UniHG-Full
HGT 108.58±8.71s 1,074.33±82.15s 4,032.58±318.72min
SIGN 38.54±10.61s 206.98±28.62s 161.32±14.91min
GAMLP 39.49±7.91s 227.98±44.25s 177.76±16.40min
HGD (Ours) 38.78±8.98s 233.55±46.55s 182.47±21.99min

improvements with 2.4% and 1.8% relative gains in test/validation NDCG over two competitive
baselines, demonstrating superior temporal pattern capture.

Table 14: Results of temporal node classification experiments.
Method Test NDCG Val. NDCG
DyRep Trivedi et al. (2019) 0.374 0.394
TGN Rossi et al. (2020) 0.374 0.395
HGD (Ours) 0.383 0.401

D.7 Robustness Analysis of HGD

To systematically evaluate the robustness of our Heterogeneous Graph Diffusion (HGD) framework
under structural perturbations, we conducted a controlled node masking study on the UniHG-1M
dataset (1M nodes, 178 edge types).

Table 15: Node classification performance under progressive structural perturbations (mean ± std.
dev. over 5 runs)

Masking Ratio 10% 20% 30% 40% 50% 60% 70%

Accuracy (%) 75.26±0.32 75.02±0.28 75.80±0.41 75.72±0.37 76.04±0.35 75.74±0.39 75.42±0.43
Recall (%) 75.92±0.29 76.59±0.31 76.72±0.33 76.43±0.35 76.76±0.38 76.27±0.40 76.01±0.42
F1-score (%) 82.65±0.25 82.14±0.27 82.85±0.30 83.06±0.32 83.31±0.29 83.03±0.34 82.94±0.37

The experimental results are shown in Table 15, which shows that HGD can maintain a stable accuracy
under severe perturbations, proving the effectiveness and robustness of the AFP module. We found
that shielding some nodes can improve generalization ability.

D.8 Statistical Significance Analysis

We conducted rigorous empirical validation through 10 independent trials with controlled random
seeds (Fig. 17). HGD demonstrates superior stability with minimal performance variance (σ=0.3%
vs. baseline σ=0.7-1.2%), quantified by the relative standard deviation metric:

RSD =
σ

µ
× 100 (27)

where HGD achieves RSD=0.4% on UniHG-1M, outperforming baselines by 3.7-4.9×. Two-tailed
t-tests with Bonferroni correction confirm statistical significance (p<0.001) across all comparisons
(Table 16). The large effect sizes (Cohen’s d>1.89) substantiate the practical significance of improve-
ments.

D.9 Hyperparameters and Environments

To maintain fairness, the hyperparameter settings are kept consistent for all methods on each dataset.
For UniHG, we use 5-hops anisotropic propagation to generate aggregated features as the input
for model training. Then, we employ the 18 layers hidden network as the graph encoder, which
transforms the feature dimension of the input graph from 128 to 256. Besides, the learning rate is
0.01 and the batch size is 300,000 for UniHG-full, 100,000 for UniHG-10M, 20,000 for UniHG-1M.
On the other hand, for the Amazon-Book, Yelp2018, and Citeulike-a datasets, we use three-layer
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Table 16: Statistical significance analysis on UniHG datasets
Comparison Dataset Cohen’s d p-value
SGC vs. HGD UniHG-1M 2.74 <0.0001
GAMLP vs. HGD UniHG-1M 3.12 <0.0001
SIGN vs. HGD UniHG-1M 1.89 0.0013

Table 17: Performance stability across random seeds
Method Dataset Mean Acc (%) Std Dev
SGC UniHG-1M 42.5 0.7
GAMLP UniHG-1M 44.5 0.8
SIGN UniHG-1M 56.7 1.2
HGD UniHG-1M 75.4 0.3

LightGCN and NGCF as the feature encoder to learn the representation of users and items. The
dimension of the hidden feature is 256, the learning rate is 0.001, and the batch size is 204. All
experiments were conducted using a single 24GB GeForce RTX 4090 GPU. The hyperparameters of
our main experiments and recommendation tasks for konwledge transfer can be found in Table 8 and
Table 9.

E Advantages over Knowledge Graph Datasets

Table 18: Comparative analysis between conventional knowledge graphs and UniHG.

Aspect Knowledge Graphs UniHG Key Advantages
Feature Representation Discrete triples Dense embeddings Compact feature encoding
Storage Efficiency 1.7 TB 37.5 GB 45:1 compression ratio
Dynamic Scalability Weekly/Monthly updates Incremental updates (<2 min) Faster update
Construction Cost Triple (human annotation) Triple (automated pipeline) Cost reduction
Cross-domain Transfer Domain-specific architectures Unified embedding space 11.48% higher NDCG@20

Figure 7: Training time statistics of baselines
for multi-label node classification. We report
the time for training each 1M nodes. (Low is
faster)

Comparative Analysis. We systematically contrast
our UniHG framework with conventional knowledge
graphs through five critical dimensions (Table 18).
First, the transition from symbolic triples to low-
dimension embeddings enables lossless compression
of semantic features, achieving parameter reduction
while preserving relational semantics. Second, the
compressed embedding space demonstrates remark-
able storage efficiency, condensing typical 1.7 TB
knowledge graphs into 37.5 GB representations (45:1
compression ratio) through tensor factorization tech-
niques. The dynamic updating mechanism exhibits
orders-of-magnitude improvement, reducing update
latency from weekly-level to sub-2-minute incre-
mental updates. Most notably, the unified embed-
ding space enables cross-domain knowledge transfer.
Benchmarking on the Amazon-book dataset shows 11.48% relative NDCG@20 improvement com-
pared to domain-specific baselines, validating our design’s compatibility with pretrain-finetune
paradigms.

Dataset Scalability. Currently, UniHG only leverages knowledge from Wikidata. But the proposed
overall pipeline can be seamlessly extended to other knowledge graphs (such as Freebase, OpenCyc).
We also provide open source code to promote related research. In future work, we will try to expand
to more knowledge sources.
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F Limitation

Currently, although the proposed overall pipeline can be seamlessly extended to other knowledge
graphs, UniHG only leverages knowledge from Wikidata. Thus supplementary other knowledge
bases as reference or new content may improve the quality of the proposed dataset.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, please refer to Section 1 for the main claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, please refer to Appendix F for the limitation.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Please refer to Appendix C.1 and Appendix C.2 for the theoretical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to the anonymous link in the abstract to obtain the dataset and
code, and the Section D.9 for the hyperparameter of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Please refer to the anonymous link in the abstract to obtain the dataset and
code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Section 4 for the experiment settings, Appendix D.9 for
hyperparameters, and anonymous link in abstract for all the training and test details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have validated the performance using Pearson correlation coefficient and
significance test, please refer to Appendix D.8.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to the Section 4, Table 13, and Appendix D.9 for the experiments
compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, this paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper is a foundational research and not tied to particular applications, so
it will not have a broader social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we referenced existing assets used and adhered to the license and terms of
each asset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we have released a new dataset with well documentation. Please refer to
the anonymous link in the abstract.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We used LLM to generate text for cluster labels, which were subsequently
manually reviewed, please refer to Section 2.4. An example of LLM question answering is
provided in the anonymous link in the abstract.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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