
SEQUENCEMATCH: IMITATION LEARNING FOR
AUTOREGRESSIVE SEQUENCE MODELLING WITH
BACKTRACKING

Chris Cundy1 Stefano Ermon1

1Department of Computer Science, Stanford University
{cundy, ermon}@cs.stanford.edu

ABSTRACT

In many domains, autoregressive models can attain high likelihood on the task
of predicting the next observation. However, this maximum-likelihood (MLE)
objective does not necessarily match a downstream use-case of autoregressively
generating high-quality sequences. The MLE objective weights sequences pro-
portionally to their frequency under the data distribution, with no guidance for the
model’s behaviour out of distribution (OOD): leading to compounding error dur-
ing autoregressive generation. In order to address this compounding error prob-
lem, we formulate sequence generation as an imitation learning (IL) problem.
This allows us to minimize a variety of divergences between the distribution of
sequences generated by an autoregressive model and sequences from a dataset,
including divergences with weight on OOD generated sequences. The IL frame-
work also allows us to incorporate backtracking by introducing a backspace
action into the generation process. This further mitigates the compounding error
problem by allowing the model to revert a sampled token if it takes the sequence
OOD. Our resulting method, SequenceMatch, can be implemented without adver-
sarial training or architectural changes. We identify the SequenceMatch-�2 diver-
gence as a more suitable training objective for autoregressive models which are
used for generation. We show that empirically, SequenceMatch training leads to
improvements over MLE on text generation with language models and arithmetic.

1 INTRODUCTION

Autoregressive models such as the GPT series of causally masked transformers (Brown et al., 2020;
Radford et al., 2018) are able to perform a variety of downstream tasks such as question-answering,
translation, and summarization, after simply training on a large corpus of text with the objective of
predicting the next token given the previous tokens. However, autoregressive language models suf-
fer from a variety of pathological behavior when deployed on the task of free-form text generation
(Holtzman et al., 2019; Welleck et al., 2019), particularly at lower generation temperatures or with
smaller models. These include generating the same token or series of token repeatedly, or generating
gibberish outputs. This problem of neural text degeneration has been linked to the training objective
for LLMs, which trains a conditional distribution for the next token given a (partial) sentence (Fu
et al., 2021). When deployed in an autoregressive fashion, the model has its own outputs as inputs,
resulting in a compounding error problem that rapidly takes the model out of distribution (OOD).
This compounding error problem is also a key issue in the imitation learning subfield of reinforce-
ment learning, where the goal is to learn a policy (a distribution over next actions given the past)
which results in trajectories similar to a set of expert trajectories. The approach of directly matching
the expert’s actions leads to a compounding error (Ross et al., 2011), which has led to several works
proposing to address this problem by minimizing alternative divergences (Arora et al., 2022; Shi
et al., 2018). These alternative divergences encourage the policy to return to expert states if the gen-
erated trajectory starts to diverge from them. We argue that two key issues can prevent autoregressive
models trained with maximum-likelihood from generating fluent sequences at evaluation time. First
is the divergence measure used to evaluate the difference between the model and the data distribu-
tion. Because the MLE loss does not have any contribution from OOD sequences, the behavior of

1

Figure 1: A toy model of an autoregressive generation problem, such as language modelling. Our
task is to learn a set of conditional distributions that continue the sequence similarly to those se-
quences in the dataset (green arrows), and avoid incorrect next tokens (red arrows). Our method
trains against divergences that more heavily punish out-of-distribution sequences. We additionally
introduce a backspace action which can backtrack from an erroneous token (dashed purple arrows).

the model on OOD sequences is unconstrained. We address this by minimizing the �2-divergence
between a mixture of the data and autoregressively generated sequences. This divergence is known
to perform much better than MLE in imitation learning (Garg et al., 2021; Al-Hafez et al., 2023).

Secondly, if a model generates an OOD token, there may be no natural continuation which is sim-
ilar to sequences from the data distribution, and so the model may be unable to return to the data
distribution even if our �2-divergence encourages this. To address this, we augment the genera-
tion process with a backspace action <bkspc>, which deletes the previous token, and allows the
model to correct for erroneous generations. By incorporating recent work in non-adversarial imita-
tion learning (Garg et al., 2021), our method, SequenceMatch, is able to train autoregressive models
against alternative divergences such as the �2-mixture divergence while augmenting the policy with
a backspace action. The SequenceMatch loss is a fully supervised loss without adversarial training,
and can be applied on top of pretrained models as a finetuning step. To summarize our contributions:

• We formulate the sequence generation problem as an imitation learning (IL) problem, and
formulate a general non-adverarial objective for minimizing divergences between occu-
pancy measures based on (Garg et al., 2021), handling (among others) the forward and
reverse KL-divergence, JS-divergence, and �2 divergence.

• We develop a novel masking scheme allowing training of a transformer-based autoregres-
sive model with a backspace action with no additional overhead vs MLE.

• Finally we evaluate the empirical performance of SequenceMatch-trained models, show-
ing improved performance over the maximum likelihood objective in text generation and
arithmetic.

2 PRELIMINARIES: TRAINING OBJECTIVES FOR AUTOREGRESSIVE MODELS

2.1 KL-DIVERGENCE

Typically, autoregressive models are trained against a maximum-likelihood objective. This ob-
jective can be motivated by treating our dataset as consisting of sequences of random vari-
ables (x1, . . . , xN), with a corresponding probability distribution Pdata(x1, . . . , xN), with a fixed
length N . The goal is to learn a parameterized model P✓(x1, . . . , xN) that is close to Pdata.
The KL-divergence between the data distribution and the model has a useful decomposition:
DKL(PdatakP✓) = �Ex1:N⇠Pdata

hPN
i logP✓(xi|x<i)

i
+ C, where C is a constant that does not

depend on ✓. For a dataset D = {xj
1:N}Ndata

j=0 of sequences drawn i.i.d. from Pdata, this can be approx-
imated with an estimator D̂KL(PdatakP✓) = 1

Ndata

P
j

PN
i logP✓(x

j
i |x

j
<i) + C

0. Hence, minimizing
the KL-divergence is equivalent to maximizing the model’s (log-) likelihood of the next element in

2

the sequence given the previous elements. The (typically unknown) density under the data distribu-
tion Pdata is not required. In some domains, the length of the sequences nj differs in each example j,
which can be incorporated by choosing an effective length N = maxni, and treating all sequences
shorter than N as having a sequence of padding tokens appended1. In the sequel with some abuse of
notation we will write Pdata(sn) for

Pn
i logP✓(xi|x<i), for partial sequences that may not terminate

until after n, and Pdata(x|sn) to signify the probability of the next token given a partial sequence.

2.1.1 LIMITATIONS OF THE KL-DIVERGENCE

However, while it is clear that minimizing the KL-divergence will result in P✓ = Pdata (for a suf-
ficiently flexible parameterization P✓), it is not obvious what the behaviour is of models which
approximately minimize the KL-divergence. In figure 1, a chain distribution is shown, with se-
quences of length N . The model P✓ has an ✏ error on each conditional, where an error leads to an
OOD sequence which has no support under the data distribution. This leads to an error in the KL
metric of order n✏. However, the probability of getting to the end of the chain before an incorrect
token is picked is 1 � (1 � ✏)n, and so the value of the KL-divergence is not a good metric if our
main quantity of interest is how often generated sequences are in-distribution. Furthermore, the
KL-divergence weights the loss by the frequency under the data distribution, leaving the model’s
behavior out-of-distribution from the data essentially undetermined.

In non-autoregressive generative modelling, several different divergences are commonly used, such
as the Wasserstein distance (Arjovsky et al., 2017) and Fisher divergence (Song & Ermon, 2019).
Particularly interesting is the �2 divergence D�2(P✓, Pdata) = Ex⇠Pdata

⇥
(P✓(x)/Pdata(x)� 1)2

⇤
.

Indeed, figure 1 shows that the �2-divergence in this case is equal to the squared probability of
staying in the data distribution of sequences. We can further penalize out-of-distribution behavior
by considering the divergence between mixtures D�2(P✓, (Pdata + P✓)/2), as we do in our practical
algorithm. However, it is difficult in practice to compute any divergence involving the density of the
data, which must be substituted for with an approximation from a discriminator.

In reinforcement learning, there are several methods which can minimize diverse divergences be-
tween the distribution of trajectories from an expert and a learned policy. The approaches are non-
adversarial, even with unknown expert density (Garg et al., 2021; Swamy et al., 2021; Barde et al.,
2020; Al-Hafez et al., 2023). A key feature of these methods is that they operate on occupancy
measures instead of joint distributions, a concept which we describe in the next section.

3 METHOD

3.1 SEQUENCE MODELLING AS A MARKOV DECISION PROCESS

We consider a sequence modelling problem represented as a Markov decision process (MDP), de-
fined by a tuple (S,A,P, r, �), with state and action spaces S,A, dynamics P(s0|s, a), reward
function r(s, a), and discount factor � 2 (0, 1). In our case, the state space S is the set of all se-
quences (of all lengths) with elements in a finite set X , the vocabulary. The action set A is a finite
set. For concreteness, we can assume that X ✓ A (i.e. we have an insert-token action for each
token), as well as an additional backspace action <bkspc>. In our case, the initial state is given by
a special <bos> token, while the dynamics for an insert-token action in a state (sequence) s
leads deterministically to the sequence s

0 consisting of s with the given token appended.

Combined with a policy p✓(a|s), the MDP defines a distribution over (possibly infinite-length) se-
quences, following the generative process of sampling an action a ⇠ p✓(·|s), then sampling the next
state s

0 ⇠ P(s0|s, a), etc. Finally, we assume that a special end of sequence token <eos> induces
a terminal state: in a state s with <eos> as the final element, all actions cause a self-transition to s.
This probabilistic process reduces exactly to the autoregressive formulation of sequence modelling
when the action set is the same as the vocabulary. A backspace action in a state s deterministically
transitions to a state s

0 with the final token in the sequence s removed.2 An example of the states
and actions can be seen in figure 2. The MDP framework formalizes the intuitive picture in figure 1:
language modelling can be viewed as the traversal of a tree where the nodes are (partial) sequences.

1Some care is required, as averaging the loss of each example over its length gives an inconsistent estimator.
2In the case of s = <bos> and <bkspc> is used, s0 = <bos> also

3

A central quantity of interest is the occupancy measure. We denote by st the random variable con-
sisting of the state at time t under a policy p(a|s) and the MDP defined above. Then, the occupancy
measure ⇢(s, a) : S ⇥A ! [0, 1] is the (discounted) probability of observing a particular sentence
s at time t and taking action a given that sentence:

⇢(s, a) = (1� �)p(a|s)
X

t

�
t
P (st = s). (1)

In other words, the occupancy measure is proportional to the observed frequency of a particular
(sentence, next-action) pair occurring, with occurrances discounted in time by a factor of �. In the
absence of editing actions, A = X and the occupancy measure is a discounted probability over
(partial) sequences: for a sequence sn of length n, ⇢data(sn, x) = (1 � �)�nPdata(s0), where s

0 is
the sequence obtained by appending x to s. Given editing actions which can reduce the length of
a sequence, the occupancy measure becomes more complicated, as the same sequence can occur at
multiple time indices. For a function r, the expectation with respect to ⇢ has the usual meaning:
E(s,a)⇠⇢ [r(s, a)] =

P
S,A ⇢(s, a)r(s, a), with sum over the discrete action space and (countably

infinite) state space. Occupancy measures provide an alternative way of modelling sequences, al-
lowing us to impose a measure over all sequences, even in the presence of editing actions. The next
section illustrates that we can non-adversarially minimize a large variety of divergences between oc-
cupancy measures, compared to only the KL divergence in the typical joint probability formulation.

3.2 MINIMIZING OCCUPANCY DIVERGENCES

Our aim is to learn a policy p✓(a|s) which induces an occupancy measure p✓ such that it is close to
the data occupancy measure pdata. We define the data occupancy measure by forming the data policy
pdata(a|s) corresponding to the conditionals Pdata(x|sn) and setting the probability of editing actions
to zero. It is known that matching occupancy measures implies matching policies: if ⇢✓ = ⇢data for
a valid occupancy ⇢✓, then the corresponding p✓(a|s) = Pdata(a|s) (Syed et al., 2008). Therefore, it
is reasonable to minimize divergences between occupancy measures. We extend the derivations in
Garg et al. (2021) to the case with infinite-dimensional state space. We consider distances between
occupancy divergences parameterized by the following form:

d (⇢✓, ⇢data) = sup
r2R

E(s,a)⇠⇢✓ [r(s, a)]� E(s,a)⇠⇢data [r(s, a)]� (r), (2)

where is a convex regularizer. The critic r picks out differences between the occupancies, while if
⇢✓ = ⇢data, the difference in expectations will be zero for any r. This family of divergences includes
all f -divergences such as the KL and JS-divergence, as well as the Wasserstein distance and MMD,
as described in the appendix. The problem can be made tractable by adding an entropy term:

inf
✓
d (⇢✓, ⇢data)� ↵H[⇢✓], (3)

with the entropy H[⇢✓] = �E(s,a)⇠log ⇢✓ [log ⇢✓(s, a)], and ↵ a chosen regularization strength. Sub-
stituting in the definition of d , we obtain the min-max problem inf⇢✓ supr L(✓, r) = inf⇢✓ supr r ·
(⇢✓ � ⇢data) � (r) � ↵H [⇢✓]. We prove in the appendix that the saddle-point property in Ho &
Ermon (2016) extends to our infinite-dimensional case, so inf⇢✓ supr L(✓, r) = supr inf⇢✓ L(✓, r).
We can interpret the outer maximization as finding a critic (LeCun et al., 2006) r for sequences and
actions s, a such that the model has high values on examples from the dataset and low values on the
examples from the learned model. The inner minimization over ✓ is an entropy-regularized mini-
mization of the KL-divergence between ⇢✓ and r. Approaching this directly by explicitly learning
r and ⇢✓, would lead to an objective similar to a GAN (Goodfellow et al., 2014). This is known to
be difficult to train (Jabbar et al., 2020). Instead, we can solve the problem with optimization over
a single variable by a transformation of variables. In the following section, we recover an objective
J which is equivalent to the objective in equation 3, but only involves optimization over the logits
of a policy. For ease of exposition, ↵ = 1 in the next section.

3.2.1 REFORMULATING THE OCCUPANCY DIVERGENCE MINIMIZATION PROBLEM

We first introduce the Q-function, corresponding to the discounted rewards obtained in state
s by taking action a. Formally, it is the unique fixed point of the soft Bellman opera-
tor B✓r , where B✓rQ(s, a) = r(s, a) + �Es0⇠P(s,a)

⇥
V
✓(s0)

⇤
, for the value function V

✓(s) =

4

Ea⇠p✓(·|s) [Q(s, a)� log p✓(a|s)]. The inverse Bellman operator T ✓ is the inverse of this operator,
given by (T ✓

Q)(s, a) = Q(s, a) � �Es0⇠P(s,a)

⇥
V
✓(s0)

⇤
. For a fixed policy ✓, there is a one-to-

one correspondence between r and Q via the Bellman and inverse Bellman operators (proved in the
appendix). Crucially, for the unique occupancy ⇢⇤ which solves max✓ Es,a⇠⇢✓ [r(s, a)] � H[⇢✓],
the optimal policy log p⇤(a|s) corresponding to ⇢⇤ is proportional to the corresponding Q-values
Q

⇤: log p⇤(a|s) = Q
⇤(s, a) � V

✓⇤(s) = Q
⇤(s, a) � log

P
a02A

expQ⇤(s, a0). The key idea of
the following derivations is that the optimal policy is uniquely determined by the optimal Q-values,
while the reward is determined by the Q-values. This allows us to optimize solely over Q-values.
Proposition 3.1. The following equalities hold for the loss:

inf
✓
d (⇢✓, ⇢data)�H[⇢✓] = sup

r
inf
✓
E⇢data [r(s, a)]� E⇢✓ [r(s, a)]�H[⇢✓]� (r),

= sup
Q

inf
✓
E⇢data

⇥
T ✓

Q
⇤
� E⇢✓

⇥
(T ✓

Q)
⇤
�H[⇢✓]� (T ✓

Q),

= sup
Q

inf
✓
E⇢data

⇥
T ✓

Q
⇤
� (1� �)EP0

⇥
V
✓(s0)

⇤
� (T ✓

Q),

= sup
Q

inf
✓
E⇢data

⇥
�(Q(s, a)� �EP

⇥
V
✓(s0)

⇤
)
⇤
� (1� �)EP0

⇥
V
✓ (s0)

⇤
,

= sup
Q

inf
✓
E⇢data

⇥
�(Q(s, a)� �EP

⇥
V
✓(s0)

⇤
)
⇤
� E⇢

⇥
V
✓(s)� �V

✓(s0)
⇤
,

= sup
Q

E⇢data [�(Q(s, a)� �EP [V (s0)])]� E⇢ [V (s)� �V (s0)] ,

where � is concave, E⇢data denotes expectations over sampled states and actions s, a, EP denotes an
expectation over successor states s0, and E⇢ denotes an expectation over sampled states s and suc-
cessor states s0, for any occupancy ⇢. V (s) (without ✓) is given by V (s) = log

P
a02A

expQ(s, a0).

Proof. The full proof is given in the appendix. As a sketch, the first equality holds from the previous
section. The second is obtained by replacing r with T ✓

Q and verifying that the two optimization
problems are equal. The third line is via a telescoping sum argument first described in (Kostrikov
et al., 2019). In the fourth line we replace (r) with a simpler regularizer Es,a⇠⇢data [g(r(s, a))],
where g(r) = r � �(r) if r 2 ⌦, and infinity otherwise. The fifth line follows from expanding
the telescoping sum in a different way, incorporating samples from any policy. In the final line we
parameterize the policy from the Q-values, setting log pQ(a|s) = Q(s, a)�log

P
a02A

expQ(s, a0).
We then show that the optimization problem over (Q, pQ) has the same optimum as the optimization
over (Q, ✓), so we can optimize solely over Q.

We relabel Q as `✓ to make the connection to logits clearer, resulting in the fully supervised
objective over logits `✓: J (`✓) = 1

↵E⇢data [�(↵`✓(a|s)� ↵�V (s0)] � 1
2E⇢data [V (s)� �V (s0)] �

1
2E⇢✓ [V (s)� �V (s0)], where (s, a, s0) ⇠ ⇢ corresponds to sampling s, a from ⇢ and s

0 from
P(·|s, a), and V (s) = log

P
a02A

exp `✓(a0|s). Minimizing this objective is equivalent to
min✓ d (⇢✓, ⇢data)�↵H[⇢✓], where d (P,Q) = supr2⌦ Ex⇠P [�(r(x))]�Ex⇠Q [r(x)]. By choos-
ing ⌦ and �, we can recover f -divergences, including KL, JS and �2 divergences, and additionally
the Wasserstein and MMD distances. The corresponding choices are given in the appendix.

4 PRACTICAL OCCUPANCY MATCHING WITH AUTOREGRESSIVE MODELS

In practice, we wish to train a parameterized model p✓(a|s) which can serve as a policy, emit-
ting a probability distribution over the next action given a partially completed sequence s. A
typical choice is a transformer (Vaswani et al., 2017): with parameters ✓ it gives a distribu-
tion over the next token xi given the previous tokens x<i, parameterized as unnormalized log-
its `✓. Thus the MLE loss, with a complete sequence x1:N , can be written as L̂MLE(`✓) =PN

i=1 `(xi|x<i)� log
P

x02X exp `(x0|x<i), or L̂MLE(`✓) =
PN

i=1 `(xi|x<i)� V (x<i).

To form an estimator for the loss derived in the previous section, samples from ⇢✓ are required.
We obtain these samples by sampling complete sequences from the policy autoregressively and
weighting the partial sequence at time t by a factor of �t. We similarly sample sequences from ⇢data

5

by sampling complete sequences from Pdata and weighting. So, for a length-N sequence of states
s1:N from a dataset, corresponding actions a1:N and a generated length-M sequence u1:M of states
from the model, we can form an estimator for the loss from the previous section:

Ĵ (`✓) =
NX

i

�
i 1

↵
� (↵`✓(ai|si)� �↵V (si+1))

| {z }
Penalized difference from action logit to next state value

�
NX

i

�
i

2
[V (si)� �V (si+1)]

| {z }
State, next state value difference under data

�
MX

i

�
i

2
[V (ui)� �V (ui+1)]

| {z }
State, next state value difference under model

+
�
N

↵(1� �)
� (↵(1� �)V (sN))� �

N

2
V (sN)� �

M

2
V (uM)

| {z }
Loss from completed sequences

,

(4)
and V (s) = log

P
a02A

exp `✓(a0|s). The separate treatment of the <eos> tokens arises from
taking the sum over the infinite timesteps in equation 1 in the terminal states. As shown in the
appendix, the estimator is unbiased and consistent for finite �. It has also been shown (Al-Hafez
et al., 2023) that minimizing the mixture divergence D�2(⇢data, (⇢data+⇢✓)/2) is more effective than
simply minimizing the �2-divergence between model and data. This can be implemented by calcu-
lating the loss for the �2-divergence (with �(x) = x� 1

4x
2) and adding an additional regularization

term Es,a,s0⇠⇢✓

⇥
(↵`✓(a|s)� �↵V (s0))2

⇤
. We show in the appendix that with no backspace actions,

lim↵!0 J`✓ = DKL(⇢datak⇢✓) reduces to a �-reweighted MLE objective.

4.1 EFFICIENT TRAINING

��/$*).a�
�++' .��- ��'0 �
����&.+�� ��"-)�

�/�/ .a
�6a��� "$)g.)/)� �
�7a��� "$)g.)/)� ���++' .
�8a��� "$)g.)/)� ���++' .��-
�9a��� "$)g.)/)� ���++' .��- ��'0
�:a��� "$)g.)/)� ���++' .��-
�;a��� "$)g.)/)� ���++' .��- �"-)

��.& � �)(�.& ���.&.a

6LQJOH�3DVV�/RVV�,QSXWV

)+0/��*&).a
�� "$)g.)/)� ������++' .�����- �������'0 ���������- �����"-)
��-" /.a
������++' .�����������- �������'0 ������&.+�� �����"-)������
�*.$/$*)�
�.a
��������6�������������7��������8��������9�����������8�������9

/RJLFDO�6HTXHQFH�7UDMHFWRU\

Figure 2: Transforming states and actions to
single-pass inputs for parallel training.

Editing actions which can delete previous parts of
the input are challenging to implement while retain-
ing the fast training of transformer-based autoregres-
sive models. For instance, the sequence of actions
[a; b; <bkspc>] cannot be fed directly into a
policy network p✓(a|s), since it contains actions, not
states. The sequence [a; b; <bkspc>] is not
a valid state: the corresponding state is [<bos>
a]. In order to convert this into a form where we
can compute the relevant logits using masked atten-
tion, we must pre-process the sequence of actions
into corresponding inputs, labels, masks and posi-
tion IDs using algorithm A in the appendix. The
preprocessing is illustrated in figure 2. On the other
hand, generation with backspace actions is straight-
forward: we already keep previous key-value cached
values for generation with transformers. When <bkspc> is sampled, we simply roll back the state
of the key-value cache and position id with negligible overhead. Additionally, the loss requires sam-
pling from the model during training, which is typically slow. However, the sequences do not need
to be exactly sampled from the current policy. Since any policy can be used, sequences generated
from the policy at previous training steps are stored in a replay buffer (Mnih et al., 2013) and reused.
We give an empirical analysis of the overhead when using SequenceMatch in the appendix.

4.2 AUGMENTING EXPERT SEQUENCES WITH BACKSPACE

To provide the policy with examples of how the <bkspc> action should be used, we augment the
data sequences as follows: with (small) probability ⌘, we replace a sequence . . . , xi�1, xi, xi+1, . . .

with xi�1, xi, x
0

i, <bkspc>, xi+1, . . ., where x0

i is chosen randomly from the vocabulary. However,
we keep the action at position i as xi+1, with the result that the overall MDP is augmented with a
stochastic dynamics: with probability ⌘ a random token is inserted, instead of the chosen action.
This is also applied to sequences which exceed the context length: the action is kept the same but
the next token is forced to be the <eos> token. This introduces bias, as the policy learns to match the
data distribution under a slightly different MDP than generation takes place in. In practice however,
it leads to improved performance compared to the policy learning with no examples of <bkspc>.

6

Algorithm 1: Training an autoregressive model against a SequenceMatch objective
Input : Dataset D of data sequences, gradient-based optimizer step, number of train steps ntrain,

parameters ↵,�, �,�, sampling interval ksample, fixed context length T
Add noise and process data sequences with algorithm A to form new effective trajectories
Initialize buffer B of model sequences; Initialize autoregressive policy `✓(·|s)
for k in ntrain do

if k mod ksample = 0 then
Populate B with trajectories T ⇠ `✓; Process added sequences with algorithm A
Remove oldest model sequences from B

end
Sample dataset trajectories Tdata ⇠ D and model trajectories Tmodel ⇠ B
Compute g = r✓Ĵ (`✓,↵, �, Tdata, Tmodel) and update ✓ via step using gradient g

end

5 RELATED WORK

Text Degeneration in Large Language Models
In natural language processing the phenomenon of text degeneration can occur, when a language

model produces repetitive or nonsensical sequences (Holtzman et al., 2019). Many explanations
have been proposed to explain this phenomenon (Fu et al., 2021; Welleck et al., 2019); a leading
theory is that the large vocabulary size induces the model to over-estimate the probability of OOD
tokens. Once these tokens are sampled, the model’s context is now out-of-distribution. Measures to
mitigate this problem include top-k sampling (Fan et al., 2018), restricting generations to the k most
likely tokens, and top-p sampling (Holtzman et al., 2019), an adaptive variant of top-k sampling. In
addition, alternative training measures have been proposed to reduce the probability of the model
producing OOD tokens. Unlikelihood training (Welleck et al., 2019) is discussed in detail in the
appendix, while contrastive methods have also been proposed (Jiang et al., 2022), which force the
representations of repetitive text to be far from the representations of correct text.

Matching Divergences in Imitation Learning
In the imitation learning(Ng & Russell, 2000) subfield of RL, the objective is to learn a policy

giving a distribution over actions in each state, such that the distribution over trajectories is close to
distribution of provided expert trajectories. A simple approach is behavioral cloning (Esmaili et al.,
1995), which maximizes the likelihood of the expert’s chosen actions, on average over the states
that the expert is in. However, it has been shown (Ross et al., 2011) that this approach results in a
compounding error problem, where the further the trained model gets from the typical expert states,
the worse the model performs, incurring increasing error. Ho & Ermon (2016) show that minimizing
the occupancy divergence between the expert and a learned policy could be written as a two-variable
saddle-point problem. This more sophisticated method can take the dynamics of the problem into
account, learning a policy which can return to the typical expert states if it erroneously leaves them.
In Garg et al. (2021), this was further developed via a change of variables to only require a non-
adversarial optimization over one variable. We can view our approach as a specialization of the
IQ-Learn algorithm in Garg et al. (2021) to autoregressive sequence models.

6 EXPERIMENTS

In this section we demonstrate that SequenceMatch can be used with large, state-of-the-art models,
and that it can be useful for downstream applications. The experiments also allow some insight into
the relative importance of the different components of SequenceMatch, namely the <bkspc> token
and the alternative loss. The first experiment shows that SequenceMatch can improve accuracy on a
downstream task, and that it can detect OOD states. The second experiment shows that Sequence-
Match training can generate sequences with higher similarity to the data compared to a variety of
baselines. In the appendix, section G, we describe three additional experiments, on translation,
multiplication, and prime factorization. In all experiments, we finetune Llama2-7b (Touvron et al.,
2023), using quantized low-rank adapters (Dettmers et al., 2023). In addition to the adapters, a row
is added to the unembedding layer for the <bkspc> token, and the unembedding layer is trained.

7

6.1 ARITHMETIC

We first examine the potential for SequenceMatch to improve the performance on downstream tasks.
The dataset is the arithmetic add-or-sub-in-base sub-task of the math-dataset (Saxton et al., 2018),
consisting of questions such as In base 7, what is -1240 - -4156?. We compare a
maximum-likelihood model, a behavioral cloning model, and a SequenceMatch model, with varying
levels and types of noise. ‘Random noise’ is generated by sampling a token at random from the
vocabulary, and hence is not very likely to be a common mistake made when solving the problem.
‘Ground-truth noise’ is generated by sampling a token from the set {0, . . . , b � 1}, where b is the
base in the question. The latter type of noise is expected to generate sequences that are far closer to
the type of inaccuracies that a model (or human) might make while solving the problem. However,
the random noise is generic to all tasks, while the ground-truth noise must be constructed for a given
task manually. Both types of noise are only added to the solution digits, not the question digits.
We use a small dataset of only 5,000 questions, to demonstrate the improved generalization abilities
of SequenceMatch. The prompts for the SequenceMatch generations are taken from the training
dataset and truncated at the end of the question. The accuracy is computed over a held-out test set
of 200 questions, and error bars obtained by training two models with different random seed.

Figure 3: Accuracy on the arithmetic task against noise level (frequency with which noise tokens are
added), for ground-truth noise consisting of digits and random noise consisting of random tokens.
The ground-truth noise improves accuracy for the behavioral cloning and SequenceMatch models.
The random noise does not improve performance for the behavioral cloning model, but does some-
what for the SequenceMatch model, likely helping the model to learn the dynamics of <bkspc>.

6.1.1 RESULTS

The results are shown in figure 3. It is clear that the models trained under the SequenceMatch
loss outperform both the behavioral cloning (BC) and MLE baselines. With zero added noise, the
improvement is small, as the model is not able to learn the backspace dynamics with no demon-
strations from the expert. However, with a small amount of added noise, the SequenceMatch model
has demonstrations of the use of <bkspc> and can start learning the dynamics through sampling.
The BC model improves performance at higher levels of ground-truth noise, as the high level of
noise acts as strong data augmentation. Indeed, this improved performance seems roughly propor-
tional to the amount of added noise, as expected. Similarly, while random noise is useful to the
SequenceMatch model due to the dynamics information, it does not help the BC model.

Qualitatively, the SequenceMatch-trained model is able to detect when it is out-of-distribution very
accurately. In table 1 the best-performing SequenceMatch model is prompted with partial solutions
which are incorrect (the first four in the test set with added random digit tokens). In each case it is
able to detect the OOD case and return closely to the correct answer.

6.2 TEXT GENERATION

We use the same model and architecture as the previous section. Sequences are drawn from the open-
webtext dataset3, an open-sourced dataset similar to the training set for GPT-2 (Radford et al., 2018),

3https://github.com/jcpeterson/openwebtext

8

Ground Truth QA Prompt with Mistake Completion Actions Final State

In base 2, what is
-11101111011001100 + 10100?
Solution: -11101111010111000

In base 2, what is
-11101111011001100 + 10100?
Solution: -1011

<bkspc><bkspc><bkspc>
1101111<bkspc>1011000010
<eos>

-11101111011000010

In base 8, what is 4354 + 33?
Solution: 4407

In base 8, what is 4354 + 33?
Solution: 5

<bkspc>4417<eos> 4417

In base 8, what is -4 +
-576122? Solution: -576126

In base 8, what is -4 +
-576122? Solution: -374

<bkspc><bkspc><bkspc>
576126<eos>

-576126

In base 5, what is 10 -
3311121? Solution: -3311111

In base 5, what is 10 -
3311121? Solution: -31

<bkspc>31<bkspc>11111<eos> -3311111

Table 1: Mistake-conditioned completions for the arithmetic task. We add a random set of digit tokens to the
prompt and generate from the SequenceMatch-trained model. The SequenceMatch model correctly deletes the
initial tokens in all cases and eventually generates the correct solution in three of four cases.

Model MLE MLE + C.S MLE + ULK MLE + <bkspc> SequenceMatch
MAUVE (") 0.85 ± 0.03 0.86 ± 0.03 0.89 ± 0.02 0.84 ± 0.02 0.91 ± 0.02
n-gram H (") 4.57 ± 0.02 4.43 ± 0.02 4.57 ±0.01 4.59 ± 0.01 4.60 ± 0.01
Diversity (") 0.56 ± 0.02 0.35 ± 0.03 0.57 ± 0.01 0.56 ± 0.01 0.56 ± 0.01
Perplexity (#) 6.99 ± 0.02 N/A 7.10 ± 0.02 7.02 ± 0.02 7.13 ± 0.03

Table 2: A Llama-2-7b model fine-tuned on the openwebtext dataset with different training and sampling
regimes. Error bars are over two draws of 1000 evaluation samples. C.S. and ULK are contrastive sampling
and unlikelihood loss training, respectively. The SequenceMatch model achieves the highest MAUVE score
and n-gram entropy, with diversity very close to the best value from the MLE + unlikelihood training.

with a 1024-length context window, truncating sequences that are longer. The model-generated tra-
jectories are generated from examples from the training dataset, with a prompt length randomly
chosen with a maximum of 256. The generated sequences have a max length of 512 (although they
may terminate earlier). We compare a SequenceMatch-trained model against several baselines: a
model trained against the typical MLE objective, and a behavioral cloning model trained with in-
jected noise and <bkspc> labels. We also test MLE + C.S., which is MLE with contrastive
sampling (Jiang et al., 2022). Finally, MLE + ULK is maximum-likelihood with the unlikelihood
token loss (Welleck et al., 2019). We train for 5,000 gradient steps. The SequenceMatch parameters
are set to ↵ = 0.01, ⌘ = 0.001 and � = 0.998. Our main metric for quality of generations is
the MAUVE score (Pillutla et al., 2022), a non-parametric method for evaluating the quality of a
generative model. The MAUVE score is formed by taking a low-dimensional PCA of an embedding
of the generated sequences. The score is a mixture of forward and reverse KLs between data and
model-generated sequences, between zero and one (higher is better). Additionally we report the
n-gram entropy and the diversity metric (Jiang et al., 2022), given by

Q4
n=2

�
1.0� rep �n

100

�
, where

rep-n = 100⇥
h
1.0� | unique n-grams (x̂)|

|total n-grams (x̂)|

i
for a generation x̂.

6.2.1 RESULTS

Table 2 shows that the SequenceMatch-trained model is able to achieve higher MAUVE score com-
pared to the baselines. It also improves with respect to the n-gram entropy. On the diversity metric,
all models are similar, except the contrastive sampling model. The SequenceMatch-trained model is
outperformed on the perplexity metric by the BC and MLE-trained methods. This is expected, as the
training objective for BC and MLE is exactly the log-perplexity. However, on the MAUVE score,
only unlikelihood and SequenceMatch offer a substantial improvement to MLE. Of course, unlike-
lihood relies on a heuristic to penalize repetitions: a heuristic not appropriate in e.g. arithmetic.

7 CONCLUSION

We address the compounding error problem in autoregressive sequence generation by formulating
the problem in the imitation learning framework, deriving a general non-adversarial objective for
minimizing divergences between occupancy measures induced by a learned model and the data dis-
tribution. We develop a novel masking scheme to train a transformer-based autoregressive model
with a backspace action with small overhead vs MLE, further reducing compounding error by al-
lowing backtracking. Empirically, the SequenceMatch objective leads to improvements over MLE
at text generation and arithmetic. Future work could investigate how qualities of generations change
with choice of divergence, or find methods to reduce the overhead of the SequenceMatch objective.

9

8 ACKNOWLEDGEMENTS

This research was supported by funding from the following: Stanford HAI, NSF(#1651565), ARO
(W911NF-21-1-0125), ONR (N00014-23-1-2159), and the CZ Biohub. We thank Anuj Nagpal, Div
Garg and Andy Shih for valuable discussions and feedback on this research direction.

REFERENCES

Firas Al-Hafez, Davide Tateo, Oleg Arenz, Guoping Zhao, and Jan Peters. LS-IQ: Implicit reward
regularization for inverse reinforcement learning. In The Eleventh International Conference on
Learning Representations, 2023.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pp. 214–223. PMLR, 2017.

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and Jackie Chi Kit Cheung. Why Exposure Bias
Matters: An Imitation Learning Perspective of Error Accumulation in Language Generation. In
Findings of the Association for Computational Linguistics: ACL 2022, pp. 700–710, 2022.

Paul Barde, Julien Roy, Wonseok Jeon, Joelle Pineau, Chris Pal, and Derek Nowrouzezahrai. Ad-
versarial soft advantage fitting: Imitation learning without policy optimization. In Advances in
Neural Information Processing Systems, volume 33, pp. 12334–12344, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165
[cs], July 2020.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Nasser Esmaili, Claude Sammut, and GM Shirazi. Behavioural cloning in control of a dynamic
system. In 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent
Systems for the 21st Century, volume 3, pp. 2904–2909. IEEE, 1995.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, 2018.

Zihao Fu, Wai Lam, Anthony Man-Cho So, and Bei Shi. A theoretical analysis of the repetition
problem in text generation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 12848–12856, 2021.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. IQ-Learn:
Inverse soft-Q learning for imitation. In NeurIPS, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Neural Information Pro-
cessing Systems (NeurIPS), 2014.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2019.

10

Abdul Jabbar, Xi Li, and Bourahla Omar. A Survey on Generative Adversarial Networks: Variants,
Applications, and Training. arXiv:2006.05132 [cs], June 2020.

Shaojie Jiang, Ruqing Zhang, Svitlana Vakulenko, and Maarten de Rijke. A simple contrastive learn-
ing objective for alleviating neural text degeneration. arXiv preprint arXiv:2205.02517, 2022.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2019.

Dohyun Kwon, Yeoneung Kim, Guido Montúfar, and Insoon Yang. Training Wasserstein GANs
without gradient penalties. arXiv:2110.14150 [cs, math], October 2021.

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A Tutorial on
Energy-Based Learning, 2006.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In In Proc. 17th
International Conf. on Machine Learning. Citeseer, 2000.

Krishna Pillutla, Lang Liu, John Thickstun, Sean Welleck, Swabha Swayamdipta, Rowan Zellers,
Sewoong Oh, Yejin Choi, and Zaid Harchaoui. MAUVE scores for generative models: Theory
and practice. arXiv preprint arXiv:2212.14578, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2018.

Douglas Rizzolo and Francis Edward Su. A fixed point theorem for the infinite-dimensional simplex.
Journal of mathematical analysis and applications, 332(2):1063–1070, 2007.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In AISTATS, pp. 627–635, 2011.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models. In International Conference on Learning Representations,
2018.

Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. Toward Diverse Text Generation with
Inverse Reinforcement Learning. arXiv:1804.11258 [cs, stat], June 2018.

Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(4):171–176, 1958.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, volume 32, 2019.

Gokul Swamy, Sanjiban Choudhury, Zhiwei Steven Wu, and J. Andrew Bagnell. Of Moments and
Matching: Trade-offs and Treatments in Imitation Learning. arXiv:2103.03236 [cs, stat], March
2021.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear pro-
gramming. In Proceedings of the 25th International Conference on Machine Learning, pp. 1032–
1039, 2008.

Shichang Tang. Lessons Learned from the Training of GANs on Artificial Datasets.
arXiv:2007.06418 [cs, stat], July 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In International Conference on Learning Rep-
resentations, 2019.

11

