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Abstract

Solving complex classification tasks using deep neural networks typically requires large
amounts of annotated data. However, corresponding class labels are noisy when provided
by error-prone annotators, e.g., crowdworkers. Training standard deep neural networks
leads to subpar performances in such multi-annotator supervised learning settings. We ad-
dress this issue by presenting a probabilistic training framework named multi-annotator
deep learning (MaDL). A downstream ground truth and an annotator performance model
are jointly trained in an end-to-end learning approach. The ground truth model learns to
predict instances’ true class labels, while the annotator performance model infers proba-
bilistic estimates of annotators’ performances. A modular network architecture enables us
to make varying assumptions regarding annotators’ performances, e.g., an optional class or
instance dependency. Further, we learn annotator embeddings to estimate annotators’ den-
sities within a latent space as proxies of their potentially correlated annotations. Together
with a weighted loss function, we improve the learning from correlated annotation patterns.
In a comprehensive evaluation, we examine three research questions about multi-annotator
supervised learning. Our findings show MaDL’s state-of-the-art performance and robustness
against many correlated, spamming annotators.

1 Introduction

Supervised deep neural networks (DNNs) have achieved great success in many classification tasks (Pouyanfar
et al., 2018). In general, these DNNs require a vast amount of annotated data for their successful employ-
ment (Algan & Ulusoy, 2021). However, acquiring top-quality class labels as annotations is time-intensive
and/or financially expensive (Herde et al., 2021). Moreover, the overall annotation load may exceed a single
annotator’s workforce (Uma et al., 2021). For these reasons, multiple non-expert annotators, e.g., crowd-
workers, are often tasked with data annotation (Zhang, 2022; Gilyazev & Turdakov, 2018). Annotators’
missing domain expertise can lead to erroneous annotations, known as noisy labels. Further, even expert an-
notators cannot be assumed to be omniscient because additional factors, such as missing motivation, fatigue,
or an annotation task’s ambiguity (Vaughan, 2018), may decrease their performances. A popular annotation
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quality assurance option is the acquisition of multiple annotations per data instance with subsequent aggre-
gation (Zhang et al., 2016), e.g., via majority rule. The aggregated annotations are proxies of the ground
truth (GT) labels to train DNNs. Aggregation techniques operate exclusively on the basis of annotations. In
contrast, model-based techniques use feature or annotator information and thus work well in low-redundancy
settings, e.g., with just one annotation per instance (Khetan et al., 2018). Through predictive models, these
techniques jointly estimate instances’ GT labels and annotators’ performances (APs) by learning and in-
ferring interdependencies between instances, annotators, and their annotations. As a result, model-based
techniques cannot only predict GT labels and APs for training instances but also for test instances, i.e., they
can be applied in transductive and inductive learning settings (Vapnik, 1995).

Despite ongoing research, several challenges still need to be addressed in multi-annotator supervised learn-
ing. To introduce these challenges, we exemplarily look at the task of animal classification in Fig. 1. Eight
annotators have been queried to provide annotations for the image of a jaguar. Such a query is difficult
because jaguars have remarkable similarities to other predatory cats, e.g., leopards. Accordingly, the ob-
tained annotations indicate a strong disagreement between the leopard and jaguar class. Simply taking the
majority vote of these annotations results in leopard as a wrongly estimated GT label. Therefore, advanced
multi-annotator supervised learning techniques leverage annotation information from other (similar) anno-
tated images to estimate APs. However, producing accurate AP estimates is difficult because one needs to
learn many annotation patterns. Otherwise, the estimated GT labels will be biased, e.g., when APs are
exclusively modeled as a function of annotators. In this case, we cannot identify annotators who are only
knowledgeable about certain classes or regions in the feature space. Another challenge in multi-annotator
supervised learning concerns potential (latent) correlations between annotators. In our animal annotation
task, we illustrate this issue by visualizing three latent groups of similarly behaving annotators. Although
we assume that the annotators work independently of each other, they can still share common or statistically
correlated error patterns (Chu et al., 2021). This is particularly problematic if a group of ordinary persons
strongly outvotes a much smaller group of professionals. Considering prior information about the annota-
tors, i.e., annotator features or metadata (Zhang et al., 2023), can help to identify these groups. Moreover,
prior information enables a model to inductively learn performances for annotators who have provided few
or no annotations. In our example, zoological interest could be a good indicator for this purpose. While
the inductive learning of APs for annotators poses an additional challenge to the already complex task, its
use may be beneficial for further applications, e.g., optimizing the annotator selection in an active learning
setting (Herde et al., 2021) or training annotators to improve their own knowledge (Daniel et al., 2018).
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Figure 1: Animal classification as an illustration of a multi-annotator supervised learning problem.

In this article, we address the above challenges by making the following contributions:

• We propose multi-annotator deep learning (MaDL) as a probabilistic and modular classifi-
cation framework. In an end-to-end training via a weighted maximum-likelihood approach,
it learns embeddings of annotators to account for possible correlations among them.

• We specify six properties concerning the estimation of APs and application scenarios for
categorizing related multi-annotator supervised learning techniques.

• Associated with these properties, we formulate three research questions (RQs), which we
experimentally investigate, including comparisons of MaDL to related techniques.
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The remainder of this article is structured as follows: In Section 2, we formally introduce the problem
setting of supervised learning from multiple annotators. Subsequently, we identify central properties of
multi-annotator supervised learning techniques as a basis for categorizing related works and pointing out
their differences to MaDL in Section 3. Section 4 explains the details of our MaDL framework. Experimental
evaluations of MaDL and related techniques are presented regarding RQs associated with the aforementioned
properties in Section 5. Finally, we conclude and give an outlook regarding future research work in Section 6.

2 Problem Setting

In this section, we formalize the assumptions and objectives of multi-annotator supervised learning for
classification tasks.

Prerequisites: Without loss of generality, we represent a data instance as a vector x := (x(1), ..., x(D))T,
D ∈ N>0 in a D-dimensional real-valued input or feature space ΩX := RD. The N ∈ N>0 instances jointly
form a matrix X := (x1, ...,xN )T and originate from an unknown probability density function Pr(x). For each
observed instance xn ∼ Pr(x), there is a GT class label yn ∈ ΩY := {1, . . . , C}. Each GT label yn is assumed
to be drawn from an unknown conditional distribution: yn ∼ Pr(y | xn). We denote the GT labels as the
vector y := (y1, ..., yN )T. These GT labels are unobserved since there is no omniscient annotator. Instead,
we consider multiple error-prone annotators. For the sake of simplicity, we represent an annotator through
individual features as a vector am ∈ ΩA := RO, O ∈ N>0. If no prior annotator information is available, the
annotators’ features are defined through one-hot encoded vectors, i.e., ΩA := {e1, . . . , eM} with am := em,
to identify each annotator uniquely. Otherwise, annotator features may provide information specific to
the general annotation task, e.g., the zoological interest when annotating animal images or the years of
experience in clinical practice when annotating medical data. Together, the M ∈ N>0 annotators form a
matrix A := (a1, . . . ,aM )T. We denote the annotation assigned by annotator am to instance xn through
znm ∈ ΩY ∪{⊗}, where znm = ⊗ indicates that an annotation is unobserved, i.e., not provided. An observed
annotation is assumed to be drawn from an unknown conditional distribution: znm ∼ Pr(z | xn,am, y).
Multiple annotations for an instance xn can be summarized as a vector zn := (zn1, ..., znM )T. Thereby, the set
An := {m | m ∈ {1, . . . ,M} ∧ znm ∈ ΩY } represents the indices of the annotators who assigned an annotation
to an instance xn. Together, the annotations of all observed instances form the matrix Z := (z1, ..., zN )T.
We further assume there is a subset of annotators whose annotated instances are sufficient to approximate
the GT label distribution, i.e., together, these annotated instances allow us to correctly differentiate between
all classes. Otherwise, supervised learning is hardly possible without explicit prior knowledge about the
distributions of GT labels and/or APs. Moreover, we expect that the annotators independently decide on
instances’ annotations and that their APs are time-invariant.

Objectives: Given these prerequisites, the first objective is to train a downstream GT model, which ap-
proximates the optimal GT decision function yGT : ΩX → ΩY by minimizing the expected loss across all
classes:

yGT(x) := arg min
y′∈ΩY

(
Ey|x [LGT(y, y′)]

)
. (1)

Thereby, we define the loss function LGT : ΩY × ΩY → {0, 1} through the zero-one loss:

LGT(y, y′) := δ(y 6= y′) :=
{

0, if y = y′,

1, if y 6= y′.
(2)

As a result, an optimal GT model for classification tasks can accurately predict the GT labels of instances.
Proposition 1. Assuming LGT to be the zero-one loss in Eq. 2, the Bayes optimal prediction for Eq. 1 is
given by:

yGT(x) = arg max
y′∈ΩY

(Pr(y′ | x)) . (3)

When learning from multiple annotators, the APs are further quantities of interest. Therefore, the
second objective is to train an AP model, which approximates the optimal AP decision function
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yAP : ΩX × ΩA → {0, 1} by minimizing the following expected loss:

yAP(x,a) := arg min
y′∈{0,1}

(
Ey|x

[
Ez|x,a,y [LAP (y′, LGT (y, z))]

])
. (4)

Defining LAP and LGT as zero-one loss, an optimal AP model for classification tasks can accurately predict
the zero-one loss of annotator’s class labels, i.e., whether an annotator a provides a false, i.e., yAP(x,a) = 1,
or correct, i.e., yAP(x,a) = 0, class label for an instance x.
Proposition 2. Assuming both LAP and LGT to be the zero-one loss, as defined in Eq. 2, the Bayes optimal
prediction for Eq. 4 is given by:

yAP(x,a) = δ

 ∑
y∈ΩY

Pr(y | x) Pr(y | x,a, y) < 0.5

 . (5)

We refer to Appendix A for the proofs of Proposition 1 and Proposition 2.

3 Related Work

This section discusses existing multi-annotator supervised learning techniques targeting our problem setting
of Section 2. Since we focus on the AP next to the GT estimation, we restrict our discussion to techniques
capable of estimating both target types. In this context, we analyze related research regarding three aspects,
i.e., GT models, AP models, and algorithms for training these models.

Ground truth model: The first multi-annotator supervised learning techniques employed logistic regres-
sion models (Raykar et al., 2010; Kajino et al., 2012; Rodrigues et al., 2013; Yan et al., 2014) for classification.
Later, different kernel-based variants of GT models, e.g., Gaussian processes, were developed (Rodrigues
et al., 2014; Long et al., 2016; Gil-Gonzalez et al., 2021). Rodrigues et al. (2017) focused on documents
and extended topic models to the multi-annotator setting. More recently, several techniques were proposed
to train DNNs for large-scale and especially image classification tasks with noisy annotations (Albarqouni
et al., 2016; Guan et al., 2018; Khetan et al., 2018; Rodrigues & Pereira, 2018; Yang et al., 2018; Tanno et al.,
2019; Cao et al., 2019; Platanios et al., 2020; Zhang et al., 2020; Gil-González et al., 2021; Rühling Cachay
et al., 2021; Chu et al., 2021; Li et al., 2022; Wei et al., 2022; Gao et al., 2022). MaDL follows this line of
work and also employs a (D)NN as the GT model.

Annotator performance model: An AP model is typically seen as an auxiliary part of the GT model
since it provides AP estimates for increasing the GT model’s performance. In this article, we reframe an AP
model’s use in a more general context because accurately assessing APs can be crucial in improving several
applications, e.g., human-in-the-loop processes (Herde et al., 2021) or knowledge tracing (Piech et al., 2015).
For this reason, we analyze existing AP models regarding six properties, which we identified as relevant while
reviewing literature about multi-annotator supervised learning.

(P1) Class-dependent annotator performance: The simplest AP representation is an overall ac-
curacy value per annotator. On the one hand, AP models estimating such accuracy values have
low complexity and thus do not overfit (Rodrigues et al., 2013; Long et al., 2016). On the other
hand, they may be overly general and cannot assess APs on more granular levels. Therefore, many
other AP models assume a dependency between APs and instances’ GT labels. Class-dependent
AP models typically estimate confusion matrices (Raykar et al., 2010; Rodrigues et al., 2014; 2017;
Khetan et al., 2018; Tanno et al., 2019; Platanios et al., 2020; Gao et al., 2022; Li et al., 2022),
which indicate annotator-specific probabilities of mistaking one class for another, e.g., recognizing
a jaguar as a leopard. Alternatively, weights of annotation aggregation functions (Cao et al., 2019;
Rühling Cachay et al., 2021) or noise-adaption layers (Rodrigues & Pereira, 2018; Chu et al., 2021;
Wei et al., 2022) can be interpreted as non-probabilistic versions of confusion matrices. MaDL es-
timates probabilistic confusion matrices or less complex approximations, e.g., the elements on their
diagonals.
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(P2) Instance-dependent annotator performance: In many real-world applications, APs are addi-
tionally instance-dependent (Yan et al., 2014) because instances of the same class can strongly vary
in their feature values. For example, recognizing animals in blurry images is more difficult than in
high-resolution images. Hence, several AP models estimate the probability of obtaining a correct
annotation as a function of instances and annotators (Kajino et al., 2012; Yan et al., 2014; Guan
et al., 2018; Yang et al., 2018; Gil-Gonzalez et al., 2021; Gil-González et al., 2021). Combining
instance- and class-dependent APs results in the most complex AP models, which estimate a confu-
sion matrix per instance-annotator pair (Platanios et al., 2020; Zhang et al., 2020; Rühling Cachay
et al., 2021; Chu et al., 2021; Gao et al., 2022; Li et al., 2022). MaDL also employs an AP model
of this type. However, it optionally allows dropping the instance and class dependency, which can
benefit classification tasks where each annotator provides only a few annotations.

(P3) Annotator correlations: Although most techniques assume that annotators do not collaborate,
they can still have correlations regarding their annotation patterns, e.g., by sharing statistically
correlated error patterns (Chu et al., 2021). Gil-Gonzalez et al. (2021) proposed a kernel-based
approach where a matrix quantifies such correlations for all pairs of annotators. Inspired by weak
supervision, Cao et al. (2019) and Rühling Cachay et al. (2021) employ an aggregation function
that takes all annotations per instance as input to model annotator correlations. Gil-González
et al. (2021) introduce a regularized chained DNN whose weights encode correlations. Wei et al.
(2022) jointly model the annotations of all annotators as outputs and thus take account of potential
correlated mistakes. Chu et al. (2021) consider common annotation noise through a noise adaptation
layer shared across annotators. Moreover, similar to our MaDL framework, they learn embeddings
of annotators. Going beyond, MaDL exploits these embeddings to determine annotator correlations.

(P4) Robustness to spamming annotators: Especially on crowdsourcing platforms, there have been
several reports of workers spamming annotations (Vuurens et al., 2011), e.g., by randomly guessing
or permanently providing the same annotation. Such spamming annotators can strongly harm the
learning process. As a result, multi-annotator supervised learning techniques are ideally robust
against these types of annotation noise. Cao et al. (2019) employ an information-theoretic approach
to separate expert annotators from possibly correlated spamming annotators. Rühling Cachay et al.
(2021) empirically demonstrated that their weak-supervised learning technique is robust to large
numbers of randomly guessing annotators. MaDL ensures this robustness by training via a weighted
likelihood function, assigning high weights to independent annotators whose annotation patterns
have no or only slight statistical correlations to the patterns of other annotators.

(P5) Prior annotator information: On crowdsourcing platforms, requesters may acquire prior infor-
mation about annotators (Daniel et al., 2018), e.g., through surveys, annotation quality tests, or
publicly available profiles. Several existing AP models leverage such information to improve learn-
ing. Thereby, conjugate prior probability distributions, e.g., Dirichlet distributions, represent a
straightforward way of including prior estimates of class-dependent accuracies (Raykar et al., 2010;
Albarqouni et al., 2016; Rodrigues et al., 2017). Other techniques (Platanios et al., 2020; Chu et al.,
2021), including our MaDL framework, do not directly expect prior accuracy estimates but work
with all types of prior information that can be represented as vectors of annotator features.

(P6) Inductive learning of annotator performance: Accurate AP estimates can be beneficial in
various applications, e.g., guiding an active learning strategy to select accurate annotators (Yang
et al., 2018). For this purpose, it is necessary that a multi-annotator supervised learning technique
can inductively infer APs for non-annotated instances. Moreover, an annotation process is often
a dynamic system where annotators leave and enter. Hence, it is highly interesting to inductively
estimate the performances of newly entered annotators, e.g., through annotator features as used by
Platanios et al. 2020 and MaDL.

Training: Several multi-annotator supervised learning techniques employ the expectation-maximization
(EM) algorithm for training (Raykar et al., 2010; Rodrigues et al., 2013; Yan et al., 2014; Long et al., 2016;
Albarqouni et al., 2016; Guan et al., 2018; Khetan et al., 2018; Yang et al., 2018; Platanios et al., 2020).
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GT labels are modeled as latent variables and estimated during the E step, while the GT and AP models’
parameters are optimized during the M step. The exact optimization in the M step depends on the underlying
models. Typically, a variant of gradient descent (GD), e.g., quasi-Newton methods, is employed, or a closed-
form solution exists, e.g., for AP models with instance-independent AP estimates. Other techniques take a
Bayesian view of the models’ parameters and therefore resort to expectation propagation (EP) (Rodrigues
et al., 2014; Long et al., 2016) or variational inference (VI) (Rodrigues et al., 2017). As approximate inference
methods are computationally expensive and may lead to suboptimal results, several end-to-end training
algorithms have been proposed. Gil-Gonzalez et al. (2021) introduced a localized kernel alignment-based
relevance analysis that optimizes via GD. Through a regularization term, penalizing differences between GT
and AP model parameters, Kajino et al. formulated a convex loss function for logistic regression models.
Rodrigues & Pereira (2018), Gil-González et al. (2021), and Wei et al. (2022) jointly train the GT and AP
models by combining them into a single DNN with noise adaption layers. Chu et al. (2021) follow a similar
approach with two types of noise adaption layers: one shared across annotators and one individual for each
annotator. Gil-González et al. (2021) employ a regularized chained DNN to estimate GT labels and AP
performances jointly. In favor of probabilistic AP estimates, Tanno et al. (2019), Zhang et al. (2020), Li
et al. (2022), and MaDL avoid noise adaption layers but employ loss functions suited for end-to-end learning.
Cao et al. (2019) and Rühling Cachay et al. (2021) jointly learn an aggregation function in combination with
the AP and GT models.

Table 1 summarizes and completes the aforementioned discussion by categorizing multi-annotator supervised
learning techniques according to their GT model, AP model, and training algorithm. Thereby, the AP model
is characterized by the six previously discussed properties (P1–P6). We assign 3 if a property is supported, 7
if not supported, and F if partially supported. More precisely, F is assigned to property P5 if the technique
can include prior annotator information but needs a few adjustments and to property P6 if the technique
requires some architectural changes to learn the performances of new annotators inductively. For property
P4, a 3 indicates that the authors have shown that their proposed technique learns in the presence of many
spamming annotators.

Table 1: Literature categorization of multi-annotator supervised learning techniques.

Reference Ground Truth Model Training Annotator Performance Model
P1 P2 P3 P4 P5 P6

Kajino et al. (2012)

Logistic Regression Model

GD 7 3 7 7 7 7
Raykar et al. (2010)

EM & GD
3 7 7 7 3 7

Rodrigues et al. (2013) 7 7 7 7 7 7
Yan et al. (2014) 7 3 7 7 F F
Rodrigues et al. (2017) Topic Model VI & GD 3 7 7 7 3 7
Rodrigues et al. (2014)

Kernel-based Model
EP 3 7 7 7 7 7

Long et al. (2016) EM & EP & GD 7 7 7 7 7 7
Gil-Gonzalez et al. (2021) GD 7 3 3 7 7 7
Albarqouni et al. (2016)

(Deep) Neural Network

EM & GD
3 7 7 7 3 7

Yang et al. (2018) 7 3 7 7 F F
Khetan et al. (2018) 3 7 7 7 F F
Platanios et al. (2020) 3 3 7 7 3 3
Rodrigues & Pereira (2018)

GD

3 7 7 7 7 7
Guan et al. (2018) 7 3 7 7 7 7
Tanno et al. (2019) 3 7 7 7 F F
Cao et al. (2019) 3 7 3 3 7 7
Zhang et al. (2020) 3 3 3 7 F F
Gil-González et al. (2021) 7 3 3 3 7 7
Rühling Cachay et al. (2021) 3 3 3 3 7 7
Chu et al. (2021) 3 3 3 3 3 7
Li et al. (2022) 3 3 7 7 F F
Wei et al. (2022) 3 7 3 7 7 7
Gao et al. (2022) 3 3 7 7 F F
MaDL (2023) 3 3 3 3 3 3
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4 Multi-annotator Deep Learning

In this section, we present our modular probabilistic MaDL framework. We start with a description of its
underlying probabilistic model. Subsequently, we introduce its GT and AP models’ architectures. Finally,
we explain our end-to-end training algorithm.

4.1 Probabilistic Model

The four nodes in Fig. 2 depict the random variables of an instance x, a GT label y, an annotator a, and an
annotation z. Thereby, arrows indicate probabilistic dependencies among each other. The random variable
of an instance x and an annotator a have no incoming arrows and thus no causal dependencies on other
random variables. In contrast, the distribution of a latent GT label y depends on its associated instance x.
For classification problems, the probability of observing y = c as GT label of an instance x can be modeled
through a categorical distribution:

Pr(y = c | x) := Cat(y = c | p(x)) :=
C∏
k=1

(
p(k)(x)

)δ(k=c)
= p(c)(x), (6)

where p : ΩX → ∆ := {p ∈ [0, 1]C |
∑C
c=1 p

(c) = 1} denotes the function outputting an instance’s true class-
membership probabilities. The outcome of an annotation process may depend on the annotator’s features,
an instance’s features, and the latent GT label. A function P : ΩX ×ΩA → [0, 1]C×C outputting a row-wise
normalized confusion matrix per instance-annotator pair can capture these dependencies. The probability
that an annotator a annotates an instance x of class y = c with the annotation z = k can then be modeled
through a categorical distribution:

Pr(z = k | x,a, y = c) := Cat
(
z = k

∣∣∣P(c,:)(x,a)
)

:=
C∏
l=1

(
P (c,l)(x,a)

)δ(l=k)
= P (c,k)(x,a), (7)

where the column vector P(c,:)(x,a) ∈ ∆ corresponds to the c-th row of the confusion matrix P(x,a).

Ground Truth Model Parameters Annotator Performance Model Parameters

Observed Annotation

Observed Annotator Features

Leopard

Observed Instance

Latent Ground Truth
Jaguar

Age: 38
Zoological Interest: High

Mean Annotation Time: 9s
Credit: Hollingsworth, John & Karen, USFWS
Media Usage Rights/License: Public Domain

Figure 2: Probabilistic graphical model of MaDL.

4.2 Model Architectures

Now, we introduce how MaDL’s GT and AP models are designed to approximate the functions of true
class-membership probabilities p and true confusion matrices P for the respective instances and annotators.
Fig. 3 illustrates the architecture of the GT (purple) and AP (green) models within our MaDL framework.
Solid lines indicate mandatory components, while dashed lines express optional ones.

The GT model with parameters θ is a (D)NN (cf. 4 in Fig. 3), which takes an instance x as input to
approximate its true class-membership probabilities p(x) via p̂θ(x). We define its decision function in
analogy to the Bayes optimal prediction in Eq. 3 through

ŷθ(x) := arg max
y∈ΩY

(
p̂

(y)
θ (x)

)
. (8)
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The architecture of the AP model with parameters ω comprises mandatory and
optional components. We start by describing its most general form, which con-
sists of three (D)NNs and estimates annotator-, class-, and instance-dependent
APs. Annotator features a are propagated through a first (D)NN (cf. 1 in
Fig. 3) to learn an annotator embedding ã ∈ RR, R ∈ N≥1. During training,
we will use such embeddings for quantifying correlations between annotators.
Analogously, we propagate raw instance features x or a representation learned
by the GT model’s hidden layers through a second (D)NN (cf. 2 in Fig. 3)
for learning an instance embedding x̃ ∈ RQ, Q ∈ N≥1. Subsequently, instance
and annotator embeddings x̃ and ã are combined through a third and final
(D)NN (cf. 3 in Fig. 3) for approximating the true confusion matrix P(x,a)
via P̂ω(x,a). Various architectures for combining embeddings have already
been proposed in the literature (Fiedler, 2021). We adopt a solution from
recommender systems where often latent factors of users and items are com-
bined (Zhang et al., 2019). Concretely, in DNN 3 , we use an outer product-
based layer outputting õ ∈ RF , F ∈ N≥1 to model the interactions between
instance and annotator embeddings (Qu et al., 2016). The concatenation of
ã, x̃, and õ is propagated through a residual block (He et al., 2016), whose architecture is visualized in
Fig. 4. There, we add only the annotator embedding ã to the learned mapping h(ã, x̃, õ) ∈ RR. The
motivation behind this modification is that the annotator embeddings, informing about an annotator’s in-
dividuality, are likely to be the most influential inputs for estimating confusion matrices as APs. Empirical
investigations showed that R = Q = F = 16 as the embedding size is a robust default. Finally, we define
the AP model’s decision function in analogy to the Bayes optimal prediction in Eq. 5 through

ŷθ,ω(x,a) := δ

(
C∑
c=1

p̂
(c)
θ (x) · P̂ (c,c)

ω (x,a) < 0.5
)

:= δ

 p̂θ,ω(x,a)︸ ︷︷ ︸
predicted correctness probability

< 0.5

 . (9)

An AP model estimating a confusion matrix per instance-annotator pair can be overly complex if there are
only a few annotations per annotator or the number of classes is high (Rodrigues et al., 2013). In such
settings, ignoring the instance features as input of the AP model may be beneficial. Alternatively, we can
constrain a confusion matrix’s degrees of freedom by reducing the number of output neurons of the AP
model. For example, we might estimate only the diagonal elements of the confusion matrix and assume
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that the remaining probability mass per row is uniformly distributed. Further, we can either estimate each
diagonal element individually (corresponding to C output neurons) or approximate them via a single scalar
(corresponding to one output neuron). Appendix G illustrates such confusion matrices with varying degrees
of freedom.

4.3 End-to-end Training

Given the probabilistic model and accompanying architectures of the GT and AP models, we propose an
algorithm for jointly learning their parameters. A widespread method for training probabilistic models is
to maximize the likelihood of the observed data with respect to the model parameters. Assuming that the
joint distributions of annotations Z are conditionally independent for given instances X, we can specify the
likelihood function as follows:

Pr(Z | X,A;θ,ω) =
N∏
n=1

Pr(zn | xn,A;θ,ω). (10)

We further expect that the distributions of annotations zn for a given instance xn are conditionally inde-
pendent. Thus, we can simplify the likelihood function:

Pr(Z | X,A;θ,ω) =
N∏
n=1

∏
m∈An

Pr(znm | xn,am;θ,ω). (11)

Leveraging our probabilistic model in Fig. 2, we can express the probability of obtaining a certain annotation
as an expectation with respect to an instance’s (unknown) GT class label:

Pr(Z | X,A;θ,ω) =
N∏
n=1

∏
m∈An

Eyn|xn;θ [Pr(znm | xn,am, yn;ω)] (12)

=
N∏
n=1

∏
m∈An

(
C∑

yn=1
Pr(yn | xn;θ) Pr(znm | xn,am, yn;ω)

)
(13)

=
N∏
n=1

∏
m∈An

eT
znm

P̂T
ω(xn,am)p̂θ(xn)︸ ︷︷ ︸

annotation probabilities

, (14)

where eznm
denotes the one-hot encoded vector of annotation znm. Taking the logarithm of this likelihood

function and converting the maximization into a minimization problem, we get

LX,A,Z(θ,ω) := −
N∑
n=1

∑
m∈An

ln
(

eT
znm

P̂T
ω(xn,am)p̂θ(xn)

)
(15)

as cross-entropy loss function for learning annotation probabilities by combining the outputs of the GT and
AP models (cf. blue components in Fig. 3). Yet, directly employing this loss function for learning may result
in poor results for two reasons.

Initialization: Reason number one has been noted by Tanno et al. (2019), who showed that such a loss
function cannot ensure the separation of the AP and GT label distributions. This is because infinite many
combinations of class-membership probabilities and confusion matrices perfectly comply with the true an-
notation probabilities, e.g., by swapping the rows of the confusion matrix as the following example shows:

PT(xn,am)p(xn)︸ ︷︷ ︸
true probabilities

=
(

1 0
0 1

)(
1
0

)
=
(

1
0

)
=
(

0 1
1 0

)(
0
1

)
= P̂T

ω(xn,am)p̂θ(xn)︸ ︷︷ ︸
predicted probabilities

. (16)

Possible approaches aim at resolving this issue by favoring certain combinations, e.g., diagonally dominant
confusion matrices. Typically, one can achieve this via regularization (Tanno et al., 2019; Zhang et al., 2020;
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Li et al., 2022) and/or suitable initialization of the AP model’s parameters (Rodrigues & Pereira, 2018;
Wei et al., 2022). We rely on the latter approach because it permits encoding prior knowledge about APs.
Concretely, we approximate an initial confusion matrix for any instance-annotator pair (xn,am) through

P̂ω(xn,am) :=

softmax((vT(xn,am)W + B)(1,:))
...

softmax((vT(xn,am)W + B)(C,:))

 ≈ ηIC + (1− η)
C − 1 (1C − IC) , (17)

where IC ∈ RC×C denotes an identity matrix, 1C ∈ RC×C an all-one matrix, and η ∈ (0, 1) the prior
probability of obtaining a correct annotation. For example, in a binary classification problem, the initial
confusion matrix would approximately take the following values:

Pω(xn,am) ≈
(

η 1− η
1− η η

)
. (18)

The outputs of the softmax functions represent the confusion matrix’s rows. Provided that the initial AP
model’s last layer’s weights W ∈ RH×C×C , H ∈ N>0 satisfy vT(xn,am)W ≈ 0C ∈ RC×C for the hidden
representation v(xn,am) ∈ RH of each instance-annotator pair, we approximate Eq. 17 by initializing the
biases B ∈ RC×C of our AP model’s output layer via

B := ln
(
η · (C − 1)

1− η

)
IC . (19)

By default, we set η = 0.8 to assume trustworthy annotators a priori. Accordingly, initial class-membership
probability estimates are close to the annotation probability estimates.

Annotator Probability Densities:

Pr(a1 | A) ∝∼ 1

Pr(a2 | A) ≈ Pr(a3 | A) ≈ Pr(a4 | A) ≈ Pr(a5 | A) ∝∼ 4

Pr(a6 | A) ≈ Pr(a7 | A) ≈ Pr(a8 | A) ∝∼ 3

Annotator Weights:

w(a1) ≈ 8
3

w(a2) ≈ w(a3) ≈ w(a4) ≈ w(a5) ≈ 8
4·3

w(a6) ≈ w(a7) ≈ w(a8) ≈ 8
3·3

Figure 5: Visualization of annotator embeddings (left) accompanied by an exemplary calculation of annotator
probability densities and annotator weights (right).

Annotator weights: Reason number two has been noted by Cao et al. (2019), who proved that maximum-
likelihood solutions fail when there are strong annotator correlations, i.e., annotators with significant statis-
tical correlations in their annotation patterns. To address this issue, we explore the annotator correlations
in the latent space of the learned annotator embeddings. For this purpose, we assume that annotators with
similar embeddings share correlated annotation patterns. Recalling our example in Fig. 1, this assumption
implies that annotators of the same latent group are located near each other. The left plot of Fig. 5 visualizes
this assumption for a two-dimensional embedding space, where the eight annotators are arranged into three
clusters as proxies of the three latent annotator groups. We aim to extend our loss function so that its
evaluation is independent of the annotator groups’ cardinalities. For our example, we view the three anno-
tator groups as three independent annotators of equal importance. To this purpose, we extend the original
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likelihood function in Eq. 11 by annotator weights, such that we obtain the weighted likelihood function:

Pr(Z | X,A;θ,ω,w) =
N∏
n=1

∏
m∈An

Pr(znm | xn,am;θ,ω)w(am), (20)

where w := (w(a1), . . . , w(aM ))T ∈ RM≥0 denotes a vector of non-negative annotator weights. From a
probabilistic perspective, we can interpret such a weight w(am) as the effective number of observations (or
copies) per annotation of annotator am. Interpreting the annotators A as samples from a continuous latent
space, we define an annotator weight w(am) to be inversely proportional to an annotator’s am probability
density:

w(am) := Pr(am | A)−1

Z
,Z := M−1

(
M∑
m=1

Pr(am | A)−1

)
provided that Pr(a1 | A), . . . ,Pr(aM | A) > 0.

(21)
The normalization term Z ∈ R>0 ensures that the number of effective annotations remains equal to the
number of annotators, i.e.,

∑M
m=1 w(am) = M . On the right side of our example in Fig. 5, we expect that

an annotator’s probability density is approximately proportional to the cardinality of the group to which
the annotator belongs. As a result, we assign high (low) weights to annotators belonging to small (large)
groups. Inspecting the exemplary annotator weights and adding the weights per annotator group, we observe
that each group provides the same number of effective annotations, i.e., 8/3. More generally, we support our
definition of the annotator weights by the following theorem, whose proof is given in Appendix A.

Theorem 1. Let there be G ∈ {1, . . . ,M} non-empty, disjoint annotator groups, which we denote as
sets of indices such that A(1) ∪ · · · ∪ A(G) = {1, . . . ,M}. Further assume, the annotators within each
group g ∈ {1, . . . , G} share identical annotation patterns for the observed instances, i.e.,

∀n ∈ {1, . . . , N},∀m, l ∈ A(g) : znm = znl ∧ Pr(znm | xn,am) = Pr(znl | xn,al), (†)

and the annotators’ probability densities are proportional to their respective groups’ cardinalities, i.e.,

∀m ∈ {1, . . . ,M} : Pr(am | A) ∝
G∑
g=1

δ(m ∈ A(g))|A(g)|. (?)

Then, the true weighted log-likelihood function for all M annotators reduces to the log-likelihood for
G annotators:

N∑
n=1

M∑
m=1

w(am) ln (Pr(znm | xn,am)) ∝
N∑
n=1

G∑
g=1

ln
(
Pr(znmg

| xn,amg
)
)
,

where mg ∈ A(g) represents the index of an arbitrary annotator of the g-th annotator group.

Intuitively, Theorem 1 confirms that each groupA(g), independent of its cardinality |A(g)|, equally contributes
to the weighted log-likelihood function. This way, we avoid any bias toward a large group of highly correlated
annotators during learning. Typically, the assumptions (†) and (?) of Theorem 1 do not hold in practice
because there are no annotator groups with identical annotation patterns. Therefore, we estimate degrees
of correlations between annotators by computing similarities between their embeddings Ã := (ã1, . . . , ãM )T

as the basis for a nonparametric annotator probability density estimation:

Pr (am | A) ≈ Pr
(

ãm | Ã, kγ
)
∝

M∑
l=1

kγ (no_grad (ãl) , no_grad (ãm)) , (22)

where kγ : RR×R → R≥0 denotes a kernel function and γ ∈ R>0 its kernel scale. The expression
no_grad(ãm) ∈ RR indicates that no gradient regarding the learned annotator embedding ãm is computed,
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which is necessary to decouple the learning of embeddings from computing annotator weights. Otherwise,
we would learn annotator embeddings, which optimize the annotator weights instead of reflecting the anno-
tation patterns. Although many kernel (or similarity) functions are conceivable, we will focus on the popular
Gaussian kernel:

kγ(no_grad (ãm) , no_grad (ãl)) ∝ exp
(
−γ ||no_grad (ãm)− no_grad (ãl) ||22

)
(23)

with || · ||2 as Euclidean distance. Typically, the kernel scale γ needs to fit the observed data, i.e., annotator
embeddings in our case. Therefore, its definition a priori is challenging, such that we define γ as a learnable
parameter subject to a prior distribution. Concretely, we employ the gamma distribution for this purpose:

Pr (γ | α, β) := Gam (γ | α, β) := βα

Γ(α)γ
α−1 exp (−βγ) , (24)

where Γ is the gamma function and α ∈ R>1, β ∈ R>0 are hyperparameters. Based on experiments, we set
α = 1.25, β = 0.25 such that the mode is (α−1)/β = 1 (defining the initial value of γ before optimization) and
the variance with α/β2 = 20 is high in favor of flexible learning. As a weighted loss function, we finally get

LX,A,Z,α,β(θ,ω, γ) := − 1
|Z|

N∑
n=1

∑
m∈An

(
ŵγ(am) ln

(
eT
znm

P̂T
ω(xn,am)p̂θ(xn)

))
− ln (Gam (γ | α, β)) , (25)

|Z| :=
N∑
n=1

M∑
m=1

δ(znm ∈ ΩY ), (26)

where ŵγ(am) denotes that the annotator weights w(am) are estimated by learning the kernel scale γ. The
number of annotations |Z| is a normalization factor, which accounts for potentially unevenly distributed
annotations across mini-batches when using stochastic GD.

Given the loss function in Eq. 25, we present the complete end-to-end training algorithm of MaDL in
Algorithm 1 and an example in Appendix B. During each training step, we recompute the annotator weights
and use them as the basis for the weighted loss function to optimize the AP and GT models’ parameters.
After training, the optimized model parameters (θ,ω) can be used to make probabilistic predictions, e.g.,
class-membership probabilities p̂θ(x) (cf. Fig. 3) and annotator confusion matrix P̂ω(x,a) (cf. Fig. 3), or
to decide on distinct labels, e.g., class label ŷθ(x) (cf. Eq. 8) and annotation error ŷθ,ω(x,a) (cf. Eq. 9).

Algorithm 1: End-to-end training algorithm of MaDL.
input: instances X, annotators A, annotations Z, number of training epochs E, mini-batch size B,
initial model parameters (θ,ω), prior annotation accuracy η, gamma distribution parameters (α, β);

start: initialize biases B of the AP model’s output layer using η (cf. Eq. 19);
initialize kernel scale γ := (α−1)/β ;

for epoch e ∈ {1, . . . , E} do
for sampled mini-batch X := (xi1 , . . . ,xiB )T,Z := (zi1 , . . . , ziB )T with {i1, . . . , iB} ⊂ {1, . . . , N} do

for b ∈ {i1, . . . , iB} do
compute class-membership probabilities p̂θ(xb) (cf. Fig. 3);
for m ∈ {1, . . . ,M} do compute confusion matrix P̂ω(xb,am) (cf. Fig. 3); end

end
for (m, l) ∈ {1, . . . ,M}2 do compute similarity kγ(no_grad(ãm), no_grad(ãl)) (cf. Eq. 23); end
for m ∈ {1, . . . ,M} do compute annotator weight w(am) ≈ ŵγ(am) (cf. Eq. 21 and Eq. 22); end
optimize parameters θ,ω, γ with reference to LX,A,Z,α,β(θ,ω, γ) (cf. Eq. 25);

end
end
output: optimized model parameters (θ,ω)
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5 Experimental Evaluation

This section investigates three RQs regarding the properties P1–P6 (cf. Section 3) of multi-annotator
supervised learning. We divide the analysis of each RQ into four parts, which are (1) a takeaway summarizing
the key insights, (2) a setup describing the experiments, (3) a qualitative study, and (4) a quantitative study.
The qualitative studies intuitively explain our design choices about MaDL, while the quantitative studies
compare MaDL’s performance to related techniques. Note that we analyze each RQ in the context of
a concrete evaluation scenario. Accordingly, the results provide potential indications for an extension to
related scenarios. As this section’s starting point, we overview the general experimental setup, whose code
base is publicly available at https://www.github.com/ies-research/multi-annotator-deep-learning.

5.1 Experimental Setup

We base our experimental setup on the problem setting in Section 2. Accordingly, the goal is to evaluate
the predictions of GT and AP models trained via multi-annotator supervised learning techniques. For this
purpose, we perform experiments on several datasets with class labels provided by error-prone annotators,
with models of varying hyperparameters, and in combination with a collection of different evaluation scores.

Datasets: We conduct experiments for the tabular and image datasets listed by Table 2. labelme and
music are actual crowdsourcing datasets, while we simulate annotators for the other five datasets. For the
labelme dataset, Rodrigues & Pereira (2018) performed a crowdsourcing study to annotate a subset of
1000 out of 2688 instances of eight different classes as training data. This dataset consists of images, but
due to its small training set size, we follow the idea of Rodrigues & Pereira and transform it into a tabular
dataset by utilizing the features of a pretrained VGG-16 (Simonyan & Zisserman, 2015) as inputs. There
are class labels obtained from 59 different annotators, and on average, about 2.5 class labels are assigned to
an instance. music is another crowdsourcing dataset, where 700 of 1000 audio files are classified into ten
music genres by 44 annotators, and on average, about 2.9 class labels are assigned to a file. We use the
features extracted by Rodrigues et al. (2013) from the audio files for training and inference. The artificial
toy dataset with two classes and features serves to visualize our design choices about MaDL. We generate
this dataset via a Gaussian mixture model. Frey & Slate (1991) published the letter dataset to recognize a
pixel display, represented through statistical moments and edge counts, as one of the 26 capital letters in the
alphabet for Modern English. The datasets fmnist, cifar10, and svhn represent typical image benchmark
classification tasks, each with ten classes but different object types to recognize. Appendix F presents a
separate case study on cifar100 to investigate the outcomes on datasets with more classes.

Table 2: Overview of datasets and associated base network architectures.

Dataset Annotators Instances Classes Features Base Network Architecture

Tabular Datasets
toy simulated 500 2 2 MLP (Rodrigues & Pereira, 2018)
letter (Frey & Slate, 1991) simulated 20000 26 16 MLP (Rodrigues & Pereira, 2018)
labelme (Rodrigues & Pereira, 2018) real-world 2688 8 8192 MLP (Rodrigues & Pereira, 2018)
music (Rodrigues et al., 2013) real-world 1000 10 124 MLP (Rodrigues & Pereira, 2018)

Image Datasets
fmnist (Xiao et al., 2017) simulated 70000 10 1 × 28 × 28 LeNet-5 (LeCun & Cortes, 1998)
cifar10 (Krizhevsky, 2009) simulated 60000 10 3 × 32 × 32 ResNet-18 (He et al., 2016)
svhn (Netzer et al., 2011) simulated 99289 10 3 × 32 × 32 ResNet-18 (He et al., 2016)

Network Architectures: Table 2 lists the base network architectures selected to meet the datasets’ re-
quirements. These architectures are starting points for designing the GT and AP models, which we adjust
according to the respective multi-annotator supervised learning technique. For the tabular datasets, we
follow Rodrigues & Pereira (2018) and train a multilayer perceptron (MLP) with a single fully connected
layer of 128 neurons as a hidden layer. A modified LeNet-5 architecture (LeCun & Cortes, 1998), a simple
convolutional neural network, serves as the basis for fmnist as a gray-scale image dataset, while we employ
a ResNet-18 (He et al., 2016) for cifar10 and svhn as RGB image datasets. We refer to our code base for
remaining details, e.g., on the use of rectified linear units (ReLU, Glorot et al. 2011) as activation functions.
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Annotator simulation: For the datasets without real-world annotators, we adopt simulation strategies
from related work (Yan et al., 2014; Cao et al., 2019; Rühling Cachay et al., 2021; Wei et al., 2022) and
simulate annotators according to the following five types:

Adversarial annotators provide false class labels on purpose. In our case, such an annotator provides a
correct class label with a probability of 0.05.

Randomly guessing annotators provide class labels drawn from a uniform categorical distribution. As a
result, such an annotator provides a correct class label with a probability of 1/C.

Cluster-specialized annotators’ performances considerably vary across the clusters found by the k-means
clustering algorithm. For images, we cluster the latent representations of the ResNet-18 pretrained
on ImageNet (Russakovsky et al., 2015). In total, there are k = 10 clusters. For each annotator, we
randomly define five weak and five expert clusters. An annotator provides a correct class label with
a probability of 0.95 for an expert cluster and with a probability of 0.05 for a weak cluster.

Common annotators are simulated based on the identical clustering employed for the cluster-specialized
annotators. However, their APs vary less between the clusters. Concretely, we randomly draw a
correctness probability value in the range [1/C, 1] for each cluster-annotator pair.

Class-specialized annotators’ performances considerably vary across classes to which instances can belong.
For each annotator, we randomly define bC/2c weak and dC/2e expert classes. An annotator provides
a correct class label with a probability of 0.95 for an expert class and with a probability of 0.05 for
a weak class.

We simulate annotation mistakes by randomly selecting false class labels. Table 3 lists four annotator sets
(blueish rows) with varying numbers of annotators per annotator type (first five columns) and annotation
ratios (last column). Each annotator set is associated with a concrete RQ. A copy flag indicates that the
annotators in the respective types provide identical annotations. This way, we follow Wei et al. (2022), Cao
et al. (2019), and Rühling Cachay et al. (2021) to simulate strong correlations between annotators. For
example, the entry ”1 + 11 copies“ of the annotator set correlated indicates twelve cluster-specialized
annotators, of which one annotator is independent, while the remaining eleven annotators share identical
annotation patterns, i.e., they are copies of each other. The simulated annotator correlations are not directly
observable because the copied annotators likely annotate different instances. This is because of the annotation
ratios, e.g., a ratio of 0.2 indicates that each annotator provides annotations for only 20 % of randomly
chosen instances. The annotation ratios are well below 1.0 because, in practice (especially in crowdsourcing
applications), it is unrealistic for every annotator to annotate every instance. We refer to Appendix E
presenting the results of a case study with higher annotation ratios for cifar10.

Table 3: Simulated annotator sets for each RQ.

Adversarial Common Cluster-specialized Class-specialized Random Annotation Ratio

independent (RQ1)
1 6 2 1 0 0.2

correlated (RQ2)
11 copies 6 1 + 11 copies 11 copies 0 0.2

random-correlated (RQ2)
1 6 2 1 90 copies 0.2

inductive (RQ3)
10 60 20 10 0 0.02

Evaluation scores: Since we are interested in quantitatively assessing GT and AP predictions, we need
corresponding evaluation scores. In this context, we interpret the prediction of APs as a binary classification
problem with the AP model predicting whether an annotator provides the correct or a false class label for
an instance. Next to categorical predictions, the GT and AP models typically provide probabilistic outputs,
which we examine regarding their quality (Huseljic et al., 2021). We list our evaluation scores in the following,
where arrows indicate which scores need to be maximized (↑) or minimized (↓):
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Accuracy (ACC, ↑) is probably the most popular score for assessing classification performances. For the
GT estimates, it describes the fraction of correctly classified instances, whereas it is the fraction of
(potential) annotations correctly identified as false or correct for the AP estimates:

GT-ACC(X,y, ŷθ) := 1
N

N∑
n=1

δ (yn = ŷθ(xn)) , (27)

AP-ACC(X,y,Z, ŷθ,ω) := 1
|Z|

N∑
n=1

∑
m∈An

δ (δ (yn 6= znm) = ŷθ,ω(xn,am)) . (28)

Maximizing both scores corresponds to the Bayes optimal predictions in Eq. 3 and Eq. 5.

Balanced accuracy (BAL-ACC, ↑) is a variant of ACC designed for imbalanced classification prob-
lems (Brodersen et al., 2010). For the GT estimation, the idea is to compute the ACC score for each
class of instances separately and then average them. Since our datasets are fairly balanced in their
distributions of class labels, we use this evaluation score only for assessing AP estimates. We may
encounter highly imbalanced binary classification problems per annotator, where a class represents
either a false or correct annotation. For example, an adversarial annotator provides majorly false
annotations. Therefore, we extend the definition of BAL-ACC by computing the ACC scores for
each annotator-class pair separately to average them.

Negative log-likelihood (NLL, ↓) is not only used as a typical loss function for training (D)NNs but can also
be used to assess the quality of probabilistic estimates:

GT-NLL(X,y, p̂θ) := − 1
N

N∑
n=1

ln
(
p̂

(yn)
θ (xn)

)
, (29)

AP-NLL(X,y,Z, p̂θ,ω) :=

− 1
|Z|

N∑
n=1

∑
m∈An

(
δ (yn = znm) ln (p̂θ,ω(xn,am)) + δ (yn 6= znm) ln (1− p̂θ,ω(xn,am))

)
. (30)

Moreover, NLL is a proper scoring rule (Ovadia et al., 2019) such that the best score corresponds
to a perfect prediction.

Brier score (BS, ↓), proposed by Brier (1950), is another proper scoring rule, which measures the squared
error between predicted probability vectors and one-hot encoded target vectors:

GT-BS(X,y, p̂θ) := 1
N

N∑
n=1
||eyn − p̂θ(xn)||22, (31)

AP-BS(X,y,Z, p̂θ,ω) := 1
|Z|

N∑
n=1

∑
m∈An

(δ (yn = znm)− p̂θ,ω(xn,am))2
. (32)

In the literature, there exist many further evaluation scores, particularly for assessing probability calibra-
tion (Ovadia et al., 2019). As a comprehensive evaluation of probabilities is beyond this article’s scope, we
focus on the aforementioned proper scoring rules. Accordingly, we have omitted other evaluation scores,
such as the expected calibration error (Naeini et al., 2015) being a non-proper scoring rule.

Multi-annotator supervised learning techniques: By default, we train MaDL via the weighted loss
function in Eq. 25 using the hyperparameter values from Section 4 and the most general architecture de-
picted by Fig. 3. Next to the ablations as part of analyzing the three RQs, we present an ablation study on
the hyperparameters of MaDL in Appendix C and a practitioner’s guide with concrete recommendations in
Appendix G. We evaluate MaDL compared to a subset of the related techniques presented in Section 3. This
subset consists of techniques that (1) provide probabilistic GT estimates for each instance, (2) provide prob-
abilistic AP estimates for each instance-annotator pair, and (3) train a (D)NN as the GT model. Moreover,

15



Published in Transactions on Machine Learning Research (09/2023)

we focus on recent techniques with varying training algorithms and properties P1–P6 (cf. Section 3). As
a result, we select crowd layer (CL, Rodrigues & Pereira, 2018), regularized estimation of annotator confu-
sion (REAC, Tanno et al., 2019), learning from imperfect annotators (LIA, Platanios et al., 2020), common
noise adaption layers (CoNAL, Chu et al., 2021), and union net (UNION, Wei et al., 2022). Further, we
aggregate annotations through the majority rule as a lower baseline (LB) and use the GT class labels as an
upper baseline (UB). We adopt the architectures of MaDL’s GT and AP models for both baselines. The GT
model then trains via the aggregated annotation (LB) or the GT class labels (UB). The AP model trains
using the aggregated annotations (LB) or the GT class labels (UB) to optimize the annotator confusion
matrices. Unless explicitly stated, no multi-annotator supervised learning technique can access annotator
features containing prior knowledge about the annotators.

Experiment: An experiment’s run starts by splitting a dataset into train, validation, and test sets. For
music and labelme, these splits are predefined, while for the other datasets, we randomly select 75 % of
the samples for training, 5 % for validation, and 20 % for testing. Following Rühling Cachay et al. (2021),
a small validation set with GT class labels allows a fair comparison by finding suitable hyperparameter
values for the optimizer of the respective multi-annotator supervised learning technique. We employ the
AdamW (Loshchilov & Hutter, 2019) optimizer, where the learning rates {0.01, 0.005, 0.001} and weight
decays {0.0, 0.001, 0.0001} are tested. We decay learning rates via a cosine annealing schedule (Loshchilov
& Hutter, 2017) and set the optimizer’s mini-batch size to 64. For the datasets music and labelme, we
additionally perform experiments with 8 and 16 as mini-batch sizes due to their smaller number of instances
and, thus, higher sensitivity to the mini-batch size. The number of training epochs is set to 100 for all
techniques except for LIA, which we train for 200 epochs due to its EM algorithm. After training, we select
the models with the best validation GT-ACC across the epochs. Each experiment is run five times with
different parameter initializations and data splits (except for labelme and music). We report quantitative
results as means and standard deviations over the best five runs determined via the validation GT-ACC.

5.2 RQ1: Do class- and instance-dependent modeled APs improve learning? (Properties P1, P2)

Takeaway: Estimating class- (property P1) and instance-dependent (property P2) APs leads to
superior performances of the GT and AP models. This observation is especially true for GT models
trained on datasets with real-world annotators whose annotation patterns are unknown.

Setup: We address RQ1 by evaluating multi-annotator supervised learning techniques with varying AP
assumptions. We simulate ten annotators for the datasets without real-world annotators according to the
annotator set independent in Table 3. Each simulated annotator provides class labels for 20 % of randomly
selected training instances. Next to the related multi-annotator supervised learning techniques and the two
baselines, we evaluate six variants of MaDL denoted via the scheme MaDL(P1, P2). Property P1 refers to the
estimation of potential class-dependent APs. There, we differentiate between the options class-independent
(I), partially (P) class-dependent, and fully (F) class-dependent APs. We implement them by constraining
the annotator confusion matrices’ degrees of freedom. Concretely, class-independent refers to a confusion
matrix approximated by estimating a single scalar, partially class-dependent refers to a confusion matrix
approximated by estimating its diagonal elements, and fully class-dependent refers to estimating each matrix
element individually (cf. Appendix G). Property P2 indicates whether the APs are estimated as a function
of instances (X) or not (X). Combining the two options of the properties P1 and P2 represents one variant.
For example, MaDL(X, F) is the default MaDL variant estimating instance- and fully class-dependent APs.

Qualitative study: Fig. 6 visualizes MaDL’s predictive behavior for the artificial dataset toy. Thereby,
each row represents the predictions of a different MaDL variant. Since this is a binary classification problem,
the variant MaDL(X, P) is identical to MaDL(X, F), and MaDL(X, P) is identical to MaDL(X, F). The
first column visualizes instances as circles colored according to their GT labels, plots the class-membership
probabilities predicted by the respective GT model as contours across the feature space, and depicts the
decision boundary for classification as a black line. The last four columns show the class labels provided by
four of the ten simulated annotators. The instances’ colors indicate the class labels provided by an annotator,
their forms mark whether the class labels are correct (circle) or false (cross) annotations, and the contours
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across the feature space visualize the AP model’s predicted annotation correctness probabilities. The GT
models of the variants MaDL(X, F), MaDL(X, I), and MaDL(X, F) successfully separate the instances of
both classes, whereas the GT model of MaDL(X, I) fails in this task. Likely, the missing consideration of
instance- and class-dependent APs explains this observation. Further, the class-membership probabilities
of the successful MaDL variants reflect instances’ actual class labels but exhibit the overconfident behavior
typical of deterministic (D)NNs, particularly for feature space regions without observed instances (Huseljic
et al., 2021). Investigating the estimated APs for the adversarial annotator (second column), we see that
each MaDL variant correctly predicts low APs (indicated by the white-colored contours) across the feature
space. When comparing the AP estimates for the class-specialized annotator (fifth column), clear differences
between MaDL(X, I) and the other three variants of MaDL are visible. Since MaDL(X, I) ignores any class
dependency regarding APs, it cannot differentiate between classes of high and low APs. In contrast, the
AP predictions of the other three variants reflect the class structure learned by the respective GT model
and thus can separate between weak and expert classes. The performances of the cluster-specialized and
common annotator depend on the regions in the feature space. Therefore, only the variants MaDL(X, I) and
MaDL(X, F) can separate clusters of low and high APs. For example, both variants successfully identify the
two weak clusters of the cluster-specialized annotator. Analogous to the class-membership probabilities, the
AP estimates are overconfident for feature space regions without observed instances.
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Figure 6: Visualization of MaDL’s predictive behavior for the two-dimensional dataset toy.

17



Published in Transactions on Machine Learning Research (09/2023)

Quantitative study: Table 4 presents the numerical evaluation results for the two datasets with real-world
annotators. There, we only report the GT models’ test results since no annotations for the test instances are
available to assess the AP models’ test performances. Table 5 presents the GT and AP models’ test results
for the four datasets with simulated annotators. Both tables indicate whether a technique models class-
dependent (property P1) and/or instance-dependent (property P2) APs. Generally, training with GT labels
as UB achieves the best performances, while the LB with annotations aggregated according to the majority
rule leads to the worst ones. The latter observation confirms that leveraging AP estimates during training is
beneficial. Moreover, these AP estimates are typically meaningful, corresponding to BAL-ACC values above
0.5. An exception is MaDL(X, I) because this variant only estimates by design a constant performance
per annotator across the feature space. Comparing MaDL(X, F) as the most general variant to related
techniques, we observe that it achieves competitive or superior results for all datasets and evaluation scores.
Next to MaDL(X, F), CoNAL often delivers better results than the competitors. When we investigate the
performances of the MaDL variants with instance-independent APs, we find that MaDL(X, F) achieves the
most robust performances across all datasets. In particular, for the datasets with real-world annotators, the
ACC of the respective GT model is superior. This observation suggests that modeling class-dependent APs
(property P1) is beneficial. We recognize a similar trend for the MaDL variants with instance-dependent APs
(property P2). Comparing each pair of MaDL variants with X and X, we observe that instance-dependent
APs often improve GT and, in particular, AP estimates. The advantage of class- and instance-dependent
APs is confirmed by CoNAL as a strong competitor of MaDL(X, F). LIA’s inferior performance contrasts
this, although LIA estimates class- and instance-dependent APs. The difference in training algorithms can
likely explain this observation. While MaDL(X, F) and CoNAL train via an end-to-end algorithm, LIA trains
via the EM algorithm, leading to higher runtimes and introducing additional sensitive hyperparameters, e.g.,
the number of EM iterations and training epochs per M step.

Table 4: Results regarding RQ1 for datasets with real-world annotators: Best and second best performances
are highlighted per dataset and evaluation score while excluding the performances of the UB.

Technique P1 P2 Ground Truth Model Ground Truth Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓

music labelme
UB 3 3 0.785±0.020 0.710±0.037 0.314±0.027 0.914±0.003 0.580±0.112 0.150±0.003
LB 3 3 0.646±0.045 1.096±0.103 0.492±0.051 0.810±0.015 0.724±0.155 0.294±0.024
CL 3 7 0.675±0.015 1.672±0.400 0.524±0.021 0.857±0.011 1.774±1.155 0.250±0.014
REAC 3 7 0.705±0.023 0.893±0.081 0.410±0.033 0.843±0.006 0.833±0.088 0.254±0.006
UNION 3 7 0.682±0.013 1.396±0.143 0.501±0.027 0.855±0.004 1.074±0.340 0.248±0.011
LIA 3 3 0.658±0.023 1.158±0.047 0.498±0.020 0.813±0.010 0.976±0.234 0.295±0.009
CoNAL 3 3 0.708±0.031 0.964±0.081 0.423±0.035 0.866±0.004 2.740±1.304 0.247±0.023
MaDL(X, I) 7 7 0.718±0.010 0.871±0.027 0.394±0.009 0.815±0.009 0.616±0.125 0.276±0.017
MaDL(X, P) F 7 0.720±0.018 0.871±0.030 0.396±0.009 0.811±0.012 0.630±0.128 0.281±0.022
MaDL(X, F) 3 7 0.725±0.015 0.977±0.064 0.403±0.019 0.859±0.007 1.008±0.278 0.240±0.014
MaDL(X, I) 7 3 0.713±0.027 0.876±0.041 0.402±0.022 0.816±0.008 0.559±0.027 0.276±0.010
MaDL(X, P) F 3 0.714±0.014 0.909±0.036 0.398±0.013 0.811±0.009 0.771±0.160 0.289±0.016
MaDL(X, F) 3 3 0.743±0.018 0.877±0.030 0.381±0.012 0.867±0.004 0.623±0.124 0.214±0.008

5.3 RQ2: Does modeling correlations between (potentially spamming) annotators improve learning?
(Properties P3, P4)

Takeaway: Modeling correlations between annotators leads to better results in scenarios with many
correlated spamming annotators (property P4). Capturing the correlations of beneficial annotators
does not lead to consistently better results (property P3). However, estimating and leveraging APs
during training becomes more critical in scenarios with correlated annotators.

Setup: We address RQ2 by evaluating multi-annotator supervised learning techniques with and without
modeling annotator correlations. We simulate two annotator sets for each dataset without real-world an-
notators according to Table 3. The first annotator set correlated consists of the same ten annotators
as in RQ1. However, we extend this set by ten additional copies of the adversarial, the class-specialized,
and one of the two cluster-specialized annotators, so there are 40 annotators. The second annotator set
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random-correlated also consists of the same ten annotators as in RQ1 but is extended by 90 identical
randomly guessing annotators. Each simulated annotator provides class labels for 20 % of randomly selected
training instances. Next to the related multi-annotator supervised learning techniques and the two baselines,
we evaluate two variants of MaDL denoted via the scheme MaDL(P3). Property P3 refers to the modeling
of potential annotator correlations. There, we differentiate between the variant MaDL(W) using annotator
weights via the weighted loss function (cf. Eq. 25) and the variant MaDL(W) training via the loss function
without any weights (cf. Eq. 15). MaDL(W) corresponds to MaDL’s default variant in this setup.

Table 5: Results regarding RQ1 for datasets with simulated annotators: Best and second best performances
are highlighted per dataset and evaluation score while excluding the performances of the UB.

Technique P1 P2 Ground Truth Model Annotator Performance Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓ BAL-ACC ↑

letter (independent)
UB 3 3 0.961±0.003 0.130±0.006 0.059±0.004 0.770±0.001 0.488±0.003 0.315±0.002 0.709±0.001
LB 3 3 0.878±0.004 0.980±0.021 0.385±0.008 0.664±0.004 0.624±0.003 0.433±0.003 0.666±0.004
CL 3 7 0.886±0.013 1.062±0.145 0.181±0.020 0.663±0.006 0.625±0.013 0.430±0.010 0.601±0.002
REAC 3 7 0.936±0.005 0.238±0.018 0.097±0.007 0.685±0.002 0.560±0.001 0.385±0.001 0.604±0.002
UNION 3 7 0.905±0.016 0.906±0.435 0.151±0.030 0.670±0.004 0.589±0.008 0.408±0.006 0.605±0.002
LIA 3 3 0.897±0.005 0.778±0.052 0.305±0.021 0.669±0.004 0.654±0.010 0.447±0.004 0.616±0.003
CoNAL 3 3 0.907±0.016 0.813±0.354 0.143±0.027 0.723±0.018 0.555±0.024 0.372±0.020 0.663±0.017
MaDL(X, I) 7 7 0.934±0.003 0.269±0.035 0.100±0.004 0.607±0.001 0.627±0.000 0.444±0.000 0.500±0.000
MaDL(X, P) F 7 0.935±0.005 0.235±0.013 0.099±0.006 0.692±0.001 0.556±0.001 0.381±0.001 0.606±0.003
MaDL(X, F) 3 7 0.933±0.005 0.255±0.025 0.100±0.005 0.691±0.002 0.556±0.001 0.381±0.001 0.606±0.002
MaDL(X, I) 7 3 0.938±0.006 0.247±0.043 0.092±0.008 0.770±0.004 0.492±0.016 0.316±0.007 0.708±0.004
MaDL(X, P) F 3 0.940±0.004 0.242±0.045 0.090±0.004 0.770±0.006 0.496±0.020 0.316±0.009 0.708±0.005
MaDL(X, F) 3 3 0.935±0.006 0.303±0.092 0.098±0.009 0.766±0.004 0.491±0.006 0.317±0.004 0.702±0.005

fmnist (independent)
UB 3 3 0.909±0.002 0.246±0.005 0.131±0.003 0.756±0.001 0.485±0.001 0.321±0.001 0.704±0.001
LB 3 3 0.883±0.001 0.903±0.003 0.385±0.001 0.644±0.007 0.645±0.005 0.453±0.004 0.585±0.007
CL 3 7 0.892±0.002 0.312±0.008 0.158±0.004 0.674±0.002 0.580±0.001 0.402±0.001 0.623±0.001
REAC 3 7 0.894±0.003 0.309±0.011 0.155±0.004 0.703±0.001 0.535±0.001 0.364±0.000 0.641±0.001
UNION 3 7 0.893±0.002 0.305±0.006 0.155±0.003 0.674±0.002 0.570±0.002 0.395±0.002 0.622±0.001
LIA 3 3 0.858±0.002 1.017±0.016 0.442±0.008 0.665±0.024 0.628±0.017 0.437±0.016 0.613±0.027
CoNAL 3 3 0.894±0.004 0.304±0.009 0.155±0.004 0.725±0.016 0.521±0.018 0.351±0.016 0.679±0.018
MaDL(X, I) 7 7 0.896±0.003 0.340±0.006 0.161±0.004 0.590±0.000 0.638±0.000 0.453±0.000 0.500±0.000
MaDL(X, P) F 7 0.894±0.001 0.307±0.003 0.155±0.001 0.705±0.001 0.534±0.000 0.363±0.000 0.640±0.001
MaDL(X, F) 3 7 0.894±0.002 0.307±0.006 0.155±0.003 0.705±0.000 0.534±0.000 0.363±0.000 0.640±0.000
MaDL(X, I) 7 3 0.895±0.003 0.291±0.005 0.150±0.003 0.752±0.004 0.490±0.004 0.325±0.003 0.699±0.004
MaDL(X, P) F 3 0.899±0.003 0.286±0.006 0.147±0.003 0.751±0.003 0.489±0.004 0.324±0.003 0.698±0.005
MaDL(X, F) 3 3 0.896±0.002 0.288±0.006 0.148±0.003 0.750±0.005 0.491±0.005 0.326±0.005 0.697±0.006

cifar10 (independent)
UB 3 3 0.933±0.002 0.519±0.026 0.118±0.004 0.710±0.001 0.547±0.001 0.369±0.001 0.658±0.001
LB 3 3 0.789±0.004 1.081±0.031 0.460±0.015 0.575±0.021 0.673±0.006 0.481±0.006 0.547±0.011
CL 3 7 0.833±0.003 0.536±0.012 0.242±0.004 0.664±0.001 0.604±0.002 0.420±0.001 0.613±0.001
REAC 3 7 0.839±0.003 0.581±0.010 0.245±0.003 0.676±0.003 0.580±0.006 0.397±0.004 0.625±0.002
UNION 3 7 0.834±0.003 0.595±0.022 0.249±0.005 0.668±0.001 0.592±0.001 0.410±0.001 0.617±0.002
LIA 3 3 0.805±0.003 1.102±0.035 0.469±0.016 0.622±0.024 0.645±0.014 0.453±0.014 0.579±0.019
CoNAL 3 3 0.838±0.005 0.530±0.021 0.236±0.008 0.668±0.001 0.600±0.001 0.416±0.001 0.616±0.001
MaDL(X, I) 7 7 0.832±0.006 0.583±0.021 0.256±0.009 0.576±0.010 0.646±0.002 0.461±0.002 0.500±0.000
MaDL(X, P) F 7 0.844±0.004 0.529±0.014 0.231±0.004 0.682±0.001 0.568±0.001 0.390±0.001 0.630±0.002
MaDL(X, F) 3 7 0.840±0.005 0.545±0.019 0.237±0.006 0.681±0.001 0.569±0.002 0.390±0.001 0.630±0.001
MaDL(X, I) 7 3 0.843±0.005 0.555±0.024 0.236±0.008 0.697±0.002 0.559±0.005 0.380±0.003 0.646±0.002
MaDL(X, P) F 3 0.845±0.002 0.546±0.027 0.232±0.005 0.697±0.001 0.557±0.002 0.380±0.001 0.646±0.002
MaDL(X, F) 3 3 0.846±0.003 0.521±0.014 0.229±0.005 0.697±0.002 0.557±0.004 0.379±0.002 0.646±0.003

svhn (independent)
UB 3 3 0.965±0.000 0.403±0.024 0.064±0.001 0.675±0.002 0.567±0.001 0.392±0.001 0.590±0.004
LB 3 3 0.930±0.002 0.811±0.030 0.332±0.015 0.581±0.021 0.680±0.008 0.487±0.008 0.540±0.000
CL 3 7 0.944±0.001 0.237±0.008 0.085±0.002 0.646±0.001 0.598±0.001 0.419±0.001 0.546±0.001
REAC 3 7 0.943±0.001 0.278±0.048 0.096±0.020 0.648±0.006 0.593±0.015 0.414±0.010 0.543±0.000
UNION 3 7 0.942±0.002 0.250±0.005 0.087±0.001 0.646±0.001 0.594±0.001 0.416±0.000 0.544±0.001
LIA 3 3 0.935±0.002 0.809±0.162 0.333±0.081 0.585±0.016 0.667±0.023 0.476±0.021 0.536±0.004
CoNAL 3 3 0.944±0.002 0.246±0.012 0.086±0.002 0.688±0.036 0.560±0.029 0.384±0.026 0.602±0.050
MaDL(X, I) 7 7 0.942±0.003 0.253±0.023 0.093±0.008 0.613±0.003 0.630±0.003 0.446±0.003 0.500±0.000
MaDL(X, P) F 7 0.940±0.002 0.262±0.011 0.091±0.003 0.652±0.000 0.585±0.000 0.408±0.000 0.544±0.000
MaDL(X, F) 3 7 0.940±0.002 0.264±0.007 0.092±0.002 0.652±0.001 0.585±0.000 0.408±0.000 0.543±0.001
MaDL(X, I) 7 3 0.944±0.003 0.240±0.007 0.085±0.003 0.665±0.001 0.575±0.001 0.399±0.001 0.565±0.001
MaDL(X, P) F 3 0.945±0.002 0.245±0.010 0.084±0.004 0.669±0.002 0.572±0.002 0.396±0.002 0.573±0.005
MaDL(X, F) 3 3 0.943±0.001 0.254±0.013 0.087±0.002 0.668±0.003 0.572±0.003 0.396±0.003 0.570±0.006
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Qualitative study: Fig. 7 visualizes MaDL(W)’s learned annotator embeddings and weights for the dataset
letter with the two annotator sets, correlated and random-correlated, after five training epochs.
Based on MaDL(W)’s learned kernel function, we create the two scatter plots via multi-dimensional scal-
ing (Kruskal, 1964) for dimensionality reduction. This way, the annotator embeddings, originally located in
an (R = 16)-dimensional space, are transformed into a two-dimensional space, where each circle represents
one annotator embedding. A circle’s color indicates to which annotator group the embedding belongs. The
two bar plots visualize the mean annotator weight of the different annotator groups, again indicated by their
respective color. Analyzing the scatter plot of the annotator set correlated, we observe that the annota-
tor embeddings’ latent representations approximately reflect the annotator groups’ correlations. Concretely,
there are four clusters. The center cluster corresponds to the seven independent annotators, one cluster-
specialized annotator and six common annotators. The three clusters in the outer area represent the three
groups of correlated annotators. The bar plot confirms our goal to assign lower weights to strongly correlated
annotators. For example, the single independent cluster-specialized annotator has a weight of 4.06, while the
eleven correlated cluster-specialized annotators have a mean weight of 0.43. We make similar observations
for the annotator set random-correlated. The scatter plot shows that the independent annotators also
form a cluster, separated from the cluster of the large group of correlated, randomly guessing annotators.
The single adversarial annotator belongs to the cluster of randomly guessing annotators since both groups
of annotators make many annotation errors and thus have highly correlated annotation patterns. Again,
the bar plot confirms that the correlated annotators get low weights. Moreover, these annotator weights are
inversely proportional to the size of a group of correlated annotators. For example, the 90 randomly guessing
annotators have a similar weight in sum as the single class-specialized annotator.
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Figure 7: Visualization of MaDL(W)’s learned similarities between annotator embeddings and associated
annotator weights.

Quantitative study: Table 6 presents the GT and AP models’ test performances for the four datasets
with the annotator set correlated and Table 7 for the annotator set random-correlated. Both tables
indicate whether a technique models correlations between annotators (property P3) and whether the authors
of a technique demonstrated its robustness against spamming annotators (property P4). Analogous to RQ1,
training with GT labels achieves the best performances (UB), while annotation aggregation via the majority
rule leads to the worst ones (LB). The LB’s significant underperformance confirms the importance of modeling
APs in scenarios with correlated annotators. MaDL(W), as the default MaDL variant, achieves competitive
and often superior results for all datasets and evaluation scores. In particular, for the annotator set random-
correlated, MaDL(W) outperforms the other techniques, which are vulnerable to many randomly guessing
annotators. This observation is also confirmed when we compare MaDL(W) to MaDL(W). In contrast,
there is no consistent performance gain of MaDL(W) over MaDL(W) for the annotator set correlated.
While CoNAL is competitive for the annotator set correlated, its performance strongly degrades for the
annotator set random-correlated. The initial E step in LIA’s EM algorithm estimates the GT class labels
via a probabilistic variant of the majority rule. Similarly to the LB, such an estimate is less accurate for
correlated and/or spamming annotators. Besides MaDL(W), only CL and UNION consistently outperform
the LB by large margins for the annotator set random-correlated.
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Table 6: Results regarding RQ2 for datasets with simulated annotators: Best and second best performances
are highlighted per dataset and evaluation score while excluding the performances of the UB.

Technique P3 P4 Ground Truth Model Annotator Performance Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓ BAL-ACC ↑

letter (correlated)
UB 7 3 0.962±0.004 0.129±0.004 0.058±0.003 0.887±0.002 0.305±0.004 0.173±0.002 0.757±0.002
LB 7 7 0.762±0.007 1.302±0.005 0.482±0.004 0.682±0.005 0.604±0.003 0.416±0.002 0.602±0.006
CL 7 7 0.803±0.035 2.435±1.218 0.318±0.057 0.800±0.008 0.446±0.016 0.285±0.012 0.674±0.007
REAC 7 7 0.922±0.003 0.288±0.065 0.115±0.007 0.815±0.001 0.395±0.001 0.249±0.001 0.684±0.001
UNION 3 7 0.866±0.019 1.668±0.322 0.224±0.034 0.795±0.007 0.432±0.007 0.278±0.007 0.667±0.006
LIA 7 7 0.823±0.005 1.483±0.018 0.569±0.007 0.676±0.005 0.629±0.004 0.436±0.004 0.575±0.004
CoNAL 3 3 0.871±0.015 1.380±0.349 0.213±0.024 0.840±0.014 0.390±0.028 0.238±0.021 0.712±0.014
MaDL(W) 7 7 0.946±0.006 0.293±0.082 0.083±0.009 0.883±0.002 0.314±0.001 0.178±0.002 0.751±0.003
MaDL(W) 3 3 0.947±0.003 0.282±0.069 0.080±0.004 0.887±0.001 0.308±0.004 0.175±0.002 0.756±0.001

fmnist (correlated)
UB 7 3 0.909±0.002 0.246±0.005 0.131±0.003 0.866±0.002 0.333±0.002 0.198±0.002 0.741±0.002
LB 7 7 0.787±0.003 1.127±0.013 0.475±0.007 0.668±0.009 0.626±0.006 0.436±0.006 0.580±0.005
CL 7 7 0.868±0.003 0.447±0.020 0.217±0.010 0.799±0.004 0.421±0.004 0.270±0.003 0.677±0.004
REAC 7 7 0.873±0.004 0.415±0.012 0.196±0.006 0.828±0.001 0.382±0.001 0.237±0.001 0.697±0.001
UNION 3 7 0.859±0.006 0.411±0.018 0.205±0.008 0.801±0.009 0.420±0.014 0.269±0.011 0.678±0.009
LIA 7 7 0.837±0.006 1.277±0.008 0.553±0.004 0.685±0.002 0.633±0.001 0.441±0.001 0.569±0.002
CoNAL 3 3 0.897±0.002 0.299±0.009 0.152±0.004 0.844±0.001 0.356±0.003 0.217±0.002 0.721±0.001
MaDL(W) 7 7 0.904±0.002 0.272±0.007 0.139±0.003 0.863±0.003 0.337±0.004 0.201±0.004 0.737±0.004
MaDL(W) 3 3 0.903±0.002 0.273±0.004 0.141±0.002 0.863±0.003 0.338±0.003 0.202±0.003 0.738±0.003

cifar10 (correlated)
UB 7 3 0.933±0.002 0.495±0.017 0.118±0.003 0.837±0.001 0.384±0.001 0.235±0.001 0.711±0.001
LB 7 7 0.652±0.014 1.309±0.016 0.540±0.008 0.602±0.011 0.623±0.003 0.436±0.003 0.541±0.008
CL 7 7 0.850±0.007 0.490±0.022 0.224±0.011 0.799±0.002 0.439±0.004 0.282±0.003 0.674±0.002
REAC 7 7 0.856±0.003 0.600±0.063 0.259±0.025 0.775±0.017 0.445±0.015 0.287±0.012 0.648±0.017
UNION 3 7 0.858±0.007 0.499±0.024 0.211±0.009 0.800±0.003 0.432±0.002 0.276±0.002 0.675±0.003
LIA 7 7 0.776±0.002 1.343±0.020 0.565±0.009 0.741±0.002 0.617±0.003 0.424±0.003 0.617±0.002
CoNAL 3 3 0.862±0.002 0.473±0.005 0.213±0.003 0.800±0.001 0.433±0.003 0.277±0.002 0.676±0.001
MaDL(W) 7 7 0.878±0.004 0.439±0.015 0.184±0.005 0.824±0.004 0.398±0.004 0.247±0.004 0.699±0.004
MaDL(W) 3 3 0.875±0.008 0.434±0.020 0.188±0.011 0.823±0.002 0.397±0.003 0.248±0.002 0.698±0.002

svhn (correlated)
UB 7 3 0.966±0.001 0.382±0.018 0.062±0.001 0.794±0.003 0.414±0.002 0.266±0.002 0.657±0.004
LB 7 7 0.900±0.005 1.012±0.038 0.420±0.017 0.624±0.022 0.634±0.008 0.444±0.007 0.567±0.017
CL 7 7 0.947±0.001 0.314±0.044 0.116±0.017 0.789±0.009 0.433±0.001 0.281±0.002 0.655±0.012
REAC 7 7 0.946±0.002 0.263±0.012 0.097±0.005 0.767±0.002 0.431±0.001 0.283±0.000 0.620±0.003
UNION 3 7 0.947±0.001 0.250±0.025 0.089±0.010 0.767±0.003 0.435±0.003 0.286±0.002 0.621±0.005
LIA 7 7 0.929±0.002 1.123±0.023 0.477±0.011 0.716±0.013 0.623±0.010 0.431±0.010 0.594±0.013
CoNAL 3 3 0.952±0.000 0.231±0.003 0.075±0.001 0.835±0.003 0.379±0.005 0.235±0.004 0.702±0.004
MaDL(W) 7 7 0.950±0.002 0.237±0.006 0.078±0.003 0.790±0.003 0.416±0.002 0.269±0.002 0.652±0.002
MaDL(W) 3 3 0.952±0.001 0.227±0.006 0.075±0.002 0.784±0.003 0.420±0.002 0.273±0.002 0.645±0.004

5.4 RQ3: Do annotator features containing prior information about annotators improve learning and
enable inductively learning annotators’ performances? (Properties P5, P6)

Takeaway: Annotator features containing prior information about annotators improve the learning
of GT and AP models (property P5). Furthermore, we can use these annotator features to inductively
estimate the performances of annotators unavailable during training (property P6).

Setup: We address RQ3 by evaluating multi-annotator supervised learning techniques with and without us-
ing annotator features containing prior information. For each dataset, we simulate 100 annotators according
to the annotator set inductive in Table 3. However, only 75 annotators provide class labels for training.
Each of them provides class labels for 2 % of randomly selected training instances. The lower annotation ratio
is used to study the generalization across annotators sharing similar features. The remaining 25 annotators
form a test set to assess AP predictions. We generate annotator features containing prior information by
composing information about annotator type, class-wise APs, and cluster-wise APs. Fig. 8 provides examples
for two annotators based on two classes and four clusters. We evaluate two variants of LIA, CoNAL, and
MaDL, denoted respectively by the schemes LIA(P5), CoNAL(P5), and MaDL(P5). Property P5 refers to a
technique’s ability to consider prior information about annotators. We differentiate between the variant with
annotator features containing prior information (A) and the one using one-hot encoded features to separate
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Table 7: Results regarding RQ2 for datasets with simulated annotators: Best and second best performances
are highlighted per dataset and evaluation score while excluding the performances of the UB.

Technique P3 P4 Ground Truth Model Annotator Performance Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓ BAL-ACC ↑

letter (random-correlated)
UB 7 3 0.960±0.003 0.131±0.006 0.059±0.003 0.937±0.002 0.212±0.003 0.104±0.002 0.516±0.002
LB 7 7 0.056±0.009 3.307±0.049 0.965±0.004 0.088±0.000 9.950±2.090 1.816±0.002 0.500±0.000
CL 7 7 0.565±0.028 3.519±0.455 0.682±0.052 0.925±0.000 0.237±0.004 0.124±0.002 0.506±0.000
REAC 7 7 0.607±0.024 1.810±0.127 0.561±0.034 0.926±0.000 0.221±0.004 0.116±0.002 0.507±0.000
UNION 3 7 0.615±0.034 3.317±0.582 0.625±0.065 0.925±0.000 0.232±0.004 0.122±0.002 0.506±0.000
LIA 7 7 0.352±0.010 2.960±0.035 0.932±0.004 0.088±0.000 2.131±0.137 1.474±0.041 0.500±0.000
CoNAL 3 3 0.581±0.015 2.325±0.249 0.599±0.027 0.925±0.000 0.236±0.002 0.124±0.001 0.507±0.000
MaDL(W) 7 7 0.548±0.033 1.902±0.215 0.673±0.064 0.801±0.044 0.423±0.033 0.265±0.027 0.506±0.006
MaDL(W) 3 3 0.932±0.003 0.277±0.038 0.101±0.005 0.940±0.000 0.204±0.003 0.101±0.001 0.519±0.001

fmnist (random-correlated)
UB 7 3 0.909±0.002 0.246±0.005 0.131±0.003 0.888±0.000 0.337±0.001 0.191±0.000 0.520±0.000
LB 7 7 0.172±0.019 2.296±0.005 0.899±0.001 0.140±0.000 21.865±6.169 1.703±0.000 0.500±0.000
CL 7 7 0.880±0.003 0.462±0.169 0.222±0.073 0.880±0.003 0.347±0.004 0.200±0.003 0.513±0.002
REAC 7 7 0.870±0.003 0.470±0.009 0.204±0.004 0.885±0.000 0.342±0.000 0.194±0.000 0.514±0.000
UNION 3 7 0.884±0.002 0.387±0.022 0.182±0.007 0.881±0.000 0.345±0.000 0.198±0.000 0.514±0.000
LIA 7 7 0.677±0.008 2.094±0.002 0.852±0.001 0.140±0.000 2.067±0.005 1.418±0.002 0.500±0.000
CoNAL 3 3 0.858±0.012 0.457±0.086 0.219±0.031 0.882±0.002 0.344±0.002 0.197±0.002 0.516±0.001
MaDL(W) 7 7 0.337±0.046 2.131±0.090 0.855±0.029 0.229±0.075 1.038±0.146 0.814±0.128 0.498±0.002
MaDL(W) 3 3 0.896±0.002 0.290±0.003 0.150±0.002 0.889±0.000 0.337±0.000 0.191±0.000 0.520±0.000

cifar10 (random-correlated)
UB 7 3 0.932±0.002 0.519±0.016 0.119±0.004 0.886±0.000 0.340±0.002 0.192±0.001 0.515±0.000
LB 7 7 0.141±0.008 2.301±0.002 0.900±0.000 0.139±0.000 14.224±6.699 1.704±0.001 0.500±0.000
CL 7 7 0.576±0.023 1.395±0.090 0.576±0.028 0.878±0.000 0.353±0.002 0.204±0.001 0.507±0.000
REAC 7 7 0.462±0.010 2.093±0.062 0.767±0.011 0.875±0.001 0.353±0.000 0.204±0.000 0.505±0.001
UNION 3 7 0.540±0.049 1.517±0.209 0.629±0.065 0.876±0.002 0.355±0.003 0.205±0.002 0.506±0.002
LIA 7 7 0.211±0.014 2.273±0.007 0.894±0.001 0.139±0.000 2.096±0.007 1.429±0.002 0.500±0.000
CoNAL 3 3 0.555±0.020 1.379±0.053 0.592±0.020 0.876±0.001 0.355±0.002 0.206±0.002 0.506±0.001
MaDL(W) 7 7 0.217±0.042 6.992±0.386 1.219±0.087 0.872±0.001 0.398±0.011 0.229±0.009 0.502±0.001
MaDL(W) 3 3 0.822±0.007 0.593±0.033 0.262±0.010 0.885±0.000 0.339±0.001 0.192±0.001 0.514±0.000

svhn (random-correlated)
UB 7 3 0.965±0.001 0.399±0.017 0.064±0.001 0.877±0.000 0.349±0.000 0.201±0.000 0.509±0.001
LB 7 7 0.190±0.000 2.298±0.002 0.899±0.000 0.138±0.000 24.019±7.802 1.704±0.001 0.500±0.000
CL 7 7 0.908±0.038 0.398±0.226 0.143±0.056 0.873±0.001 0.354±0.002 0.205±0.001 0.505±0.000
REAC 7 7 0.189±0.001 2.294±0.003 0.898±0.001 0.140±0.000 2.262±0.734 1.384±0.304 0.500±0.000
UNION 3 7 0.881±0.104 0.529±0.553 0.179±0.154 0.872±0.002 0.356±0.008 0.206±0.005 0.505±0.000
LIA 7 7 0.192±0.004 2.294±0.004 0.898±0.001 0.138±0.000 3.864±3.540 1.483±0.111 0.500±0.000
CoNAL 3 3 0.231±0.048 2.933±0.526 0.956±0.072 0.860±0.000 0.414±0.008 0.242±0.003 0.500±0.000
MaDL(W) 7 7 0.243±0.102 6.055±3.173 1.119±0.230 0.575±0.352 0.702±0.344 0.505±0.319 0.500±0.001
MaDL(W) 3 3 0.940±0.002 0.244±0.011 0.091±0.003 0.877±0.000 0.349±0.000 0.201±0.000 0.508±0.000

between annotators’ identities (A). MaDL(A) corresponds to MaDL’s default variant in this setup. We do
not evaluate CL, UNION, and REAC since these techniques cannot handle annotator features.

Qualitative study: Fig. 8 visualizes AP predictions of MaDL(A) regarding two exemplary annotators for
the dataset toy. The visualization of these AP predictions is analogous to Fig. 6. Neither of the two annota-
tors provides class labels for the training, and the plotted training instances show only potential annotations
to visualize the annotation patterns. The vectors at the right list the annotator features containing prior
information for both annotators. The colors reveal the meanings of the respective feature values. These
meanings are unknown to MaDL(A), such that its AP predictions exclusively result from generalizing sim-
ilar annotators’ features and their annotations available during training. MaDL(A) correctly identifies the
left annotator as adversarial because it predicts low (white) AP scores across the feature space regions close
to training instances. For the right cluster-specialized annotator, MaDL(A) accurately separates the two
weak clusters (feature space regions with predominantly crosses) with low AP estimates from the two expert
clusters (feature space regions with predominantly circles) with high AP estimates.

Quantitative study: Table 8 presents the GT and AP models’ test performances for the four datasets
with the simulated annotator set inductive. The table further indicates whether a technique processes
prior information as annotator features (property P5) and whether a technique can inductively estimate the
performances of annotators unavailable during the training phase (property P6). Note that the AP results
refer to the aforementioned 25 test annotators. Hence, there are no results (marked as –) for techniques
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Figure 8: Visualization of MaDL(A)’s inductive AP estimates for two unknown annotators.

with AP models not fulfilling property P6. For completeness, we provide the results for the 75 annotators
providing class labels for training in Appendix D. As for RQ1 and RQ2, training with GT labels leads to the
best performance results (UB), whereas learning from annotations aggregated via the majority rule mostly
results in the worst performances (LB). Inspecting the results of MaDL(A)’s GT model compared to the
other techniques, we observe competitive or partially superior results across all four datasets. Concerning its
AP model, we further note that MaDL(A) provides meaningful AP estimates, indicated by BAL-ACC values
greater than 0.5. Comparing the GT models’ results of each pair of variants, performance gains for LIA and
MaDL demonstrate the potential benefits of learning from annotator features containing prior annotator
information. In contrast, the GT models’ results of CoNAL(A) and CoNAL(A) hardly differ.

6 Conclusion

In this article, we made three main contributions. (1) We started with a formalization of the objectives in
multi-annotator supervised learning. Focusing on AP estimation, we then presented six relevant properties
(cf. P1–P6 in Section 3) for categorizing related techniques in this research area. (2) Considering these
six properties, we proposed our framework MaDL. A modular, probabilistic design and a weighted loss
function modeling annotator correlations characterize its novelties. (3) We experimentally investigated the
six properties via three RQs. The results confirmed MaDL’s robust and often superior performance to related
multi-annotator supervised learning techniques. The findings of this article, with a focus on AP estimation,
provide a starting point for several aspects of future research, some examples of which are given below.

Although the annotator embeddings already contain information about the annotation patterns concerning
instances and classes, MaDL is currently limited to computing annotator correlations on a global level, i.e.,
annotator weights are not an explicit function of instance-annotator pairs. For example, an extension in this
direction may be valuable to quantify correlations in certain regions of the feature space. Leveraging AP
estimates for additional applications, e.g., selecting the best crowdworkers to obtain high-quality annotations
during a crowdsourcing campaign (Herde et al., 2023), is also of great value. Another neglected aspect is
the study of epistemic uncertainty (Huseljic et al., 2021). For example, the visualizations for the two-
dimensional dataset in Fig. 6 show high certainty of the GT and AP models in feature space regions with
no observed instances. However, meaningful epistemic uncertainty estimates are essential in many (safety-
critical) applications (Hüllermeier & Waegeman, 2021) and would improve the characterization of annotators’
knowledge. During our experiments, we showed the potential benefit of annotator features. We had no access
to a dataset with prior information from real-world annotators, so we needed a suitable simulation for these
features. Therefore, and also noted by Zhang et al. (2023), future research may acquire such prior information
via crowdsourcing to verify their benefit. As the concentration of annotators may fluctuate or annotators
may learn during the annotation process, taking time-varying APs into account is another potential avenue
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Table 8: Results regarding RQ3 for datasets with simulated annotators: Best and second best performances
are highlighted per dataset and evaluation score while excluding the performances of the UB. The AP models’
results refer to the 25 test annotators providing no class labels for training. An entry – marks a technique
whose AP model cannot make predictions for such test annotators.

Technique P5 P6 Ground Truth Model Annotator Performance Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓ BAL-ACC ↑

letter (inductive)
UB 3 3 0.962±0.002 0.129±0.003 0.058±0.002 0.672±0.005 0.745±0.047 0.457±0.011 0.612±0.005
LB 3 3 0.861±0.005 1.090±0.017 0.429±0.008 0.569±0.008 0.730±0.011 0.522±0.007 0.537±0.006
LIA(A) 7 7 0.875±0.006 0.901±0.060 0.350±0.024 – – – –
LIA(A) 3 3 0.876±0.006 1.006±0.177 0.397±0.074 0.609±0.017 1.447±0.845 0.597±0.105 0.545±0.033
CoNAL(A) 7 7 0.875±0.009 0.804±0.119 0.186±0.010 – – – –
CoNAL(A) 3 7 0.874±0.007 0.808±0.116 0.186±0.011 – – – –
MaDL(A) 7 7 0.911±0.006 0.334±0.026 0.129±0.008 – – – –
MaDL(A) 3 3 0.914±0.004 0.303±0.009 0.124±0.005 0.668±0.007 0.813±0.115 0.471±0.015 0.600±0.010

fmnist (inductive)
UB 3 3 0.909±0.002 0.246±0.005 0.131±0.003 0.730±0.008 0.536±0.019 0.357±0.010 0.656±0.009
LB 3 3 0.881±0.002 0.876±0.005 0.370±0.002 0.590±0.023 0.681±0.005 0.487±0.006 0.537±0.010
LIA(A) 7 7 0.852±0.003 1.011±0.020 0.436±0.010 – – – –
LIA(A) 3 3 0.855±0.002 0.972±0.012 0.417±0.006 0.674±0.036 0.626±0.026 0.436±0.024 0.601±0.027
CoNAL(A) 7 7 0.889±0.002 0.322±0.005 0.163±0.003 – – – –
CoNAL(A) 3 7 0.890±0.002 0.323±0.011 0.163±0.005 – – – –
MaDL(A) 7 7 0.895±0.002 0.297±0.004 0.152±0.002 – – – –
MaDL(A) 3 3 0.893±0.004 0.297±0.008 0.153±0.004 0.723±0.004 0.538±0.003 0.362±0.003 0.649±0.005

cifar10 (inductive)
UB 3 3 0.931±0.002 0.527±0.022 0.122±0.003 0.686±0.006 0.646±0.101 0.409±0.016 0.613±0.006
LB 3 3 0.781±0.003 1.054±0.035 0.447±0.016 0.583±0.009 0.684±0.004 0.490±0.004 0.521±0.003
LIA(A) 7 7 0.798±0.008 1.072±0.014 0.455±0.006 – – – –
LIA(A) 3 3 0.804±0.004 1.056±0.022 0.447±0.011 0.607±0.020 0.670±0.017 0.477±0.016 0.544±0.010
CoNAL(A) 7 7 0.835±0.002 0.576±0.016 0.245±0.005 – – – –
CoNAL(A) 3 7 0.834±0.006 0.574±0.017 0.248±0.007 – – – –
MaDL(A) 7 7 0.811±0.008 0.626±0.036 0.277±0.014 – – – –
MaDL(A) 3 3 0.837±0.003 0.557±0.028 0.242±0.006 0.698±0.003 0.567±0.015 0.383±0.004 0.617±0.004

svhn (inductive)
UB 3 3 0.965±0.001 0.393±0.015 0.063±0.002 0.613±0.004 0.943±0.113 0.511±0.015 0.524±0.006
LB 3 3 0.927±0.002 0.805±0.016 0.328±0.009 0.588±0.010 0.704±0.007 0.509±0.006 0.511±0.007
LIA(A) 7 7 0.929±0.003 0.818±0.133 0.336±0.068 – – – –
LIA(A) 3 3 0.932±0.001 0.754±0.152 0.303±0.079 0.603±0.013 0.671±0.024 0.478±0.022 0.513±0.008
CoNAL(A) 7 7 0.941±0.001 0.258±0.009 0.090±0.003 – – – –
CoNAL(A) 3 7 0.942±0.001 0.260±0.012 0.090±0.002 – – – –
MaDL(A) 7 7 0.928±0.002 0.299±0.019 0.109±0.005 – – – –
MaDL(A) 3 3 0.935±0.001 0.256±0.009 0.098±0.002 0.624±0.007 0.632±0.013 0.444±0.008 0.521±0.006

for future research (Donmez et al., 2010). Furthermore, there are already crowdsourcing approaches (Chang
et al., 2017) and concepts (Calma et al., 2016) supporting collaboration between annotators. Thus, developing
techniques considering or recommending such collaborations is of practical value (Fang et al., 2012).

Finally, we limited ourselves to empirical performance results and classification tasks with class labels as
annotations. Future investigations on theoretical performance guarantees of MaDL and the learning with dif-
ferent annotation types, such as class labels with confidence scores (Berthon et al., 2021) or partial labels (Yu
et al., 2022), are apparent. Furthermore, the extension to related supervised learning tasks, such as semantic
segmentation, sequence classification, and regression, is of interest. The goal of semantic segmentation is to
classify individual pixels (Minaee et al., 2021). A potential approach to extend MaDL would be to implement
its GT model through a U-Net (Ronneberger et al., 2015) and feed its latent representations as input to the
AP model for estimating pixel-wise confusion matrices per annotator. Likewise, we may adapt MaDL to be
applied to sequence classification tasks, such as named entity recognition (Li et al., 2020). Concretely, we
could implement the GT model through a BiLSTM-network with softmax outputs (Reimers & Gurevych,
2017) and feed its latent word representations as inputs to the AP model for estimating word-wise confusion
matrices per annotator. Since both extensions involve higher computational costs than standard classifica-
tion tasks, one may alternatively investigate the estimation of a single (pixel- or word-independent) confusion
matrix per annotator. Regression tasks expect the prediction of continuous target variables. Therefore, the
probabilistic model of MaDL has to be adapted. For example, the GT model could estimate the mean and
variance of an instance’s target variable, while the AP model learns annotators’ biases and variances.
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Broader Impact Statement

Big data is a driving force behind the success of machine learning (Zhou et al., 2017). Reducing the effort
and cost required for annotating this data is essential for its ongoing development In this context, MaDL
is a possible tool to leverage the workforce of cost-efficient but error-prone annotators. Yet, as a central
resource for data annotation, crowdsourcing can negatively impact individuals or even entire communities.
Some of these impacts include exploiting vulnerable individuals who participate in low-wage crowdsourcing
tasks (Schlagwein et al., 2019), producing low-quality data (Daniel et al., 2018), and outsourcing jobs (Howe,
2008). On the one hand, multi-annotator supervised learning techniques can improve data quality and sup-
port awarding well-performing crowdworkers. On the other hand, such a technique may intensify the already
existing competition between crowdworkers (Schlagwein et al., 2019). It also requires tight monitoring to
ensure fair assessments of crowdworkers. Besides the benefits of annotator features containing prior infor-
mation about annotators, there are several risks. Collecting and leaking potentially sensitive personal data
about the annotators is such a significant risk (Xia & McKernan, 2020). Thus, the annotator features must
contain only information relevant to the learning task. Further, a lack of control over this or other processes
can lead to discrimination and bias based on gender, origin, and other factors (Goel & Faltings, 2019). For
these reasons, it is crucial to consider and address the potential risks via responsible policies and practices
when employing multi-annotator supervised learning techniques.
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A Proofs

Proof of Proposition 1. Minimizing the loss in Eq. 1 results in the following Bayes optimal prediction:

yGT(x) = arg min
y′∈ΩY

(
Ey|x [δ(y 6= y′))]

)
= arg min

y′∈ΩY

 ∑
y∈ΩY

Pr(y | x)δ(y 6= y′)


= arg min

y′∈ΩY

 ∑
y∈ΩY \{y′}

Pr(y | x)

 = arg min
y′∈ΩY

(1− Pr(y′ | x)) = arg max
y′∈ΩY

(Pr(y′ | x)) .

29



Published in Transactions on Machine Learning Research (09/2023)

Proof of Proposition 2. Minimizing the loss in Eq. 4 results in the following Bayes optimal prediction:

yAP(x,a) = arg min
y′∈{0,1}

(
Ey|x

[
Ez|x,a,y [δ (y′ 6= δ (y 6= z))]

])
= arg min

y′∈{0,1}

 ∑
y∈ΩY

Pr(y | x)
( ∑
z∈ΩY

Pr(z | x,a, y)δ(y′ 6= δ(y 6= z))
)

= arg min
y′∈{0,1}

 ∑
y∈ΩY

Pr(y | x)

 ∑
z∈ΩY \{y}

Pr(z | x,a, y)δ(y′ 6= 1) + Pr(y | x,a, y)δ(y′ 6= 0)


= arg min

y′∈{0,1}

 ∑
y∈ΩY

Pr(y | x)
(

(1− Pr(y | x,a, y))δ(y′ 6= 1) + Pr(y | x,a, y)δ(y′ 6= 0)
)

= δ

 ∑
y∈ΩY

Pr(y | x) Pr(y | x,a, y) <
∑
y∈ΩY

Pr(y | x) (1− Pr(y | x,a, y))


= δ

 ∑
y∈ΩY

Pr(y | x) Pr(y | x,a, y) <
∑
y∈ΩY

Pr(y | x)−
∑
y∈ΩY
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
= δ
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y∈ΩY
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
= δ

 ∑
y∈ΩY

Pr(y | x) Pr(y | x,a, y) < 0.5

 .

Proof of Theorem 1. Applying assumption (?) of Theorem 1 to Eq. 21, the weight w(am) for an annotator
am is given by:

w(am) (?)= M

G

G∑
g=1

δ(m ∈ A(g))
|A(g)|

.

Accordingly, the sums of the annotator weights are uniformly distributed across the G groups:

∑
m∈A(1)

w(am) = · · · =
∑

m∈A(G)

w(am) = M

G
. (�)

Inserting these annotator weights into the weighted log-likelihood function and making use of assumption (†)
in Theorem 1, we get

N∑
n=1

M∑
m=1

w(am) ln (Pr(znm | xn,am)) =
N∑
n=1

G∑
g=1

∑
m∈A(g)

w(am) ln (Pr(znm | xn,am))

(†)=
N∑
n=1

G∑
g=1

 ∑
m∈A(g)

w(am)

 ln
(
Pr(znmg

| xn,amg
)
)

(�)=
N∑
n=1

G∑
g=1

M

G
ln
(
Pr(znmg

| xn,amg
)
)

∝
N∑
n=1

G∑
g=1

ln
(
Pr(znmg | xn,amg )

)
.
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B End-to-end Training Algorithm Example

This appendix illustrates the steps of Algorithm 1 for a sampled mini-batch. Let us assume a classification
problem with C = 2 classes, M = 2 annotators, and a mini-batch size of B = 1. We further suppose there
is no prior information about annotators such that we represent the two annotators via the one-hot encoded
vectors

a1 = (1, 0)T and a2 = (0, 1)T. (33)

In the first step, we compute the instances’ class-membership probabilities. For a mini-batch size of B = 1,
we exemplarily assume we have a single arbitrary instance xn, for which we obtain

p̂θ(xn) = (0.8, 0.2)T (34)

as class-membership probabilities outputted by the GT model with parameters θ. In the second step, we
compute the confusion matrix for each instance-annotator pair. For a mini-batch size of B = 1 and M = 2
annotators, we obtain

P̂ω(xn,a1) =
(

1 0
0 1

)
and P̂ω(xn,a2) =

(
0.5 0.5
0.5 0.5

)
(35)

as two exemplary confusion matrices outputted by the AP model with parameters ω. Thus, we currently
expect annotator a1 to be error-free and a2 to randomly guess. In the third step, we determine the similarities
between all pairs of annotator embeddings to compute their weights in the fourth step. Since the Gaussian
kernel kγ is symmetric and there are only two annotators, we obtain

ŵγ(a1) = ŵγ(a2) = 1 (36)

as annotator weights in our example. We refer to Fig. 7 for a more complex example of computing annotator
weights. Before evaluating the loss function, we assume zn = (2, 2)T as the vector of class labels assigned by
the annotators a1 and a2 to instance xn. Moreover, we take γ = 1 as an example bandwidth and α = 2, β = 1
as parameters of the gamma distribution. Now, we have all the ingredients to evaluate the loss function in
Eq. 25:

Lxn,a1,a2,zn,α,β(θ,ω, γ) =−1
2 · 1 · ln

(
(0, 1)

(
1 0
0 1

)T(0.8
0.2

))
︸ ︷︷ ︸

prediction loss for annotator a1

(37)

−1
2 · 1 · ln

(
(0, 1)

(
0.5 0.5
0.5 0.5

)T(0.8
0.2

))
︸ ︷︷ ︸

prediction loss for annotator a2

(38)

− ln (Gam (1 | 2, 1))︸ ︷︷ ︸
regularization term for the bandwidth γ

(39)

= −1
2 ln (0.2)− 1

2 ln (0.5) + 1. (40)

Eq. 37 and Eq. 38 compute the cross-entropy loss between the estimated annotation probabilities

p̂θ,ω(xn,a1) =
(

1 0
0 1

)T(0.8
0.2

)
=
(

0.8
0.2

)
, p̂θ,ω(xn,a1) =

(
0.5 0.5
0.5 0.5

)T(0.8
0.2

)
=
(

0.5
0.5

)
(41)

and the two provided annotations as one-hot encoded targets to learn annotation patterns. In contrast,
Eq. 39 computes the logarithmic probability density of the current bandwidth value in relation to the
gamma distribution to regularize the possible bandwidth values. Finally, we can use a common optimizer
for DNNs to update the parameters θ,ω, γ.
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C Ablation Study

This appendix presents the results of an ablation study regarding MaDL’s hyperparameters. Table 9 provides
the results regarding the two datasets music and labelme with real-world annotators and Table 10 presents
the results for the dataset letter with the four annotator sets simulated according to Table 3. We design the
ablation study following a one-factor-at-a-time approach in favor of reducing the computational cost. This
means we define a default MaDL variant for each experiment and change the value of only one hyperparameter
at a time. For example, we study the effect of the AP prior η ∈ (0, 1) by taking the default MaDL
variant and changing only the value of this hyperparameter. Our default MaDL variant corresponds to
the hyperparameter values described in Section 4. For the combination of the dataset letter with the
annotator set inductive, the default MaDL variant gets annotator features containing prior information
instead of one-hot encoded annotator features as input. The general setup of an experiment, e.g., the number
of repeated runs, the splits into the training, test, and validation sets, etc., is identical to the one described
in Section 5. In the following, we analyze the effects of the individual hyperparameters, whose default values
are given in brackets:

Embedding size (Q = R = 16): The embedding size controls the dimensionality of the instance and annotator
embeddings learned by the AP model. For the two datasets with real-world annotators in Table 9,
an embedding size of Q = R = 16 clearly works best. In contrast, the results of Table 10 indicate
that an embedding size of Q = R = 8 is superior for the dataset letter with simulated annotator
sets. Although Q = R = 16 is a robust default embedding size for the tested learning tasks, it is
crucial to consider the characteristics of each learning task individually. Thereby, the number of
annotators and instance features are of particular importance.

AP prior (η = 0.8): The AP prior controls the initialization of the AP output layer’s biases (cf. Eq. 19) and
thus the parametrization of initial annotator confusion matrices. This hyperparameter is relevant
for the identifiability of the class-membership probabilities and annotator confusion matrices. The
results of Table 9 and 10 confirm this importance. A low value of η = 0.1 leads to poor performance
across all tested datasets since it cannot identify the annotation noise. Selecting high values, e.g.,
η ∈ {0.7, 0.8, 0.9}, resolves such an issue and thus leads to much better performances.

Outer product (True): The outer product layer is one option, adopted from literature (Qu et al., 2016),
to model the interactions between instance and annotator embeddings. Training MaDL with such
a product layer leads to performance gains for music and labelme as datasets with real-world
annotators (cf. Table 9). In contrast, there are no clear performance differences for the dataset
letter with the four simulated annotator sets (cf. Table 10). Since this modeling of interactions
resembles recommender systems, testing alternatives, e.g., computing the outer product of instance
and annotator embeddings as input to a convolutional layer (He et al., 2018), may be worthwhile.

Residual block (True): This hyperparameter determines whether we implement the residual connection
(True) or not (False) into the block shown in Fig. 4. The idea of this connection is to prioritize
the annotator embeddings when computing APs. Inspecting the results, we see clear performance
gains for music and labelme as datasets with real-world annotators (cf. Table 9). In contrast, the
residual connection leads for two of the simulated annotator sets to better and for the other two
to worse results for the dataset letter. Similar to investigating alternatives to the outer product
layer, optimizing the entire architecture in Fig. 4 may be valuable in future work.

Gamma prior (α = 1.25, β = 0.25): This pair of hyperparameters specifies the prior gamma distribution of
the bandwidth γ used for computing kernel values between annotator embeddings. Table 9 and 10
list the evaluated pairs of α and β, including the option of no annotator weights. The values for α
and β are selected to test different combinations of modes, i.e., (α−1)/β ∈ {0.5, 1, 2}, and variances,
i.e., α/β2 ∈ {6, 20}, for the gamma distribution. Table 10 indicates no large performance difference of
varying value pairs of α and β. As previously shown for RQ2 in Section 5, the weak results of the op-
tion “No Weights“ for the dataset letter with random-correlated as annotator set demonstrate
the importance of modeling annotator correlations. Table 9 indicates larger performance differences
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for the varying parametrizations. Here, a mode of (α−1)/β = 1, corresponding to (α = 1.25, β = 0.25)
and (α = 1.5, β = 0.5), leads to competitive performances across both datasets. In general, one could
also replace the Gaussian kernel with other common kernels or similarity functions to estimate an-
notators’ densities as a basis for quantifying their correlations. A popular alternative would be
the cosine similarity function. For example, Wojke & Bewley (2018) demonstrate how to learn an
embedding space where this similarity function is optimized by re-parametrizing the conventional
softmax classification output.

Table 9: Ablation study on MaDL’s hyperparameters for the datasets music and labelme with real-world
annotators: Best and second best performances are highlighted per annotator set and evaluation score.

Parameter Value Ground Truth Model Ground Truth Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓

music labelme
Default: MaDL 0.743±0.020 0.877±0.034 0.381±0.013 0.867±0.004 0.623±0.138 0.214±0.009

Embedding Size Q = R = 8 0.742±0.011 0.907±0.048 0.378±0.010 0.852±0.010 0.728±0.146 0.235±0.018
Q = R = 32 0.724±0.020 0.889±0.067 0.388±0.029 0.856±0.012 0.940±0.280 0.242±0.026

AP Prior
η = 0.1 0.200±0.101 5.652±1.197 1.305±0.213 0.139±0.055 10.514±5.138 1.483±0.351
η = 0.7 0.734±0.027 0.935±0.071 0.377±0.020 0.851±0.012 0.882±0.309 0.248±0.026
η = 0.9 0.735±0.005 0.907±0.047 0.395±0.008 0.854±0.004 1.000±0.277 0.246±0.012

Outer Product False 0.725±0.030 0.896±0.076 0.394±0.034 0.860±0.003 1.014±0.221 0.238±0.006
Residual Block False 0.734±0.015 0.911±0.065 0.387±0.032 0.852±0.006 1.121±0.461 0.249±0.022

Gamma Prior

No Weights 0.736±0.014 0.857±0.033 0.377±0.011 0.870±0.008 0.634±0.177 0.211±0.014
α = 1.118, β = 0.236 0.731±0.026 0.922±0.071 0.387±0.021 0.853±0.011 1.077±0.218 0.253±0.018
α = 1.226, β = 0.452 0.722±0.015 0.948±0.086 0.399±0.023 0.852±0.011 0.902±0.316 0.245±0.027
α = 1.5, β = 0.5 0.748±0.009 0.869±0.078 0.372±0.025 0.864±0.001 0.685±0.153 0.222±0.010
α = 1.56, β = 0.28 0.722±0.018 0.847±0.026 0.381±0.012 0.860±0.012 0.678±0.211 0.225±0.019
α = 2.22, β = 0.61 0.716±0.006 0.947±0.068 0.405±0.023 0.857±0.008 0.785±0.244 0.236±0.013

The above analyses show that the chosen default hyperparameters do not always give the best results but are
competitive for most datasets studied. They also indicate that having a (small) validation set with GT labels
is required if maximum performance is crucial. Obtaining such a validation set in a setting with error-prone
annotators can be expensive. Therefore, future research may examine methods to design such validation
sets cost-efficiently. In this context, it is also essential to elaborate further on the theoretical foundations of
multi-annotator supervised learning techniques, e.g., by deriving theoretical guarantees for specific GT and
AP distribution types.

D Extended Results regarding Research Question 3

Table 11 extends Table 8 by the AP models’ results regarding the 75 annotators providing class labels for
training. The GT models’ results of both tables are identical and are given to avoid switching between
the two tables. The additional AP models’ results confirm the main takeaway for property P5. Excluding
the UB, MaDL(A), which uses annotator features including prior information, makes the most accurate AP
predictions. This means it also outperforms its counterpart MaDL(A), which has no prior information about
the annotators. LIA(A) estimates the APs more accurately than LIA(A) for three of the four datasets.
Comparing the AP models of CoNAL(A) and CoNAL(A), performance gains of using annotator features are
observable for two of the four datasets, while there are no notable differences for the other two datasets.

E A Case Study on Varying Annotation Ratios

This appendix presents a case study on the impact of varying annotation ratios on multi-annotator supervised
learning techniques’ performances. Fig. 9 displays evaluation results for four different annotation ratios, i.e.,
0.2, 0.4, 0.6, and 0.8, as curves for the dataset cifar10 with the simulated annotator set independent. For
a better interpretation of the results, the upper right plot displays the means and standard deviations over
five runs for two descriptive statistics of the training data. On the one hand, we calculate the annotation
accuracy (ANNOT-ACC), and on the other hand, we calculate the accuracy of the observed annotations
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Table 10: Ablation study on MaDL’s hyperparameters for the dataset letter and four simulated annotated
sets: Best and second best performances are highlighted per annotator set and evaluation score.

Parameter Value Ground Truth Model Annotator Performance Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓ BAL-ACC ↑

letter (independent)
Default: MaDL 0.935±0.006 0.303±0.102 0.098±0.010 0.766±0.004 0.491±0.007 0.317±0.005 0.702±0.005

Embedding Size Q = R = 8 0.937±0.004 0.285±0.116 0.097±0.006 0.773±0.003 0.476±0.006 0.309±0.002 0.708±0.003
Q = R = 32 0.935±0.007 0.327±0.125 0.099±0.011 0.763±0.004 0.501±0.005 0.322±0.003 0.698±0.005

AP Prior
η = 0.1 0.587±0.048 7.686±1.229 0.766±0.095 0.656±0.018 1.194±0.139 0.554±0.037 0.614±0.015
η = 0.7 0.938±0.005 0.273±0.047 0.095±0.007 0.767±0.002 0.487±0.003 0.314±0.002 0.702±0.004
η = 0.9 0.935±0.007 0.250±0.027 0.095±0.009 0.768±0.002 0.486±0.003 0.315±0.002 0.703±0.003

Outer Product False 0.933±0.010 0.365±0.177 0.103±0.018 0.765±0.003 0.499±0.012 0.321±0.006 0.701±0.004
Residual Block False 0.935±0.003 0.326±0.131 0.099±0.007 0.762±0.004 0.513±0.014 0.326±0.005 0.699±0.004

Gamma Prior

No Weights 0.939±0.007 0.302±0.097 0.094±0.011 0.767±0.002 0.491±0.007 0.316±0.003 0.702±0.002
α = 1.118, β = 0.236 0.937±0.005 0.285±0.053 0.096±0.008 0.768±0.004 0.484±0.003 0.314±0.002 0.701±0.004
α = 1.226, β = 0.452 0.936±0.003 0.307±0.081 0.097±0.008 0.767±0.004 0.486±0.006 0.315±0.003 0.702±0.006
α = 1.5, β = 0.5 0.940±0.002 0.274±0.042 0.092±0.004 0.767±0.003 0.489±0.006 0.317±0.003 0.703±0.004
α = 1.56, β = 0.28 0.936±0.003 0.266±0.046 0.095±0.006 0.767±0.001 0.491±0.006 0.316±0.002 0.702±0.002
α = 2.22, β = 0.61 0.936±0.002 0.283±0.048 0.097±0.005 0.766±0.003 0.493±0.005 0.318±0.002 0.703±0.002

letter (correlated)
Default: MaDL 0.947±0.003 0.282±0.077 0.080±0.004 0.887±0.001 0.308±0.004 0.175±0.002 0.756±0.001

Embedding Size Q = R = 8 0.953±0.003 0.219±0.017 0.072±0.004 0.888±0.002 0.303±0.003 0.172±0.002 0.757±0.002
Q = R = 32 0.949±0.005 0.303±0.089 0.080±0.008 0.885±0.002 0.324±0.018 0.178±0.004 0.754±0.002

AP Prior η = 0.1 0.588±0.089 9.442±2.241 0.773±0.166 0.782±0.031 0.894±0.186 0.377±0.062 0.659±0.030
η = 0.7 0.947±0.006 0.292±0.080 0.078±0.008 0.887±0.002 0.309±0.005 0.174±0.003 0.756±0.003
η = 0.9 0.948±0.003 0.255±0.079 0.079±0.006 0.887±0.001 0.311±0.001 0.175±0.002 0.757±0.002

Outer Product False 0.948±0.003 0.305±0.109 0.081±0.005 0.887±0.001 0.314±0.005 0.177±0.002 0.757±0.001
Residual Block False 0.936±0.016 0.541±0.486 0.101±0.031 0.881±0.005 0.339±0.032 0.185±0.010 0.751±0.005

Gamma Prior

No Weights 0.946±0.007 0.293±0.092 0.083±0.010 0.883±0.003 0.314±0.002 0.178±0.002 0.751±0.003
α = 1.118, β = 0.236 0.950±0.004 0.260±0.089 0.077±0.007 0.887±0.001 0.308±0.004 0.174±0.003 0.758±0.001
α = 1.226, β = 0.452 0.951±0.004 0.250±0.070 0.075±0.006 0.888±0.002 0.309±0.005 0.174±0.003 0.758±0.002
α = 1.5, β = 0.5 0.951±0.005 0.271±0.093 0.075±0.007 0.887±0.001 0.311±0.003 0.174±0.002 0.757±0.002
α = 1.56, β = 0.28 0.947±0.004 0.286±0.072 0.082±0.008 0.885±0.002 0.318±0.013 0.177±0.004 0.754±0.002
α = 2.22, β = 0.61 0.947±0.002 0.289±0.052 0.082±0.003 0.885±0.002 0.313±0.001 0.177±0.001 0.754±0.003

letter (random-correlated)
Default: MaDL 0.932±0.004 0.277±0.043 0.101±0.006 0.940±0.000 0.204±0.004 0.101±0.001 0.519±0.001

Embedding Size Q = R = 8 0.935±0.003 0.232±0.012 0.097±0.004 0.940±0.000 0.202±0.001 0.101±0.000 0.519±0.000
Q = R = 32 0.935±0.003 0.266±0.057 0.096±0.007 0.939±0.000 0.214±0.003 0.104±0.000 0.519±0.000

AP Prior η = 0.1 0.598±0.069 7.537±1.922 0.744±0.136 0.931±0.002 0.251±0.012 0.120±0.004 0.512±0.001
η = 0.7 0.934±0.009 0.263±0.035 0.098±0.012 0.940±0.000 0.204±0.003 0.101±0.000 0.519±0.000
η = 0.9 0.932±0.003 0.247±0.015 0.101±0.004 0.939±0.000 0.205±0.002 0.102±0.001 0.519±0.000

Outer Product False 0.932±0.003 0.292±0.038 0.102±0.006 0.939±0.000 0.207±0.004 0.102±0.001 0.519±0.000
Residual Block False 0.936±0.005 0.269±0.034 0.098±0.006 0.939±0.000 0.207±0.001 0.103±0.000 0.518±0.000

Gamma Prior

No Weights 0.548±0.037 1.902±0.241 0.673±0.071 0.801±0.049 0.423±0.037 0.265±0.031 0.506±0.007
α = 1.118, β = 0.236 0.935±0.001 0.270±0.034 0.097±0.004 0.940±0.000 0.204±0.001 0.101±0.000 0.519±0.000
α = 1.226, β = 0.452 0.934±0.002 0.255±0.039 0.097±0.005 0.940±0.000 0.204±0.002 0.101±0.000 0.519±0.000
α = 1.5, β = 0.5 0.935±0.006 0.252±0.047 0.098±0.009 0.940±0.000 0.204±0.003 0.101±0.001 0.519±0.000
α = 1.56, β = 0.28 0.932±0.004 0.306±0.087 0.103±0.010 0.939±0.000 0.210±0.003 0.103±0.000 0.519±0.000
α = 2.22, β = 0.61 0.932±0.005 0.279±0.048 0.101±0.008 0.939±0.000 0.209±0.003 0.103±0.001 0.519±0.000

letter (inductive)
Default: MaDL(A) 0.914±0.004 0.303±0.010 0.124±0.006 0.718±0.004 0.583±0.007 0.383±0.004 0.665±0.005

Embedding Size Q = R = 8 0.919±0.004 0.287±0.018 0.120±0.005 0.704±0.012 0.569±0.015 0.384±0.012 0.645±0.012
Q = R = 32 0.916±0.005 0.330±0.041 0.122±0.006 0.712±0.007 0.632±0.028 0.398±0.012 0.657±0.008

AP Prior η = 0.1 0.642±0.065 4.982±1.017 0.630±0.127 0.652±0.017 0.999±0.148 0.525±0.042 0.605±0.015
η = 0.7 0.912±0.006 0.332±0.030 0.128±0.009 0.704±0.004 0.588±0.005 0.390±0.003 0.650±0.005
η = 0.9 0.913±0.003 0.306±0.021 0.127±0.003 0.717±0.005 0.582±0.005 0.383±0.003 0.665±0.005

Outer Product False 0.914±0.008 0.403±0.151 0.127±0.011 0.725±0.003 0.596±0.013 0.381±0.004 0.676±0.003
Residual Block False 0.921±0.003 0.286±0.032 0.116±0.006 0.721±0.004 0.593±0.032 0.378±0.011 0.668±0.004

Gamma Prior

No Weights 0.915±0.004 0.301±0.016 0.124±0.003 0.719±0.007 0.577±0.010 0.377±0.006 0.663±0.007
α = 1.118, β = 0.236 0.917±0.006 0.308±0.033 0.123±0.008 0.718±0.004 0.593±0.015 0.384±0.006 0.667±0.006
α = 1.226, β = 0.452 0.918±0.002 0.298±0.024 0.121±0.002 0.719±0.006 0.583±0.016 0.381±0.007 0.666±0.006
α = 1.5, β = 0.5 0.914±0.000 0.304±0.006 0.126±0.003 0.716±0.007 0.581±0.018 0.383±0.010 0.663±0.005
α = 1.56, β = 0.28 0.910±0.006 0.341±0.059 0.132±0.007 0.711±0.008 0.588±0.009 0.389±0.007 0.659±0.006
α = 2.22, β = 0.61 0.917±0.007 0.334±0.072 0.124±0.009 0.714±0.007 0.586±0.015 0.385±0.008 0.660±0.005

aggregated via the majority rule (MR-ACC). Mathematically, both statistics can be expressed as follows:

ANNOT-ACC(y,Z) := 1
|Z|

N∑
n=1

∑
m∈An

δ (yn = znm) , (42)

MR-ACC(y, z) := 1
N

N∑
n=1

δ (yn = zn) , (43)
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Table 11: Additional results regarding RQ3 for datasets with simulated annotators: Best and second best
performances are highlighted per dataset and evaluation score while excluding the performances of the UB.
In contrast to Table 8, the AP models’ results refer to the 75 annotators providing class labels for training.

Technique P5 P6 Ground Truth Model Annotator Performance Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓ BAL-ACC ↑

letter (inductive)
UB 3 3 0.962±0.002 0.129±0.003 0.058±0.002 0.729±0.004 0.565±0.010 0.369±0.005 0.677±0.004
LB 3 3 0.861±0.005 1.090±0.017 0.429±0.008 0.572±0.008 0.719±0.008 0.515±0.006 0.552±0.004
LIA(A) 7 7 0.875±0.006 0.901±0.060 0.350±0.024 0.622±0.002 0.712±0.015 0.495±0.007 0.593±0.003
LIA(A) 3 3 0.876±0.006 1.006±0.177 0.397±0.074 0.618±0.028 1.441±0.925 0.581±0.129 0.572±0.038
CoNAL(A) 7 7 0.875±0.009 0.804±0.119 0.186±0.010 0.646±0.001 0.666±0.019 0.455±0.007 0.595±0.001
CoNAL(A) 3 7 0.874±0.007 0.808±0.116 0.186±0.011 0.646±0.001 0.662±0.015 0.453±0.006 0.595±0.001
MaDL(A) 7 7 0.911±0.006 0.334±0.026 0.129±0.008 0.685±0.011 0.601±0.008 0.403±0.009 0.626±0.012
MaDL(A) 3 3 0.914±0.004 0.303±0.009 0.124±0.005 0.718±0.004 0.583±0.006 0.383±0.004 0.665±0.004

fmnist (inductive)
UB 3 3 0.909±0.002 0.246±0.005 0.131±0.003 0.759±0.001 0.486±0.002 0.320±0.001 0.693±0.002
LB 3 3 0.881±0.002 0.876±0.005 0.370±0.002 0.621±0.020 0.662±0.006 0.469±0.006 0.562±0.009
LIA(A) 7 7 0.852±0.003 1.011±0.020 0.436±0.010 0.657±0.022 0.641±0.013 0.449±0.013 0.589±0.015
LIA(A) 3 3 0.855±0.002 0.972±0.012 0.417±0.006 0.685±0.031 0.623±0.023 0.432±0.021 0.610±0.025
CoNAL(A) 7 7 0.889±0.002 0.322±0.005 0.163±0.003 0.705±0.009 0.547±0.010 0.372±0.009 0.653±0.010
CoNAL(A) 3 7 0.890±0.002 0.323±0.011 0.163±0.005 0.713±0.011 0.540±0.011 0.366±0.010 0.661±0.013
MaDL(A) 7 7 0.895±0.002 0.297±0.004 0.152±0.002 0.753±0.003 0.496±0.004 0.328±0.003 0.683±0.005
MaDL(A) 3 3 0.893±0.004 0.297±0.008 0.153±0.004 0.755±0.003 0.492±0.004 0.325±0.003 0.686±0.005

cifar10 (inductive)
UB 3 3 0.931±0.002 0.527±0.022 0.122±0.003 0.712±0.001 0.555±0.002 0.372±0.002 0.655±0.001
LB 3 3 0.781±0.003 1.054±0.035 0.447±0.016 0.584±0.006 0.682±0.004 0.489±0.003 0.534±0.004
LIA(A) 7 7 0.798±0.008 1.072±0.014 0.455±0.006 0.598±0.013 0.676±0.014 0.482±0.013 0.547±0.008
LIA(A) 3 3 0.804±0.004 1.056±0.022 0.447±0.011 0.602±0.022 0.673±0.017 0.479±0.016 0.549±0.014
CoNAL(A) 7 7 0.835±0.002 0.576±0.016 0.245±0.005 0.670±0.002 0.599±0.002 0.415±0.002 0.618±0.001
CoNAL(A) 3 7 0.834±0.006 0.574±0.017 0.248±0.007 0.670±0.001 0.599±0.001 0.415±0.001 0.618±0.002
MaDL(A) 7 7 0.811±0.008 0.626±0.036 0.277±0.014 0.690±0.002 0.565±0.002 0.386±0.001 0.624±0.003
MaDL(A) 3 3 0.837±0.003 0.557±0.028 0.242±0.006 0.703±0.004 0.561±0.015 0.378±0.005 0.640±0.005

svhn (inductive)
UB 3 3 0.965±0.001 0.393±0.015 0.063±0.002 0.650±0.003 0.589±0.002 0.410±0.002 0.578±0.004
LB 3 3 0.927±0.002 0.805±0.016 0.328±0.009 0.579±0.006 0.709±0.005 0.513±0.004 0.531±0.003
LIA(A) 7 7 0.929±0.003 0.818±0.133 0.336±0.068 0.548±0.043 0.695±0.029 0.502±0.027 0.528±0.009
LIA(A) 3 3 0.932±0.001 0.754±0.152 0.303±0.079 0.600±0.009 0.672±0.027 0.480±0.024 0.539±0.004
CoNAL(A) 7 7 0.941±0.001 0.258±0.009 0.090±0.003 0.627±0.005 0.608±0.002 0.428±0.002 0.551±0.006
CoNAL(A) 3 7 0.942±0.001 0.260±0.012 0.090±0.002 0.632±0.007 0.605±0.003 0.425±0.003 0.556±0.007
MaDL(A) 7 7 0.928±0.002 0.299±0.019 0.109±0.005 0.631±0.004 0.599±0.006 0.418±0.002 0.548±0.002
MaDL(A) 3 3 0.935±0.001 0.256±0.009 0.098±0.002 0.641±0.002 0.592±0.001 0.413±0.001 0.562±0.002

where z = (z1, . . . , zN )T ∈ ΩNY denotes the vector of observed annotations aggregated per instance via the
majority rule. The ANNOT-ACC is almost constant across the different annotation ratios, as the selection
of which annotations are observed is made randomly. In comparison, the MR-ACC increases because, on
average, the annotators are independent and better than random guessing. Therefore, the probability of
correctly aggregated annotation increases with more observed annotations per instance.

The curves in the other seven plots report multi-annotator supervised learning techniques’ mean evaluation
scores and standard deviations over five runs. The evaluated MaDL variant corresponds to its default
hyperparameter configuration. The GT models’ evaluation curves in the first row of Fig. 9 confirm our
intuition that more annotations lead to better results. Further, we observe superior performances of the UB
regarding ACC and BS, while the UB repeatedly provides inferior NLL scores. Since the NLL per instance
is unbounded, the latter observation is likely caused by highly overconfident predictions. As expected, the
GT model of the LB performs worst in terms of the ACC for each tested annotation ratio and thus confirms
the general usefulness of multi-annotator supervised learning. However, its results for the NLL and BS are
surprisingly better than LIA, possibly due to the difficulties of training via an EM algorithm (cf. Section 3).
The GT model of MaDL outperforms other multi-annotator supervised learning techniques regarding the
ACC and BS results, while it is approximately on par with CoNAL regarding the NLL results. As the
annotation ratio increases, the ACC of MaDL approaches that of the UB. Still, MaDL cannot reach the
ACC results of the UB, even for the highest tested annotation ratio of 0.8. This is because the negative
impact of annotation noise is problem-dependent (Gu et al., 2022), e.g., the impact may depend on the data
distribution. The annotator simulation is an additional impactful aspect in our concrete case. For cifar10,
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the negative impact of annotation noise is more significant than for the other datasets, particularly evident
in the large gap in the ACC between the LB and the UB. The AP models’ evaluation curves in the second
row of Fig. 9 show similar trends to the ones of the GT models. In particular, there are two noteworthy
aspects. First, the AP estimates of MaDL are close to the UB. Second, the AP estimates of the LB are
better than the ones of the other multi-annotator supervised learning techniques (excluding MaDL and UB)
for annotation ratios of 0.6 and 0.8. The well-performing AP model architecture adopted from MaDL likely
leads to these results.

Multi-annotator Supervised Learning Techniques
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Figure 9: Evaluation results for four different annotation ratios on cifar10 (independent).

F A Case Study on CIFAR100

This appendix presents a case study analyzing multi-annotator supervised learning techniques’ performances
on classification tasks with more classes than in the main experiments. For this purpose, we use the dataset
cifar100, which is similar to the cifar10 dataset (cf. Table 2), with the major difference that C = 100
classes occur (Krizhevsky, 2009). The general design of the experiments follows that of RQ1 (cf. Section 5.1),
except that we adopt the wide residual network (WRN-28-10, Zagoruyko & Komodakis, 2016) as the basic
network architecture and stochastic GD as the optimizer with a mini-batch size of B = 128. For a fairer
comparison, we perform a small grid search with the learning rates {0.1, 0.01} and weight decays {0.0005, 0.0}
for each technique. Thereby, we reduce the learning rate with cosine annealing (Loshchilov & Hutter, 2017)
over the 100 training epochs.

Table 12 presents the obtained GT and AP models’ test performances, where the evaluated MaDL variant
corresponds to its default hyperparameter configuration. As expected, training with GT labels as the UB
achieves the best performance in terms of GT and AP estimates. The performance gap between the UB and
other techniques is substantial, highlighting the challenges of learning the cifar100 dataset with partially
erroneous annotations. However, the benefits of employing multi-annotator supervised learning techniques
are also significant. This advantage becomes particularly apparent when comparing MaDL with the LB be-
cause MaDL improves the GT-ACC by approximately 19 %. The comparison with the other multi-annotator
supervised learning techniques further confirms the state-of-the-art results of MaDL for cifar100. We note
that only LIA and REAC appear to roughly learn the classification task among the related techniques. A
conceivable explanation might be that the default values of the hyperparameters of CL, UNION, and CoNAL
are only well-suited for datasets with fewer classes.
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Table 12: Results on the cifar100 dataset with simulated annotators: Best and second best performances
are highlighted per evaluation score while excluding the performances of the UB.

Technique Ground Truth Model Annotator Performance Model
ACC ↑ NLL ↓ BS ↓ ACC ↑ NLL ↓ BS ↓ BAL-ACC ↑

cifar100 (independent)
UB 0.795 ± 0.001 0.818 ± 0.008 0.297 ± 0.003 0.727 ± 0.002 0.530 ± 0.001 0.355 ± 0.001 0.665 ± 0.003
LB 0.430 ± 0.010 2.593 ± 0.038 0.762 ± 0.012 0.599 ± 0.015 0.665 ± 0.006 0.472 ± 0.005 0.577 ± 0.011
CL 0.077 ± 0.013 10.555 ± 0.802 1.616 ± 0.059 0.594 ± 0.000 1.466 ± 0.013 0.764 ± 0.001 0.500 ± 0.000
REAC 0.553 ± 0.006 2.037 ± 0.175 0.630 ± 0.023 0.629 ± 0.029 0.657 ± 0.071 0.465 ± 0.060 0.543 ± 0.035
UNION 0.033 ± 0.003 4.815 ± 0.067 1.031 ± 0.014 0.594 ± 0.000 1.838 ± 0.008 0.794 ± 0.001 0.500 ± 0.000
LIA 0.560 ± 0.008 1.995 ± 0.051 0.619 ± 0.009 0.672 ± 0.004 0.608 ± 0.003 0.417 ± 0.003 0.611 ± 0.006
CoNAL 0.168 ± 0.008 7.762 ± 0.344 1.283 ± 0.016 0.594 ± 0.000 1.209 ± 0.021 0.700 ± 0.003 0.500 ± 0.000
MaDL 0.621 ± 0.003 1.628 ± 0.011 0.508 ± 0.005 0.665 ± 0.006 0.646 ± 0.015 0.442 ± 0.011 0.628 ± 0.003

G Practitioner’s Guide

This appendix provides an overview of various aspects to consider when employing MaDL in practical
classification tasks. Note that these aspects are closely related to each other and that the associated recom-
mendations do not have general validity.

Data modalities: We can train MaDL with different modalities of data. Depending on the instances’ data
modality, we need to modify the GT model’s architecture. For example, we may use TabNet (Arik &
Pfister, 2021) for tabular data, ResNet (He et al., 2016) for image data, or BERT (Devlin et al., 2018)
for text data. These considerations apply analogously to the annotator features and the architecture
of the AP model. However, annotator features are commonly tabular since they are collected via
surveys, or only anonymized identifiers of the annotators are known if there is no prior annotator
information. In the latter case, one-hot encoding converts these identifiers into tabular annotator
features. Recommendation: Use common architectures from the literature to fit the data modality.

Number of instances: The number of annotated instances available for training is critical to DNNs’ gen-
eralization performances (Hestness et al., 2017) and, consequently, to MaDL’s generalization perfor-
mance. Typically, the more annotated instances we have, the better MaDL can learn the underlying
annotation patterns as a basis for inferring the GT class labels and APs. Learning curves allow
us to study this behavior (Hoiem et al., 2021). Fig. 10 shows such exemplary learning curves of
MaDL’s GT-ACC and AP-ACC compared to the LB and UB for the dataset letter. Each curve
represents the means and standard deviations over five runs. The trend of improving performance
with an increasing number of annotated instances is confirmed for both evaluation scores. Further,
we observe that MaDL improves upon the LB, even for smaller training sets. Our findings, coupled
with the case study on varying annotation ratios in Appendix E, suggest that an increase in both the
number of annotated instances and the number of annotations per instance generally contributes
to improved results. Recommendation: If the annotation budget allows, increase the number of
annotated instances for better results.
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Figure 10: Exemplary learning curves on the letter dataset.
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Number of classes: With an increasing number of classes, there is a growing chance that some classes will
be easy to separate and some classes will be highly confusable (Gupta et al., 2014). Detecting such
pairs of confusable classes requires the accurate estimation of annotators’ confusion matrices, whose
concept is illustrated in Fig. 11. The three matrices represent three variants of MaDL with varying
assumptions about APs (cf. property P1 in Section 3). The class-independent variant corresponds
to estimating a single scalar as the only degree of freedom, i.e., ν = 1, to build the entire confusion
matrix. In our example, this scalar corresponds to 0.80 as an annotator’s correctness probability.
Accordingly, this variant cannot distinguish between easy- and difficult-to-recognize classes. The
degree of freedom of the partially class-dependent variant equals the number of classes, i.e., ν = C,
because there is an individual correctness probability for each class. These probabilities build the
diagonal of the confusion matrix, which consists of the values 0.60, 0.80, and 1.00 in our example.
Only the fully class-dependent variant can capture pairs of highly confusable classes. As a result,
the degree of freedom is considerably higher with ν = C · (C−1). On the one hand, our experiments
show that this variant is robust across different datasets (cf. Section 5), and even works for datasets
with C = 100 classes (cf. Appendix F). On the other hand, the complexity increases quadratically
with the number of classes, so this variant is computationally costly for datasets with hundreds or
thousands of classes. Note that MaDL can estimate these confusion matrices not only annotator-
dependent but also instance-dependent. Recommendation: If no assumptions about the annotators
are known, and the computational effort is feasible, use the fully class-dependent MaDL variant.

Class-independent (I)
ν = 1

Annotated Class
GT Class z = 1 z = 2 z = 3
y = 1 0.80 0.10 0.10
y = 2 0.10 0.80 0.10
y = 3 0.10 0.10 0.80

Partially Class-dependent (P)
ν = C = 3

Annotated Class
GT Class z = 1 z = 2 z = 3
y = 1 0.60 0.20 0.20
y = 2 0.10 0.80 0.10
y = 3 0.00 0.00 1.00

Fully Class-dependent (F)
ν = C · (C − 1) = 3 · 2 = 6

Annotated Class
GT Class z = 1 z = 2 z = 3
y = 1 0.60 0.35 0.05
y = 2 0.20 0.80 0.00
y = 3 0.00 0.00 1.00

Figure 11: Illustrative confusion matrices for C = 3 classes.

Number of annotators: As the number of annotators increases, the AP model usually needs to learn
more varying annotation patterns. For this, the AP model’s size must be sufficiently large, e.g., by
increasing the annotator embeddings’ dimensionality. Moreover, in settings with many annotators,
prior information about the annotators can be particularly helpful for learning correlations between
them. Recommendation: Ensure that the AP model has a sufficient size to learn annotation patterns.

Training, validation, and testing: In principle, MaDL can be trained without a validation or test set,
demonstrating robust results with default hyperparameters across diverse datasets. Nevertheless,
like most DNNs, careful selection of the optimizer’s hyperparameters, such as the learning rate, is
essential. Without a validation set, the training loss curve can serve as a rudimentary guide to assess
if the loss is being minimized effectively. Still, better results typically stem from hyperparameter
tuning using a validation set. Next to popular regularization techniques, e.g., dropout and weight
decay, such a validation set is also essential to detect and avoid overfitting. Finally, a separate test
set allows us to assess MaDL’s final performance reliably. The setting of error-prone annotators
makes obtaining a validation or test set challenging. Ideally, we obtain the GT labels from experts.
Alternatively, we may assume the majority votes of numerous annotators as GT labels. Recommen-
dation: For hyperparameter tuning, avoidance of overfitting, and a reliable performance assessment,
consider acquiring a validation and test set before deploying MaDL.

Deployment: After training, MaDL’s GT and AP models offer various deployment options: We can

• directly apply the GT model as a downstream classifier to the associated learning task,
• use the GT model’s predictions to improve the dataset’s label quality,
• study the annotation patterns and correlations between annotators via the AP model,
• or leverage the AP model to assess which annotator is best for annotating a particular instance.
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