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Abstract

The circular coordinate representation performs dimension reduction and1

visualization for high-dimensional datasets on a torus using persistent cohomology.2

In this work, we propose a method to adapt the circular coordinate framework to3

take into account sparsity in high-dimensional applications. We use a generalized4

penalty function instead of an L2 penalty in the traditional circular coordinate5

algorithm.6

1 Introduction7

Dimension reduction has been a major research subject in mathematics, statistics and computer science8

(Elad, 2010; Candès, 2014; Wilkinson and Luo, 2020). One of the major challenges in this field has9

been how to preserve the topological and geometrical structures of a high-dimensional, nonlinear10

dataset through the dimension reduction. The non-linear dimensionality reduction (NLDR) literature11

(Donoho and Grimes, 2005) consists of various attempts to address the problem of representing12

high-dimensional datasets, in terms of low-dimensional coordinate mappings. These methods have13

good use in both exploration and visualization of data.14

To formally state dimension reduction problem, for a dataset X ⊂ Rd in form of X = {xi =15

(xi,1, xi,2, · · · , xi,d) ∈ Rd, i = 1, · · · , n} one assumes thatX lives on a manifoldM and attempts to16

find a collection of coordinate mappings Θ := {θ1, · · · , θk}, θj : Rd → R, j = 1, · · · , k with k ≤ d.17

The reduced dataset can be written as Θ(X) = {(θ1(xi), θ2(xi), · · · , θk(xi)), i = 1, · · · , n} ⊂ Rk18

through the coordinate mappings. A good choice of coordinate mappings would preserve the main19

distinctive geometric properties of the manifold, and hence better assist the user in data analysis tasks.20

When the underlying manifold M has some nontrivial topological structures, these structures cannot21

be preserved by linear dimension reduction methods. Motivated by this, circular coordinates are22

proposed (de Silva et al., 2011) to take non-trivial topology of M into account when building23

the coordinate mappings. The paradigm of circular coordinate representation reveals the intrinsic24

structure of the high-dimensional data (Wang et al., 2011).25

The circular coordinates are coordinate mappings with circular values in S1 ∼= [0, 1]/{0, 1}. The26

resulting coordinates maps the dataset X ⊂ Rd on a k-torus Tk =
(
S1

)k
through coordinates27

Θ = {θ1, · · · , θk}, θj : Rd → S1, j = 1, · · · , k. It has been shown that this representation28

retains significant topological features while reducing topological noise. While circular coordinates29

preserve the topological structure of the dataset, we also want it to accommodate the sparsity in high30

dimensional datasets.31
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In this paper, we propose to impose a generalized penalty for circular coordinates representation,32

to accommodate the sparsity in the dataset from a theoretic perspective. Simulations and real data33

examples that show the effect of the choice of penalty function could be found in Luo et al. (2020b).34

1.1 Circular coordinate representation35

Like standard Topological Data Analysis (TDA) techniques, we approximate the underlying space36

M by constructing an approximating complex Σ, like Vietoris-Rips complex or Čech complex37

(Carlsson, 2009). From de Silva et al. (2011), we know that we can compute the associated38

persistent cohomology, and choose an S1-valued function on Σ, known as the circular coordinate39

function, for each 1-cocycle in the computed persistent cohomology. Intuitively speaking, the40

circular coordinates are S1-valued coordinate functions, which reflect the non-trivial topology of41

the approximating complex Σ. These S1-valued functions serve as coordinate maps θ in the low-42

dimensional representation. We use the symbol α to denote a cocycle defined on the underlying43

complex Σ. The pipeline of the circular coordinate representation can be described as follows:44

1. Construct a filtered Vietoris-Rips complex Σ to approximate the underlying space where the45

dataset X lives.46

2. Use persistent cohomology and topological summary to identify those significant 1-cocycles47

and discard noise.48

e.g. We choose a cocycle [α] ∈ H1(Σ,Zp) with persistence greater than a significant49

threshold.50

3. For each 1-cocycle, we lift the 1-cocycle [α] into H1(Σ,Z) with integer coefficients.51

4. For each 1-cocycle, we replace the integer valued cocycle α by a smoothed cohomologous52

cocycle ᾱ.53

5. For each 1-cocycle, we integrate the function ᾱ to obtain a corresponding S1-valued function54

θ : Σ→ S1.55

Remark. It is important to stress that when the H1(Σ,Z) is trivial, or equivalently there is no56

significant 1-cocycle in the complex with prescribed threshold, the circular coordinate methodology57

cannot be applied.58

Using the terminologies in algebraic topology (Hatcher, 2001), we can describe the theoretical59

reasoning behind Step 3 in more detail. The chosen cocycle α can be smoothed to obtain a60

cohomologous cocycle ᾱ that minimizes L2 penalty by solving the following cohomologous61

optimization problem62

f̄ = arg min
f
{‖ᾱ‖L2 | f ∈ C0(Σ,R), ᾱ = α+ δ0f}. (1)

In other words, we are trying to minimize the L2 norm of a cocycle (function) α within the collection63

of cohomologous cocycles (functions) and the resulting ᾱ can be proven to be harmonically smooth.64

1.2 Sparsity and penalty functions65

Circular coordinates are powerful in visualizing and discovering high-dimensional topological66

structures (Wang et al., 2011). As a non-linear dimensionality reduction approach, we want to67

explore its ability to handle challenges from high-dimensional data analysis.68

In particular, we are interested in how and when circular coordinates correctly encode the sparsity69

present in the original high-dimensional data. Sparsity occurs naturally in high-dimensional datasets or70

due to a sampling scheme, which is often a difficult problem to handle. In presence of sparsity, a good71

low-dimensional representation of the dataset would have few non-zero coordinates accommodating72

the sparsity in the original dataset (Vershynin, 2018).73

In the regression setting, sparsity is important in discovering the structure of data (Hastie et al., 2015).74

For a normal linear regression model75

y = Xβ + ε, ε ∼ N(0, σ2I), σ2 > 0,

the least square estimates of regression coefficients β̂ is obtained by solving the regression76

optimization problem β̂ = arg minβ ‖y − Xβ‖2L2
, which leads to the (ordinary) least square77
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theory. When the coefficient β is defined in a high-dimensional parameter space, especially when78

the number of covariates is larger than the sample size, the linear model will encounter problems79

(Tibshirani et al., 2005).80

To address the above problem in high dimensions, the LASSO model (Tibshirani, 1996) makes use81

of the L1 norm in the regression optimization problem instead of L2 norm. The above optimization82

problem is replaced by β̂ = arg minβ ‖y −Xβ‖2L2
s.t. ‖β‖L1

≤ t with a predetermined radius83

t > 0. In Lagrangian multiplier forms, the LASSO regression optimization problem can be phrased84

as85

β̂ = arg min
β,λ
‖y −Xβ‖2L2

+ λ‖β‖L1
.

The data can be represented with the LASSO model by the covariates, with most regression86

coefficients being zeros due to the L1 regularization. An important generalization of the LASSO87

method is the elastic net method (Zou and Hastie, 2005), which redefines the constraint to avoid88

including highly correlated covariates, a problem that might arise when using an L1 regularization.89

In the elastic net method, the Lagrangian multiplier form of the optimization problem becomes90

β̂ = arg min
β,λ
‖y −Xβ‖2L2

+ λ‖β‖L1
+ (1− λ)‖β‖2L2

.

With these penalized variants of the L2 regression optimization problem, the regression model91

can effectively represent the sparse data with few non-zero regression coefficients. However, this92

representation is still of linear nature and cannot be applied to a non-linear dataset without loss of93

non-linearity.94

We propose to modify the circular coordinate representation to accommodate sparsity by using a95

generalized penalty function. We will introduce new penalty functions below in Section 2.96

2 Generalized penalty for circular coordinate representation97

In this section, we explain how the cohomologous optimization problem that arises in the circular98

coordinates procedure can be solved with generalized penalty functions, which leads to what we call99

the generalized penalty for circular coordinates.100

As we previously discussed, circular coordinates can be obtained by solving the cohomologous101

optimization problem (1). When using theL2 penalty, de Silva et al. (2011) proved that the constructed102

coordinates possess harmonic smoothness and other well-behaved properties. Usually, on a low-103

dimensional dataset with significant topological features, this L2 penalty works well and detect104

features by showing changes in coordinate values.105

To address statistical sparsity in high dimensional datasets, we propose to use a generalized penalty106

function in the optimization problem (1) to accommodate sparsity. If the sparsity in a high-dimensional107

dataset is well utilized, the circular coordinates are expected to have mostly constant values and the108

rapidly changing non-constant is more localized compared to the L2 penalty. The sparse circular109

coordinate for a 1-cocycle α will be the solution of the following optimization problem:110

f̄ = arg min
f
{(1− λ)‖ᾱ‖L1

+ λ‖ᾱ‖L2
| f ∈ C0(Σ,R), ᾱ = α+ δ0f}. (2)

In particular, when λ = 1, the penalty reduces to L2 penalty. When λ = 0, we have the following111

form using only an L1 penalty function,112

f̄ = arg min
f
{‖ᾱ‖L1

| f ∈ C0(Σ,R), ᾱ = α+ δ0f}. (3)

Note that these two problems (1) and (3) above, can be formalized as a restrained optimization113

problem, since coboundary maps δ are linear operators by definition. Although the harmonic114

smoothness in the resulting coordinates is lost when we use a generalized penalty other than L2 (i.e.,115

λ 6= 1), we will show by simulation studies that the topological features can still be preserved in the116

circular coordinates with few non-constant values.117

Based on simulation studies and real data analysis (Luo et al., 2020b), circular coordinates with118

generalized penalty function may as well provide an informative reference when we are interested in119

the sampling scheme on high dimensional datasets. In short, under different sampling schemes, the120

circular coordinates under L2 penalty functions:121
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1. would not create qualitative differences in the distribution of coordinate values, and hence122

the distribution of constant edges.123

2. would usually display significant differences in the correlation plots associated with the124

circular coordinates.125

The simulation studies could also provide additional evidence to the claim that the sampling scheme126

of the dataset is an important factor in TDA (Niyogi et al., 2008; Tausz and Carlsson, 2011). It127

also brings up a new question that how the topology in the approximating complex Σ could reflect128

the empirical distribution. In asymptotics, when the sample size n → ∞, we expect that the129

approximating complex Σ would have the same topology as M ; and we also expect that the empirical130

distribution would converge to the true density. Therefore, it remains an interesting question how131

these two aspects of the dataset interact (Luo et al., 2020a).132

3 Discussion133

Our contribution in this paper is that we propose a novel topological dimension reduction method that134

allows us to take explicitly into account the sparsity in high-dimensional datasets. And we explore135

the behavior of generalized penalty functions with experiments in Luo et al. (2020b) and show how136

they can be applied in a non-standard setting.137

The circular coordinate (de Silva et al., 2011) is a non-linear dimension reduction method, which138

is capable of providing a topology-preserved low-dimensional representation of high-dimensional139

datasets using significant 1-cocycles selected from persistent cohomology based on the dataset.140

With a generalized penalty function, the circular coordinate becomes a non-linear dimension reduction141

method with explicit sparsity control. The circular coordinate representation depends on the penalty142

function, and the sparsity control is achieved by choosing a generalized penalty function in the143

cohomologous optimization problem in form of:144

f̄ = arg min
f
{(1− λ)‖ᾱ‖Lp + λ‖ᾱ‖Lq | f ∈ C0(Σ,R), ᾱ = α+ δ0f}. (4)

analogous to the usage of generalized penalty function in a standard regression setting as explained145

in Section 2. In terms of extending our idea of using a different penalty in the smoothing procedure,146

it would be interesting to explore other kinds of penalty functions already established in a regression147

or topological setting, for example, fused LASSO (Tibshirani et al., 2005) and “minimal edits” ‖δ0‖.148

On the other hand, it would also be important to explore the theory behind circular coordinates with a149

generalized penalty under different sampling schemes.150

Beyond the S1 coordinate functions, it is of interest to explore whether the idea of the penalized151

smoothing could be extended to coordinate functions with values in a general topological space152

other than S1. In this direction, we want to explore the idea of generalized penalty functions with153

Eilenberg-MacLane coordinates, of which S1 coordinates is a special case (Polanco and Perea, 2019).154

This line of research is motivated by TDA literature extending the circular coordinate framework.155

As we observed, the computational cost for computing circular coordinates is high. One common156

way of reducing the computation cost is to use sub-samples instead of full samples in the construction157

of complexes (Otter et al., 2017). From the perspective of data analysis, such a sub-sampling will158

introduce more uncertainty and also lose some information. While we know that sub-sampling159

preserve most topological features in a dataset, it is unclear how other (non-linear) dimension160

reduction methods behave under a sub-sampling scheme. This line of research aims at exploring how161

sub-sampling can be utilized in topological dimension reduction tasks, and would be of interest for162

both statisticians and topologists alike.163

Moreover, we know that the real coordinates in classical multi-dimensional scaling have an absolute164

scale that depends on the particular dataset. Circular coordinates have no absolute scale since their165

domain is specified to be S1. The circular coordinates, along with penalty functions, provides166

algebraically topologically independent circle coordinates. It will be of great practical and theoretical167

interest to investigate the interaction between algebraic independence and probabilistic independence168

in multi-dimensional scaling (de Silva et al., 2011).169
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