
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A UNIFIED FRAMEWORK FOR FORWARD AND INVERSE
PROBLEMS IN SUBSURFACE IMAGING USING LATENT
SPACE TRANSLATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In subsurface imaging, learning the mapping from velocity maps to seismic wave-
forms (forward problem) and waveforms to velocity (inverse problem) is impor-
tant for several applications. While traditional techniques for solving forward and
inverse problems are computationally prohibitive, there is a growing interest in
leveraging recent advances in deep learning to learn the mapping between veloc-
ity maps and seismic waveform images directly from data. Despite the variety of
architectures explored in previous works, several open questions still remain unan-
swered such as the effect of latent space sizes, the importance of manifold learn-
ing, the complexity of translation models, and the value of jointly solving forward
and inverse problems. We propose a unified framework to systematically char-
acterize prior research in this area termed the Generalized Forward-Inverse (GFI)
framework, building on the assumption of manifolds and latent space translations.
We show that GFI encompasses previous works in deep learning for subsurface
imaging, which can be viewed as specific instantiations of GFI. We also propose
two new model architectures within the framework of GFI: Latent U-Net and In-
vertible X-Net, leveraging the power of U-Nets for domain translation and the
ability of IU-Nets to simultaneously learn forward and inverse translations, respec-
tively. We show that our proposed models achieve state-of-the-art (SOTA) perfor-
mance for forward and inverse problems on a wide range of synthetic datasets,
and also investigate their zero-shot effectiveness on two real-world-like datasets.

1 INTRODUCTION

The goal of subsurface imaging is to identify the structure and geophysical properties of layers
underneath the Earth’s surface such as velocity maps (v), which is useful for a number of applications
including energy exploration, carbon capture and sequestration, and developing earthquake early
warning systems (Zhang et al., 2013). A typical approach for subsurface imaging is to conduct
seismic surveys, where the elastic wave energy generated from one or more controlled sources is
made to propagate through the Earth’s layers that are refracted, reflected, and received as seismic
waveforms (p) on the surface by multiple receivers. Mathematically, the relation between velocity
maps and seismic waveforms is governed by the following acoustic wave equation expressed as a
non-linear partial differential equation (PDE):

∇2p(x, z, t)− 1

v2(x, z)

∂2

∂t2
p(x, z, t) = s(x, z, t), (1)

where x, z, and t represent the horizontal direction, depth, and time, respectively, and ∇2 is the
Laplacian operator. Using Equation 1, the forward problem in subsurface imaging is to compute
seismic waveforms p given velocity maps v by learning the forward mapping fv→p : V → P . The
inverse problem, also referred to as Full Waveform Inversion (FWI), is then to learn the reverse
mapping fp→v : P → V for inferring velocity maps v given observations of p.

While solving the forward problem requires expensive numerical solutions (Tago et al., 2012) of
Equation 1, learning the inverse is even more computationally demanding as it involves iterating
over velocity maps v to minimize the difference between simulated waveforms from the forward
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model and ground-truth observations of p (Tarantola, 1988). As a result, traditional techniques for
solving forward and inverse problems in subsurface imaging are difficult to scale in operational
settings at the desired resolutions. In response, there is a growing interest in the geophysics commu-
nity to leverage deep learning for subsurface imaging (DL4SI), in particular, using image-to-image-
translation methods to map seismic waveforms to velocity maps and back directly from data.

Figure 1: A unified framework for solving for-
ward and inverse problems in subsurface imaging.

For example, several deep learning methods
have recently been proposed for FWI using
encoder-decoder architectures such as Inver-
sionNet (Wu & Lin, 2019) and VelocityGAN
(Zhang et al., 2019), where the encoder maps
transform seismic data to latent feature repre-
sentations that are decoded back to the veloc-
ity domain (Lin et al., 2023). Techniques for
solving the forward problem in PDEs include
the seminal work on physics-informed neural
networks (PINNs) (Raissi et al., 2019) and re-
cent works in neural operators such as Fourier
Neural Operators (FNOs) (Li et al., 2020). The
basic idea of FNOs is to lift inputs to the fre-
quency domain using Fourier transform and ap-
ply linear transforms before inverting them to the original space in every FNO layer. A recent work
has also pursued the goal of solving both forward and inverse problems together using a common
architecture termed Auto-Linear (Feng et al., 2024), where two auto-encoders are first separately
trained to project velocity and waveform fields to higher-dimensional manifolds, which are then
linked using linear transforms for translating between manifolds.

Despite the variety of architectures explored in previous works in DL4SI, several open questions still
remain unanswered such as: (1) How does the size of latent spaces in encoder-decoder frameworks
influence the quality of domain translations in DL4SI? While previous works such as InversionNet
used lower-dimensional embeddings in their bottleneck layers, recent methods such as Auto-Linear
advocate for higher-dimensional mappings. (2) Do we need complex architectures for latent space
translations or are linear transforms sufficient? (3) What is the role of manifold learning in DL4SI
where latent spaces are used not just for translation but also for reconstruction? (4) Can we simulta-
neously solve both forward and inverse problems using joint frameworks?

To answer these questions, we propose a unified framework to systematically characterize prior
research in DL4SI termed the Generalized Forward-Inverse (GFI) framework (see Figure 1). The
GFI framework builds on two key philosophies that are at the core of prior research in DL4SI. First,
we assume that both velocity v and seismic waveforms p can be projected to latent space manifolds
ṽ and p̃ using encoder-decoder pairs that allow reconstruction of the original domains, referred to
as the manifold assumption. Second, we assume that it is possible to learn bidirectional translations
between the two manifolds ṽ and p̃, referred to as the latent space translation assumption. We
show that GFI encompasses previous works in DL4SI including InversionNet, VelocityGAN, and
Auto-Linear, which can be viewed as specific instantiations of GFI. This unifying perspective helps
us analyze the field of DL4SI going beyond specific architecture choices and also discover novel
formulations in DL4SI such as those explored in this paper.

In particular, we propose two new architectures within the framework of GFI: Latent U-Net (see Fig-
ure 2a) and Invertible X-Net (see Figure 2b). Latent U-Net uses two separate U-Nets (Ronneberger
et al., 2015) to model latent space translations in both directions. This takes inspiration from the
success of U-Nets in mainstream computer vision applications to explore their benefits in DL4SI.
Invertible-XNet uses Invertible U-Net (IU-Net) (Etmann et al., 2020) to simultaneously learn both
forward and inverse translations in the latent space using a single architecture. Invertible U-Nets
builds on the idea of Invertible Neural Networks (INNs) (Ardizzone et al., 2018) to learn bijective
mappings between input and output domains in DL4SI. We show that both Latent U-Net and Invert-
ible X-Net achieve state-of-the-art (SOTA) performance for forward and inverse problems on a wide
range of benchmark datasets commonly used in DL4SI. We show that jointly solving forward and
inverse problems using Invertible X-Net especially helps in improving the accuracy on the forward
problem. We also investigate the zero-shot effectiveness of our proposed approaches on synthetic
and real-world-like datasets, contributing to novel insights in the field of DL4SI.
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(a) Latent U-Net architecture (b) Invertible X-Net architecture

Figure 2: Schematic representation of proposed Latent U-Net and Invertible X-Net model.

2 RELATED WORKS

2.1 DEEP LEARNING FOR SUBSURFACE IMAGING (DL4SI)

Solving inverse problems in DL4SI has received considerable attention in recent years, thanks to the
seminal work by Deng et al. (2022) in creating OpenFWI, an open-access synthetic dataset involving
paired examples of velocity and waveforms with varying levels of complexity. This has enabled
the formulation of FWI as an image-to-image translation problem, where the relationship between
waveforms and velocity is learned through supervised, unsupervised, or self-supervised methods
(Lin et al., 2023). One of the early works in supervised learning for FWI includes InversionNet
(Wu & Lin, 2019), which uses an encoder-decoder architecture to project waveforms into flattened
vector representations acting as the bottleneck layer, which are decoded back to velocity maps.
VelocityGAN (Zhang et al., 2019) builds on the idea of InversionNet by using an adversarial training
scheme for learning the model parameters along with prediction loss. These works have also been
extended for estimating 3D velocity fields in Feng et al. (2021).

Since ground-truth observations of velocity maps are difficult to obtain in real-world settings, a
number of unsupervised and self-supervised formulations have also been explored for FWI. This
includes the framework of UPFWI (Jin et al., 2021) that uses the supervision of a physics-based
forward model of the wave equation to enforce cycle-consistency with a data-driven inverse model.
While the training of UPFWI is completely unsupervised and achieves comparable performance
as InversionNet in some settings, it requires computationally expensive simulations of a forward
model at every training epoch, restricting its scalability. Recent advancements, such as IFWI Du
et al. (2024), FWIPLR Sun et al. (2023), and FWIRLG Yang & Ma (2023), integrate physics-based
constraints and deep learning to tackle challenges like low-quality data and geological complexity.
A recent line of work in semi-supervised learning for FWI involves the framework of Auto-Linear
(Feng et al., 2024). In this framework, both velocity and waveforms are first mapped to higher-
dimensional manifolds using two auto-encoders separately trained to minimize reconstruction loss
in their respective domains. This is followed by a supervised learning of translations between the
manifolds using two independent linear transforms (one for forward and one for inverse), building
on previous observations of linearity in high-dimensional spaces for FWI (Feng et al., 2022).

2.2 DOMAIN TRANSLATION METHODS
The goal in domain translation (Isola et al., 2017; Zhu et al., 2017; Choi et al., 2018) is to learn the
mapping between input and output domains (e.g., the CT scan of a patient and the organ segmenta-
tion from the scan), either in a paired or unpaired setting. A recent work on Latent Space Mapping
(LSM) (Mayet et al., 2023) has introduced a unifying framework for domain translation based on
the manifold assumption (i.e., both input and output domains reside in low-dimensional manifolds
learned by minimizing reconstruction loss) and shared latent space assumption (i.e., both manifolds
reside in a shared latent space making it possible to translate from one manifold to another). We
take inspiration from LSMs in domain translation to develop our proposed framework of GFI.

3 PROPOSED METHODOLOGIES

3.1 GENERALIZED FORWARD INVERSE FRAMEWORK

As shown schematically in Figure 1, our proposed framework of GFI unifies the learning of the
forward problem fv→p : V → P and the inverse problem fp→v : P → V using a common archi-
tecture involving latent space translations. The GFI framework is inspired by two key assumptions.
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First, according to the manifold assumption, we assume that the velocity maps v ∈ V and seismic
waveforms p ∈ P can be projected to their corresponding latent space representations, ṽ and p̃,
respectively, which can be mapped back to their reconstructions in the original space, v̂ and p̂. Note
that the sizes of the latent spaces can be smaller or larger than the original spaces. Further, the size
of ṽ may not match with the size of p̃ (e.g., in Auto-Linear). Second, according to the latent space
translation assumption, we assume that the problem of learning forward and inverse mappings in
the original spaces of velocity and waveforms can be reformulated as learning translations in their
latent spaces. We provide theoretical justifications for the existence of these latent space translations
in the Appendix A. Note that these assumptions can also be relaxed in specific instantiations of GFI.
For example, the manifold assumption can be relaxed to learn latent spaces solely for translation and
not reconstruction.

Formally, let Ev : V → Ṽ and Ep : P → P̃ be the encoders that map velocity and waveforms
to their respective latent representations, ṽ = Ev(v) and p̃ = Ep(p). Similarly, let Dv : Ṽ → V
and Dp : P̃ → P be the decoders that map the latent representations back to the original spaces.
Additionally, let Lṽ→p̃ : Ṽ → P̃ and Lp̃→ṽ : P̃ → Ṽ be the latent space translations between ṽ and
p̃ and vice versa. The forward and inverse mappings between velocity v and waveform p can then
be formulated as:

p̂ = fv→p(v) = Dp ◦ Lṽ→p̃ ◦ Ev(v) (2)
v̂ = fp→v(p) = Dv ◦ Lp̃→ṽ ◦ Ep(p) (3)

Learning GFI with Paired Data: Let us assume that we have a paired i.i.d. dataset (v, p) ∼
q(v, p), where q(v, p) is a joint probability distribution. We can then learn the parameters of the GFI
framework in a supervised manner by optimizing the following loss functions:

min
θEv ,θLṽ→p̃

,θDp
Eq(v,p)L(Dp ◦ Lṽ→p̃ ◦ Ev(v), p) = L(p̂, p) (4)

min
θEp ,θLp̃→ṽ

,θDv
Eq(v,p)L(Dv ◦ Lp̃→ṽ ◦ Ep(p), v) = L(v̂, v) (5)

where L denotes a loss function such as the Mean Squared Error (MSE) loss, Mean Absolute Error
(MAE) loss, or even an adversarial loss if trained with a discriminator.

3.2 PRIOR WORKS IN DL4SI AS SPECIAL CASES OF GFI

Table 1 summarizes how previous works in DL4SI can be viewed as specific realizations of the
unifying GFI Framework, as described in the following. Schematic illustrations of all prior works
in the framework of GFI are provided in the Appendix Figure 9.

Table 1: Characterizing prior and proposed works using GFI Framework.

Model Modeling Mode Manifold
Learning

Latent Space
Translation

Sizes of
Latent Spaces

InversionNet Inverse No Identity Low

VelocityGAN Inverse No Identity Low

FNO Forward No Fourier Layers N/A

Auto-Linear Forward and
Inverse Disjointly Yes Linear High and

Different

Latent U-Net
(ours)

Forward and
Inverse Disjointly Possible U-Net Low and

Same

Invertible X-Net
(ours)

Forward and
Inverse Simultaneously Implicit IU-Net Low and

Same

InversionNet and VelocityGAN: Both InversionNet and VelocityGAN use the same encoder-
decoder architecture for learning the inverse mapping from seismic waveforms to velocity maps.
They can be viewed as using an encoder Ep to map waveforms to a lower-dimensional space (rep-
resented as a flat vector), which is decoded back to velocity using decoder Dv (both encoder and
decoder are implemented as ConvNets). The latent space translation is effectively the identity map-
ping, Lp̃→ṽ = I . Also, since they operate in inverse-only mode, they do not involve Ev , Dp, and
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Lṽ→p̃ components in their architecture. As a result, they do not perform manifold learning since the
latent spaces of p̃ and ṽ are solely used for translation and not for reconstruction.

Auto-Linear: Auto-Linear employs a two-stage approach for learning both forward and inverse
mappings using two disjoint latent space translations. In the first stage, self-supervised learning
using reconstruction loss is utilized to train encoder-decoder pairs independently on velocity maps
(i.e., Ev and Dv) and seismic waveforms (i.e., Ep and Dp). Note that the sizes of ṽ and p̃ are kept
different from each other and higher than that of v and p. In the second stage, two linear trans-
forms are separately trained for the forward and inverse translations in the latent space, Lṽ→p̃ and
Lp̃→ṽ , while keeping the previously trained encoders and decoders frozen. Auto-Linear leverages
the manifold assumption as the latent manifolds ṽ and p̃ are useful for reconstruction.

3.3 PROPOSED MODEL: LATENT U-NET

We propose a novel architecture for solving forward and inverse problems using two latent space
translation models implemented using U-Nets, termed Latent U-Net. As shown in Figure 2a, Latent
U-Net uses ConvNet backbones for both encoder-decoder pairs: (Ev , Dv) and (Ep, Dp), to project
v and p to lower-dimensional representations. We also constrain the sizes of the latent spaces of
ṽ and p̃ to be identical, i.e., dim(ṽ) = dim(p̃), so that we can train two separate U-Net models to
implement the latent space mappings Lṽ→p̃ and Lp̃→ṽ . Note that while U-Nets cannot be applied
directly in the original spaces of velocity and waveforms due to a mismatch in dimensionalities,
Latent U-Net allows us to bring to bear the power of U-Net in the domain of subsurface imaging,
which has been very successful in several applications of computer vision.

We train Latent U-Net in an end-to-end manner to directly learn latent spaces useful for translation.
This is in contrast to the two-stage training process employed in Auto-Linear where latent spaces are
first pre-trained for reconstruction, followed by translation. Specifically, for the forward problem,
the components Dp, Lṽ→p̃, and Ev are trained together by optimizing Equation 4, while for the
inverse problem, the components Dv , Lp̃→ṽ , and Ep are trained together by optimizing Equation 5.
Since the training of forward and inverse modeling components of Latent U-Net are disjoint from
each other, Latent U-Net does not explicitly learns manifolds useful for reconstruction. However, it
is possible to modify the training objective of Latent U-Net by adding reconstruction losses in both
forward and inverse problems to perform manifold learning.

3.4 PROPOSED MODEL: INVERTIBLE X-NET

We propose another novel architecture within the GFI framework termed Invertible X-Net to answer
the question: “can we learn a single latent space translation model that can simultaneously solve
both forward and inverse problems?” Recently, Invertible Neural Networks (INNs) (Ardizzone et al.,
2018) have been introduced as a specialized class of neural networks capable of learning bijective
mappings between inputs and outputs. INNs are inherently invertible by design; once the INN is
trained to learn a forward mapping f : X → Y between inputs x ∈ X and outputs y ∈ Y , the
inverse mapping f−1 : Y → X can be obtained for free. A variant of INN has also been developed
for image-to-image translation problems using the U-Net backbone, termed IU-Net (Etmann et al.,
2020). However, one of the key constraints of INN and IU-Net is that they require dim(X ) =
dim(Y), which is difficult to ensure in subsurface imaging problems (since velocity and waveforms
reside in entirely different spaces).

This is where we can leverage the GFI framework to employ IU-Net in the latent spaces of veloc-
ity and waveforms, which can be constrained to be of the same size (just like Latent-UNets), i.e.,
dim(ṽ) = dim(p̃). By using a single IU-Net, we can simultaneously learn both forward and inverse
translations in the latent space, Lp̃→ṽ and Lṽ→p̃. We refer to this formulation as Invertible “X”-Net
(owing to the cross-shape of translations between the latent spaces) defined as follows:

p̃ = Lṽ→p̃(ṽ) = fIU-Net(ṽ); ṽ = Lp̃→ṽ(p̃) = f−1
IU-Net(p̃) (6)

p̂ = Dp ◦ fIU-Net(ṽ) ◦ Ev(v); v̂ = Dv ◦ f−1
IU-Net(p̃) ◦ Ep(p) (7)

The objective function for training Invertible X-Net involves prediction losses on both velocity maps
and waveforms defined as follows:

LX-Net = Lforward + Linverse (8)

= Eq(v,p)L(Dp ◦ fIU-Net ◦ Ev(v), p) + Eq(v,p)L(Dv ◦ f−1
IU-Net ◦ Ep(p), v) (9)
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Note that Invertible X-Nets facilitate bidirectional training as both the forward and inverse mod-
eling components are trained simultaneously. As a result, both encoder-decoder pairs of Invertible
X-Nets implicitly learn manifolds useful for reconstruction. Also, Invertible X-Net offers several
key advantages over baselines. First, it simultaneously addresses both the forward and inverse prob-
lems within a single model architecture, whereas other baselines typically require training separate
models for each task (e.g., Latent U-Net and Auto-Linear), leading to greater parameter efficiency.
Additionally, the use of IU-Net ensures that the mappings between the latent spaces of velocity maps
and seismic waveforms are bijective, guaranteeing a one-to-one mapping between these represen-
tations – a property not necessarily true for other models such as Latent U-nets and Auto-Linear.
Further, the bidirectional training of the forward and inverse problems introduces a strong regular-
ization effect as the gradients of the forward loss Lforward affects the parameters of fIU-Net, thereby
affecting both forward and inverse performance. Similarly, the gradients of the inverse loss Linverse
also impact both forward and inverse performance by updating the parameters of fIU-Net.

Cycle Loss for Training Invertible X-Net: Another advantage of Invertible X-net is that the ar-
chitecture can be trained with unpaired examples using cycle-loss consistency (Zhu et al., 2017).
We consider both variants of Invertible X-Net (with and without cycle loss) in our experiments to
demonstrate its effect on generalization performance.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We consider the OpenFWI collection of datasets (Deng et al., 2022), which encompasses multi-
structural benchmark datasets for DL4SI organized into three groups: Vel Family, Fault Family, and
Style Family. The Vel Family consists of four datasets representing simple geological patterns, while
the Fault Family includes four datasets with fault-like deformations, presenting greater modeling
challenges. The Style Family utilizes a style transfer method to create a range of highly complex
geological settings. The waveform data is structured as (# source × recording time × receiver
length), resulting in a shape of (5 × 1000 × 70) for five uniformly spaced seismic sources and 70
receivers over 1000 milliseconds. In contrast, the velocity maps are represented as (1 × depth ×
receiver length), with a shape of (1× 70× 70) reflecting spatial dimensions of depth and horizontal
coverage. We also conduct out-of-distribution evaluations on the Marmousi (Martin et al., 2006)
and Overthrust datasets (Aminzadeh et al., 1996). They are standard benchmarks that closely mimic
real-world scenarios, significantly surpassing the complexity of the OpenFWI datasets.

4.2 MODEL ARCHITECTURES

Latent U-Net and Invertible X-Net: We use two variants for Latent U-Net: (1) (Small) with 17M
parameters, and (2) (Large) with 33M parameters. For Invertible X-Net, we used an architecture
with 24M parameters trained with and without cycle loss. See Appendix D.1 and D.3for details.
Baselines: For the inverse problem, we considered InversionNet, VelocityGAN, and Auto-Linear as
baselines. We obtained their trained model checkpoints to reproduce their results. For the forward
problem, we implemented FNO (Li et al., 2020) and a U-Net model (termed WaveformNet) as
baseline models (see Appendix C for details), along with using Auto-Linear.

Training Details: The input seismic waveforms were standardized using a StandardScaler to center
the data with a zero mean and unit standard deviation, while the velocity data were scaled through
MinMax normalization. See Appendix D.2 for details on hyper-parameter settings. To make a fair
comparison with baseline methods, we kept the original train-test splits and reported results in the
unnormalized space of both velocity and waveforms. We used Mean Absolute Error (MAE), Mean
Square Error (MSE), and Structured Similarity (SSIM) as evaluation metrics since neither metric
alone is fully comprehensive. MAE captures pixel-level accuracy while SSIM highlights structural
similarity.

5 RESULTS AND DISCUSSIONS

Quantitative Comparisons: Figure 3a compares SSIM on velocity predictions while solving the
inverse problem across different OpenFWI datasets. We can see that our proposed models, which
capture complex non-linear relationships in the latent space using U-Net and IU-Net architectures,
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consistently outperform baseline methods InversionNet, VelocityGAN, & Auto-Linear across ma-
jority of datasets. Overall, the large Latent U-Net model shows the best performance in inverse
modeling followed by the small Latent U-Net model. On complex datasets such as Style family
and CFB, Invertible X-Net with and without cycle loss are also comparable to the small Latent U-
Net model. In addition to SSIM, we also evaluate baselines using other metrics reported in Table
7(Appendix E.1) and compare MAE across models in Appendix figure 3a.

Figure 3b compares the performance of baseline methods on the forward problem (see Appendix
E.2 Table 9 for other evaluation metrics). We can see that both Latent U-Net (Large) and Invertible
X-Net show better performance than most baselines across all datasets. However, in contrast to the
trends observed in the inverse problem, we observe that Invertible X-Net with and without cycle loss
shows the best performance compared to Latent U-Net models. We further notice that for simple
datasets such as FVA and FFA, FNO has significantly higher SSIM compared to other models. We
later qualitatively explain this pattern by showing that FNO tends to capture dominant modes of the
waveform distribution while neglecting subtler reflection patterns.

(a) Inverse problem (b) Forward problem

Figure 3: Comparison of Latent U-Nets (Small and Large), Invertible X-Net, Invertible X-Net (Cy-
cle) with different baseline methods across different OpenFWI datasets.

Qualitative Comparisons: In Figure 4a, we compare inverse model predictions on three datasets,
CVB, CFB, and STA, choosing one from each family of OpenFWI. We observe that our proposed
methods (Latent U-Net and Invertible X-Net) produce considerably better velocity maps than the two
SOTA baselines, InversionNet and Auto-Linear. We chose these 3 datasets as they are complex and
have high heterogeneity as the velocity rapidly changes in all directions. For heterogeneous velocity
maps, the predictions of baseline methods are smooth and they fail to delineate sharp changes in
velocities. On the other hand, Latent U-Net and Invertible X-Net are able to predict better velocity
fields capturing rapid variations in both shallow and deeper parts (highlighted using black-boxes in
the figure). Between Latent U-Net (Large) and Invertible X-Net, we can see that the performance
of Latent U-Net is slightly better especially on CFB and STA datasets. Note that Invertible X-Net
uses a smaller number of parameters (24M) compared to Latent U-Net (Large) (33M). We provide
additional visualizations of more baseline methods and across other datasets in the Appendix H.
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Figure 4b shows visualizations of model predictions for the forward problem on three datasets. Since
these datasets are heterogeneous, the recorded seismic waveforms exhibit convoluted interference
patterns. In particular, we can see that in all ground truth visualizations, there is a direct arrival
in the shallower layers represented as a ‘slanted line’ signature. While capturing the direct arrival
is relatively simple, the primary challenge in solving forward problems is to capture the subtler
reflections in the deeper layers, where even small magnitudes of errors can result in large differences
in inferred velocity maps. We can see that while all baseline methods are able to predict shallow
waveforms easily (like direct arrivals), methods such as FNO and Auto-Linear are struggling to
predict the seismic waveforms, especially in the deeper regions (highlighted using black-boxes in
the Figure). On the other hand, our proposed models consistently improve results over baselines
across all datasets. Additional visualizations for the forward problem are provided in the Appendix
H.

Building on these quantitative and qualitative results, we provide key insights on four open questions
in the field of DL4SI in the following.

(a) Inverse problem (b) Forward problem

Figure 4: Visualization of model predictions for inverse and forward problems across different Open-
FWI datasets: CVB, CFB, STA.

Figure 5: Effect of latent dimensions and skip connections on the performance of Latent U-Net
(Large) (a and b) and Invertible X-Net (c). ‘A’ and ‘B’ show ‘low’ and ‘high’ complexity scenarios
for each data group.

5.1 KEY INSIGHTS ON OPEN QUESTIONS IN DL4SI

5.1.1 WHAT IS THE EFFECT OF LATENT SPACE SIZES ON TRANSLATION PERFORMANCE?

In Figure 5, we investigate the impact of varying latent space sizes on the quality of domain trans-
lations using the Latent U-Net (Large) (a) and Invertible X-Net(c) models on the inverse problem.
We compare MAE by reducing latent space dimensions from 70× 70 to 8× 8. We can see that the
quality of translations is not affected much for ‘A’-family of OpenFWI datasets, while the ‘B’-family
shows monotonically increasing trend in MAE as we reduce latent dimension. Since the ‘A’-family
was intentionally created to represent simpler velocity distributions, even the smallest latent space
(8 × 8) is sufficient to estimate velocity maps. However, the ‘B’-family of datasets represent more
complex velocity distributions, requiring a sufficiently larger latent space for the translation. This

8
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indicates that the ideal size of the latent space should be decided based on the requirements of the
problem being solved.

5.1.2 DO WE NEED COMPLEX ARCHITECTURES FOR TRANSLATIONS?

We further study the role of model size on translation performance by comparing Latent U-Net
(Small) and Latent U-Net (Large) with varying latent dimensions in Figure 18b (b). We find that
for a given latent dimension, Latent U-Net (Large) outperforms Latent U-Net (Small), motivating
architectures with sufficient complexity for domain translations. We further study the impact of
using skip connections in the latent space translation models on varying latent space dimensions in
Figure 5 (b). We can see that adding skip connections shows marginal improvements in performance
for larger latent dimensions. However, when the number of dimensions is low (less than 20), we can
see a sharp degradation in performance by removing skip-connections. This indicates that smaller
latent representations are weaker and thus insufficient for domain translation in U-Net frameworks
without being augmented with skip connections.

5.1.3 WHAT IS THE ROLE OF MANIFOLD LEARNING IN DL4SI?

Figure 6: Comparison of Latent U-Net (Large)
across three training objectives: direct transla-
tion, reconstruction followed by translation, and
combined learning of both, evaluated at differ-
ent fractions of training data.

Manifold learning for latent spaces in domain
translation can be approached in three ways: (1)
the “Reconstruct then Translate” approach (Auto-
Linear), where encoder-decoder pairs are first
trained for reconstruction, followed by transla-
tion on frozen latent spaces; (2) the “Directly
Translate” strategy (Latent U-Net), which jointly
trains encoder-decoder pairs and translation mod-
els to optimize latent spaces for translation; and
(3) a hybrid “Reconstruct and Translate” ap-
proach, where the model is trained with both re-
construction and translation losses. To investigate
their impact, we evaluate these approaches across
varying training data fractions for OpenFWI fam-
ilies (Figure 6). Our findings reveal that the
“Directly Translate” approach consistently out-
performs the other two, highlighting that latent
spaces optimized solely for translation are most
effective. Hence, manifold learning, while bene-
ficial for reconstruction, may lead to suboptimal performance when translation is the primary goal.
We see a similar trend for Latent U-Net (Small) and Invertible X-Net shown in Appendix F.3 Figure
22.

5.1.4 IS IT USEFUL TO JOINTLY SOLVE FORWARD AND INVERSE PROBLEMS?

As discussed in the quantitative comparisons of Latent U-Net (Large) and Invertible X-Net on the
forward problem in Figure 3b, we see a surprising trend that Invertible X-Net generally outperforms
Latent U-Net (Large) despite having smaller number of parameters. Analysis of its training behav-
ior reveals that Invertible X-Net initially focuses on solving the inverse problem, gradually shifting
to the forward problem in later epochs. (see Appendix E.3 Figures 12 and 13 for visualizations).
This is facilitated by the combined loss function, where gradients from the inverse problem enhance
forward problem optimization once a good velocity solution is achieved. This bidirectional learning
enables Invertible X-Net to outperform Latent U-Net (Large). Further comparisons in Appendix E.3
confirm that Invertible X-Net trained only on the forward problem performs worse than both Latent
U-Net (Large) and the jointly trained Invertible X-Net, emphasizing the advantage of joint optimiza-
tion.With average ranks of 2.7 (MAE) and 1.9 (SSIM) for inverse problems, and 1.4 (MAE) and 1.1
(SSIM) for forward problems (Appendix Tables 7 and 9), Invertible X-Net offers a balanced and
efficient solution for joint tasks with just 26M parameters. In contrast, Latent U-Net, while slightly
better for inverse-only tasks, requires 70M parameters for both forward and inverse problems (35M
x2), making Invertible X-Net the more practical and effective choice for the combined optimization.

9
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5.2 ZERO-SHOT GENERALIZATION RESULTS

Extrapolating across OpenFWI Datasets: To assess the out-of-distribution generalizability of
best-performing models on unseen datasets, in Figure 7, we evaluate zero-shot performance of mod-
els trained across all datasets (shown as rows) when tested across all datasets (shown as columns),
for both forward and inverse problems. Here, the color intensity indicates difference in SSIM per-
formance of two competing methods. We can see that Invertible X-Net outperforms other baselines
for both forward and inverse problems across majority of train-test cases. The only exception is
when the models are trained on FVB, a relatively simpler dataset than other data families such as
CurveVel and FlatVel. From a geophysics perspective, we expect to have better generalizability for
models trained on complex geological settings and tested on relatively simpler ones, as complex
geological structures can be thought of as juxtapositions of simpler geological structures. Addition-
ally, we compare the zero-shot generalization for all baselines and Latent U-Net models in detail in
the Appendix E.4 (Figures 14 - 17).

(a) Invertible X-Net vs
InversionNet (Inverse)

(b) Invertible X-Net vs
Auto-Linear (Inverse)

(c) Invertible X-Net vs
FNO (Forward)

(d) Invertible X-Net vs
Auto-Linear (Forward)

Figure 7: Zero-shot generalization comparison for both inverse and forward problem using SSIM
difference across all OpenFWI datasets. Red color indicates our proposed method (Invertible X-Net)
is better whereas blue color indicate otherwise.

(a) Inverse problem (b) Forward problem

Figure 8: Zero-shot generalization (both forward and inverse) on Marmousi and Overthrust datasets
using models trained on STA and STB datasets, respectively.

Extrapolating on Marmousi and Overthrust Datasets: We show the zero-shot generalizability of
our models on the more complex and real-world-like geological settings of Marmousi and Overthrust
in Figure 8. Here, we chose models trained on the most complex OpenFWI datasets, i.e., STA
(for Marmousi) and STB (for overthrust) datasets, and compared their zero-shot performance in
predicting velocity maps (inverse problem). We observe that none of the baselines are able to invert
velocity maps at high resolution. However, the predictions of Latent U-Net and Invertible X-Net
are still able to delineate the sharp changes in velocity maps especially in the shallow part of the
data. On the forward problem, our models are able to accurately predict seismic waveforms for both
Marmousi and Overthrust data relative to baselines.

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this work, we introduced a unified framework for solving both forward and inverse problems in
subsurface imaging, termed the Generalized-Forward-Inverse (GFI) framework. Within this frame-
work, we proposed two novel architectures, Latent U-Net and Invertible X-Net, that leverage the
power of U-Nets and IU-Nets to perform latent space translations, respectively. Our study addresses
several key questions left unanswered by prior research in DL4SI. Future research directions include
training a single model for all datasets together, given that models trained on complex geological
environments can effectively extrapolate on unseen simpler geological structures.
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7 REPRODUCIBILITY STATEMENT

All the code required to train and evaluate the proposed methods, as well as the baselines, has been
uploaded to an anonymous GitHub repository: https://anonymous.4open.science/r/
Genralized-Forward-Inverse-Framework-for-DL4SI-41FE/README.md. The
data and corresponding processing code used in this work are sourced from the OpenFWI web-
site: https://openfwi-lanl.github.io/docs/data.html. The dataset is further de-
scribed in Appendix Section B and Table 2. The model architecture and hyper-parameter details for
all proposed models and baselines are thoroughly discussed in Appendix Section D.

8 ETHICS STATEMENT

We would like to emphasize that the primary goal of this paper is to facilitate a scientific inquiry of
DL4SI. While advancements in subsurface imaging have traditionally been used for energy explo-
ration, there are several emerging applications of subsurface imaging with positive societal conse-
quences such as Carbon Sequestration, Earthquake Hazard Warning, and Environmental Monitoring.
Research in DL4SI thus has similar characteristics as research in mainstream AI applications such
as computer vision and language modeling, with a diverse range of societal, environmental, and
economic impacts.
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APPENDICES

A THEORETICAL JUSTIFICATIONS FOR LATENT SPACE TRANSLATION
ASSUMPTION

In this Section, we provide two Lemmas to theoretically support our Latent Space Translation as-
sumption for the Generalized-Forward Inverse (GFI) Framework.

Lemma A.1 (Forward Latent Space Translation Assumption). Let f : V → P be an arbitrary
forward operator mapping velocity maps V to seismic waveforms P . Let Ev : V → Ṽ and Dv : Ṽ →
V denote the encoder and decoder for the velocity space V , respectively. Similarly, let Ep : P → P̃
and Dp : P̃ → P denote the encoder and decoder for the seismic waveform space P . Here, ṽ ∈ Ṽ
and p̃ ∈ P̃ represent the latent space encodings. If we assume that the auto-encoder for the velocity
are optimal, i.e., Dv ◦ Ev(v) = v̂ ≈ v, then there exists a functional mapping in the latent space
Lṽ→p̃ : Ṽ → P̃ .

Proof. Given the forward operator f : V → P , by definition, for any v ∈ V , there exists p ∈ P such
that p = f(v).

Let the latent space representations ṽ ∈ Ṽ and p̃ ∈ P̃ be defined by the auto-encoders as follows:

ṽ = Ev(v), v̂ = Dv(ṽ) (10)
p̃ = Ep(p), p̂ = Dp(p̃) (11)

To construct the latent space mapping p̃ = Lṽ→p̃(ṽ), consider the sequence of compositions involv-
ing the encoders, decoders, and the forward operator f :

p̃ = Ep(p)

= Ep(f(v)) (since p = f(v))
= Ep(f(v̂)) (assuming reconstruction: v̂ ≈ v)
= Ep(f(Dv(ṽ))) (since v̂ = Dv(ṽ)) (12)

Thus, by definition of the composition of functions, the latent space mapping can be expressed as:

Lṽ→p̃ = Ep ◦ f ◦Dv (13)

Lemma A.2 (Inverse Latent Space Translation Assumption). Let f−1 : P → V be an arbitrary
inverse operator mapping seismic waveforms P to velocity maps V that is unique. Let Ep : P → P̃
and Dp : P̃ → P denote the encoder and decoder for the seismic waveform space P , respectively.
Similarly, let Ev : V → Ṽ and Dv : Ṽ → V denote the encoder and decoder for the velocity space
V . Here, p̃ ∈ P̃ and ṽ ∈ Ṽ represent the latent space encodings. If we assume that the auto-encoder
for the seismic waveform space is optimal, i.e., Dp ◦ Ep(p) = p̂ ≈ p, then there exists a functional
mapping in the latent space Lp̃→ṽ : P̃ → Ṽ .

Proof. Given the inverse operator f−1 : P → V , by definition, for any p ∈ P , there exists v ∈ V
such that v = f−1(p).

Let the latent space representations p̃ ∈ P̃ and ṽ ∈ Ṽ be defined by the auto-encoders as follows:

p̃ = Ep(p), p̂ = Dp(p̃) (14)
ṽ = Ev(v), v̂ = Dv(ṽ) (15)
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To construct the latent space mapping ṽ = Lp̃→ṽ(p̃), consider the sequence of compositions involv-
ing the encoders, decoders, and the inverse operator f−1:

ṽ = Ev(v)

= Ev(f
−1(p)) (since v = f−1(p))

= Ev(f
−1(p̂)) (assuming reconstruction: p̂ ≈ p)

= Ev(f
−1(Dp(p̃))) (since p̂ = Dp(p̃)) (16)

Thus, by definition of the composition of functions, the latent space mapping can be expressed as:

Lp̃→ṽ = Ev ◦ f−1 ◦Dp (17)

Dataset Examples Velocity shape Waveform shape
FlatVel-A 30,000 (1, 70, 70) (5, 1000, 70)
FlatVel-B 30,000 (1, 70, 70) (5, 1000, 70)

CurveVel-A 30,000 (1, 70, 70) (5, 1000, 70)
CurveVel-B 30,000 (1, 70, 70) (5, 1000, 70)
FlatFault-A 60,000 (1, 70, 70) (5, 1000, 70)
FlatFault-B 60,000 (1, 70, 70) (5, 1000, 70)

CurveFault-A 60,000 (1, 70, 70) (5, 1000, 70)
CurveFault-B 60,000 (1, 70, 70) (5, 1000, 70)

Style-A 67,000 (1, 70, 70) (5, 1000, 70)
Style-B 67,000 (1, 70, 70) (5, 1000, 70)

Table 2: Statistics on the number of samples, the size of the velocity and waveforms for each dataset
in OpenFWI Deng et al. (2022).

B DATASET DESCRIPTION

The OpenFWI comprises multi-structural benchmark datasets of significant size that can be used for
solving full waveform inversion (FWI) using machine learning techniques (Deng et al., 2022). In
particular, the repository contains 3 major groups of data: (1) Vel Family, (2) Fault Family, and (3)
Style Family. These groups represent simple to complex sub-surface geological settings with seismic
velocity and waveforms information. The Vel family is the simplest geological patterns including
four datasets - (1) FlatVel-A (FVA), (2) FlatVel-B (FVB), (3) CurveVel-A (CVA), and (4) CurveVel-
B (CVB). The difference between FlatVel and CurveVel is that the former represents low-energy
geological environments where the rock layers are deposited horizontally and the latter consists of
curved layers which are formed due to structural deformation of flat layers. The Fault family also
has four datasets - (1) FlatFault-A (FFA), (2) FlatFault-B (FFB), (3) CurveFault-A (CFA), and (4)
CurveFault-B (CFB). Unlike Vel datasets, the Fault family contains fault-like deformations, which is
fracturing of rocks under certain pressure conditions. Due to the presence of faults, the Fault family
becomes more complicated and challenging to model. The Style family has two datasets - (1) Style-
A (STA), and (2) Style-B (STB). This dataset is generated using the style transfer method where the
COCO dataset (Lin et al., 2014) is set as the content images and the Marmousi dataset is set as the
style image. This is the most complex OpenFWI dataset as it represents highly complex geological
settings where the velocity is changing rapidly and abruptly. In summary, the details about the Vel
and Fault datasets are described in table 2.

The waveform data is represented as (# source × recording time × receiver length) whereas the
velocity follow (1 × depth × receiver length) shape. In seismic surveys, the wave arrival time is
recorded at the surface and thus, the waveform data for a single source is represented as a function of
time and receiver length. In total, there are 5 seismic sources uniformly spaced along the surface, and
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wavefields are recorded by 70 receivers (uniformly spaced) along the surface for 1000 milliseconds.
Therefore, the seismic wavefields are of the shape (5×1000×70). On the other hand, velocity maps
are represented as functions of spatial dimensions, depth and horizontal coverage, and thus have the
shape (1× 70× 70).

C PRIOR WORKS IN DL4SI AS SPECIAL CASES OF GFI

Figure 9 provides additional schematic illustrations of prior works in DL4SI such as InversionNet,
WaveformNet, and AutoLinear as special cases of our proposed GFI framework.

Figure 9: Prior Works exprerssed as GFI

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 CYCLE LOSS FOR INVERTIBLE X-NET

Given the velocity maps v and the waveforms p, the predictions for the waveform and velocity can
be obtained using the Invertible X-Net as follows:

p̂ = fv→p(v) = Dp ◦ Lṽ→p̃ ◦ Ev(v) (18)
v̂ = fp→v(p) = Dv ◦ Lp̃→ṽ ◦ Ep(p) (19)

Now, the Invertible X-Net architecture can be further applied on p̂ and v̂ to create the following
transformations:

ˆ̂p = fv→p(v̂) = Dp ◦ Lṽ→p̃ ◦ Ev(v̂) (20)
ˆ̂v = fp→v(p̂) = Dv ◦ Lp̃→ṽ ◦ Ep(p̂) (21)

The cycle-loss for Invertible X-Net can be mathematically defined as follows:

Lcycle = L(p, ˆ̂p) + L(v, ˆ̂v) (22)

where L is the loss function that can be MSE, MAE or Elastic Loss. Note that the formulation of
Cycle-Loss does not rely on paired examples, and can be applied on un-paired data as well. The
combined loss function including cycle-loss can be given as:

LX-Net (Cycle) = Lforward + Linverse + Lcycle (23)

For training Invertible X-Net (Cycle) model, we use loss function shown in Equation 23.
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D.2 ADDITIONAL TRAINING DETAILS

For training, we normalize the velocity using min-max normalization and seismic waveform using
standard normalization to rescale the data to mean 0 and standard deviation as 1. Table 5 shows
other hyperparameter details for training Latent U-Net and Invertible X-Net models on OpenFWI
datasets.

Since the baseline models have different normalization schemes than our models, we compare model
predictions during evaluation by unnormalizing the predictions to original domains. For exam-
ple, AutoLinear uses min-max normalization for velocity and a combination of log-normalization
xnorm = (loge(1+ |x|)∗sign(x) followed by min-max in the log-normalized domain for waveform.
We unnormalized both the velocity and waveform predictions so that we can measure and visualize
errors in the predictions in the original space, allowing easy comparison across models.

D.3 MODEL ARCHITECTURE

We summarize details related to model architecture, layers, and number of parameters related to
seismic and velocity encoder-decoder architecture in Table 3, and regarding the latent models used
for translation in Table 4. Further, we compare our model parameters with baseline models in Table
6.

D.3.1 LATENT U-NET

Latent U-Net architectures leverage U-Net-based encoder-decoder pairs for velocity maps and seis-
mic waveforms. Both variants employ identical encoder and decoder designs, each with 5 layers
in the encoder and 6 layers in the decoder. These layers operate on an embedding dimension of
128x70x70, with channel sizes ranging from 8 to 128 in the encoder and 128 to 1 (velocity) or 128
to 5 (waveform) in the decoder. The Large Latent U-Net features 2 depth levels and 4 convolu-
tional blocks per depth level in its latent space translation model, resulting in a total parameter size
of 34.96M. In contrast, the Small variant reduces complexity with 1 repeat block per depth level,
cutting the latent translation model parameters to 17.86M and the total size to 18.13M.

D.3.2 INVERTIBLE X-NET

Invertible X-Net leverages an iUNet-based architecture to achieve bidirectional mappings, en-
abling consistent forward (velocity-to-waveform) and inverse (waveform-to-velocity) transforma-
tions within a shared framework. iUNet replaces traditional U-Net operations with invertible cou-
pling blocks, which allow both forward and inverse computations while preserving bijectivity. Max
pooling is replaced with orthogonal convolutional filters for downsampling, and upsampling is per-
formed using orthogonal deconvolution filters, ensuring invertibility at each step. The architecture
processes features across multiple scales using coupling blocks, which maintain the dimensionality
of inputs as resolution-preserving layers.

Invertible X-Net features 4 depth levels, with 4 invertible coupling blocks per level, and adopts an
encoder-decoder structure similar to Latent U-Net, with 5 encoder layers and 6 decoder layers, an
embedding dimension of 128x70x70, and channel sizes ranging from 8 to 128. The latent translation
model - iUNet consists of 25.78M parameters, contributing to a total model size of 26.06M.

E ADDITIONAL RESULTS

E.1 ADDITIONAL INVERSE MODELING RESULTS

We provide more detailed comparison of our models with other baseline models in Table 7. Our
proposed models consistently outperform baseline models on multiple datasets indicating superior
generalizability on in-distributions examples.

Additionally, we also show zero shot generalization of our models on the Marmousi and Overthrust
dataset in Tables 8. Our model Invertible X-Net shows generalizability in SSIM indicating that
overall prediction has better geological understanding than other baseline models.
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Table 3: Architecture Details of Seismic Waveform and Velocity Encoder-Decoder models.

Model #Layers
#Embedding

Dim
Channels #Params

Velocity Encoder 5 128x70x70 [8, 16, 32, 64, 128] 11632
Velocity Decoder 6 128x70x70 [128, 64, 32, 16, 1, 1] 27877

Seismic Waveform
Encoder

5 128x70x70 [8, 16, 32, 64, 128] 55680

Seismic Waveform
Decoder

6 128x70x70 [128, 64, 32, 16, 5, 5] 186497

Table 4: Architecture details of Latent U-Net and IU-Net latent space translation models

Model #Depths
#Conv blocks/

Coupling Blocks
#Params

Latent U-Net 2 4 34.68M
IU-Net 4 4 25.78M

Table 5: Hyperparameter details for training Latent U-Net and Invertible X-Net models.

Model #Epochs Optimizer LR LR Scheduler
Latent U-Net 450 Adam 2e-3 StepLR

Invertible X-Net 450 Adam 2e-3 StepLR

Table 6: Comparison of encoder, decoder, and latent model parameters for our model (Latent U-Net
and Invertible X-Net) with other baseline models. The parameters for Latent U-Nets and Invertible
X-Nets are calculated for Latent dimension 70.

Model
#Vel Encoder

Params
#Vel Decoder

Params
#Amp Encoder

Params
#Amp Decoder

Params
#Translation

Params
#Total
Params

FNO - - - - - 7.38M
InversionNet - 9.34M 35.76M - Identity 24.41M
VelocityGAN - 9.34M 35.76M - Identity 24.41M

Autolinear 12.98M 9.98M 2.29M 10.18M 16.5K 35.45M
Latent U-Net(Small) 11.6K 27.88K 55.68K 186.5K 17.86M 18.13M
Latent U-Net(Large) 11.6K 27.88K 55.68K 186.5K 34.68M 34.96M

Invertible X-Net 11.6K 27.88K 55.68K 186.5K 25.78M 26.06M
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(a) Inverse problem (b) Forward problem

Figure 10: Comparison of Latent U-Nets (Small and Large), Invertible X-Net, Invertible X-Net
(Cycle) with different baseline methods across different OpenFWI datasets.

Table 7: Comparison of our models (Latent U-Net (Large) and Invertible X-Net) with other baseline
models for the inverse problem across 10 OpenFWI datasets. The bold highlights the best perform-
ing model on that dataset.

Metric Model FVA FVB CVA CVB FFA FFB CFA CFB STA STB Average Rank

MAE ↓
InversionNet 19.67 52.77 102.77 224.57 25.80 158.31 38.90 246.94 93.96 103.37 2.8

Auto-Linear 12.16 70.05 110.72 273.02 24.55 181.39 41.38 268.47 107.85 95.63 3.5

Latent U-Net 9.01 28.11 48.05 123.56 30.91 92.91 27.05 185.22 67.00 71.41 1.3
Invertible X-Net 23.80 34.94 57.86 139.81 59.45 94.11 198.56 181.03 67.09 121.42 2.7

MSE ↓
InversionNet 1002.74 17271.62 36438.33 188044.46 4081.10 68214.92 9490.73 136327.84 23626.76 58622.35 2.8

Auto-Linear 1053.03 33907.57 42391.39 236457.48 5952.25 81789.80 13715.42 154713.12 31274.60 21819.14 3.5

Latent U-Net 216.92 6464.06 12609.65 91784.50 2348.22 33935.12 3771.38 93249.92 14353.55 14564.94 1.3
Invertible X-Net 1245.52 6969.42 14659.46 96121.90 7719.55 32559.95 77105.41 86512.36 13106.96 31550.22 2.4

SSIM ↑
InversionNet 0.9894 0.9461 0.8073 0.6726 0.9765 0.7208 0.9566 0.6136 0.8858 0.6314 3

Auto-Linear 0.9887 0.9044 0.8056 0.6169 0.97 0.6865 0.9424 0.5695 0.8422 0.7274 3.8

Latent U-Net 0.9967 0.9809 0.9273 0.8156 0.991 0.8515 0.98 0.6930 0.9298 0.8064 1.3
Invertible X-Net 0.9917 0.9769 0.9135 0.8076 0.9826 0.8532 0.9316 0.7116 0.9360 0.7913 1.9

E.2 ADDITIONAL FORWARD MODELING RESULTS

Similar to the inverse problem, we provide detailed comparison of our models with other baseline
models in Table 9 and 10. Our proposed models consistently outperform baseline models on multiple
datasets indicating superior in-distributions generalizability.

E.3 IMPORTANCE OF COMBINED LOSS FUNCTION FOR INVERTIBLE-XNET

In this section, we focus on the training of the Invertible X-Net model using a combined loss func-
tion (incorporating both the forward and inverse problems), as opposed to training it solely with a
forward loss function. Figure 11 shows that when model is trained using only forward loss, then
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Table 8: Comparison of our models (Latent U-Net (Large) and Invertible X-Net) on real world like
datasets - Marmousi, Overthrust, Marmousi Smooth, Overthrust Smooth for the Inverse Problem.
The bold highlights the best performing model on that dataset.

Metric Model Marmousi Overthrust Marmousi Smooth Overthrust Smooth

MAE ↓
InversionNet 282.39 273.80 179.34 148.34
Auto-Linear 285.38 298.89 206.38 207.41

Latnet U-Net 322.13 264.40 242.71 198.53

Invertible X-Net 298.39 308.50 245.86 258.26

MSE ↓
InversionNet 160084.5 135988.73 67978.40 37804.58
Auto-Linear 159517.41 157434.56 78207.07 71128.92

Latnet U-Net 217508.17 122398.64 112685.39 69122.58

Invertible X-Net 180250.47 179093.10 107344.46 124700.75

SSIM ↑
InversionNet 0.46 0.4519 0.6044 0.7217
Auto-Linear 0.438 0.4097 0.5423 0.6447

Latnet U-Net 0.438 0.4807 0.6371 0.7031

Invertible X-Net 0.504 0.4827 0.6633 0.6952

Table 9: Comparison of our models (Latent U-Net (Large) and Invertible X-Net) with other baseline
models for the forward problem across 10 OpenFWI datasets. The bold highlights the best perform-
ing model on that dataset.

Metric Model FVA FVB CVA CVB FFA FFB CFA CFB STA STB Average Rank

MAE ↓
FNO 0.0077 0.0385 0.0700 0.1405 0.0282 0.0829 0.0605 0.1075 0.0292 0.0379 2.4

Auto-Linear 0.0340 0.0906 0.0744 0.1537 0.0541 0.1048 0.0703 0.1356 0.0492 0.0584 3.9

Latent U-Net 0.0389 0.0473 0.0581 0.1098 0.0512 0.059 0.0576 0.0891 0.0269 0.0354 2.3

Invertible X-Net 0.0257 0.0527 0.0532 0.0887 0.0457 0.0477 0.0404 0.0671 0.0235 0.0341 1.4

MSE ↓
FNO 0.0004 0.0066 0.0259 0.0825 0.0059 0.0358 0.0251 0.0471 0.0041 0.0053 1.9

Auto-Linear 0.0084 0.0427 0.0303 0.1045 0.0217 0.0625 0.033 0.0866 0.0174 0.0173 3.7

Latent U-Net 0.0173 0.0127 0.0160 0.0489 0.0344 0.0175 0.0442 0.0297 0.0053 0.0082 2.6

Invertible X-Net 0.0062 0.0176 0.0175 0.0305 0.0185 0.0117 0.0126 0.0163 0.004 0.0087 1.8

SSIM ↑
FNO 0.9967 0.9781 0.8881 0.8354 0.9667 0.8702 0.9166 0.8160 0.9655 0.9417 3.1

Auto-Linear 0.9694 0.9289 0.9038 0.8567 0.9470 0.8736 0.9253 0.8188 0.9569 0.9300 3.5

Latent U-Net 0.9764 0.9779 0.9237 0.89 0.9659 0.9283 0.9571 0.8636 0.9819 0.9702 2.3

Invertible X-Net 0.9887 0.9782 0.9559 0.9221 0.9744 0.954 0.9757 0.9156 0.989 0.9805 1.1

its performance falls short compared to the Latent U-Net (Large) model. This discrepancy can be
attributed to the fact that the Latent U-Net has a higher model complexity than Invertible X-Net,
despite their similar sizes. Nonetheless, when the Invertible X-Net model is trained with combined
loss (forward and inverse), the model is able to outperform Latent U-Net model with a good mar-
gin. This highlights the value of joint training, demonstrating that simultaneously learning both the
forward and inverse problems can lead to better results than learning the two models separately.

In Figures 12 and 13, we illustrate asymmetry in learning the translation for the forward and inverse
problems using CVB and CFA datasets. From the figures, we observe that the model learns the
inverse mapping in the initial epochs and gradually starts to learn the solution to the forward prob-
lem in later epochs. Since the network optimizes the combined loss function on both velocity and
waveform together, the gradients from the combined loss help the model to achieve better forward
solution. This corroborates with our hypothesis that the model trained on combined loss is able to
learn the connection between forward and inverse problem.
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Table 10: Comparison of our models (Latent U-Net (Large) and Invertible X-Net) on real world like
datasets - Marmousi, Overthrust, Marmousi Smooth, Overthrust Smooth for the Forward Problem.
The bold highlights the best performing model on that dataset.

Metric Model Marmousi Overthrust Marmousi Smooth Overthrust Smooth

MAE ↓
FNO 0.1484 0.2726 0.1077 0.1892

Auto-Linear 0.2818 0.3018 0.2821 0.2730

Latnet U-Net 0.1338 0.2502 0.1013 0.1875
Invertible X-Net 0.1425 0.2311 0.1056 0.2062

MSE ↓
FNO 0.1110 0.580 0.0811 0.3495

Auto-Linear 0.4227 0.6203 0.5325 0.5593

Latnet U-Net 0.1116 0.5494 0.0927 0.4133

Invertible X-Net 0.1168 0.4026 0.08130 0.5049

SSIM ↑
FNO 0.8148 0.7404 0.9021 0.8447

Auto-Linear 0.6344 0.672 0.6670 0.7192

Latnet U-Net 0.8343 0.7700 0.9143 0.8626
Invertible X-Net 0.827 0.7863 0.9112 0.8500

Figure 11: Comparison of Latent U-Net (Large), Invertible X-Net, Invertible X-Net (Forward Only),
and Invertible X-Net (Cycle) on the forward problem across various OpenFWI datasets.

E.4 ZERO-SHOT PERFORMANCE

In this part, we provide detailed insights into zero shot performance of our models (Latent U-Net
(Large) and Invertible X-Net) with other baselines across all datasets. This investigation helps us
understand overall out-of-distribution generalization of a model and underscore the importance of
learning the translation problem in the latent space.

E.5 INVERSE PROBLEM:

Figure 14 and 15 show generalization performance of Invertible X-Net and Latent U-Net (Large)
models respectively on the inverse problem using MAE, MSE, and SSIM metrics. As described
in the main paper, we show models trained across all dataset as rows and evaluated across all test
datasets as columns. For comparison, we evaluate metrics such as MAE, MSE, and SSIM and
calculate its difference between our models and other baseline models. For MAE and MSE, when
the color intensity is blue, our model show better generalizability and vice-versa whereas, for SSIM,
when the color intensity is red indicates better generalization of our model and vice-versa.

From Figure 14, we observe that the Invertible X-Net shows superior generalization over the base-
line models (AutoLinear, InversionNet, and VelocityGAN) across all metrics except on the FVB
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dataset. Figure 14 (d) compare Invertible X-Net with Latent U-Net (Large) model where we see
that Invertible X-Net shows better generalization on complex datasets such as CFB, STA, and STB
datasets, while Latent U-Net is better on relatively simpler datasets such as CVA, CFA, and more.
Similarly, Figure 15 shows the comparison of Latent U-Net (Large) model with other baseline mod-
els. As expected, we observe that our model is able to generalize much better than all the baseline
models.

E.6 FORWARD PROBLEM:

Similar to the inverse problem, we analyze out-of-distribution generalization of our models against
baseline models across all evaluation metrics.

Figures 16 and 17 compares the performance of our models Invertible X-Net and Latent U-Net
(Large) against baselines. In Figure 16, we observe strong generalization of Invertible X-Net over
all baselines - AutoLinear, FNO, and WaveformNet. Figure 16 (d) shows the comparative perfor-
mance of Invertible X-Net against Latent U-Net (Large) where we see that Invertible X-Net domi-
nates overall across all metrics. In Figure 17, we compare the Latent U-Net (Large) model against
same baselines as above. The figure indicates Latent U-Net (Large) model has much stronger gen-
eralizability than baseline models consistently.

F ABLATION STUDIES

F.1 EFFECT OF VARYING LATENT SPACE SIZES

Figure 18a (a) shows how the performance of Latent U-Net model is affected with change in the
latent space size. As the latent space size is reduced, the MAE and MSE metrics for mapping seismic
waveform to velocity is increasing, while the SSIM is decreasing. The impact is more pronounced
on complex datasets such as B group of datasets. These datasets represent geologically complex
datasets and therefore may require larger latent space to encode geological heterogeneity. In Figure
18b, we compare the large Latent U-Net with the small Latent U-Net model, while latent space size
is also reduced. We observe that the performance gap between the two models reduces as the latent
space size is also reduced. This underscore the importance of latent space size for encoding the
geological features for an effective translation.

Further, we provide visualizations of the first two primary PCA and t-SNE components of the ve-
locity latent space in Figure 19 and 20 respectively. We take the encoder trained on a dataset and
get the latent space encoding on several datasets. This visualization shows the in-distribution and
out-of-distribution generality of our encoders and highlights the importance of the manifold for la-
tent space translation. Overall, we observe that the larger latent space 70× 70 have better structure
than 8 × 8, indicating that the ideal size of latent space should be decided based on the complexity
of dataset and problem being solved.

F.2 EFFECT OF SKIP CONNECTIONS FOR LATENT U-NET

In this section, we study the impact of skip connections of Latent U-Net model for the inverse
problem. Figure 21 shows how the MAE and MSE are increasing and SSIM is decreasing when the
latent space size is decreasing from 70×70 to 8×8. We observe that the impact of skip connections
is more pronounced at smaller latent space size as opposed to larger space.

F.3 EFFECT OF MANIFOLD LEARNING

Figure 22 for Latent U-Net Small further elaborates on our finding that direct translation learning
consistently outperforms the two-stage approach, where translation follows reconstruction.
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Table 11: Quantitative results on CurveFault-B with Gaussian noise of varying variance σ2 added
during testing for the inverse problem.

Model σ2 = 0 σ2 = 1e-5 σ2 = 5e-5 σ2 = 1e-4 σ2 = 5e-4

PSNR=84.07dB PSNR=77..08dB PSNR=74.07dB PSNR=67.08dB

MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM

Latnet U-Net 185.22 93248.64 0.6930 185.54 93538.78 0.6926 187.03 94674.546 0.6917 188.56 95777.95 0.6906 195.94 101444.7 0.6844

Degradation (%) (-) (-) (-) 0.17% 0.31% 0.05% 0.97% 1.52% 0.20% 1.80% 2.71% 0.35% 5.78% 8.78% 1.24%

Invertible X-Net 180.97 86465.25 0.7117 181.32 86673.38 0.7115 182.83 87674.14 0.7106 184.17 88585.86 0.7097 192.22 94728.94 0.7036

Degradation (%) (-) (-) (-) 0.19% 0.24% 0.02% 1.02% 1.39% 0.15% 1.76% 2.45% 0.27% 6.21% 9.55% 1.13%

Auto-Linear 268.47 154713.10 0.5695 270.29 156201.81 0.5682 277.05 162156.50 0.5632 285.34 169892.26 0.5572 325.02 211616.29 0.5190

Degradation (%) (-) (-) (-) 0.67% 0.96% 0.21% 3.19% 4.81% 1.10% 6.28% 9.81% 2.15% 21.06% 36.77% 8.86%

Table 12: Quantitative results on FlatFault-B with Gaussian noise of varying variance σ2 added
during testing for the inverse problem.

Model σ2 = 0 σ2 = 1e-5 σ2 = 5e-5 σ2 = 1e-4 σ2 = 5e-4

PSNR=84.07dB PSNR=77..08dB PSNR=74.07dB PSNR=67.08dB

MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM

Latnet U-Net 92.93 33925.46 0.8515 93.47 34137.49 0.8511 95.43 34907.52 0.8499 98.19 36002.58 0.8482 108.83 40770.50 0.8417

Degradation (%) (-) (-) (-) 0.58% 0.62% 0.05% 2.68% 2.89% 0.18% 5.66% 6.12% 0.38% 17.10% 20.17% 1.15%

Invertible X-Net 94.05 32548.49 0.8532 96.23 33283.08 0.8529 104.75 36522.60 0.85 110.30 39016.04 0.8474 122.66 45509.88 0.8382

Degradation (%) (-) (-) (-) 2.31% 2.25% 0.03% 11.37% 12.20% 0.37% 17.27% 19.87% 0.67% 30.41% 39.82% 1.76%

Auto-Linear 181.39 81789.80 0.6865 187.40 85327.79 0.6821 206.58 98616.76 0.6664 221.79 110396.50 0.6511 283.50 167482.73 0.5796

Degradation (%) (-) (-) (-) 3.31% 4.32% 0.64% 13.88% 20.57% 2.93% 22.26% 34.97% 5.16% 56.28% 104.77% 15.57%

Table 13: Quantitative results on CurveFault-B with Gaussian noise of varying variance σ2 added
during testing for the forward problem.

Model σ2 = 0 σ2 = 1e-5 σ2 = 5e-5 σ2 = 1e-4 σ2 = 5e-4

PSNR=56.02dB PSNR=49.03dB PSNR=46.02dB PSNR=39.03dB

MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM

Latnet U-Net 0.0891 0.0297 0.8636 0.0891 0.0297 0.8635 0.0892 0.0297 0.8634 0.0897 0.0301 0.8630 0.0966 0.0396 0.8565

Degradation (%) (-) (-) (-) 0% 0% 0.01% 0.13% 0.30% 0.01% 0.60% 1.40% 0.06% 8.37% 33.47% 0.82%

Invertible X-Net 0.0671 0.0163 0.9157 0.0672 0.0164 0.9156 0.0674 0.0164 0.9152 0.0678 0.0166 0.9147 0.0719 0.0193 0.9090

Degradation (%) (-) (-) (-) 0.07% 0.07% 0.009% 0.42% 0.54% 0.04% 1.00% 1.68% 0.10% 7.08% 18.18% 0.73%

Auto-Linear 0.1356 0.0866 0.8188 0.1356 0.0868 0.8187 0.1360 0.0873 0.8183 0.1365 0.088 0.8179 0.139 0.0919 0.8159

Degradation (%) (-) (-) (-) 0.06% 0.14% 0.01% 0.34% 0.78% 0.05% 0.70% 1.61% 0.09% 2.53% 6.03% 0.35%

Table 14: Quantitative results on FlatFault-B with Gaussian noise of varying variance σ2 added
during testing for the forward problem.

Model σ2 = 0 σ2 = 1e-5 σ2 = 5e-5 σ2 = 1e-4 σ2 = 5e-4

PSNR=56.02dB PSNR=49.03dB PSNR=46.02dB PSNR=39.03dB

MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM MAE MSE SSIM

Latent U-Net 0.0594 0.0175 0.9283 0.0594 0.0175 0.9283 0.0598 0.0179 0.9279 0.0606 0.0187 0.9271 0.0694 0.0325 0.9178

Degradation (%) (-) (-) (-) 0% 0% 0% 0.66% 2.16% 0.04% 1.99% 6.99% 0.12% 16.87% 85.99% 1.12%

Invertible X-Net 0.0477 0.0117 0.9540 0.0478 0.0117 0.9540 0.0482 0.0119 0.9536 0.0487 0.0122 0.9531 0.0535 0.016 0.9463

Degradation (%) (-) (-) (-) 0.17% 0.33% 0% 0.94% 1.88% 0.04% 1.93% 4.26% 0.10% 12.16% 36.39% 0.80%

Auto-Linear 0.1048 0.0625 0.8736 0.1051 0.0628 0.8734 0.1061 0.0641 0.8726 0.1072 0.0656 0.8717 0.112 0.0727 0.868

Degradation (%) (-) (-) (-) 0.25% 0.54% 0.02% 1.19% 2.59% 0.11% 2.24% 5.06% 0.21% 6.86% 16.37% 0.64%
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G NOISE EXPERIMENTS

H ADDITIONAL VISUALIZATIONS

Here, we provide additional visualization of the waveform and velocity predictions for baselines
and our models, namely Latent-UNet (small), Latent-UNet (large), Invertible-XNet, and Invertible-
XNet (cycle), for both forward and inverse problems. Please note that we show the prediction of
seismic waveform and velocity in the original space by unnormalizing the predictions for every
model (Figures 23 - 34).

I CODE APPENDIX

All the code required to train and evaluate the proposed methods, as well as the baselines, has been
uploaded to an anonymous GitHub repository: https://anonymous.4open.science/r/
Genralized-Forward-Inverse-Framework-for-DL4SI-41FE/README.md. The
data and corresponding processing code used in this work are sourced from the OpenFWI website:
https://openfwi-lanl.github.io/docs/data.html.
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(a) Epoch: 1

(b) Epoch: 10

(c) Epoch: 20

Figure 12: Training of Invertible X-Net model on the CVB dataset illustrating velocity and seismic
waveform learning with epochs.
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(a) Epoch: 1

(b) Epoch: 10

(c) Epoch: 20

Figure 13: Training of Invertible X-Net model on the CFA dataset illustrating velocity and seismic
waveform learning with epochs.
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(a) Invertible X-Net - AutoLinear

(b) Invertible X-Net - InversionNet

(c) Invertible X-Net - VelocityGAN

(d) Invertible X-Net - Latent U-Net (Large)

Figure 14: Out-of-distribution zero shot generalizations for the inverse problem of Invertible X-Net
with AutoLinear, InversionNet, VelocityGAN, Latent U-Net (Large).
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(a) Latent U-Net (Large) - AutoLinear

(b) Latent U-Net (Large) - InversionNet

(c) Latent U-Net (Large) - VelocityGAN

Figure 15: Out-of-distribution zero shot generalizations for the inverse problem of Latent U-Net
(Large) with AutoLinear, InversionNet, VelocityGAN.
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(a) Invertible X-Net - AutoLinear

(b) Invertible X-Net - FNO

(c) Invertible X-Net - WaveformNet

(d) Invertible X-Net - Latent-UNet (Large)

Figure 16: Out-of-distribution zero shot generalizations for the forward problem of Invertible X-Net
with AutoLinear, FNO, WaveformNet (U-Net like model), and Latent U-Net (Large).
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(a) Latnet U-Net (Large) - AutoLinear

(b) Latnet U-Net (Large) - FNO

(c) Latnet U-Net (Large) - WaveformNet

Figure 17: Out-of-distribution zero shot generalizations for the forward problem of Latent U-Net
with AutoLinear, FNO, and WaveformNet (U-Net like model).
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(a) Effect of Latent dimension on U-Net Large

(b) Effect of Latent dimension on U-Net Small in comparison to U-Net Small

Figure 18: Effect of the size of latent sizes on the performance of large and small Latent U-Net
(small and large) on the OpenFWI datasets.

Figure 19: Visualizing the PCA projection of Velocity latent space for 8× 8 and 70× 70.
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Figure 20: Comparing the t-SNE plot of latent space for velocity encoder.

Figure 21: Effect of the size of latent space and skip vs no skip connections on the performance of
large and small Latent U-Net models across OpenFWI datasets.
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(a) Latent U-Net Small (b) Invetible X-Net

Figure 22: Comparison of Latent U-Net’s and Invertible X-Net’s performance across three learning
objectives: translation directly, reconstruction followed by translation, and combined learning of
both, evaluated at different training fractions.
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Figure 23: Zero shot generalization results of model trained on Style-A dataset on Marmousi and
Overthrust dataset samples and their smoothened versions.
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Figure 24: Zero shot generalization results of model trained on Style-B dataset on Marmousi and
Overthrust dataset samples and their smoothened versions.
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Figure 25: Visualization of predictions for forward and inverse problems on FVA dataset.
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Figure 26: Visualization of predictions for forward and inverse problems on FVB dataset.
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Figure 27: Visualization of predictions for forward and inverse problems on CVA dataset.
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Figure 28: Visualization of predictions for forward and inverse problems on CVB dataset.
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Figure 29: Visualization of predictions for forward and inverse problems on FFA dataset.
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Figure 30: Visualization of predictions for forward and inverse problems on FFB dataset.
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Figure 31: Visualization of predictions for forward and inverse problems on CFA dataset.
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Figure 32: Visualization of predictions for forward and inverse problems on CFB dataset.
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Figure 33: Visualization of predictions for forward and inverse problems on STA dataset.
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Figure 34: Visualization of predictions for forward and inverse problems on STB dataset.

45


	Introduction
	Related Works
	Deep Learning for Subsurface Imaging (DL4SI)
	Domain Translation Methods

	Proposed Methodologies
	Generalized Forward Inverse Framework
	Prior Works in DL4SI as Special Cases of GFI
	Proposed Model: Latent U-Net
	Proposed Model: Invertible X-Net

	Experimental Setup
	Datasets
	Model Architectures

	Results and Discussions
	Key Insights on Open Questions in DL4SI
	What is the Effect of Latent Space Sizes on Translation Performance?
	Do We Need Complex Architectures for Translations?
	What is the role of manifold learning in DL4SI? 
	Is it Useful to Jointly Solve Forward and Inverse Problems?

	Zero-shot Generalization Results

	Conclusions and Future Research Directions
	Reproducibility Statement
	Ethics Statement
	Theoretical Justifications for Latent Space Translation Assumption
	Dataset Description
	Prior Works in DL4SI as special cases of GFI
	Additional Experimental Details
	Cycle Loss for Invertible X-Net
	Additional Training Details
	Model Architecture
	Latent U-Net
	Invertible X-Net


	Additional Results
	Additional Inverse Modeling Results
	Additional Forward Modeling Results
	Importance of Combined Loss Function for Invertible-XNet
	Zero-shot Performance
	Inverse Problem:
	Forward Problem:

	Ablation Studies
	Effect of varying Latent Space Sizes
	Effect of Skip Connections for Latent U-Net
	Effect of Manifold Learning

	Noise Experiments
	Additional Visualizations
	Code Appendix

