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Abstract

We present two sharp, closed-form empirical Bernstein inequalities for symmetric
random matrices with bounded eigenvalues. By sharp, we mean that both inequal-
ities adapt to the unknown variance in a tight manner: the deviation captured by
the first-order 1/

√
n term asymptotically matches the matrix Bernstein inequality

exactly, including constants, the latter requiring knowledge of the variance. Our
first inequality holds for the sample mean of independent matrices, and our second
inequality holds for a mean estimator under martingale dependence at stopping
times.

1 Introduction

We are interested in nonasymptotic confidence sets for the common mean of independent or
martingale-dependent bounded random matrices that optimally adapt to the unknown underlying
variance. We first review the scalar case to set some context.

1.1 Background: Scalar Empirical Bernstein Inequalities

The classical Bennett-Bernstein inequality (see Lemma 5 of Audibert et al. [2009]; also Appendix B.1)
states that, for the average Xn of independent random scalars X1, . . . , Xn with common expected
value µ = EXi, common almost sure upper bound |Xi| ⩽ B, and second moment upper bound∑n

i=1 EX2
i ⩽ nσ2,

P

(
Xn − µ ⩾

B log(1/α)

3n
+

√
2σ2 log(1/α)

n

)
⩽ α. (1)

It is clear that (1) remains true if the assumptions are centered instead: |Xi − µ| ⩽ B and∑n
i=1 Var(Xi) ⩽ nσ2. A crucial feature of (1) is that if σ2 ≈ EX2

1 ≪ B2, the deviation is

dominated by the “variance term" Θ
(√

n−1σ2 log(1/α)
)

, tighter than the “boundedness term”

Θ(
√
n−1B2 log(1/α)) that dominates if Hoeffding’s inequality [1963] is applied instead in the

absence of the variance bound σ2.

In practice, one often knows B but has no prior access to the possibly much smaller σ. Thus, such
bounds are usually only used in theoretical analysis, but not to practically construct confidence bounds
for the mean. For the latter task, so-called nonasymptotic empirical Bernstein (EB) inequalities are
therefore of particular interest. These inequalities often only assume the almost sure upper bound B
of the random variables and are agnostic and adaptive to the true variances Var(Xi), to the effect
that the final deviation is still dominated by an asymptotically Θ

(√
n−1σ2 log(1/α)

)
variance

term, instead of Θ(
√
n−1B2 log(1/α)) from Hoeffding’s inequality under the same boundedness

assumption.
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Scalar EB inequalities are derived from two very different types of techniques. First, a union bound
between a non-empirical (“oracle”) Bernstein inequality and a concentration inequality on the sample
variance, which is employed by early empirical Bernstein results [Audibert et al., 2009, Maurer and
Pontil, 2009]. For example, for i.i.d., [0, 1]-bounded X1, . . . , Xn, and their Bessel-corrected sample
variance σ̂2

n, Maurer and Pontil [2009, Theorem 4] prove the EB inequality

P

(
Xn − µ ⩾

√
2σ̂2

n log(2/α)

n
+

7 log(2/α)

3(n− 1)

)
⩽ α. (2)

Second, the self-normalization martingale techniques of Howard et al. [2021, Theorem 4] and Waudby-
Smith and Ramdas [2023], which enable sharper rates, stopping time-valid concentration, martingale
dependence, and variance proxy by predictable estimates other than the sample variance. For example,
Waudby-Smith and Ramdas [2023, Theorem 2, Remark 1] prove the following EB inequality for [0, 1]-
bounded random variables X1, . . . , Xn with common conditional mean µ = E[Xi|X1, . . . , Xi−1]:

P

(
µ̂n − µ ⩾

√
2 log(1/α)Vn,α

n

)
⩽ α. (3)

Above, µ̂n is a particular weighted average ofX1, . . . , Xn, and Vn,α = V (α,X1, . . . , Xn) a quantity
depending on the sample and α that converges to σ2 almost surely in the n→ ∞ limit, ifX1, . . . , Xn

have a common conditional variance σ2. 1

These exact terms will become clear when we present our matrix result later in Section 4 (taking
d = 1), but one can already notice the important fact that (3) matches (1) asymptotically without
requiring a known variance bound: letting Dn =

√
2n−1 log(1/α)Vn,α be the deviation term of (3),

√
nDn

a.s.→
√

2 log(1/α)σ2, (4)
a limit also attained by the oracle Bennett-Bernstein inequality (1)’s deviation term. A one-sided
scalar EB inequality is said to be sharp if its deviation term Dn satisfies the oracular limit (4): its
first order term, including constants, asymptotically matches the oracle Bernstein inequality which
requires knowledge of σ2. We see that while (3) is sharp, (2) is not sharp.

Indeed, these two methods are inherently different and as argued convincingly by Howard et al.
[2021, Appendix A.8]: the latter’s avoidance of the union bound produces a better concentration.
Waudby-Smith and Ramdas [2023] were the first ones to prove that their EB inequality is sharp,
pointing out that the union bound-based inequalities are not sharp (but only slightly so). We further
discuss this issue in Appendix B.2, showing that one can make the Maurer-Pontil inequality (2) sharp
by using a smarter union bound, but it still is empirically looser than (3). Other EB inequalities have
been proved in the literature in between the above sets of papers, but they are even looser than the
original, so we omit them.

1.2 Our Contributions: Matrix Empirical Bernstein Inequalities

Exponential concentration inequalities for the sum of independent matrices are in general much harder
to obtain. Tropp [2012, Theorem 6.1] proved a series of Bennett-Bernstein inequalities for the average
Xn of independent d× d symmetric matrices X1, . . . ,Xn with common mean EXi = M, common
eigenvalue upper bound λmax(Xi) ⩽ B, and

∑n
i=1 EX2

i ⪯ nV. For example, the Bennett-type
result implies the following (∥ · ∥ being the spectral norm),

P

(
λmax

(
Xn −M

)
⩾
B log(d/α)

3n
+

√
2 log(d/α)∥V∥

n

)
⩽ α. (5)

The analogy between (1) and (5) is straightforward to notice, including matching constants. See
Appendix B.1 for some remarks on these two non-empirical Bernstein results and a proof of (5). We
shall explore some of the techniques by Tropp [2012] later when developing our results.

The main contribution of the current paper is two empirical Bernstein inequalities for matrices derived
in analogy to the two methods in the scalar case mentioned earlier. First, we generalize the union
bound and plug-in techniques by Audibert et al. [2009], Maurer and Pontil [2009] to matrices and
obtain:

1This was originally proved by Waudby-Smith and Ramdas [2023] under i.i.d. assumption. We prove it under
martingale dependence in our matrix result.
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Proposition 1.1 (Theorem 3.1 of this paper, shortened). Let n be even and X1, . . . ,Xn be i.i.d.
symmetric matrices with eigenvalues in [0, 1] and mean M. Let V∗

n be the paired sample variance
n−1((X1 −X2)

2 + (X3 −X4)
2 + · · ·+ (Xn−1 −Xn)

2). Then,

P

λmax

(
Xn −M

)
⩾

√
2∥V∗

n∥ log nd
(n−1)α

n
+O

(
log(nd/α)

n

) ⩽ α. (6)

Second, we provide a faithful generalization of (3) to the matrix case which we informally state as
follows.
Proposition 1.2 (Corollary 4.3 of this paper, shortened). Let X1, . . . ,Xn be symmetric matri-
ces with eigenvalues in [0, 1] and common conditional mean M = E[Xi|X1, . . . ,Xi−1]. For
an appropriate weighted average M̂n of X1, . . . ,Xn and an appropriate sample variance proxy
vn,α = v(α,X1, . . . ,Xn) > 0,

P

(
λmax(M̂n −M) ⩾

√
2 log(d/α)vn,α

n

)
⩽ α. (7)

Further, if {Xi} have a common conditional variance V, vn,α converges almost surely to ∥V∥.

The detailed description of M̂n and vn,α will be furnished in Section 4. As in the scalar case, we say
a one-sided matrix EB inequality is sharp if its deviation term Dn satisfies

√
nDn

a.s.→
√
2 log(d/α)∥V∥, (8)

as does that of the oracle inequality (5). We see that both results above are sharp matrix empirical
Bernstein inequalities. It is also worth remarking that both (3) and our matrix generalization (7) are
special fixed-time cases of some time-uniform concentration inequalities that control the tails of all
{µ̂n}n⩾1 or {M̂n}n⩾1 simultaneously, enabling sequential analysis. This will become clear as we
develop our results.

In applications e.g. covariance estimation, our matrix EB inequalities can lead to tremendous improve-
ments over the oracle matrix Bernstein inequality (5). To the best of our knowledge, the only other
matrix EB inequality in the literature is the contemporaneous result by Kroshnin and Suvorikova
[2024, Corollary 3.5], which is not sharp. Besides the work cited above, some other authors have
also contributed to the literature of Bernstein or empirical Bernstein inequalities. These include EB
inequalities for vectors by Chugg et al. [2025], for Banach space elements by Martinez-Taboada
and Ramdas [2024]; a time-uniform oracle matrix Bernstein inequality by Howard et al. [2021]; a
dimension-free version of (5) by Minsker [2017]; and another oracle matrix Bernstein inequality
by Mackey et al. [2014]. Some of these will be discussed in Section 5. We also discuss some
other closed-form scalar EB inequalities by Tolstikhin and Seldin [2013], Mhammedi et al. [2019],
Mhammedi [2021], Jang et al. [2023], Orabona and Jun [2024], Shekhar and Ramdas [2023] in
Appendix C.

2 Preliminaries

Notation Let Sd denote the set of all d× d real-valued symmetric matrices, which is the only class
of matrices considered in this paper. These matrices are denoted by bold upper-case letters A,B, etc.
For I ⊆ R, we denote by SId the set of all real symmetric matrices whose eigenvalues are all in I .
S [0,∞)
d , the set of positive semidefinite and S(0,∞)

d , the set of positive definite matrices are simply
denoted by S+

d and S++
d respectively. The Loewner partial order is denoted ⪯, where A ⪯ B means

B−A is positive semidefinite, and A ≺ B means B−A is positive definite. We use λmax to denote
the largest eigenvalue of a matrix in Sd, and ∥ · ∥ its spectral norm, i.e., the largest absolute value
of eigenvalues. As is standard in matrix analysis, a scalar-to-scalar function f : I → J is identified
canonically with a matrix-to-matrix function f : SId → SJd , following the definition

f : UT diag[λ1, . . . , λd]U 7→ UT diag[f(λ1), . . . , f(λd)]U. (9)

Matrix powers Xk, logarithm logX, and exponential expX are common examples. It is worth noting
that the monotonicity of f : I → J is usually not preserved when lifted to f : SId → SJd in the ⪯
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order. The matrix logarithm, however, is monotone. On the other hand, for any monotone f : I → J ,
the function tr ◦ f : SId → R is always monotone.

We work on a filtered probability space (Ω,F ,P) where F := {Fn}n⩾1 is a filtration, and we assume
F0 := {∅,Ω}. We say a process X := {Xn} is adapted if Xn is Fn-measurable for all integers
n ⩾ 0 or sometimes n ⩾ 1; predictable if Xn is Fn−1-measurable for all integers n ⩾ 1.

Nonnegative Supermartingales Many of the classical concentration inequalities for both scalars
and matrices are derived via Markov’s inequality. Howard et al. [2020] pioneered using Ville’s
inequality for nonngative supermartingales to construct time-uniform concentration inequalities.
An adapted scalar-valued process {Xn}n⩾0 is called a nonnegative supermartingale if Xn ⩾ 0 and
E[Xn+1|Fn] ⩽ Xn for all n ⩾ 0 (all such inequalities are intended in the P-almost sure sense).
Let us state the following two well-known forms of Ville’s inequality, both generalizing Markov’s
inequality.
Lemma 2.1 (Ville’s inequality). Let {Xn} be a nonnegative supermartingale and {Yn} be an
adapted process such that Yn ⩽ Xn for all n. For any α ∈ (0, 1],

P
(
supn⩾0 Yn ⩾ X0/α

)
⩽ α. (10)

Equivalently, for any stopping time τ ,

P (Yτ ⩾ X0/α) ⩽ α. (11)

Matrix CGF Supermartingales The Chernoff-Cramér MGF method cannot be directly applied to
the sum of independent random matrices due to exp(A+B) ̸= (expA)(expB) in general. Tropp
[2012] introduced the method of controlling the trace of the matrix CGF via an inequality due to
Lieb [1973]. The Lieb-Tropp method is later furthered by Howard et al. [2020] in turn to construct a
nonnegative supermartingale for matrix martingale differences. We slightly generalize it as follows.
Lemma 2.2 (Lemma 4 in Howard et al. [2020], rephrased and generalized). Let {Zn} be an Sd-
valued, adapted martingale difference sequence. Let {Cn} be an Sd-valued adapted process, {C′

n}
be an Sd-valued predictable process. If

E(exp(Zn −Cn)|Fn−1) ⪯ exp(C′
n), (12)

holds for all n, then the process

Ln = tr exp (
∑n
i=1 Zi −

∑n
i=1(Ci +C′

i)) (13)

is a nonnegative supermartingale. Further,

Ln ⩾ exp (λmax (
∑n
i=1 Zi)− λmax (

∑n
i=1(Ci +C′

i))) . (14)

We remark that in the supermartingale (13), since the empty sum is the zero matrix, L0 = tr exp 0 =
trI = d. This will translate into the log(d)-type dimension dependence in our bounds. The above
lemma is proved in Appendix A.3.

3 First Matrix EB Inequality: Plug-In

The scalar EB inequality (2) by Maurer and Pontil [2009, Theorem 4] is derived via a union bound
between the non-empirical Bennett-Bernstein inequality (1) and a lower tail bound on the Bessel-
corrected sample standard deviation. We slightly deviate from their construction by restricting the
sample size n to even numbers (discarding an observation if n is odd) and considering the following
“paired” variance estimator

V∗
n =

1

n
((X1 −X2)

2 + (X3 −X4)
2 + · · ·+ (Xn−1 −Xn)

2). (15)

Our first matrix EB inequality follows from applying the non-empirical matrix Bennett-Bernstein
inequality twice, to the sample average and the paired variance estimator above.
Theorem 3.1 (First matrix empirical Bernstein inequality). Let n ⩾ 2 be even and X1, . . . ,Xn be
S [0,1]
d -valued independent random matrices with common mean M and variance V. We denote by
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Xn their sample average and by V∗
n their paired variance estimator defined in (15). Then, for any

α ∈ (0, 1),
P
(
λmax

(
Xn −M

)
⩾ Dmeb1

n

)
⩽ α, (16)

where

Dmeb1
n =

log nd
(n−1)α

3n
+

√
2∥V∗

n∥ log nd
(n−1)α

n
+

(√
5

3
+ 1

) √(log nd
(n−1)α

) (
log 2nd

α

)
n

. (17)

Further, if X1, . . . ,Xn are i.i.d.,

lim
n→∞

√
nDmeb1

n =
√
2 log(d/α)∥V∥, almost surely. (18)

Proof Sketch. The inequality follows from the following lower tail bound on ∥V∗
n∥1/2

P

(
∥V∥1/2 ⩽ ∥V∗

n∥1/2 +

(√
5

6
+

1√
2

)√
log(2d/α)

n

)
⩾ 1− α, (19)

and the matrix Bennett-Bernstein inequality (5) via an α = α(n− 1)/n+ α/n union bound. The
full proof can be found in Appendix A.4.

The first order term of the deviation radius (17) matches the oracle matrix Bernstein inequality (5),
both being the Θ

(√
n−1∥V∥ log(d/α)

)
variance term. More importantly, the match is precise

asymptotically, as is indicated by the limit (18) of
√
nDmeb1

n . It is therefore a sharp matrix EB
inequality by our standard. Indeed, this owes much to the imbalanced α = α(n−1)/n+α/n split in
the union bound in the proof; if a balanced, or more generally n-independent split was employed, the
limit would become

√
2 log(Cd/α)∥V∥ for some constant C > 1 instead. A balanced split, however,

is exactly what Maurer and Pontil [2009] do in their scalar EB inequality (as well as Kroshnin and
Suvorikova [2024] concurrently in their matrix EB inequality), leading to the intralogarithmic factor
C = 2 as shown in (2). This non-sharpness of the scalar Maurer-Pontil inequality (2), we remark,
can be avoided as well by switching to the α = α(n− 1)/n+ α/n imbalanced split instead, which
leads to both theoretical sharpness and a significant boost in its large-sample empirical performance.
We write it down formally and perform comparative simulations in Appendix B.2.

Beyond sharpness, the second order term of the deviation radius (17) also has the same rate as the
oracle matrix Berntein inequality (5) up to a logarithmic factor in n, both being the boundedness term
that decays as Θ̃(n−1) as the sample size n grows. The second order term of (17) also matches the
second order term of the sharpened Maurer-Pontil inequality derived in Appendix B.2, with only a
slight inflation of the constant. We remark that Maurer and Pontil [2009] employ a self-bounding
technique on the “classical” Bessel-corrected scalar sample variance σ̂2

n, and we are not aware such
a technique exists for random matrices, leading us to opt for the paired sample variance (15). In
Appendix B.3, we derive an alternative Maurer-Pontil-style matrix EB inequality using the classical
matrix Bessel-corrected sample variance and bound it via the matrix Efron-Stein technique due to
Paulin et al. [2016]. The resulting matrix EB inequality is still sharp due to the similar first order
term, but its second order term inflates from Θ̃(n−1) to Θ̃(n−3/4) and has a slightly worse empirical
performance.

4 Second Matrix EB Inequality: The Supermartingale Method

Our second matrix EB inequality avoids the analysis of the sample variance via the exponential
supermartingale technique and opens up for dependent matrices. Let us, following Howard et al.
[2020, 2021], Waudby-Smith and Ramdas [2023], define the function ψE : [0, 1) → [0,∞) as
ψE(γ) = − log(1 − γ) − γ. The symbol ψE is from the fact that it is the cumulant generating
function (CGF) of a centered standard exponential distribution. The following lemma is a matrix
generalization of Howard et al. [2021, Appendix A.8], which we prove in Appendix A.5
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Lemma 4.1. Let {Xn} be an adapted sequence of Sd-valued random matrices with conditional
means E(Xn|Fn−1) = Mn. Further, suppose there is a predictable and integrable sequence of
Sd-valued random matrices {X̂n} such that λmin(Xn − X̂n) ⩾ −1. Let

En = exp(γn(Xn − X̂n)− ψE(γn)(Xn − X̂n)
2), Fn = exp(γn(Mn − X̂n)), (20)

where {γn} are predictable (0, 1)-valued scalars. Then,

E(En|Fn−1) ⪯ Fn. (21)

We are now ready to state in full our matrix empirical Bernstein inequality based on the self-
normalization technique. The following theorem is stated as a combination of three tools: a non-
negative supermartingale, a time-uniform concentration inequality, and an equivalent concentration
inequality at a stopping time.
Theorem 4.2 (Time-uniform and stopped matrix empirical Bernstein inequalities). Let {Xn} be an
adapted sequence of Sd-valued random matrices with conditional means E(Xn|Fn−1) = Mn. Let
{X̂n} be a sequence of predictable and integrable Sd-valued random matrices such that λmin(Xn −
X̂n) ⩾ −1 almost surely. Then, for any predictable (0, 1)-valued sequence {γn},

Lmeb2
n = tr exp

(
n∑
i=1

γi(Xi −Mi)−
n∑
i=1

ψE(γi)(Xi − X̂i)
2

)
(22)

is a supermartingale. Denote by X
γ

n the weighted average γ1X1+···+γnXn

γ1+···+γn w.r.t. the positive weight
sequence {γn}. Then, for any α ∈ (0, 1),

P

there exists n ⩾ 1, λmax

(
X
γ

n −M
γ

n

)
⩾

log(d/α) + λmax

(∑n
i=1 ψE(γi)(Xi − X̂i)

2
)

γ1 + · · ·+ γn

 ⩽ α;

(23)
and for any stopping time τ , α ∈ (0, 1),

P

λmax

(
X
γ

τ −M
γ

τ

)
⩾

log(d/α) + λmax

(∑τ
i=1 ψE(γi)(Xi − X̂i)

2
)

γ1 + · · ·+ γτ

 ⩽ α. (24)

Proof. Due to Lemma 4.1, we can apply Lemma 2.2 with Zn = γn(Xn −Mn), Cn = γn(X̂n −
Mn) + ψE(γn)(Xn − X̂n)

2, and C′
n = γn(Mn − X̂n) to see that

Lmeb2
n = tr exp

(∑n
i=1 γi(Xi −Mi)−

∑n
i=1 ψE(γi)(Xi − X̂i)

2
)

(25)

is a supermartingale, which upper bounds

exp
{
λmax (

∑n
i=1 γi(Xi −Mi))− λmax

(∑n
i=1 ψE(γi)(Xi − X̂i)

2
)}

. (26)

Applying Lemma 2.1 to (26), the desired result follows from rearranging.

Before we remark on the uncompromised Theorem 4.2, let us write down its fixed-time, fine-tuned
special case of (24) with τ = n and conditionally homoscedastic observations. This shall justify the
“empirical Bernstein" name it bears.
Corollary 4.3 (Second matrix empirical Bernstein inequality). Suppose α ∈ (0, 1). Let X1, . . . ,Xn

be adapted S [0,1]
d -valued random matrices with constant conditional mean M = E(Xi|Fi−1) and

constant conditional variance V = E((Xi−M)2|Fi−1). Let Xi =
1
i (X1 + · · ·+Xi) and X0 = 0.

Define the following variance proxies

V0 =
1

4
I, Vk =

1

k

k∑
i=1

(Xi −Xk)
2, vk = ∥Vk∥ ∨

5 log(d/α)

n
, (27)
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and set γi =
√

2 log(d/α)
nvi−1

for i = 1, . . . , n. Then,

P
(
λmax

(
X
γ

n −M
)
⩾ Dmeb2

n

)
⩽ α, whereDmeb2

n =
log(d/α) + λmax

(∑n
i=1 ψE(γi)(Xi −Xi−1)

2
)

γ1 + · · ·+ γn
.

(28)
Further, asymptotically,

lim
n→∞

√
nDmeb2

n =
√

2 log(d/α)∥V∥ almost surely. (29)

We prove Corollary 4.3 in Appendix A.6. The asymptotic behavior (29) of deviation bound Dmeb2
n is

satisfying as it adapts fully to, without knowing, the true variance V. In particular, if the assumption
on the known spectral bound is X1, . . . ,Xn ∈ S [a,b]

d as opposed to the S [0,1]
d stated in Corollary 4.3,

one can apply the result to X1−a
b−a , . . . ,

Xn−a
b−a to obtain the same

Θ

(√
log(d/α)∥V∥

n

)
(30)

asymptotic deviation which is free of b− a.

The three kinds of result stated in Theorem 4.2 are for potentially different purposes. The super-
martingale (22) is best as a sequential test for the null

H0 : E(Xn|Fn−1) = Mnull for all n (31)
by setting each Mi to Mnull. The time-uniform concentration inequality (23) can be used to construct
a “confidence sequence” on the common conditional mean M = E(Xn|Fn−1); that is, a sequence of
confidence balls Bn = {M′ ∈ Sd : ∥X

γ

n −M′∥ ⩽ ρn} such that P(M ∈ ∩nBn) ⩾ 1− α, leading
to the stopped concentration inequality (24) which is a valid confidence ball at a fixed stopping time
Bτ . We also remark that it is possible to sharpen the confidence ball Bτ at a fixed stopping time
by an a priori randomization, due to a recent result by Ramdas and Manole [2024, Theorem 4.1]
called “uniformly randomized Ville’s inequality”. That is, letting U ∼ Unif(0,1) independent from
the filtration F , one may replace the log(d/α) term in (24) with the strictly smaller log(Ud/α).

The Fi−1-measurable term X̂i in Theorem 4.2 is best understood as a “plug-in prediction” of the
next observation Xi. Indeed, whereas the inequality holds under all choices of X̂i, the smaller the
“prediction error” (X̂i −Xi)

2, the tighter the bound. Thus one may set X̂i to be the sample average
from X1 to Xi−1, which is exactly what is done in Corollary 4.3.

On the other hand, if the sample size n is not fixed in advance and an infinite sequence of i.i.d.
(or homoscedastic more generally) observations X1,X2, . . . , to construct a tight time-uniform
concentration bound or powerful sequential test, we recommend setting the weight sequence {γn}
as follows: for each sample size n, temporarily assume that a sample size of n is fixed in advance,
compute the optimal choice of weight on Xn under this fixed sample size, and set γn to this optimal

choice of weight. This will lead to a vanishing sequence of γn =
√

2 log(d/α)
nvn−1

. Under this weight
sequence, we see the choice of a weighted average

X̂n = X
ψE(γ)

n−1 =

∑n−1
i=1 ψE(γi)Xi∑n−1
i=1 ψE(γi)

(32)

is more reasonable as the weighted sum of squares
∑n
i=1 ψE(γi)(Xi − x)2 is minimized by the

weighted average

x̂ =

∑n
i=1 ψE(γi)Xi∑n−1
i=1 ψE(γi)

. (33)

Of course, as long as X̂n is any convex combination of X1, . . . ,Xn−1, the condition λmin(Xn −
X̂n) ⩾ −1 is met when {Xn} all take values in S [0,1]

d .

Finally, as a reprise of the shortened version Proposition 1.2 stated in the opening, the “approprioate
variance proxy” vn,α = v(α,X1, . . . ,Xn) is simply

vn,α =

(
log(d/α) + λmax

(∑n
i=1 ψE(γi)(Xi −Xi−1)

2
)

γ1 + · · ·+ γn

)2
n

2 log(d/α)
(34)
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which converges almost surely to ∥V∥ under conditional homoscedasticity due to (29).

5 Comparisons

5.1 Self-Normalized EB Inequalities for Scalars and Vectors

Our Theorem 4.2 and Corollary 4.3 owe much to the techniques developed by Waudby-Smith and
Ramdas [2023, Theorem 2 and Remark 1] in the scalar case (who in turn build on the earlier result
by Howard et al. [2021, Theorem 4] via the “predictable mixing" sequence {γn}). In particular,
when d = 1, our statements match (including constants) exactly the scalar empirical Bernstein
inequality counterparts by Waudby-Smith and Ramdas [2023]: Our supermartingale (22) coincides
with Equation (13) in Waudby-Smith and Ramdas [2023]; our time-uniform concentration bound
(23) becomes identical to Theorem 2 in Waudby-Smith and Ramdas [2023]; and our fixed-time
asymptotics (29) recovers Equation (17) in Waudby-Smith and Ramdas [2023]. We also note that
Waudby-Smith and Ramdas [2023] assume i.i.d.ness to obtain the fixed-time asymptotics, which,
according to our result, can be relaxed to martingale dependence.

As can be expected, applying a vector bound to matrices (by flattening) will lead to a very suboptimal
result. The self-normalized empirical Bernstein inequality for vectors due to Chugg et al. [2025,
Corollary 5] implies the following for matrices whose Frobenius norm is bounded by 1/2, for all
α ⩽ 0.1,

P

(
∥M̂n −M∥F ⩾ 3.25

√
log(1/α)σ̃2

n

n

)
⩽ α. (35)

Here, σ̃2
n converges almost surely to the vectorized variance E∥X1 − EM∥2F with i.i.d. matrices.

Since everything (assumption and result) is in the Frobenius norm, however, translating the result
into the spectral norm will incur a dimensional dependence polynomial in d.

Finally, we note that the self-normalized empirical Bernstein inequality for Banach spaces due to
Martinez-Taboada and Ramdas [2024] is not applicable as Sd equipped with the spectral norm is not
a 2-smooth Banach space.

5.2 Non-Empirical Matrix Bernstein and Hoeffding Inequalities

As we state in the opening (5) and elaborate further in Appendix B.1, Tropp [2012, The-
orem 1.4] proves the following matrix Bennett-Bernstein inequality under the assumptions
max1⩽i⩽n λmax(Xi) ⩽ 1 and

∑n
i=1 EX2

i ⪯ nV:

P
(
λmax

(
Xn − EXn

)
⩾ Dtb

n

)
⩽ α, Dtb

n =
B log(d/α)

3n
+

√
2 log(d/α)∥V∥

n
. (36)

We can see that with i.i.d. matrices with variance V,
√
nDtb

n converges to
√
2 log(d/α)∥V∥ which

is the same limit that both
√
nDmeb1

n and
√
nDmeb2

n converge to, stated as (18) and (29). Therefore,
our empirical Bernstein inequalities provide a confidence region fully adaptive to the unknown
variance V and match in asymptotics this oracle Bernstein result which requires V to be known.
Both are thus sharp EB inequalities. Assumption-wise, it is important to note that it is fair to compare
our Xi ∈ S [0,1]

d assumption to their λmax(Xi) ⩽ 1 assumption; no constant is glossed over in
making this comparison when and two-sided bound is sought. To see this, the bound by Tropp [2012,
Theorem 1.4] can be applied to X1 − M, . . . ,Xn − M, and it takes X1 ∈ S [0,1]

d to ensure both
λmax(X1 −M) ⩽ 1 and λmax(−X1 +M) ⩽ 1 hold.

Mackey et al. [2014, Corollary 5.2] also obtain a matrix Bernstein inequality. However, as they
acknowledge in the paper, their bound is strictly looser than the bound by Tropp [2012, Theorem 1.4].
The bound by Minsker [2017, Theorem 3.1] under the same assumption reads

P
(
λmax

(
Xn − EXn

)
⩾ Dmb

n

)
⩽ α, Dmb

n =
B log(d′/α) +

√
B2 log2(d′/α) + 18n log(d′/α)∥V∥

3n
,

(37)
where d′ = 14tr(V)/∥V∥, which decides the dimension-free virtue of their result. Matrix Bernstein
inequalities that are either anytime-valid or empirical remain an open problem.
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Finally, we quote the tightest known Hoeffding-type inequalities for matrices in the literature. Mackey
et al. [2014, Corollary 4.2] shows that if independent X1, . . . ,Xn satisfy (Xi − EXi)

2 ⪯ B almost
surely, then

P

(
λmax(Xn − EXn) ⩾

√
2∥B∥ log(d/α)

n

)
⩽ α. (38)

A time-uniform extension can be achieved by applying Lemma 3(h) in Howard et al. [2020], but its
fixed-time corollary remains identical as (38). The squared boundedness assumption (Xi−EXi)

2 ⪯
B implies Xi − EXi ∈ S [−∥B∥1/2,∥B∥1/2]

d , so it is a stronger assumption than the boundedness
assumption we make in Corollary 4.3. Further, since (Xi − EXi)

2 ⪯ B implies Var(Xi) ⪯ B
and in practice this gap can be arbitrarily large, we see that our empirical Bernstein inequality is
asymptotically tighter and the worst that can happen is a degradation to this, already tightest, matrix
Hoeffding bound, when ∥Var(Xi)∥ ≈ ∥B∥.

The advantage of matrix EB inequalities becomes even clearer when we consider the recurring
application example in the matrix concentration literature: covariance matrix estimation.

Example 5.1 (Adaptive covariance estimation). Let X1, . . . , Xn be i.i.d. random vectors in Rd with
∥X1∥ ⩽ 1 almost surely, mean EX1 = 0 and covariance matrix E(X1X

T
1 ) = Σ. Since

λmax(X1X
T
1 ) = tr(X1X

T
1 ) = tr(XT

1X1) ⩽ 1, (39)

we can invoke either of the two matrix EB inequalities (Theorem 3.1 or Corollary 4.3) with Xi =
XiX

T
i and M = Σ to construct confidence sets for Σ that are adaptive to the unknown 4th moment

E(∥X1∥2X1X
T
1 ).

In comparison, covariance estimation bounds derived via (5) or its variants always have the unknown
∥Σ∥ term in the radius of the concentration, from bounding the 4th moment E(∥X1∥2X1X

T
1 ) ⪯

E(X1X
T
1 ) = Σ [Tropp, 2015, Howard et al., 2021]. To turn them into nonasymptotic confidence sets,

a further boundedness argument ∥Σ∥ ⩽ 1 is required, essentially reducing the Bernstein bound to a
Hoeffding bound which can be arbitrarily loose. The sharpness of our EB-based methods immediately
benefits the downstream applications of covariance estimation in e.g. machine learning and signal
processing.

5.3 Simulation

We compare the terms, Dmeb1
n of the first matrix empirical Bernstein inequality as in (17), and

Dmeb2
n of the second matrix empirical Bernstein inequality as in (28), divided by that of the oracle

matrix Bennett-Bernstein inequality Dtb
n as in (36). We set α to .05, thus comparing the tightness of

one-sided 95%-confidence sets (or equivalently, the spectral diameters of two-sided 90%-confidence
sets). The i.i.d. random matrices are generated from 3 fixed orthonormal projections with d = 3, each
with an independent Unif [0,1] eigenvalue. The comparison is displayed in Table 1. We see that while
for both matrix EB inequalities, the deviations relative to the oracle Bernstein are proved to converge
to 1 as n increases, our second matrix EB inequality achieves such “oracular convergence” at a much
faster rate. A comparison in the scalar case can be found in Appendix B.2 which conveys a similar
message.

Sample Size (n) Dmeb1
n /Dtb

n Dmeb2
n /Dtb

n

100 2.612 1.397
1,000 1.589 1.105
10,000 1.214 1.022

100,000 1.072 1.007
1,000,000 1.024 1.002

Table 1: Relative lengths of 95% one-sided confidence sets by two sharp matrix empirical Bernstein
inequalities compared to the (oracle) matrix Bennett-Bernstein inequality (5).

9



6 Summary

We provide two new matrix concentration inequalities in this paper. The first one is based on the
union bound method, and characterizes, in terms of the paired sample variance, the concentration
of the sample mean of independent symmetric matrices with bounded largest eigenvalues, common
mean, and common variance. The second one is a self-normalized, time-uniform concentration
inequality for the weighted sum of martingale difference symmetric matrices with bounded largest
eigenvalues, which when weighted properly, becomes an empirical Bernstein inequality that echoes
many of the previous self-normalized-type empirical Bernstein inequalities for scalar, vectors, and
Banach space elements.

These two matrix EB inequalities have different advantages: the first one is conceptually simpler,
requires only the sample mean and a sample variance, and is computationally easier (both needing
O(n) steps but the first one having smaller constants); the second EB is empirically tighter across
all sample sizes, allows martingale dependence, and has a time-uniform version. According to our
simulation, the second matrix EB inequality’s confidence set is only 10.5% larger compared to the
oracle Bernstein inequality under a sample size of 1,000; and 2.2% under a sample size of 10,000. On
the other hand, our two matrix EB inequalities both have a closed-form expression, and they match in
asymptotics the best non-empirical matrix Bernstein inequality in the literature, as they only depend
(in the large sample limit) on the true variance of the matrices which is not required to be known in
our bounds, but required in non-empirical bounds. We expect future work to address the challenging
problem of unifying our methods with those of the dimension-free matrix Bernstein inequality by
Minsker [2017].
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abridged version of the two main inequalities mentioned in the introduction
is later spelled out and proved in full in Sections 3 and 4, with simulation in Section 5.3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention possible future work in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

12



Justification: We provide full assumptions in our theorem statement and proofs after the
statement and sometimes in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our simulation set-up in Section 5.3. While we leave some room
unspecified (e.g. we do not specify the “3 fixed orthonormal projections”), the algorithms
are invariant under the alternation of these minor choices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Simulation codes are provided as Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See submitted codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The simulations were only run once and are reported as is without repetition,
as we believe these results are compelling enough to demonstrate the empirical difference
between methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We do not find it necessary to disclose such information as computation is less
of a concern.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Theory.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not expect matrix mean estimation methods to be subject to such misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We occasionally have the Grammarly Chrome extension on during the writing
of this paper; and Google Colab AI-powered inline completions on when implementing
simulations. We do not use LLMs otherwise.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Proofs

A.1 Technical Lemmas

The following lemma converts bounds on |a− b| to
√
a−

√
b.

Lemma A.1. Let a, b ⩾ 0 and D = |a− b|. Then,

√
a ⩽

√
b+

(√
D ∧ D

2
√
b
∧ D√

a

)
. (40)

Proof. Suppose a > b since the bound is trivial otherwise. First, by the subadditivity of the square
root,

√
a =

√
b+D ⩽

√
b +

√
D. Second, D = (

√
a −

√
b)(

√
a +

√
b) ⩾ (

√
a −

√
b)2

√
b so√

a ⩽
√
b+ D

2
√
b
. Third, D = (

√
a−

√
b)(

√
a+

√
b) ⩾ (

√
a−

√
b)
√
a so

√
a ⩽

√
b+ D√

a
. Taking

a minimum completes the proof.

The following lemma bounds the difference of squares of two matrices.

Lemma A.2. Let A,B be two symmetric matrices. ∥A2 −B2∥ ⩽ 2∥B∥∥A−B∥+ ∥A−B∥2.

Proof. ∥A2 − B2∥ = ∥(B + (A − B))2 − B2∥ = ∥B(A − B) + (A − B)B + (A − B)2∥ ⩽
2∥B∥∥A−B∥+ ∥A−B∥2.

The following lemma characterizes the smoothness of ψE(x) = − log(1− x)− x at 0.

Lemma A.3. When 0 ⩽ x ⩽
√
2/5, ψE(x) ⩽ x2.

Proof. Let g(x) = ψE(x) − x2. The claim follows from g′′(x) = (1 − x)−2 − 2 ⩾ 0 for x ∈
[0,
√
2/5], and g(0) = 0, g(

√
2/5) < 0.

The following transfer rule [Tropp, 2012, Equation 2.2] is commonly used in deriving matrix bounds.

Lemma A.4. Suppose I ⊆ R and f, g : I → R satisfies f(x) ⩽ g(x), then, f(X) ⪯ g(X) for any
X ∈ SId .

It is well-known that if X and Y are scalar random variables such that c ⩽ X ⩽ Y almost surely for
some constant c and that E|Y | <∞, it follows that E|X| <∞ as well, and EX ⩽ EY . This type of
“implied integrability" appears frequently in scalar concentration bounds. Let us prove its symmetric
matrix extension for the sake of self-containedness.

Lemma A.5 (Dominated integrability). Let X and Y be S [c,∞)
d -valued random matrices for some

c ∈ R such that X ⪯ Y almost surely. Further, suppose EY exists. Then, so does EX and
EX ⪯ EY.

Proof. Let us prove that each element Xij of the random matrix X is integrable. Note that for any
deterministic v ∈ Rd, vTXv ⩽ vTYv almost surely. First, taking v = (0, . . . , 0, 1, 0, . . . 0)T, we
have

c ⩽ Xjj ⩽ Yjj almost surely, (41)

concluding that the diagonal element Xjj must be integrable (since Yjj is). Next, taking v =
(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0)T, we have

2c ⩽ 2Xij +Xii +Xjj ⩽ 2Yij + Yii + Yjj almost surely, (42)

concluding that 2Xij +Xii +Xjj must be integrable (since 2Yij + Yii + Yjj is). Therefore, the
off-diagonal element Xij is integrable since Xii and Xjj are.

Now that we have established the existence of EX, it is clear that EX ⪯ EY since for any v ∈ Rd,
vT(EX)v = E(vTXv) ⩽ E(vTYv) = vT(EY)v.
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A.2 Strong Consistency of the Matrix Sample Variance

We show in this section that the matrix sample mean and variance are strongly consistent under
martingale dependence, which prepares us for the upcoming proof of Corollary 4.3. First, we
provide the following matrix martingale strong law of the large numbers which, we remark, holds for
non-square matrices as well.
Lemma A.6 (Matrix martingale SLLN). Let Sn =

∑n
i=1 Zi be a matrix martingale and {Un} an

increasing positive predictable process on F . For any p ∈ [1, 2], on the set{
lim
n→∞

Un = ∞,

∞∑
n=1

U−p
n E[normp(Zn)|Fn−1] <∞

}
, (43)

the process U−1
n Sn converges to 0 almost surely. Here, norm(·) is any matrix norm.

Proof. Since matrix norms are mutually equivalent, it suffices to prove the case where norm(A) is
the max norm maxi,j |Aij |. By the scalar martingale SLLN [Hall and Heyde, 2014, Theorem 2.18],
we see that all entries of Sn converge to 0 almost surely.

This immediately implies the following convergence result of the matrix sample mean and variance,
where we take norm(·) to be the usual spectral norm ∥ · ∥.
Corollary A.7 (Strong consistency of the matrix sample mean). Let {Xn} be adapted to F with con-
stant conditional mean E[Xn|Fn−1] = M and δ ∈ (0, 1]. If

∑∞
n=1 n

−1−δE[∥Xn−M∥1+δ|Fn−1] <

∞ almost surely, then the sample mean Xn converges to M almost surely.

Proof. It follows directly from Lemma A.6.

The assumption
∑∞
n=1 n

−1−δE[∥Xn − M∥1+δ|Fn−1] < ∞ is satisfied when, for example, all
matrices are uniformly bounded or have a common (1 + δ)th conditional moment upper bound.
Corollary A.8 (Strong consistency of the matrix sample variance). Let Xn be adapted to F with
constant conditional mean E[Xn|Fn−1] = M and conditional variance E[(Xn −M)2|Fn−1] = V.
Further, assume that

∞∑
n=1

n−1−δE[∥Xn∥2+2δ|Fn−1] <∞ (44)

almost surely for some δ ∈ (0, 1]. Then, the sample variance

Vn =
1

n

n∑
i=1

(Xi −Xn)
2 (45)

converges to V almost surely.

Proof. Define Q = E[X2
n|Fn−1] = M2 +V. First, Xn → M almost surely due to the constant

variance with Corollary A.7. Using the inequality ∥A+B∥1+δ ⩽ (∥A∥+∥B∥)1+δ ⩽ 2δ(∥A∥1+δ+
∥B∥1+δ) (due to triangle and Jensen inequalities), we have
∞∑
n=1

n−1−δE[∥X2
n−Q∥1+δ|Fn−1] ⩽

∞∑
n=1

n−1−δ2δE[∥Xn∥2+2δ|Fn−1]+

∞∑
n=1

n−1−δ2δQ1+δ <∞.

(46)
So by Corollary A.7.

Q̂n :=
1

n

n∑
i=1

X2
i → Q. (47)

almost surely. Therefore,
Vn = Q̂n − (Xn)

2 → V (48)
almost surely as well, due to continuity.

Again, the assumption
∑∞
n=1 n

−1−δE[∥Xn∥2+2δ|Fn−1] < ∞ is satisfied when, for example, all
matrices are uniformly bounded or have a common (2 + 2δ)th conditional moment upper bound.

20



A.3 Proof of Lemma 2.2

Proof. Due to the monotonicity of log, the condition (12) implies

logE(exp(Zn −Cn)|Fn−1) ⪯ C′
n. (49)

Now recall Lieb’s concavity theorem [Lieb, 1973]: for any H ∈ Sd, the map X 7→ tr exp(H+logX)
(S++
d → (0,∞)) is concave. Therefore,

E(Ln|Fn−1) = E

(
tr exp

(
n−1∑
i=1

Zi −
n−1∑
i=1

(Ci +C′
i)−C′

n + log eZn−Cn

)∣∣∣∣∣Fn−1

)
(50)

(Jensen’s inequality)

⩽ tr exp

(
n−1∑
i=1

Zi −
n−1∑
i=1

(Ci +C′
i)−C′

n + logE(eZn−Cn |Fn−1)

)
(51)

(by (49) and monotonicity of trace)

⩽ tr exp

(
n−1∑
i=1

Zi −
n−1∑
i=1

(Ci +C′
i)−C′

n +C′
n

)
= Ln−1, (52)

concluding the proof that {Ln} is a supermartingale. Finally, observe that

Ln = tr exp

(
n∑
i=1

Zi −
n∑
i=1

(Ci +C′
i)

)
(53)

⩾ tr exp

(
n∑
i=1

Zi − λmax

(
n∑
i=1

(Ci +C′
i)

)
I

)
(54)

⩾ λmax exp

(
n∑
i=1

Zi − λmax

(
n∑
i=1

(Ci +C′
i)

)
I

)
(55)

= expλmax

(
n∑
i=1

Zi − λmax

(
n∑
i=1

(Ci +C′
i)

)
I

)
(56)

= exp

(
λmax

(
n∑
i=1

Zi

)
− λmax

(
n∑
i=1

(Ci +C′
i)

))
, (57)

concluding the proof.

A.4 Proof of Theorem 3.1

Proof. Note that 2V∗
n is the sample average of n/2 independent random matrices, each with eigen-

values in [0, 1], of common mean 2V and second moment upper bound

∥E(X1 −X2)
4∥ ⩽ ∥E(X1 −X2)

2∥ = 2∥V∥. (58)

Thus applying the Matrix Bennett-Bernstein inequality (5) on 2V∗
n, we see that

P

(
∥2V∗

n − 2V∥ ⩾
2 log(2d/α)

3n
+

√
8 log(2d/α)∥V∥

n

)
⩽ α. (59)

Therefore, with probability at least 1− α,

| ∥V∗
n∥ − ∥V∥ | ⩽ ∥V∗

n −V∥ ⩽
log(2d/α)

3n
+

√
2 log(2d/α)∥V∥

n
. (60)

Denote by g the constant
√

5
6 + 1√

2
, which satisfies 1

3g +
√
2 = g. The above implies that if

∥V∥ ⩾ g2 log(2d/α)
n ,

| ∥V∗
n∥ − ∥V∥ | ⩽

√
log(2d/α)∥V∥

9g2n
+

√
2 log(2d/α)∥V∥

n
=

√
g2 log(2d/α)∥V∥

n
, (61)
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which in turn implies that, via Lemma A.1,

∥V∥1/2 ⩽ ∥V∗
n∥1/2 +

√
g2 log(2d/α)

n
. (62)

Since the above also holds if ∥V∥ < g2 log(2d/α)
n , we see that the inequality above holds with

probability at least 1− α regardless of the true value of ∥V∥. Integrating the inequality above into
the matrix Bennett-Bernstein inequality (5) via an α = α(n− 1)/n+ α/n union bound, we arrive at

λmax

(
Xn −M

)
⩽

log nd
(n−1)α

3n
+

√
2 log nd

(n−1)α

n

(
∥V∗

n∥1/2 +

(√
5

6
+

1√
2

)√
log(2nd/α)

n

)
(63)

with probability at least 1− α. This concludes the proof. The asymptotics (18) follows simply from
the strong law of large numbers and the continuity of the spectral norm.

A.5 Proof of Lemma 4.1

Proof. Recall that ψE(γ) = − log(1− γ)− γ. An inequality by Fan et al. [2015] quoted by Howard
et al. [2021, Appendix A.8] states that, for all 0 ⩽ γ < 1 and ξ ⩾ −1,

exp(γξ − ψE(γ)ξ
2) ⩽ 1 + γξ. (64)

Since Xn− X̂n ∈ S [−1,∞)
d , we can apply the transfer rule (Lemma A.4), replacing the scalar ξ above

by the matrix Xn − X̂n, and plugging in γ = γn ∈ (0, 1),

exp(γn(Xn − X̂n)− ψE(γn)(Xn − X̂n)
2) ⪯ 1 + γn(Xn − X̂n). (65)

Lemma A.5 then guarantees the integrability of the left hand side, and that

E
(
exp(γn(Xn − X̂n)− ψE(γn)(Xn − X̂n)

2)
∣∣∣Fn−1

)
⪯ E

(
1 + γn(Xn − X̂n)

∣∣∣Fn−1

)
(66)

=1 + γn(Mn − X̂n) ⪯ exp(γn(Mn − X̂n)), (67)

where in the final step we use the transfer rule again with 1 + x ⩽ exp(x) for all x ∈ R. This
concludes the proof.

A.6 Proof of Corollary 4.3

Proof. First, it is straightforward that λmax(Xi −Xi−1) ⩾ −1 for every i = 1, . . . , n since both Xi

and Xi−1 take values in S [0,1]
d , so Theorem 4.2 is applicable. Let us prove the two claims about the

deviation bound Dmeb2
n under γi =

√
2 log(d/α)
nvi−1

. Recall that

V0 =
1

4
I, Vk =

1

k

k∑
i=1

(Xi −Xk)
2, vk = ∥Vk∥ ∨

5 log(d/α)

n
, (68)

s̃n = λmax

(
1

n

n∑
i=1

(Xi −Xi−1)
2

vi−1

)
. (69)

Let us compute the almost sure limit limn→∞
√
nDmeb2

n . First, the following limits hold almost
surely due to Corollaries A.7 and A.8:

lim
k→∞

Xk = M, lim
k→∞

Vk = V, lim
k→∞

vk = ∥V∥. (70)

Let us compute the limit

lim
n→∞

1

n

n∑
i=1

(Xi −Xi−1)
2

vi−1
. (71)

To do this, we observe that

lim
n→∞

1

n

n∑
i=1

(Xi −M)2

∥V∥
=

V

∥V∥
(72)
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almost surely due to Corollary A.7. Bounding the difference∥∥∥∥∥ 1n
n∑
i=1

(Xi −Xi−1)
2

vi−1
− 1

n

n∑
i=1

(Xi −M)2

∥V∥

∥∥∥∥∥ (73)

⩽
1

n

n∑
i=1

(
∥(Xi −Xi−1)

2 − (Xi −M)2∥
vi−1

+ ∥Xi −M∥2|v−1
i−1 − ∥V∥−1|

)
(74)

(Lemma A.2) (75)

⩽
1

n

n∑
i=1

(
2∥Xi −M∥∥Xi−1 −M∥+ ∥Xi−1 −M∥2

vi−1
+ ∥Xi −M∥2|v−1

i−1 − ∥V∥−1|
)

(76)

(∥Xi−1 −M∥ ⩽ 2, ∥Xi −M∥ ⩽ 2) (77)

⩽
1

n

n∑
i=1

6∥Xi−1 −M∥
vi−1

+
1

n

n∑
i=1

4|v−1
i−1 − ∥V∥−1| → 0. (78)

Therefore, we see that

1

n

n∑
i=1

(Xi −Xi−1)
2

vi−1
→ V

∥V∥
, s̃n = λmax

(
1

n

n∑
i=1

(Xi −Xi−1)
2

vi−1

)
→ 1 (79)

almost surely.

We can now use the expansion ψE(x) =
∑∞
k=2

xk

k to obtain,

lim sup
n→∞

√
nDmeb2

n (80)

= lim sup
n→∞

log(d/α) + λmax

(∑n
i=1 ψE

(√
2 log(d/α)
nvi−1

)
(Xi −Xi−1)

2
)

1
n

∑n
i=1

√
2 log(d/α)
vi−1

(81)

⩽ lim sup
n→∞

log(d/α) + λmax

(∑n
i=1

1
2

(√
2 log(d/α)
nvi−1

)2
(Xi −Xi−1)

2

)
1
n

∑n
i=1

√
2 log(d/α)
vi−1

(82)

+

∞∑
k=3

lim sup
n→∞

λmax

(∑n
i=1

1
k

(√
2 log(d/α)
nvi−1

)k
(Xi −Xi−1)

2

)
1
n

∑n
i=1

√
2 log(d/α)
vi−1︸ ︷︷ ︸

Tk,n

. (83)

Let us prove that limn→∞ Tk,n = 0 for all k ⩾ 3. To see that,

Tk,n ⩽

∑n
i=1

1
k

(√
2 log(d/α)
nvi−1

)k
∥Xi −Xi−1∥2

1
n

∑n
i=1

√
2 log(d/α)
vi−1

⩽

∑n
i=1

1
k

(√
2 log(d/α)
nvi−1

)k
1
n

∑n
i=1

√
2 log(d/α)
vi−1

(84)

=

k−1 (2 log(d/α))
k−1
2 n−

k−2
2 n−1

n∑
i=1

v
−k/2
i−1

n−1
n∑
i=1

v
−1/2
i−1

. (85)
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Since the boxed terms converge to non-zero quantities, we see that Tk,n converges to 0 due to the
n−

k−2
2 term. Therefore,

lim sup
n→∞

√
nDmeb2

n (86)

⩽ lim sup
n→∞

log(d/α) + λmax

(∑n
i=1

1
2

(√
2 log(d/α)
nvi−1

)2
(Xi −Xi−1)

2

)
1
n

∑n
i=1

√
2 log(d/α)
vi−1

(87)

= lim sup
n→∞

√
log(d/α)

2

(
1 + λmax

(
1
n

∑n
i=1

(Xi−Xi−1)
2

vi−1

))
1
n

∑n
i=1 v

−1/2
i−1

(88)

=
√
2 log(d/α)∥V∥. (89)

Similarly, one can show that lim infn→∞
√
nDmeb2

n ⩾
√
2 log(d/α)∥V∥, concluding the proof. We

remark that the proof above strengthens that of Waudby-Smith and Ramdas [2023, Lemmas 4-8].

B Additional Concentration Inequalities

B.1 Remarks on the Scalar (1) and Matrix (5) Bennett-Bernstein Inequalities

Non-empirical Bernstein inequalities are typically stated in terms of the upper bound of the tail
probability P(Sn − ESn ⩾ t). These are derived via Bennett-type inequalities via controlling the
function

h(u) = (1 + u) log(1 + u)− u
(∗)
⩾

u2

2(1 + u/3)
. (90)

We, for statistical purposes however, are interested in deviation bounds under a fixed error probability
α. The Bennett-to-Bernstein conversion (*) is looser than the following inequality.

Lemma B.1. For all x ⩾ 0, h−1(x) ⩽
√
2x+ x/3.

A proof of this polynomial upper bound on h−1 can be found from Equation (45) onwards in Audibert
et al. [2009]. Tropp [2012, Theorem 6.1] first states a matrix Bennett bound in terms of the h function,
then uses (*) to obtain a closed-formed matrix Bernstein bound, both controlling the tail probability
P(λmax(Sn −ESn) ⩾ t). Let us use Lemma B.1 to recover a fixed-error α bound whose tightness is
between the matrix Bennett and the matrix Bernstein, which we already recorded in the paper as (5).

Proposition B.2 (Matrix Bennett-Bernstein inequality (5)). Let Xn be the sample average of inde-
pendent d× d symmetric matrices X1, . . . ,Xn with common mean EXi = M, common eigenvalue
upper bound λmax(Xi) ⩽ B, and

∑n
i=1 EX2

i ⪯ nV. For any α > 0

P

(
λmax

(
Xn −M

)
⩾
B log(d/α)

3n
+

√
2 log(d/α)∥V∥

n

)
⩽ α. (91)

Proof. Due to Tropp [2012, Equation (i) in Proof of Theorem 6.1],

P
[
λmax

(
Xn −M

)
⩾ t
]
⩽ d · exp

(
−nλmax(V)

B2
· h
(

Bt

λmax(V)

))
. (92)

Setting the right hand side as α, we obtain via Lemma B.1

t =
λmax(V)

B
h−1

(
log(d/α)B2

nλmax(V)

)
⩽
λmax(V)

B

(√
2 log(d/α)B2

nλmax(V)
+

log(d/α)B2

3nλmax(V)

)
, (93)

which readily leads to the bound (5)

P

(
λmax

(
Xn −M

)
⩾
B log(d/α)

3n
+

√
2 log(d/α)λmax(V)

n

)
⩽ α. (94)

We also remark that the scalar case (1) is when d = 1.
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B.2 Sharp Maurer-Pontil Inequality

Maurer and Pontil [2009, Theorem 4] derived a scalar empirical Bernstein inequality which we quote
as (2), by a union bound between a scalar Bennett-Bernstein inequality and a tail bound on the sample
variance. However, their balanced union bound split α = α/2 + α/2 leads to the looser log(2/α)
term. This causes the confidence interval to be 10.9675% longer when α = 0.05 in the large sample
limit. We slightly modify their proof below to obtain a sharp EB inequality for scalars.
Proposition B.3. Let X1, . . . , Xn be [0, 1]-bounded independent random scalars with common mean
µ and variance σ2. We denote by Xn their sample average and σ̂2

n the Bessel-corrected sample
variance. Then, for any α ∈ (0, 1), P

(
Xn − µ ⩾ ρn

)
⩽ α, where

ρn =
log n

(n−1)α

3n
+

√
2σ̂2

n log
n

(n−1)α

n
+ 2

√√√√(log n
(n−1)α

) (
log n

α

)
n(n− 1)

. (95)

Further, with i.i.d. X1, . . . , Xn,

lim
n→∞

√
nρn =

√
2σ2 log(1/α), almost surely. (96)

Proof. By Bennett-Bernstein inequality (1),

P

(
Xn − µ ⩾

log(1/α)

3n
+

√
2σ2 log(1/α)

n

)
⩽ α. (97)

The deviation of σ̂2
n from σ2 is controlled by a self-bounding concentration inequality [Maurer and

Pontil, 2009, Theorem 7],

P

(
σ − σ̂n ⩾

√
2 log(1/α)

n− 1

)
⩽ α. (98)

The desired bound thus follows from an α = α(n− 1)/n+ α/n union bound.

Sample Size (n) Original MP Sharp MP Self-normalized
100 2.120 2.256 1.527

1,000 1.441 1.476 1.081
10,000 1.214 1.169 1.017

100,000 1.144 1.059 1.005
1,000,000 1.121 1.021 1.002

Table 2: Lengths of 95% one-sided confidence intervals of three empirical Bernstein inequalities
divided by that of the (oracle) Bennett-Bernstein inequality (1). “Original MP” stands for the result
of Maurer and Pontil [2009, Theorem 4]; “Sharp MP” our sharpened result Proposition B.3; and
“Self-normalized” the result by Waudby-Smith and Ramdas [2023, Theorem 2, Remark 1].

As can be seen from the simulation with Unif [0,1]-distributed random variables displayed in Table 2,
our sharpened EB inequality leads to significant improvement for large samples. Still, the EB
inequality based on the self-normalized technique by Howard et al. [2021], Waudby-Smith and
Ramdas [2023] has a much smaller gap compared to the oracle Bernstein inequality.

B.3 First Matrix EB Inequality with the Classical Sample Variance

Recall in Section 3 we proved the first matrix EB inequality by applying the matrix Bennett-Bernstein
inequality (5) twice, once on the sample average and once on the paired sample variance V∗

n. The
latter step differs from the scalar result by Maurer and Pontil [2009] which uses a self-bounding
technique on the classical Bessel-corrected sample variance. Intuitively however, the classical matrix
Bessel-corrected sample variance for X1, . . . ,Xn

V̂n =
1

n(n− 1)

∑
1⩽i<j⩽n

(Xi −Xj)
2, (99)
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should have a better convergence rate to the population variance V than V∗
n as a full U-statistic. This

fact is captured by the self-bounding concentration inequality Maurer and Pontil [2009] employ in
the scalar case. For matrices, however, the best analysis of V̂n we are aware of comes from the
Efron-Stein technique due to Paulin et al. [2016], which leads to the following variant of Theorem 3.1.
Theorem B.4 (First matrix empirical Bernstein inequality, classical sample variance). Let
X1, . . . ,Xn be S [0,1]

d -valued independent random matrices with common mean M and variance V.
We denote by Xn their sample average and V̂n the Bessel-corrected sample variance. Then, for any
α ∈ (0, 1),

P
(
λmax

(
Xn −M

)
⩾ Dmeb1c

n

)
⩽ α, (100)

where

Dmeb1c
n =

√
2 log nd

(n−1)α

n

(
∥V̂n∥1/2 +

√
log(2nd/α)

2n∥V̂n∥
∧
(
2 log(2nd/α)

n

)1/4
)

+
log nd

(n−1)α

3n
. (101)

Further, if X1, . . . ,Xn are i.i.d.,

lim
n→∞

√
nDmeb1c

n =
√
2 log(d/α)∥V∥, almost surely. (102)

Proof. We view the classical sample variance V̂n ∈ S [0,1]
d as a bounded matrix function of indepen-

dent variables X1, . . . ,Xn. Let V̂j
n be the sample variance by replacing Xj with an i.i.d. copy X′

j .
The Efron-Stein variance proxy of V̂n satisfies

1

2

n∑
j=1

E[(V̂n − V̂j
n)

2|X1, . . . ,Xn] ⪯
1

2n
I, (103)

which can be noted from the fact that each V̂n − V̂j
n ∈ S [−1/n,1/n]

d . We now invoke the Efron-Stein
tail bound, Corollary 5.1 from Paulin et al. [2016] to see that for any t > 0,

P(| ∥V∥ − ∥V̂n∥ | ⩾ t) ⩽ P(∥V − V̂n∥ ⩾ t) ⩽ 2d exp

(
−nt2

2

)
. (104)

Setting the right hand side to α, we obtain, with probability at least 1− α,

| ∥V∥ − ∥V̂n∥ | <
√

2 log(2d/α)

n
, (105)

which, due to Lemma A.1, implies that

∥V∥1/2 < ∥V̂n∥1/2 +

√
log(2d/α)

2n∥V̂n∥
∧
(
2 log(2d/α)

n

)1/4

. (106)

Integrating the inequality above into the matrix Bennett-Bernstein inequality (5) via an α = α(n−
1)/n+ α/n union bound concludes the proof. The asymptotics (102) follows simply from the strong
consistency of the sample variance and the continuity of the spectral norm.

We extend the previous simulation shown in Table 1 with this additional matrix EB inequality. As
can be seen from Table 3, using the sample variance leads to a slightly larger confidence set despite
the asymptotics (102) still being sharp. We leave it to future work whether an improved analysis of
the classical matrix sample variance better than (105) can lead to a Maurer-Pontil-style matrix EB
inequality that beats Theorem 3.1.

C Other Scalar EB Inequalities

A wealth of scalar empirical Bernstein inequalities exists in the learning theory literature, especially
under the PAC-Bayes [Alquier, 2024] setup. These are concentration inequalities on the poste-
rior expected deviation, valid simultaneously over all posterior distributions. We provide a brief
bibliographical remark in this section.
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Sample Size (n) Dmeb1
n /Dtb

n Dmeb1c
n /Dtb

n Dmeb2
n /Dtb

n

100 2.612 3.057 1.397
1,000 1.589 1.874 1.105

10,000 1.214 1.313 1.022
100,000 1.072 1.109 1.007

1,000,000 1.024 1.037 1.002
Table 3: Relative lengths of 95% one-sided confidence sets by three sharp matrix empirical Bernstein
inequalities compared to the (oracle) matrix Bennett-Bernstein inequality (5). This table includes an
additional column for Dmeb1c

n on top of Table 1.

A PAC-Bayes EB inequality was proved by Tolstikhin and Seldin [2013] using a technique comparable
to Audibert et al. [2009], Maurer and Pontil [2009]: they used a union bound to combine an
oracle Bernstein-style PAC-Bayes bound and a sample variance PAC-Bayes bound. When taking
a degenerate parameter space (i.e. singleton prior and posterior distributions), one recovers an
EB inequality for [0, 1]-bounded i.i.d. random variables, with a larger constant on the n−1/2 term
compared to (2), therefore is not sharp by our standard. An alternative to EB inequalities called
the “un-expected Bernstein inequality” was introduced by Mhammedi et al. [2019], which “together
with the standard Bernstein inequality imply [sic] a version of the empirical Bernstein inequality
with slightly worse factors” [Mhammedi et al., 2019, Appendix G]. A much tighter, time-uniform
PAC-Bayes EB inequality was later proved by Jang et al. [2023, Corollary 4], much similar to
the “betting” technique of Waudby-Smith and Ramdas [2023]. However, no sharp fixed-time EB
inequality was proved by Jang et al. [2023]. A similar PAC-Bayes time-uniform result was obtained
by Mhammedi [2021, Theorem 6], also suffering from non-sharpness when instantiated fixed-time.

We finally quote a recent study by Shekhar and Ramdas [2023] that compares various scalar EB
inequalities via their first- and second-order expansions. They show that a class of betting-driven
confidence intervals, including those proposed by Waudby-Smith and Ramdas [2023] (other than
(3)) and the recent universal portfolio-based bound by Orabona and Jun [2024], have a minimax
optimal rate that outperforms even the sharpness criterion (4) for scalar EB inequalities. However,
these confidence sets are not in closed form, and it remains an open problem (even in the scalar case)
if there are closed-form empirical inequalities that achieve so.
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