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Abstract

As the complexity of machine learning (ML)
model architectures increases, it is important to
understand to what degree simpler and more effi-
cient architectures can align with their complex
counterparts. In this paper, we investigate the de-
gree to which a Message Passing Neural Network
(MPNN) can operate similarly to a Graph Trans-
former. We do this by training an MPNN to align
with the intermediate embeddings of a Relational
Transformer (RT). Throughout this process, we
explore variations of the standard MPNN and as-
sess the impact of different components on the
degree of alignment. Our findings suggest that
an MPNN can align to RT and the most impor-
tant components that affect the alignment are the
MPNN’s permutation invariant aggregation func-
tion, virtual node and layer normalisation.

Code available at: clrs dataset generator 1 and
gnn transformer alignment2

1. Introduction
Graph Neural Networks (GNNs) have emerged as a pow-
erful framework for learning representations in domains
where data can be naturally constructed as graphs. This
includes various applications, from social network analysis
(Li et al., 2023) and recommendation systems (Wu et al.,
2022) to drug discovery (Han et al., 2021). GNNs excel in
these tasks by imposing a relational inductive bias to lever-
age the relationships embedded in the underlying topology.
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Amongst the various GNN architectures, Message Pass-
ing Neural Networks (MPNNs) (Gilmer et al., 2017) are
simple yet powerful models for graph representation learn-
ing, exploiting local connectivity patterns through iterative
message-passing mechanisms.

Alongside the development of MPNNs, the Transformer
(Vaswani et al., 2017) architecture has set new benchmarks
across a range of domains, notably in Natural Language
Processing, by leveraging global self-attention mechanisms
to capture long-range dependencies within sequential data.
To take advantage of the Transformer’s ability to capture
these dependencies within the context of graph-learning,
Dwivedi and Bresson (2021) developed the Graph Trans-
former. This development adapts the Transformer’s global
self-attention mechanism to operate on graphs, enabling the
model to capture local and global relationships within the
data. However, the Graph Transformer introduces increased
complexity, difficulty in training and is computationally
expensive.

Since the development of the Graph Transformer (Dwivedi
and Bresson, 2021), several adaptations and attempts have
been made to improve its performance. This includes the
Relational Transformer (RT) (Diao and Loynd, 2023), with
its primary extension being the inclusion of edges as first-
class model components.

As the complexity of these architectures increases, an im-
portant research question arises: to what extent can simpler
models operate in the same way as their more complex
counterparts? Therefore, this project aims to investigate
the extent to which the MPNN and its variants can imitate
a Graph Transformer (RT). More specifically, we strive to
answer the following questions:

1. Can we train an MPNN and its variants through gra-
dient descent to learn the intermediate embeddings of
the Transformer?

2. What components of an MPNN are the most important
for aligning to the Transformer’s embedding space?

3. How do the MPNN variants perform in and out-of-
distribution (OOD) in terms of embedding alignment
and from a model distillation (Hinton et al., 2015)
perspective?

1

https://github.com/anjana-yodaiken/clrs_dataset_generator
https://github.com/baon6052/gnn_transformer_alignment
https://github.com/anjana-yodaiken/clrs_dataset_generator
https://github.com/baon6052/gnn_transformer_alignment


Alignment of MPNNs and Graph Transformers

2. Background & Related Works
2.1. Message Passing Neural Networks

Within the context of molecular chemistry, many models
existed that incorporated some form of message-passing and
could be described by a unifying framework. Through their
abstraction of the most promising commonalities from these
message-passing models, Gilmer et al. (2017) proposed the
MPNN as a general framework for graph-based learning.
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Where ϕ is a message passing function;
⊕

is a permutation-
invariant aggregation function, such as sum, mean or max,
which aggregates all messages coming to node i from its
neighbourhood Ni. ψ is a readout function that computes
the message from node j to node i. Commonly, both ϕ and
ψ are multi-layer perceptrons.

Since their introduction, there have been various extensions
and adaptations to the initial implementation of the MPNN.
GraphSAGE (Hamilton et al., 2017) extends the MPNN
framework by introducing a sampling strategy for efficiently
aggregating messages from a node’s neighbours, allowing
it to scale to large graphs. The Graph Attention Network
(GAT) (Veličković et al., 2018) uses an attention mechanism
to weigh messages from a node’s neighbours before aggre-
gating them. This allows each node to focus on the most
relevant messages during the update phase.

2.2. Relational Transformer

The Relational Transformer (RT) (Diao and Loynd, 2023)
extends on the original transformer architecture (Dwivedi
and Bresson, 2021) by introducing directed edge vectors
as first-class model components. Thus, edges are incorpo-
rated into the self-attention mechanism to update the node
representations (see Section 2.2.1).

To avoid the O(N3) complexity associated with self-
attention for edge updates, Diao and Loynd (2023) update
edges using localised edge updates (see Section 2.2.2). This
method enables the model to retain an O(N2) complexity
while enriching the edge representations with information
about its local neighbourhood.

2.2.1. EXTENSION OF RELATIONAL ATTENTION

For a node ni, Diao and Loynd (2023) modify the standard
equation for transformer attention to condition the Query,
Key and Value (QKV) vectors on the node ni, as well as
the directed edge eji between nodes nj and ni. Figure 1
depicts this adaptation to standard transformer attention.

Figure 1: Left to right: 1.) Standard transformer attention:
conditions on node vectors only, 2.) Relational attention:
conditions on node vectors and the intervening edge em-
bedding. Where dn is the node vector size, ai is node i’s
attention, q is the query, k is the key and v is the value.
(Diao and Loynd, 2023)

Equation (2) expresses the conditioning of query (qij), key
(kij), and value (vij) vectors on the edge vector, eji, by
concatenating them with the corresponding node vector, nj ,
before the linear transformation. Diao and Loynd (2023)
reformulate Equation (2) accurately and efficiently in Equa-
tion (3) by decomposing the learned weight matrices, WQ,
WK and WV , into two separate matrices for the edge, We,
and the node, Wn, respectively.

qij = WQ[ni, eji],

kij = WK [nj , eji],

vij = WV [nj , eji]

(2)

qij = (WQ
n ni +WQ

e eji),

kij = (WK
n nj +WK

e eji),

vij = (WV
n nj +WV

e eji)

(3)

2.2.2. LOCALISED EDGE UPDATES

RT introduces a mechanism, called localised edge updates,
to update edge vectors (eji) in each layer, improving the ex-
pressivity of edge embeddings, such that they better describe
the relationship between nodes.

The edge updates restrict the edge’s aggregation function
to consist of its two adjoining nodes, the edge itself and the
directed edge running in the opposite direction. Updating
edges in this way allows RT to retain its O(N2) complexity
while enriching edge representations. This method avoids
edge self-attention’s O(N3) complexity.

Edges are updated as follows:
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where l denotes the attention layer, ϕe is a function that up-
dates the edge vector based on its inputs (see Appendix A).

Remark. Localised edge updates can be seen as a form of
restricted Triplet Edge Processing (Dudzik and Veličković,
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2022). Triplet Edge Processing uses three connected nodes
and the corresponding edges to update the node represen-
tation (Ibarz et al., 2022). Whereas RT’s localised edge
updates use the two connected nodes and the corresponding
edges to update the edge representation.

2.3. MPNN and Transformer Alignment

RTs and MPNNs diverge in their approach to handling re-
lational data. This is primarily due to their structural dif-
ferences. RTs apply fully connected self-attention and lo-
calised edge updates, maintaining O(N2) computational
complexity. On the other hand, MPNNs operating on
sparsely connected graphs typically exhibit lower computa-
tional complexity. However, this complexity is contingent
on the graph’s density. RTs account for long-range depen-
dencies in a single step. In contrast, MPNNs utilise multi-
ple message-passing iterations to handle these long-range
connections effectively. In representation learning, both
MPNNs and RTs strive to distil meaningful and task-relevant
information from data. Where RTs leverage self-attention to
craft context-rich embeddings, MPNNs aggregate features
from local neighbourhoods, possibly over several layers, to
capture broader relational information.

2.3.1. VIRTUAL NODE

Cai et al. (2023), in their paper On the Connection Between
MPNN and Graph Transformer, investigate the alignment of
MPNNs and Graph Transformers. They show that MPNNs,
when augmented with a virtual node (VN) (Gilmer et al.,
2017), can approximate the self-attention mechanism of
Graph Transformers under certain conditions. Specifically,
they illustrate that to approximate a self-attention layer in
Performer/Linear Transformer models, an MPNN + VN
configuration requires only O(1) depth and O(1) width.
For a full approximation of the self-attention mechanism,
MPNN + VN can achieve this with O(N) depth while still
maintaining O(1) width, under specific assumptions about
the input graph’s features.

Rosenbluth et al. (2024) compared Graph Transformers to
MPNNs with VNs. The use of self-attention vs VNs in
their global computation is the primary difference between
the two architectures. They found that in the non-uniform
setting the models with positional encoding implied univer-
sality.

The work of Cai et al. (2023) and Rosenbluth et al. (2024)
motivate our use of VNs as an approximation of the Graph
Transformer’s self-attention mechanism to improve in the
alignment between the two architectures.

2.3.2. ATTENTION

Before attempting to empirically align the embeddings of
the MPNN and RT, it is important to understand to what
extent the two architectures can align theoretically. To the-
oretically assess the alignment between the Transformer
and MPNN architectures, it is helpful to conceptualise the
Transformer’s attention mechanism in terms that allow for
its incorporation into the MPNN equation. A requirement
of the MPNN’s message-passing operation is to observe the
properties of a commutative monoid 3. Veličković (2023)
shows that a Transformer’s attention mechanism can be re-
formulated as a commutative monoid and integrated with
the MPNNs message-passing operation. We can formulate
the Transformer attention as:

yi =
∑
j∈Ni

αjvj =

∑
j∈Ni

(
exp(qTi kj)

)
vj∑

j∈Ni
exp(qTi kj)

(5)

where for a node, ni, vj = Vnj is the value associated
with a neighbouring node, nj , and αj ∈ R is the attention
value resulting from the softmax-normalised dot product of
the query qi = Qni and key kj = Knj . For an incoming
message, the first term would track the numerator in Equa-
tion (5) and the second term would track the denominator
in Equation (5):

mji =
(
vj , exp(q

T
i kj)

)
(6)

Consequently, the commutative monoid that would aggre-
gate messages is defined as:

(y, σ)⊕ (y′, σ′) =

(
yσ + y′σ′

σ + σ′ , σ + σ′
)

(7)

This equation ensures that message aggregation maintains
commutativity and associativity with an identity element
where there are no observed values and no terms to be nor-
malised. Thus, the Transformer equation has been defined
as a commutative monoid and can now be integrated into the
standard MPNN equation as defined in Equation (1). How-
ever, MPNNs equipped with a fixed set of aggregation func-
tions might struggle to emulate this complex commutative
monoid when faced with OOD data. To fix this, Veličković
(2023) suggests incorporating an attention mechanism into
the MPNN framework, i.e. an attentional weighting func-
tion a is introduced to the update rule for node i as seen in
Equation (1):

n
(l+1)
i = ϕ

ni,
⊕
j∈Ni

a(ni,nj)ψ(ni,nj)

 (8)

3A commutative monoid is a set that is closed under a commu-
tative associative binary operation and has an identity element.
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where a : Rk×Rk → R is any attentional mechanism, such
as Transformer or GATv2 (Brody et al., 2022) attention.
Additionally, when this attention framework is coupled with
a virtual node, such a model tends towards architectures such
as Big Bird (Zaheer et al., 2020), which incorporates sparse
attention mechanisms to reduce the quadratic complexity to
linear.

2.3.3. GAT-MPNN

To investigate the effect of attention on the alignment be-
tween an MPNN and RT, we choose a from Equation (8)
to be the GAT (Veličković et al., 2018) attention mecha-
nism. This leads to a normalised attention coefficient for
two adjoining nodes. Furthermore, we extend Equation (8)
to include edge and graph features, resulting in Equation (9).

The un-normalised attention logit for adjoining nodes ni
and nj , aij , is defined in Equation (10). Wn and We are
learnable weight matrices for the set of node and edge vec-
tors, respectively. Similar to GAT (Veličković et al., 2018),
we perform masked attention such that we only compute
aij if and only if j ∈ Ni. Equation (11) shows the normali-
sation of the attention logit, aij , by applying Softmax and
LeakyReLU non-linearity (with negative slope α = 0.2).

n
(l+1)
i = ϕ

ni,
⊕
j∈Ni

a(ni,nj , eij , eji, g)ψ(ni,nj , eij , eji, g)


(9)

aij = concat(Wnni,Wnnj ,Weeij ,Weeji,Wgg) (10)

a(ni,nj , eij , eji,g) =
exp(LeakyReLU(aij))∑

k∈Ni
exp(LeakyReLU(aik))

(11)

3. Dataset Overview
Our experiments made use of the CLRS Algorithmic Rea-
soning Benchmark (Veličković et al., 2022). The CLRS
Algorithmic Reasoning Benchmark is designed to assess
machine learning models’ ability to understand and exe-
cute fundamental algorithms. It includes 30 algorithms
grouped into eight categories: sorting, searching, dynamic
programming, greedy, strings, divide and conquer, graphs
and geometry.

The specific algorithm we selected for this task was Jarvis’
March. Jarvis’ March forms part of the geometry category.
The details of the algorithm can be found in Appendix B.

The CLRS benchmark is designed to test the OOD gener-
alisation of neural networks (NNs). In the case of Jarvis’
March, the benchmark creates test, validation and train sets

with the configurations seen in Table 1. As shown in the
table, test set is made up of notably larger graphs, allowing
for the model of interest to be tested OOD.

Table 1: Jarvis’ March Dataset Description (Veličković
et al., 2022)

Dataset Trajectories Number of Nodes

Train 1000 16
Validation 32 16
Test 32 64

4. Methodology
Our methodology for aligning an MPNN with RT is as
follows:

1. Train RT to perform algorithmic reasoning on Jarvis’
March.

2. Freeze RT and curate a dataset of embeddings consist-
ing of the inputs to RT and the corresponding generated
output embeddings from each layer.

3. Train the MPNN and its variants to minimise the Mean
Squared Error (MSE) between its and RT’s embed-
dings.

4. Determine the degree of alignment between RT and
the MPNN variants in-distribution and OOD by (1)
measuring the MSE between the embeddings of the
trained MPNN variants and the embeddings of RT and
(2) taking a model distillation perspective, measuring
the MPNN variant’s performance on Jarvis’ March.

4.1. Training the Relational Transformer

We train RT, as the best-performing Transformer model
evaluated on The CLRS Algorithmic Reasoning Benchmark
(Veličković et al., 2022) at the time, to execute the Jarvis’
March (Jarvis, 1973) algorithm. The implementation from
Diao and Loynd (2023) 4 was used to instantiate and train
RT. Additionally, we enable the attention mechanism for
the graph features. Graph feature attention is described
in Equation (12). Subsequently, we incorporate the graph
feature attention in Equation (3), resulting in Equation (13).

qg = WQ
g g, kg = WK

g g, vg = WV
g g (12)

qij = (WQ
n ni +WQ

e eji +WQ
g g),

kij = (WK
n nj +WK

e eji +WK
g g),

vij = (WV
n nj +WV

e eji +WV
g g)

(13)

4https://github.com/CameronDiao/relational-transformer
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Encoder RT Decoder

Encoder RT Decoder

MPNN

Embeddings
Dataset

1. Train Relational Transformer on CLRS
2. Create Embeddings Dataset

3. Train MPNN To Align With Embeddings

Embeddings
Dataset

4. Evaluate MPNN
MSE

CLRS Task: Encoder MPNN Decoder

Figure 2: Alignment Pipeline. Each MPNN variant is trained to align with the intermediate embeddings of RT. Evaluation is
then performed on an embeddings test set and the CLRS Task. x, e and g are the node, edge and graph features respectively.

We train RT for 5k optimisation steps and save the best
model based on the validation loss. We use the default
hyperparameters provided by Diao and Loynd (2023). This
results in RT with three hidden layers, where each layer
incorporates relational attention with 12 attention heads,
with an attention head dimension size of 16 and a hidden
dimension size of 192 between layers. We optimise RT with
Adam (Kingma and Ba, 2017) with a learning rate of 2.5e−4.
We ran all experiment configurations three times using three
different seeds.

4.2. Curating the Embeddings Dataset

Keeping the same settings provided by Diao and Loynd
(2023) and using the same CLRS train, validation and test
splits in Section 4.1, we curate an embeddings dataset. The
dataset consists of 10k train, 32 validation and 32 test sam-
ples. The code 4 from Diao and Loynd (2023) was modified
to save the input and intermediate embeddings of RT. The
inputs to RT consist of the adjacency matrix and the node,
edge and graph features. The outputs from RT consist of the
node and edge embeddings outputted from every RT layer.

4.3. Training MPNN Variants

We train the MPNN variants to minimise the MSE between
their embeddings and the trained RT embeddings for each
layer. The MSE loss for the node and edge embeddings
can be seen in Equations (14) and (15) respectively. The
combined loss can be seen in Equation (16). The settings of
the MPNN can be seen in Table 2.

Lnodes =
1

N

L∑
l=1

||Xl
MPNN −Xl

RT||22 (14)

Ledges =
1

N2

L∑
l=1

||ElMPNN −ElRT||22 (15)

L = Lnodes + Ledges (16)

Where X ∈ RN×f denotes the matrix of node features, and
N and f are the number of nodes and features respectively.
E ∈ RN2×f is the matrix of the edge features. L refers to
the number of layers.

We perform experiments using a combination of all set-
tings shown in Table 2. Using the best settings, which
included layer normalisation 5, we train with 3 GAT-like
attention heads. Additionally, we run experiments with a
mid-dimension of 256 on the MPNN to determine whether
over-parametrisation would improve alignment to RT. The
mid-dimension of 256 is downsampled to match RTs hidden
dimension of 192 using an MLP before being returned from
a layer. We ran all experiment configurations three times
with three different seeds and presented their results as a
mean and standard deviation. We optimise each MPNN
with Adam (Kingma and Ba, 2017) and use a learning rate
of 0.001.

5As discussed in Section 5.5, we found that layer normalisation
played an important role alignment.
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Table 2: Variations of MPNN

Feature Possible values

Virtual Node (VN) True, False

Layer Normalisation (LN) True, False

Mid Dimension 192, 256

Aggregation Function sum, max

Localised Edge Updates (LEU) True, False

4.4. Testing and Validation

We measure the MSE between the trained MPNN and RT
embeddings on the validation and test sets. Additionally,
we take a model distillation perspective and evaluate the
MPNN variants, trained to minimise the MSE between em-
beddings, on Jarvis’ March. However, one should note that
the structure of the models evaluated on the CLRS bench-
mark consists of an encoder, processor and decoder. RT
and the MPNN variants are instances of the processor. This
paper aims to align the MPNN and RT, as the encoder and
decoder were not part of the alignment process. Subse-
quently, the aligned MPNN used the trained RT model’s
encoder and decoder for this part of the evaluation.

5. Results & Discussion
In the following sections, we present the MSE losses for the
MPNN trained on the embeddings dataset and the results of
our distilled MPNN on Jarvis’ March.

5.1. MPNN Alignment Based on MSE

Our initial approach was to train all MPNN variants on
datasets created by trained RT with and without edge up-
dates. However, the MPNN variant’s losses did not differ
significantly between these two conditions. Consequently,
we only evaluated MPNNs on Jarvis’ March, where RT per-
formed edge updates. However, one can find the losses for
the best-performing MPNN variants trained on RT without
edge updates in Table 6.

For each MPNN variant, the aggregation function and the
mid-dimension that yielded the best results based on valida-
tion loss are presented in Table 3. Table 7 shows the losses
for all MPNN variants trained on RT with edge updates.

The results in Table 7 show that the test loss is consistently
lower than both the training and validation losses in all
cases. This occurs because the test embeddings are not
OOD, unlike in the original CLRS task. This observation is
confirmed by the poorer test set performance compared to
the train and validation set performance on Jarvis’ March, as

shown in Table 4. These results are discussed in Section 5.9.

To visualise the alignment, Figure 3 illustrates the distribu-
tion of embeddings of the best performing MPNN variant
(boldfaced in Table 3) compared to RT’s for a randomly sam-
pled batch. This visually shows the high degree of alignment
between the MPNN’s and RT’s embedding distributions.

Furthermore, Table 3 shows the best-performing MPNN
variants with GAT-like attention added. The results show
that incorporating GAT-like attention does not yield signifi-
cant alignment improvements in regard to the MSE loss.

5.2. MPNN Alignment Based on Jarvis’ March

Following the training of all MPNN variants on the embed-
dings dataset, we evaluate each model on Jarvis’ March
as described in Section 4.4. We note that each MPNN
variant was not directly trained to solve Jarvis’ March but
rather to align to the intermediate embeddings of RT. Thus,
this experiment provides a more nuanced meaning to the
alignment of the embeddings of the MPNN variants and
RT. MSE measures how well the intermediate embeddings
align, whilst performance on Jarvis’ March describes how
well each variant indirectly learns to solve the task. In addi-
tion, the MPNN variants adopt the trained RT’s encoder and
decoder from the CLRS pipeline. This is a much stricter
setting in that minimal misalignment could result in poorer
performance on the task.

For each MPNN variant, the aggregation function and the
mid-dimension that yielded the best results are presented
in Table 4. The table shows that the performance on Jarvis’
March does not reflect the performance in terms of MSE,
i.e. the performance on the task is significantly reduced
compared to the trained RT performance. This suggests
that embedding alignment does not necessarily translate to
comparable performance on Jarvis’ March.

In contrast to the test performance in terms of MSE shown
in Table 3, where the test loss is lower than both the training
and validation losses, the OOD test set performance on
Jarvis’ March follows a more typical pattern. Table 4 shows
the test CLRS score is lower than the training and validation
scores. This indicates that the MPNN struggles to perform
effectively on the task itself when tested OOD.

5.3. Localised Edge Updates

As shown in Table 3, MPNN variants that perform localised
edge updates (LEU) have a lower MSE loss than those that
do not. This is expected as RT performs LEU. However,
this performance gain does not hold true in our secondary
experiment, where we evaluate the trained MPNNs on Jarvis’
March. This again shows that a higher degree of alignment
between the embeddings is not indicative of performance
on the proxy task, as described in Section 5.2.
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Table 3: MSE loss of best performing MPNN variants trained on RT embeddings.

Model Name Agg Func Mid Dim Train Loss Val Loss Test Loss

MPNN max 256 0.452± 0.000 0.489± 0.001 0.349± 0.000
MPNN + LN max 256 0.405± 0.000 0.452± 0.000 0.301± 0.001
MPNN + VN max 256 0.379± 0.003 0.402± 0.008 0.296± 0.001
MPNN + LEU max 256 0.183± 0.000 0.261± 0.001 0.125± 0.004
MPNN + LN + VN max 256 0.347± 0.000 0.362± 0.001 0.275± 0.001
MPNN + LN + LEU max 192 0.151± 0.000 0.230± 0.000 0.118± 0.001
MPNN + VN + LEU max 192 0.195± 0.147 0.172± 0.064 0.078± 0.000
MPNN + LN + VN + LEU max 256 0.070± 0.001 0.100± 0.003 0.057± 0.000

MPNN + LN + ATT max 256 0.405± 0.000 0.452± 0.000 0.302± 0.000
MPNN + LN + VN + ATT max 256 0.347± 0.000 0.361± 0.001 0.273± 0.001
MPNN + LN + LEU + ATT max 192 0.151± 0.000 0.231± 0.000 0.118± 0.001
MPNN + LN + VN + LEU + ATT max 256 0.073± 0.006 0.106± 0.002 0.057± 0.004

Table 4: CLRS Score of best performing MPNN variants trained on RT embeddings performance on Jarvis’ March.
MPNNs were not trained on Jarvis’ March; instead, they were trained to align to the intermediate embeddings of RT. Scores
are from inference performed on each dataset.

Model Name Agg Function Mid Dim Train Score (%) Val Score (%) Test Score (%)

RT - - 96.74± 1.50 98.21± 0.11 84.43± 3.42

MPNN max 192 58.39± 0.35 57.97± 0.77 32.82± 0.09
MPNN + LN sum 256 49.43± 0.01 51.37± 0.82 30.56± 0.24
MPNN + VN max 192 59.24± 4.05 58.59± 4.81 33.05± 0.22
MPNN + LEU max 256 46.62± 1.84 46.78± 2.57 33.73± 2.40
MPNN + LN + VN sum 256 47.70± 0.48 47.47± 1.45 29.49± 0.62
MPNN + LN + LEU sum 192 48.24± 0.35 46.84± 0.83 30.47± 0.34
MPNN + VN + LEU max 192 62.66± 1.37 62.07± 1.44 34.21± 0.91
MPNN + LN + VN + LEU sum 256 49.34± 1.98 50.61± 2.19 31.66± 1.62

MPNN + LN + ATT max 256 40.53± 4.19 42.81± 3.20 28.87± 0.64
MPNN + LN + VN + ATT max 256 42.59± 2.11 41.90± 3.24 29.28± 1.65
MPNN + LN + LEU + ATT max 192 45.47± 1.09 46.17± 0.03 29.35± 0.20
MPNN + LN + VN + LEU + ATT max 256 45.31± 1.46 44.88± 2.04 30.73± 0.04

To further illustrate the effect of LEUs, Figure 4 shows the
heatmaps of the input node and edge features as well as the
output edge features processed with and without LEU. The
plot shows that with LEUs the processed edge embeddings
are more expressive. Whereas, without edge updates the
embeddings retain their original value.

5.4. Virtual Node

Table 7 shows that an MPNN with VN results in better
MSE performance. This holds true for most experiments,
reflecting the findings of Cai et al. (2023).

5.5. Layer Normalisation

All MPNN variants with layer normalisation show an im-
proved validation and test loss when compared to their equiv-
alent without layer normalisation. This result is expected as
the RT model layer normalises the updated node features as
the final operation in each layer. Thus, performing normali-
sation in the same way results in a better alignment between
the MPNN and RT.

5.6. Attention

Adding GAT-like attention to our best-performing MPNN
variants, in most cases, does not result in better alignment
in terms of MSE. This result is surprising and suggests that
equipping an MPNN with an attention mechanism on the

7
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Figure 3: MPNN + LN + VN + LEU. Randomly sampled MPNN test set embeddings trained to align with RT embeddings.

0 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

Feature

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

N
od

e

Input Node Embeddings

0 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

Feature

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

N
od

e

Input Edge Embeddings

0 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

Feature

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

N
od

e

Not Processed Edge Embeddings

0 12 24 36 48 60 72 84 96 10
8

12
0

13
2

14
4

15
6

16
8

18
0

Feature

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

N
od

e

Processed Edge Embeddings

6

4

2

0

2

4

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

3

2

1

0

1

2

3

Figure 4: Embedding heatmaps. Left to right: 1) Input node features, 2) Input edge features, 3) Not processed edge
embeddings 4) Processed edge embeddings.

task of aligning embeddings does not significantly improve
its performance. However, a more thorough investigation,
including the use of multiple heads and different attention
mechanisms, would be needed to draw a meaningful con-
clusion on this result.

5.7. Mid Dimension & Over-Parametarisation

In order to investigate the effect of over-parametrisation
on the task, the size of the mid-dimension was increased
from 192 to 256. The majority of the experiments showed
that there was no significant difference in performance be-
tween a specific MPNN variant that had a mid-dimension
of 192 compared to 256. However, the MPNN variants
with a mid-dimension of 256 often outperformed the 192
mid-dimension version of this model by ≈ 0.001. For this
reason, they appear more frequently in Table 3.

5.8. Aggregation Function

Notably, MPNNs using max outperform those with sum in
terms of MSE. This suggests that the max function may
better capture relational features observed by RT for al-
gorithmic reasoning tasks. This observation is consistent
with prior research by Veličković et al. (2020) and Xu et al.
(2020), indicating the improved performance of max aggre-
gation in algorithmic reasoning tasks.

5.9. Out-of-Distribution Performance

Our results indicate that the OOD performance of the
MPNN, i.e. the MSE performance on the test set, is bet-
ter than in-distribution (train and validation). This is both
unintuitive and contrary to the findings of Veličković et al.
(2022), where they show MPNNs cannot achieve perfor-
mance comparable with the training dataset on four times

8
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larger graphs. However, in this case the MPNN is not di-
rectly trained on Jarvis’ March. Instead, it uses the inputs to
the processor (RT) of the CLRS benchmark and is trained
to produce the same embeddings as RT. As a result of the
transformation of the problem, the test set lies in the same
distribution as the training and validation sets. Figures 3, 5
and 6 shows visual evidence of this. The plots show that for
a given random sample, the distributions of the embeddings
in the dataset between all splits (train, validation and test)
are all within the range of x ≈ −5 to 5 and follow a normal
distribution.

6. Future Works
In the future, we would like to perform more exhaustive
experiments to determine how much further we can align
MPNNs and RT. This would include investigating more
permutation invariant aggregation functions, such as mean
and more settings of GAT-like attention, e.g. increasing the
number of attention heads. Furthermore, we would inves-
tigate different forms of attention, such as the traditional
transformer QKV method. We could extend our evaluations
on Jarvis’ March, and measure the number of fine-tuning
optimisation steps needed for an MPNN to better align with
RT. Additionally, the experiments could be performed on
other tasks such as node or graph level tasks to ensure the
reproduction of findings in these settings.

7. Conclusion
We have shown that we can align an MPNN with RT by train-
ing MPNN variants to produce embeddings that minimise
the MSE between its embeddings and RT’s. Subsequently,
we illustrated the effect of various components, such as the
virtual node, layer normalisation and attention on alignment,
by exhaustively training MPNNs with all permutations of
these components.

We indicate the three most important components are the
aggregation function, the virtual node and layer normal-
isation. Our results show that MPNN variants equipped
with a virtual node, the max aggregation function and layer
normalisation aligned best with RT.

Based on our results, the MPNN was able to perform better
on the “OOD” test set than the “in-distribution” validation
and train sets. We determined through visualisation that the
test set was in-distribution in the embeddings dataset and
this resulted in the improved performance.

Evaluating the aligned MPNNs on Jarvis’ March allowed
us to interpret the alignment of the MPNN and RT from
a model distillation perspective. However, this is a much
stricter setting, where minimal misalignment would result
in poor performance due to adopting RT’s trained encoder

and decoder. This showed that although the MPNNs con-
verged to a low MSE, indicating strong alignment, this did
not necessarily translate to comparable performance on the
proxy task.
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Petar Veličković. Mpnn alignment monoids. Tweet, 2023.
Twitter post.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are
graph attention networks? In International Conference
on Learning Representations, 2022.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip

Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr
Ahmed. Big bird: Transformers for longer sequences.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Pro-
cessing Systems, volume 33, pages 17283–17297. Curran
Associates, Inc., 2020.
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A. Localised edge updates in RT
The process for calculating the edge updates described by
the edge update function, ϕe, can be seen in Equations (17)
to (19).

mlij = ReLU
(
W4

(
concat

(
e
(l)
ij , e

(l)
ji ,n

(l+1)
i ,n

(l+1)
j

)))
(17)

where e
(l)
ji is the edge vector from node j to node i at layer

l, n(l+1)
i and n

(l+1)
j are the updated node vectors after self-

attention at layer l + 1, W4 ∈ R(2de+2dn)×deh1 is a weight
matrix that transforms the concatenated vector into a hidden
representation, where de is the dimension of the edge vector,
dn is the dimension of the node vector, and deh1 is the size
of the hidden layer and mlij is the aggregated message for
the edge eji at layer l.
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ulij = LayerNorm
(
W5mlij + e

(l)
ji

)
(18)

e
(l+1)
ji = LayerNorm

(
ReLU

(
W7

(
W6ulij

))
+ ulij

)
(19)

where W5 ∈ Rdeh1×de , W6 ∈ Rde×deh2 , W7 ∈ Rdeh2×de

are the weight matrices for the feed-forward network within
the edge update mechanism, with deh2 being the size of the
second hidden layer, ulij is the intermediate update vector
for the edge eji at layer l and e

(l+1)
ji is the updated edge

vector after applying the edge update function.

B. Jarvis’ March
Jarvis’ March is used to find the convex hull in a set of
points. The algorithm starts at the leftmost point, which is
part of the convex hull, and iteratively selects the point that
makes the most counter-clockwise turn with respect to the
previous point. This process continues until the algorithm
returns to the starting point, which completes the convex
hull. (Jarvis, 1973)

C. Extended results
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Table 5: Number of model parameters for MPNN variants

Model Mid Dim Number of Parameters

RT - 4,131,034

MPNN 192 1,037,184
MPNN 256 1,259,136
MPNN + LN 192 1,038,336
MPNN + LN 256 1,260,288
MPNN + VN 192 1,037,184
MPNN + VN 256 1,259,136
MPNN + LEU 192 1,105,224
MPNN + LEU 256 1,340,616
MPNN + LN + VN 192 1,038,336
MPNN + LN + VN 256 1,260,288
MPNN + LN + LEU 192 1,106,376
MPNN + LN + LEU 256 1,341,768
MPNN + VN + LEU 192 1,105,224
MPNN + VN + LEU 256 1,340,616
MPNN + LN + VN + LEU 192 1,106,376
MPNN + LN + VN + LEU 256 1,341,768
MPNN + ATT 192 1,044,132
MPNN + ATT 256 1,266,084
MPNN + LN + ATT 192 1,045,284
MPNN + LN + ATT 256 1,267,236
MPNN + VN + ATT 192 1,044,132
MPNN + VN + ATT 256 1,266,084
MPNN + LEU + ATT 192 1,112,172
MPNN + LEU + ATT 256 1,347,564
MPNN + LN + VN + ATT 192 1,045,284
MPNN + LN + VN + ATT 256 1,267,236
MPNN + LN + LEU + ATT 192 1,113,324
MPNN + LN + LEU + ATT 256 1,348,716
MPNN + VN + LEU + ATT 192 1,112,172
MPNN + VN + LEU + ATT 256 1,347,564
MPNN + LN + VN + LEU + ATT 192 1,113,324
MPNN + LN + VN + LEU + ATT 256 1,348,716

Table 6: Best-performing MPNN variants trained on RT embeddings without LEU

Model Name Agg Func Mid Dim Train Loss Val Loss Test Loss

MPNN max 192 0.134± 0.000 0.147± 0.000 0.095± 0.001
MPNN + LN max 256 0.091± 0.000 0.110± 0.000 0.055± 0.001
MPNN + VN max 192 0.091± 0.031 0.086± 0.018 0.055± 0.000
MPNN + LEU max 192 0.112± 0.000 0.126± 0.000 0.162± 0.011
MPNN + LN + VN max 256 0.044± 0.000 0.052± 0.001 0.032± 0.001
MPNN + LN + LEU max 256 0.088± 0.000 0.106± 0.000 0.141± 0.001
MPNN + VN + LEU max 192 0.057± 0.000 0.060± 0.001 0.051± 0.003
MPNN + LN + VN + LEU max 256 0.038± 0.000 0.046± 0.001 0.028± 0.000
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Table 7: Full experiments table MPNN variants trained on RT embeddings with LEU - MSE Loss.

Model Name Agg Func Mid Dim Train Loss Val Loss Test Loss

MPNN sum 192 0.477± 0.002 0.508± 0.000 0.368± 0.001
MPNN max 192 0.451± 0.001 0.490± 0.003 0.350± 0.002
MPNN sum 256 0.479± 0.000 0.509± 0.001 0.368± 0.002
MPNN max 256 0.452± 0.000 0.489± 0.001 0.349± 0.000
MPNN + LN sum 192 0.412± 0.000 0.464± 0.001 0.298± 0.001
MPNN + LN max 192 0.406± 0.002 0.453± 0.002 0.302± 0.003
MPNN + LN sum 256 0.412± 0.000 0.464± 0.000 0.299± 0.000
MPNN + LN max 256 0.405± 0.000 0.452± 0.000 0.301± 0.001
MPNN + VN sum 192 0.487± 0.001 0.488± 0.000 0.317± 0.001
MPNN + VN max 192 0.422± 0.001 0.415± 0.002 0.297± 0.001
MPNN + VN sum 256 0.488± 0.002 0.488± 0.003 0.318± 0.001
MPNN + VN max 256 0.379± 0.003 0.402± 0.008 0.296± 0.001
MPNN + LEU sum 192 0.195± 0.001 0.273± 0.001 0.130± 0.003
MPNN + LEU max 192 0.183± 0.000 0.263± 0.003 0.126± 0.003
MPNN + LEU sum 256 0.199± 0.003 0.279± 0.001 0.133± 0.002
MPNN + LEU max 256 0.183± 0.000 0.261± 0.001 0.125± 0.004
MPNN + LN + VN sum 192 0.400± 0.002 0.443± 0.002 0.288± 0.002
MPNN + LN + VN max 192 0.347± 0.000 0.362± 0.001 0.272± 0.001
MPNN + LN + VN sum 256 0.400± 0.000 0.442± 0.000 0.288± 0.000
MPNN + LN + VN max 256 0.347± 0.000 0.362± 0.001 0.275± 0.001
MPNN + LN + LEU sum 192 0.161± 0.001 0.246± 0.001 0.114± 0.001
MPNN + LN + LEU max 192 0.151± 0.000 0.230± 0.000 0.118± 0.001
MPNN + LN + LEU sum 256 0.161± 0.001 0.247± 0.001 0.114± 0.002
MPNN + LN + LEU max 256 0.152± 0.001 0.231± 0.002 0.120± 0.001
MPNN + VN + LEU sum 192 0.215± 0.001 0.304± 0.002 0.137± 0.004
MPNN + VN + LEU max 192 0.195± 0.147 0.172± 0.064 0.078± 0.000
MPNN + VN + LEU sum 256 0.216± 0.002 0.299± 0.003 0.125± 0.001
MPNN + VN + LEU max 256 0.264± 0.003 0.197± 0.002 0.083± 0.002
MPNN + LN + VN + LEU sum 192 0.114± 0.002 0.168± 0.001 0.078± 0.007
MPNN + LN + VN + LEU max 192 0.070± 0.000 0.100± 0.001 0.054± 0.000
MPNN + LN + VN + LEU sum 256 0.116± 0.002 0.171± 0.003 0.079± 0.000
MPNN + LN + VN + LEU max 256 0.070± 0.001 0.100± 0.003 0.057± 0.000
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Table 8: Full experiments table MPNN variants trained on RT embeddings with LEU performance on CLRS Task

Model Name Mid Dim Agg Function Train Score Val Score Test Score

MPNN sum 192 25.97± 2.92 23.30± 3.18 25.56± 4.26
MPNN max 192 58.39± 0.35 57.97± 0.77 32.82± 0.09
MPNN sum 256 38.21± 6.96 36.45± 8.18 34.36± 0.55
MPNN max 256 57.74± 2.04 56.89± 0.29 33.99± 1.41
MPNN + LN sum 192 49.41± 0.02 51.33± 0.34 30.45± 0.22
MPNN + LN max 192 42.08± 0.65 44.36± 0.58 29.04± 0.73
MPNN + LN sum 256 49.43± 0.01 51.37± 0.82 30.56± 0.24
MPNN + LN max 256 41.22± 1.70 44.06± 0.32 28.86± 0.23
MPNN + VN sum 192 46.02± 1.92 47.61± 0.85 31.32± 0.51
MPNN + VN max 192 59.24± 4.05 58.59± 4.81 33.05± 0.22
MPNN + VN sum 256 49.91± 1.36 48.84± 0.77 32.66± 0.78
MPNN + VN max 256 49.07± 20.23 47.87± 21.34 29.55± 5.51
MPNN + LEU sum 192 44.83± 1.26 45.74± 0.47 31.84± 0.06
MPNN + LEU max 192 43.18± 1.93 42.30± 3.26 31.43± 2.33
MPNN + LEU sum 256 41.64± 4.19 41.51± 4.38 28.10± 4.97
MPNN + LEU max 256 46.62± 1.84 46.78± 2.57 33.73± 2.40
MPNN + LN + VN sum 192 47.30± 0.11 46.89± 0.31 29.70± 0.44
MPNN + LN + VN max 192 43.33± 0.46 42.74± 0.90 29.33± 0.98
MPNN + LN + VN sum 256 47.70± 0.48 47.47± 1.45 29.49± 0.62
MPNN + LN + VN max 256 41.50± 0.35 41.87± 0.10 28.75± 1.33
MPNN + LN + LEU sum 192 48.24± 0.35 46.84± 0.83 30.47± 0.34
MPNN + LN + LEU max 192 45.58± 1.79 46.21± 1.01 30.54± 1.04
MPNN + LN + LEU sum 256 44.18± 2.38 43.95± 3.12 29.25± 0.64
MPNN + LN + LEU max 256 45.82± 0.88 46.65± 0.18 29.57± 0.52
MPNN + VN + LEU sum 192 40.48± 2.10 38.90± 2.11 30.74± 0.73
MPNN + VN + LEU max 192 62.66± 1.37 62.07± 1.44 34.21± 0.91
MPNN + VN + LEU sum 256 44.27± 0.51 43.43± 2.55 30.75± 0.81
MPNN + VN + LEU max 256 45.99± 19.12 45.93± 18.46 29.27± 3.57
MPNN + LN + VN + LEU sum 192 43.79± 0.25 44.34± 0.53 30.89± 0.11
MPNN + LN + VN + LEU max 192 43.69± 1.70 43.47± 1.44 29.55± 1.17
MPNN + LN + VN + LEU sum 256 49.34± 1.98 50.61± 2.19 31.66± 1.62
MPNN + LN + VN + LEU max 256 43.53± 0.06 43.40± 0.39 30.09± 0.22
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Figure 5: MPNN + LN + VN + LEU. Randomly sampled MPNN training set embeddings trained to align with RT
embeddings.
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Figure 6: MPNN + LN + VN + LEU. Randomly sampled MPNN validation set embeddings trained to align with RT
embeddings.
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