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ABSTRACT

Many popular graph neural network (GNN) architectures, which are often consid-
ered as the current state of the art, rely on encoding graph structure via smoothness
or similarity between neighbors. While this approach performs well on a surpris-
ing number of standard benchmarks, the efficacy of such models does not translate
consistently to more complex domains, such as graph data in the biochemistry do-
main. We argue that these more complex domains require priors that encourage
learning of longer range features rather than oversmoothed signals of standard
GNN architectures. Here, we propose an alternative GNN architecture, based on
a relaxation of recently proposed geometric scattering transforms, which consists
of a cascade of graph wavelet filters. Our learned geometric scattering (LEGS) ar-
chitecture adaptively tunes these wavelets and their scales to encourage band-pass
features to emerge in learned representations. This results in a simplified GNN
with significantly fewer learned parameters compared to competing methods. We
demonstrate the predictive performance of our method on several biochemistry
graph classification benchmarks, as well as the descriptive quality of its learned
features in biochemical graph data exploration tasks. Our results show that the
proposed LEGS network matches or outperforms popular GNNs, as well as the
original geometric scattering construction, while retaining certain mathematical
properties of its handcrafted (nonlearned) design.

1 INTRODUCTION

Geometric deep learning has recently emerged as an increasingly prominent branch of machine
learning in general, and deep learning in particular (Bronstein et al., 2017). It is based on the obser-
vation that many of the impressive achievements of neural networks come in applications where the
data has an intrinsic geometric structure which can be used to inform network design and training
procedures. For example, in computer vision, convolutional neural networks use the spatial orga-
nization of pixels to define convolutional filters that hierarchically aggregate local information at
multiple scales that in turn encode shape and texture information in data and task-driven represen-
tations. Similarly, in time-series analysis, recurrent neural networks leverage memory mechanisms
based on the temporal organization of input data to collect multiresolution information from local
subsequences, which can be interpreted geometrically via tools from dynamical systems and spec-
tral analysis. While these examples only leverage Euclidean spatiotemporal structure in data, they
exemplify the potential benefits of incorporating information about intrinsic data geometry in neural
network design and processing. Indeed, recent advances have further generalized the utilization of
geometric information in neural networks design to consider non-Euclidean structures, with partic-
ular interest in graphs that represent data geometry, either directly given as input or constructed as
an approximation of a data manifold.

At the core of geometric deep learning is the use of graph neural networks (GNNs) in general, and
graph convolutional networks (GCNs) in particular, which ensure neuron activations follow the ge-
ometric organization of input data by propagating information across graph neighborhoods (Bruna
et al., 2014; Defferrard et al., 2016; Kipf & Welling, 2016; Hamilton et al., 2017; Xu et al., 2019;
Abu-El-Haija et al., 2019). However, recent work has shown the difficulty in generalizing these
methods to more complex structures, identifying common problems and phrasing them in terms of
oversmoothing (Li et al., 2018), oversquashing (Alon & Yahav, 2020) or under-reaching (Barceló
et al., 2020). Using graph signal processing terminology from Kipf & Welling (2016), these issues

1



Under review as a conference paper at ICLR 2021

can be partly attributed to the limited construction of convolutional filters in many commonly used
GCN architectures. Inspired by the filters learned in convolutional neural networks, GCNs con-
sider node features as graph signals and aim to aggregate information from neighboring nodes. For
example, Kipf & Welling (2016) presented a typical implementation of a GCN with a cascade of
averaging (essentially low pass) filters. We note that more general variations of GCN architectures
exist (Defferrard et al., 2016; Hamilton et al., 2017; Xu et al., 2019), which are capable of repre-
senting other filters, but as investigated in Alon & Yahav (2020), they too often have difficulty in
learning long range connections.

Recently, an alternative approach was presented to provide deep geometric representation learning
by generalizing Mallat’s scattering transform (Mallat, 2012), originally proposed to provide a math-
ematical framework for understanding convolutional neural networks, to graphs (Gao et al., 2019;
Gama et al., 2019a; Zou & Lerman, 2019) and manifolds (Perlmutter et al., 2018). Similar to tra-
ditional scattering, which can be seen as a convolutional network with nonlearned wavelet filters,
geometric scattering is defined as a GNN with handcrafted graph filters, typically constructed as
diffusion wavelets over the input graph (Coifman & Maggioni, 2006), which are then cascaded with
pointwise absolute-value nonlinearities. This wavelet cascade results in permutation equivariant
node features that are typically aggregated via statistical moments over the graph nodes, as explained
in detail in Sec. 2, to provide a permutation invariant graph-level representation. The efficacy of geo-
metric scattering features in graph processing tasks was demonstrated in Gao et al. (2019), with both
supervised learning and data exploration applications. Moreover, their handcrafted design enables
rigorous study of their properties, such as stability to deformations and perturbations, and provides
a clear understanding of the information extracted by them, which by design (e.g., the cascaded
band-pass filters) goes beyond low frequencies to consider richer notions of regularity (Gama et al.,
2019b; Perlmutter et al., 2019).

However, while graph scattering transforms provide effective universal feature extractors, their rigid
handcrafted design does not allow for the automatic task-driven representation learning that nat-
urally arises in traditional GNNs. To address this deficiency, recent work has proposed a hybrid
scattering-GCN (Min et al., 2020) model for obtaining node-level representations, which ensembles
a GCN model with a fixed scattering feature extractor. In Min et al. (2020), integrating channels
from both architectures alleviates the well-known oversmoothing problem and outperforms popular
GNNs on node classification tasks. Here, we focus on improving the geometric scattering transform
by learning, in particular its scales. We focus on whole-graph representations with an emphasis on
biochemical molecular graphs, where relatively large diameters and non-planar structures usually
limit the effectiveness of traditional GNNs. Instead of the ensemble approach of Min et al. (2020),
we propose a native neural network architecture for learned geometric scattering (LEGS), which
directly modifies the scattering architecture from Gao et al. (2019); Perlmutter et al. (2019), via
relaxations described in Sec. 3, to allow a task-driven adaptation of its wavelet configuration via
backpropagation implemented in Sec. 4. We note that other recent graph spectrum-based methods
approach the learning of long range connections by approximating the spectrum of the graph with
the Lancoz algorithm Liao et al. (2019), or learning in block Krylov subspaces Luan et al. (2019).
Such methods are complementary to the work presented here, in that their spectral approximation
can also be applied in the computation of geometric scattering when considering very long range
scales (e.g., via spectral formulation of graph wavelet filters). However, we find that such approx-
imations are not necessary in the datasets considered here and in other recent work focusing on
whole-graph tasks, where direct computation of polynomials of the Laplacian is sufficient.

The resulting learnable geometric scattering network balances the mathematical properties inherited
from the scattering transform (as shown in Sec. 3) with the flexibility enabled by adaptive repre-
sentation learning. The benefits of our construction over standard GNNs, as well as pure geometric
scattering, are discussed and demonstrated on graph classification and regression tasks in Sec. 5. In
particular, we find that our network maintains the robustness to small training sets present in graph
scattering while improving classification on biological graph classification and regression tasks, and
we show that in tasks where the graphs have a large diameter relative to their size, learnable scatter-
ing features improve performance over competing methods.
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2 PRELIMINARIES: GEOMETRIC SCATTERING FEATURES

Let G = (V,E,w) be a weighted graph with V := {v1, . . . , vn} the set of nodes, E ⊂ {{vi, vj} ∈
V × V, i 6= j} the set of (undirected) edges and w : E → (0,∞) assigning (positive) edge weights
to the graph edges. Note that w can equivalently be considered as a function of V ×V , where we set
the weights of non-adjacent node pairs to zero. We define a graph signal as a function x : V → R
on the nodes of G and aggregate them in a signal vector x ∈ Rn with the ith entry being x[vi].

We define the weighted adjacency matrix W ∈ Rn×n of the graph G as

W [vi, vj ] :=

{
w(vi, vj) if {vi, vj} ∈ E
0 otherwise

,

and the degree matrix D ∈ Rn×n of G as D := diag(d1, . . . , dn) with di := deg(vi) :=∑n
j=1W [vi, vj ] being the degree of the node vi.

The geometric scattering transform (Gao et al., 2019) relies on a cascade of graph filters constructed
from a row stochastic diffusion matrix P := 1

2

(
In + WD−1

)
, which corresponds to transition

probabilities of a lazy random walk Markov process. The laziness of the process signifies that at each
step it has equal probability of either staying at the current node or transitioning to a neighbor, where
transition probabilities in the latter case are determined by (normalized) edge weights. Scattering
filters are then defined via the graph-wavelet matrices Ψj ∈ Rn×n of scale j ∈ N0, as

Ψ0 := In − P ,

Ψj := P 2j−1

− P 2j = P 2j−1(
In − P 2j−1)

, j ≥ 1. (1)

These diffusion wavelet operators partition the frequency spectrum into dyadic frequency bands,
which are then organized into a full wavelet filter bankWJ := {Ψj ,ΦJ}0≤j≤J , where ΦJ := P 2J

is a pure low-pass filter, similar to the one used in GCNs. It is easy to verify that the resulting wavelet
transform is invertible, since a simple sum of filter matrices inWJ yields the identity. Moreover, as
discussed in Perlmutter et al. (2019), this filter bank forms a nonexpansive frame, which provides
energy preservation guarantees as well as stability to perturbations, and can be generalized to a
wider family of constructions that encompasses the variations of scattering transforms on graphs
from Gama et al. (2019a;b) and Zou & Lerman (2019).

Given the wavelet filter bankWJ , node-level scattering features are computed by stacking cascades
of bandpass filters and element-wise absolute value nonlinearities to form

Upx := Ψjm |Ψjm−1
. . . |Ψj2 |Ψj1x|| . . . |, (2)

indexed (or parametrized) by the scattering path p := (j1, . . . , jm) ∈ ∪m∈NNm0 that determines the
filter scales captured by each scattering coefficient. Then, a whole-graph scattering representation
is obtained by aggregating together node-level features via statistical moments over the nodes of the
graph (Gao et al., 2019). This construction yields the geometric scattering features

Sp,qx :=

n∑
i=1

|Upx[vi]|q. (3)

indexed by the scattering path p and moment order q. Finally, we note that it can be shown that the
graph-level scattering transform Sp,q guarantees node-permutation invariance, while Up is permu-
tation equivariant (Perlmutter et al., 2019; Gao et al., 2019).

3 RELAXED GEOMETRIC SCATTERING CONSTRUCTION TO ALLOW TRAINING

The geometric scattering construction, described in Sec. 2, can be seen as a particular GNN with
handcrafted layers, rather than learned ones. This provides a solid mathematical framework for un-
derstanding the encoding of geometric information in GNNs, as shown in Perlmutter et al. (2019),
while also providing effective unsupervised graph representation learning for data exploration,
which also has some advantages even in supervised learning task, as shown in Gao et al. (2019).
While the handcrafted design in Perlmutter et al. (2019); Gao et al. (2019) is not a priori amenable
to task-driven tuning provided by end-to-end GNN training, we note that the cascade in Eq. 3 does
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conform to a neural network architecture suitable for backpropagation. Therefore, in this section,
we show how and under what conditions a relaxation of the laziness of the random walk and the se-
lection of the scales preserves some of the useful mathematical properties established in Perlmutter
et al. (2019). We then establish in section 5 the empirical benefits of learning the diffusion scales
over a purely handcrafted design.

We first note that the construction of the diffusion matrix P that forms the lowpass filter used
in the fixed scattering construction can be relaxed to encode adaptive laziness by setting Pα :=
αIn + (1−α)WD−1. Where α ∈ [1/2, 1) controls the reluctance of the random walk to transition
from one node to another. α = 1/2 gives an equal probability to stay in the same node as to transition
to one of its neighbors. At this point, we note that one difference between the diffusion lowpass filter
here and the one typically used in GCN and its variation is the symmetrization applied in Kipf &
Welling (2016). However, Perlmutter et al. (2019) established that for the original construction,
this is only a technical difference since P can be regarded as self-adjoint under an appropriate
measure which encodes degree variations in the graph. This is then used to generate a Hilbert
space L2(G,D−1/2) of graph signals with inner product 〈x,y〉D−1/2 := 〈D−1/2x,D−1/2y〉. The
following lemma shows that a similar property is retained for our adaptive lowpass filter Pα.

Lemma 1. The matrix Pα is self-adjoint on the Hilbert space L2(G,D−1/2) from Perlmutter et al.
(2019).

We note that the self-adjointness shown here is interesting, as it links models that use symmetric
and asymmetric versions of the Laplacian or adjacency matrix. Namely, Lemma 1 shows that the
diffusion matrix P (which is column normalized but not row normalized) is self-adjoint, as an oper-
ator, and can thus be considered as “symmetric” in a suitable inner product space, thus establishing
a theoretical link between these design choices.

As a second relaxation, we propose to replace the handcrafted dyadic scales in Eq. 1 with an adaptive
monotonic sequence of integer diffusion time scales 0 < t1 < · · · < tJ , which can be selected or
tuned via training. Then, an adaptive filter bank is constructed asW ′J := {Ψ′j ,Φ′J}

J−1
j=0 , with

Φ′J := P tJ
α ,

Ψ′0 := In − P t1
α , (4)

Ψ′j := P tj
α − P tj+1

α , 1 ≤ j ≤ J − 1.

The following theorem shows that for any selection of scales, the relaxed construction ofW ′J con-
structs a nonexpansive frame, similar to the result from Perlmutter et al. (2019) shown for the original
handcrafted construction.
Theorem 1. There exist a constant C > 0 that only depends on t1 and tJ such that for all x ∈
L2(G,D−1/2),

C‖x‖2D−1/2 6 ‖Φ′Jx‖2D−1/2 +

J∑
j=0

‖Ψ′jx‖2D−1/2 6 ‖x‖2D−1/2 ,

where the norm considered here is the one induced by the space L2(G,D−1/2).

Intuitively, the upper (i.e., nonexpansive) frame bound implies stability in the sense that small pertur-
bations in the input graph signal will only result in small perturbations in the representation extracted
by the constructed filter bank. Further, the lower frame bound ensures certain energy preservation
by the constructed filter bank, thus indicating the nonexpansiveness is not implemented in a trivial
fashion (e.g., by constant features independent of input signal).

In the next section we leverage the two relaxations described here to design a neural network archi-
tecture for learning the configuration α, t1, . . . , tJ of this relaxed construction via backpropagation
through the resulting scattering filter cascade. The following theorem establishes that for any such
configuration, extracted fromW ′J via Eqs. 2-3, is permutation equivariant at the node-level and per-
mutation invariant at the graph level. This guarantees that the extracted (in this case learned) features
indeed encode intrinsic graph geometry rather than a priori indexation.
Theorem 2. Let U ′p and S′p,q be defined as in Eq. 2 and 3 (correspondingly), with the filters from
W ′J with an arbitrary configuration 0 < α < 1, 0 < t1 < · · · < tJ . Then, for any permutation Π
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over the nodes of G, and any graph signal x ∈ L2(G,D−1/2)

U ′pΠx = ΠU ′px and S′p,qΠx = S′p,qx p ∈ ∪m∈NNm0 , q ∈ N

where geometric scattering implicitly considers here the node ordering supporting its input signal.

We note that the results in Lemma 1 and Theorems 1-2, as well as their proofs, closely follow
the theoretical framework proposed by Perlmutter et al. (2019). We carefully account here for the
relaxed learned configuration, which replaces the originally handcrafted configuration there. For
completeness, the adjusted proofs appear in Sec. A of the Appendix.

Figure 1: LEGSNet learns to select the appropriate scattering scales from the data.

4 LEARNABLE GEOMETRIC SCATTERING NETWORK ARCHITECTURE

In order to implement the relaxed geometric scattering construction (Sec. 3) via a trainable neural
network, throughout this section, we consider an input graph signal x ∈ Rn or, equivalently, a
collection of graph signals X ∈ Rn×N`−1 . The propagation of these signals can be divided into
three major modules. First, a diffusion module implements the Markov process that forms the
basis of the filter bank and transform, while allowing learning of the laziness parameter α. Then, a
scattering module implements the filters and the corresponding cascade, while allowing the learning
of the scales t1, . . . , tJ . Finally, the aggregation module collects the extracted features to provide a
graph and produces the task-dependent output.

Building a diffusion process. We build a set of m ∈ N subsequent diffusion steps of the signal x
by iteratively multiplying the diffusion matrix Pα to the left of the signal, resulting in[

Pαx,P
2
αx,P

3
αx, . . . ,P

m
α x
]
,

Since Pα is often sparse, for efficiency reasons these filter responses are implemented via an
RNN structure consisting of m RNN modules. Each module propagates the incoming hidden state
ht−1, t = 1, . . . ,m with Pα with the readout ot equal to the produced hidden state,

ht := Pαht−1, ot := ht.

Our architecture and theory enable the implementation of either trainable or nontrainable α, which
we believe will be useful for future work as indicated, for example, in Gao & Ji (2019). However, in
the applications considered here (see Sec. 5), we find that training α made training unstable and did
not improve performance. Therefore, for simplicity, we leave it fixed as α = 1/2 for the remainder
of this work. In this case, the RNN portion of the network contains no trainable parameters, thus
speeding up the computation, but still enables a convenient gradient flow back to the model input.

Learning diffusion filter bank. Next, we consider the selection of J ≤ m diffusion scales for the
relaxed filter bank construction with the wavelets defined according to Eq. 5. We found this was the
most influential part of the architecture. We experimented with methods of increasing flexibility:

1. Selection of {tj}J−1j=1 as dyadic scales (as in Sec. 2 and Eq. 1), fixed for all datasets (LEGS-
FIXED),

2. Selection of each tj using softmax and sorting by j, learnable per model (LEGS-FCN and
LEGS-RBF, depending on output layer explained below).
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For the softmax selection, we use a selection matrix F ∈ RJ×m, where each row F(j,·), j =

1, . . . , J is dedicated to identifying the diffusion scale of the wavelet P tj
α via a one-hot encoding.

This is achieved by setting

F := softmax(Θ) = [softmax(θ1), softmax(θ2), . . . , softmax(θJ)]T

where θj ∈ Rm constitute the rows of the trainable weight matrix Θ. While this construction may
not strictly guarantee an exact one-hot encoding, we assume that the softmax activations yield a
sufficient approximation. Further, without loss of generality, we assume that the rows of F are
ordered according to the position of the leading “one” activated in every row. In practice, this can
be easily enforced by reordering the rows. We now construct the filter bank W̃F := {Ψ̃j , Φ̃J}J−1j=0
with the filters

Φ̃Jx =
∑m

t=1
F(J,t)P

t
αx,

Ψ̃0x = In −
∑m

t=1
F(1,t)P

t
αx (5)

Ψ̃jx =
∑m

t=1

[
F(j,t)P

t
αx− Fj+1,tP

t
αx
]

1 ≤ j ≤ J − 1

matching and implementing the construction ofW ′J from Eq. 4.

Aggregating and classifying scattering features. While many approaches may be applied to
aggregate node-level features into graph-level features such as max, mean, sum pooling, and the
more powerful TopK (Gao & Ji, 2019) or attention pooling (Veličković et al., 2018), we follow the
statistical-moment aggregation explained in Secs. 2-3 (motivated by Gao et al., 2019; Perlmutter
et al., 2019) and leave exploration of other pooling methods to future work. As shown in Gao et al.
(2019) on graph classification, this aggregation works particularly well in conjunction with support
vector machines (SVMs) based on the radial basis function (RBF) kernel.

Here, we consider two configurations for the task-dependent output layer of the network, either using
a small neural network with two fully connected layers, which we denote LEGS-FCN, or using a
modified RBF network (Broomhead & Lowe, 1988), which we denote LEGS-RBF, to produce the
final classification. The latter configuration more accurately processes scattering features as shown
in Table 2. Our RBF network works by first initializing a fixed number of movable anchor points.
Then, for every point, new features are calculated based on the radial distances to these anchor
points. In previous work on radial basis networks these anchor points were initialized independent
of the data. We found that this led to training issues if the range of the data was not similar to the
initialization of the centers. Instead, we first use a batch normalization layer to constrain the scale
of the features and then pick anchors randomly from the initial features of the first pass through our
data. This gives an RBF-kernel network with anchors that are always in the range of the data. Our
RBF layer is then RBF(x) = φ(‖BatchNorm(x)− c‖) with φ(x) = e−‖x‖

2

.

5 EMPIRICAL RESULTS

Table 1: Dataset statistics, diameter, nodes, edges, and clustering co-
efficient averaged over graphs.

# Graphs # Classes Diameter Nodes Edges Clust. Coeff

DD 1178 2 19.81 284.32 715.66 0.48
ENZYMES 600 6 10.92 32.63 62.14 0.45
MUTAG 188 2 8.22 17.93 19.79 0.00
NCI1 4110 2 13.33 29.87 32.30 0.00
NCI109 4127 2 13.14 29.68 32.13 0.00
PROTEINS 1113 2 11.62 39.06 72.82 0.51
PTC 344 2 7.52 14.29 14.69 0.01

Here we show results of
LEGSNet on whole graph
classification and graph re-
gression tasks, that arise in
a variety of contexts, with
emphasis on the more com-
plex biochemic datasets.
We use biochemical graph
datasets as they represent a
new challenge in the field
of graph learning. Unlike
other types of data, these datasets do not exhibit the small-world structure of social datasets and
may have large graph diameters for their size. Further, the connectivity patterns of biomolecules are
very irregular due to 3D folding and long range connections, and thus ordinary local node aggrega-
tion methods may miss such connectivity differences.
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5.1 WHOLE GRAPH CLASSIFICATION

We perform whole graph classification by using eccentricity and clustering coefficient as node fea-
tures as is done in Gao et al. (2019). We compare against graph convolutional networks (GCN) (Kipf
& Welling, 2016), GraphSAGE (Hamilton et al., 2017), graph attention network (GAT) (Veličković
et al., 2018), graph isomorphism network (GIN) (Xu et al., 2019), Snowball network (Luan et al.,
2019), and fixed geometric scattering with a support vector machine classifier (GS-SVM) as in Gao
et al. (2019), and a baseline which is a 2-layer neural network on the features averaged across nodes
(disregarding graph structure). These comparisons are meant to inform when including learnable
graph scattering features are helpful in extracting whole graph features. Specifically, we are in-
terested in the types of graph datasets where existing graph neural network performance can be
improved upon with scattering features. We evaluate these methods across 7 benchmark biochemi-
cal datasets: DD, ENZYMES, MUTAG, NCI1, NCI109, PROTEINS, and PTC where the goal is to
classify between two or more classes of compounds with hundreds to thousands of graphs and tens
to hundreds of nodes (See Table 1). For completeness we also show results on six social network
datasets in Table S2. For more specific information on individual datasets see Appendix B. We use
10-fold cross validation on all models which is elaborated on in Appendix C. For an ensembling
comparison to Scattering-GCN (Min et al., 2020) see Appendix D.

Table 2: Mean ± standard deviation test set accuracy on biochemical datasets. Time limit expired
(TLE) individual denotes models that did not finish in 10 hours.

DD ENZYMES MUTAG NCI1 NCI109 PROTEINS PTC

LEGS-RBF 72.58 ± 3.35 36.33 ± 4.50 33.51 ± 4.34 74.26 ± 1.53 72.47 ± 2.11 70.89 ± 3.91 57.26 ± 5.54
LEGS-FCN 72.07 ± 2.37 38.50 ± 8.18 82.98 ± 9.85 70.83 ± 2.65 70.17 ± 1.46 71.06 ± 3.17 56.92 ± 9.36
LEGS-FIXED 69.09 ± 4.82 32.33 ± 5.04 81.84 ± 11.24 71.24 ± 1.63 69.25 ± 1.75 67.30 ± 2.94 54.31 ± 6.92
GCN 67.82 ± 3.81 31.33 ± 6.89 79.30 ± 9.66 60.80 ± 4.26 61.30 ± 2.99 74.03 ± 3.20 56.34 ± 10.29
GraphSAGE 66.37 ± 4.45 15.83 ± 9.10 81.43 ± 11.64 57.54 ± 3.33 55.15 ± 2.58 71.87 ± 3.50 55.22 ± 9.13
GAT 68.50 ± 3.62 25.83 ± 4.73 79.85 ± 9.44 62.19 ± 2.18 61.28 ± 2.24 73.22 ± 3.55 55.50 ± 6.90
GIN 42.37 ± 4.32 36.83 ± 4.81 83.57 ± 9.68 66.67 ± 2.90 65.23 ± 1.82 75.02 ± 4.55 55.82 ± 8.07
Snowball TLE 18.00 ± 1.89 50.56 ± 20.87 48.56 ± 2.92 50.86 ± 2.65 39.36 ± 4.29 50.84 ± 9.32
GS-SVM 72.66 ± 4.94 27.33 ± 5.10 85.09 ± 7.44 69.68 ± 2.38 68.55 ± 2.06 70.98 ± 2.67 56.96 ± 7.09
Baseline 75.98 ± 2.81 20.50 ± 5.99 79.80 ± 9.92 56.69 ± 3.07 57.38 ± 2.20 73.22 ± 3.76 56.71 ± 5.54

LEGS outperforms on biological datasets. A somewhat less explored domain for GNNs is in
biochemical graphs that represent molecules and tend to be overall smaller and less connected (see
Tables 1 and S1) than social networks. In particular we find that LEGSNet outperforms other meth-
ods by a significant margin on biochemical datasets with relatively small but high diameter graphs
(NCI1, NCI109, ENZYMES, PTC), as shown in Table 2. On extremely small graphs we find that
GS-SVM performs best, which is expected as other methods with more parameters can easily overfit
the data. We reason that the performance increases exhibited by LEGSNet, and to a lesser extent
GS-SVM, on these chemical and biological benchmarks is due the ability of geometric scattering
to compute complex connectivity features via its multiscale diffusion wavelets. Thus, methods that
rely on a scattering construction would in general perform better, with the flexibility and trainability
LEGSNet giving it an edge on most tasks.

LEGS performs consistently on social network datasets. On the social network datasets
LEGSNet performs consistently well, although its benefits here are not as clear as in the biochemi-
cal datasets. Ignoring the fixed scattering transform GS-SVM, which was tuned in Gao et al. (2019)
with a focus on these particular social network datasets, a version of LEGSNet is best on three out of
the six social datasets and second best on the other three. Since the advantages are clearer in the bio-
chemical domain, we focus on this in the remainder of this section. However, for completeness, we
provide results on social network datasets in Table S2, and leave further discussion to Appendix B.1.

LEGS preserves enzyme exchange preferences while increasing performance. One ad-
vantage of geometric scattering over other graph embedding techniques lies in the rich in-
formation present within the scattering feature space. This was demonstrated in Gao et al.
(2019) where it was shown that the embeddings created through fixed geometric scatter-
ing can be used to accurately infer inter-graph relationships. Scattering features of en-
zyme graphs within the ENZYMES dataset (Borgwardt et al., 2005) possessed sufficient
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Figure 2: Enzyme class exchange preferences em-
pirically observed in Cuesta et al. (2015), and es-
timated from LEGS and GCN embeddings.

global information to recreate the enzyme class
exchange preferences observed empirically by
Cuesta et al. (2015), using only linear methods
of analysis, and despite working with a much
smaller and artificially balanced dataset. We
demonstrate here that LEGSNet retains similar
descriptive capabilities, as shown in Figure 2
via chord diagrams where each exchange pref-
erence between enzyme classes (estimated as
suggested in Gao et al., 2019) is represented
as a ribbon of the corresponding size. Our
results here (and in Table S5, which provides
complementary quantitative comparison) show
that, with relaxations on the scattering parame-
ters, LEGS-FCN achieves better classification
accuracy than both LEGS-FIXED and GCN
(see Table 1) while also retaining a more de-
scriptive embedding that maintains the global
structure of relations between enzyme classes.
We ran two varieties of LEGSNet on the EN-
ZYMES dataset: LEGS-FIXED and LEGS-
FCN, which allows the diffusion scales to be
learned. For comparison, we also ran a stan-
dard GCN whose graph embeddings were ob-
tained via mean pooling. To infer enzyme ex-
change preferences from their embeddings, we followed Gao et al. (2019) in defining the dis-
tance from an enzyme e to the enzyme class ECj as dist(e,ECj) := ‖ve − projCj

(ve)‖, where
vi is the embedding of e, and Cj is the PCA subspace of the enzyme feature vectors within ECj .
The distance between the enzyme classes ECi and ECj is the average of the individual distances,
mean{dist(e,ECj) : e ∈ ECi}. From here, the affinity between two enzyme classes is computed as
pref(ECi,ECj) = wi/min(

Di,i

Di,j
,
Dj,j

Dj,i
), where wi is the percentage of enzymes in class i which are

closer to another class than their own, and Di,j is the distance between ECi and ECj .

Robustness to reduced training set size. We remark that similar to the robustness shown in (Gao
et al., 2019) for handcrafted scattering, LEGSNet is able to maintain accuracy even when the training
set size is shrunk to as low as 20% of the dataset, with a median decrease of 4.7% accuracy as when
80% of the data is used for training, as discussed in the supplement (see Table S3).

5.2 GRAPH REGRESSION

Table 3: Train and test set mean squared error on
CASP GDT regression task over three seeds.

(µ± σ) Train MSE Test MSE

LEGS-FCN 134.34 ± 8.62 144.14 ± 15.48
LEGS-RBF 140.46 ± 9.76 152.59 ± 14.56
LEGS-FIXED 136.84 ± 15.57 160.03 ± 1.81
GCN 289.33 ± 15.75 303.52 ± 18.90
GraphSAGE 221.14 ± 42.56 219.44 ± 34.84
GIN 221.14 ± 42.56 219.44 ± 34.84
Baseline 393.78 ± 4.02 402.21 ± 21.45

We next evaluate learnable scattering on two
graph regression tasks, the QM9 (Gilmer et al.,
2017; Wu et al., 2018) graph regression dataset,
and a new task from the critical assessment of
structure prediction (CASP) challenge (Moult
et al., 2018). On the CASP task, the main
objective is to score protein structure predic-
tion/simulation models in terms of the discrep-
ancy between their predicted structure and the
actual structure of the protein (which is known
a priori). The accuracy of such 3D structure
predictions are evaluated using a variety of met-
rics, but we focus on the global distance test (GDT) score (Modi et al., 2016). The GDT score
measures the similarity between tertiary structures of two proteins with amino-acid correspondence.
A higher score means two structures are more similar. For a set of predicted 3D structures for a
protein, we would like to score their quality as quantified by the GDT score.

8
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For this task we use the CASP12 dataset (Moult et al., 2018) and preprocess the data similarly to
Ingraham et al. (2019), creating a KNN graph between proteins based on the 3D coordinates of each
amino acid. From this KNN graph we regress against the GDT score. We evaluate on 12 proteins
from the CASP12 dataset and choose random (but consistent) splits with 80% train, 10% validation,
and 10% test data out of 4000 total structures. We are only concerned with structure similarity so
use no non-structural node features.

Figure 3: CASP dataset LEGS-FCN % improve-
ment over GCN in MSE of GDT prediction vs.
Average GDT score.

LEGSNet outperforms on all CASP targets
Across all CASP targets we find that LEGSNet
significantly outperforms GNN and baseline
methods (See Table S4). This performance im-
provement is particularly stark on the easiest
structures (measured by average GDT) but is
consistent across all structures. In Figure 3
we show the relationship between percent im-
provement of LEGSNet over the GCN model
and the average GDT score across the target
structures. We draw attention to target t0879,
where LEGSNet shows the greatest improve-
ment over other methods. This target has long
range dependencies (Ovchinnikov et al., 2018)
as it exhibits metal coupling (Li et al., 2015)
creating long range connections over the sequence. Since other methods are unable to model these
long range connections LEGSNet is particularly important on these more difficult to model targets.

Table 4: Mean ± std. over four
runs of mean squared error over 19
targets for the QM9 dataset, lower
is better.

(µ± σ) Test MSE

LEGS-FCN 0.216 ± 0.009
LEGS-FIXED 0.228 ± 0.019
GraphSAGE 0.524 ± 0.224
GCN 0.417 ± 0.061
GIN 0.247 ± 0.037
Baseline 0.533 ± 0.041

LEGSNet outperforms on the QM9 dataset We evalu-
ate the performance of LEGSNet on the quantum chemistry
dataset QM9 (Gilmer et al., 2017; Wu et al., 2018), which con-
sists of 130,000 molecules with ∼18 nodes per molecule. We
use the node features from Gilmer et al. (2017), with the addi-
tion of eccentricity and clustering coefficient features, and ig-
nore the edge features. We whiten all targets to have zero mean
and unit standard deviation. We train each network against all
19 targets and evaluate the mean squared error on the test set
with mean and std. over four runs. We find that learning the
scales improves the overall MSE, and particularly improves
the results over difficult targets (see Table 4 for overall results
and Table S7 for results by target). Indeed, on more difficult
targets (i.e., those with large test error) LEGS-FCN is able to
perform better, where on easy targets GIN is the best. Overall, scattering features offer a robust sig-
nal over many targets, and while perhaps less flexible (by construction), they achieve good average
performance with significantly fewer parameters.

6 CONCLUSION

In this work we have established a relaxation from fixed geometric scattering with strong guarantees
to a more flexible network with better performance by learning data dependent scales. Allowing
the network to choose data-driven diffusion scales leads to improved performance particularly on
biochemical datasets, while keeping strong guarantees on extracted features. This parameterization
has advantages in representing long range connections with a small number of weights, which are
necessary in complex biochemical data. This also opens the possibility to provide additional relax-
ation to enable node-specific or graph-specific tuning via attention mechanisms, which we regard as
an exciting future direction, but out of scope for the current work.
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APPENDIX

A PROOFS FOR SECTION 3

A.1 PROOF OF LEMMA 1

Let Mα = D−1/2PαD
1/2 then it can be verified that Mα is a symmetric conjugate of Pα, and

by construction is self-adjoint with respect to the standard inner product of L2(G). Let x,y ∈
L2(G,D−1/2) then we have

〈Pαx,y〉D−1/2 = 〈D−1/2Pαx,D−1/2y〉
= 〈D−1/2D1/2MαD

−1/2x,D−1/2y〉
= 〈MαD

−1/2x,D−1/2y〉
= 〈D−1/2x,MαD

−1/2y〉
= 〈D−1/2x,D−1/2D1/2MαD

−1/2y〉
= 〈D−1/2x,D−1/2Pαy〉
= 〈x,Pαy〉D−1/2 ,

which gives the result of the lemma.

A.2 PROOF OF THEOREM 1

As shown in the previous proof (Sec. A.1), Pα has a symmetric conjugate Mα. Given the eigende-
composition Mα = QΛQT , we can write P t

α = D1/2QΛtQTD−1/2, giving the eigendecomposi-
tion of the propagated diffusion matrices. Furthermore, it can be verified that the eigenvalues on the
diagonal of Λ are nonnegative. Briefly, this results from graph Laplacian eigenvalues being within
the range [0, 1], which means those of WD−1 are in [−1, 1], which combined with 1/2 ≤ α ≤ 1
result in λi := [Λ]ii ∈ [0, 1] for every j. Next, given this decomposition we can write:

Φ′J = D1/2QΛtJQTD−1/2,

Ψ′j = D1/2Q(Λtj − Λtj+1)QTD−1/2, 0 ≤ j ≤ J − 1.

where we set t0 = 0 to simplify notations. Then, we have:

‖Φ′Jx‖2D−1/2 = 〈Φ′Jx,Φ′Jx〉D−1/2

= 〈D−1/2D1/2QΛtJQTD−1/2x, D−1/2D1/2QΛtJQTD−1/2x〉
= xTD−1/2QΛtJQTQΛtJQTD−1/2x = (xTD−1/2QΛtJ )(ΛtJQTD−1/2x)

= ‖ΛtJQTD−1/2x‖22
Further, since Q is orthogonal (as it is constructed from an eigenbasis of a symmetric matrix), if
we consider a change of variable to y = QTD−1/2x, we have ‖x‖2

D−1/2 = ‖D−1/2x‖22 = ‖y‖22
while ‖Φ′Jx‖2D−1/2 = ‖ΛtJy‖22. Similarly, we can also reformulate the operation of other filters in
terms of diagonal matrices applied to y asW ′J as ‖Ψ′jx‖2D−1/2 = ‖(Λtj − Λtj+1)y‖22.

Given the reformulation in terms of y and standard L2(G), we can now write

‖ΛtJy‖22 +

J−1∑
j=0

‖(Λtj − Λtj+1)y‖22 =

n∑
i=1

y2
i ·
(
λ2tJ +

∑J−1

j=0
(λ
tj
i − λ

tj+1

i )2
)
.

Then, since 0 ≤ λi ≤ 1 and 0 = t0 < t1 < · · · < tJ we have

λ2tJ +

J−1∑
j=0

(λ
tj
i − λ

tj+1

i )2 ≤

λtJ +

J−1∑
j=0

λ
tj
i − λ

tj+1

i

2

=
(
λtJ + λt0i − λ

tJ
i

)2
= 1,
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which yields the upper bound ‖ΛtJy‖22 +
∑J−1
j=0 ‖(Λtj − Λtj+1)y‖22 ≤ ‖y‖22. On the other hand,

since t1 > 0 = t0, then we also have

λ2tJ +

J−1∑
j=0

(λ
tj
i − λ

tj+1

i )2 ≥ λ2tJ + (1− λt1i )2

and therefore, by setting C := min0≤ξ≤1(ξ2tJ + (1− ξt1)2) > 0, whose positivity is not difficult to
verify, we get the lower bound ‖ΛtJy‖22 +

∑J−1
j=0 ‖(Λtj − Λtj+1)y‖22 ≥ C‖y‖22. Finally, applying

the reverse change of variable to x and L2(G,D−1/2) yields the result of the theorem.

A.3 PROOF OF THEOREM 2

Denote the permutation group on n elements as Sn, then for a permutation Π ∈ Sn we let G = Π(G)
be the graph obtained by permuting the vertices of G with Π. The corresponding permutation opera-
tion on a graph signal x ∈ L2(G,D−1/2) gives a signal Πx ∈ L2(G,D−1/2), which we implicitly
considered in the statement of the theorem, without specifying these notations for simplicity. Rewrit-
ing the statement of the theorem more rigorously with the introduced notations, we aim to show that
U
′
pΠx = ΠU ′px and S

′
p,qΠx = S′p,qx under suitable conditions, where the operation U ′p from G

on the permuted graph G is denoted here by U
′
p and likewise for S′p,q we have S

′
p,q .

We start by showing U ′p is permutation equivariant. First, we notice that for any Ψj , 0 < j < J we
have that ΨjΠx = ΠΨjx, as for 1 ≤ j ≤ J − 1

ΨjΠx = (ΠP tjΠT −ΠP tj+1ΠT )Πx

= Π(P tj − P tj+1)x

= ΠΨjx.

Similar reasoning also holds for j ∈ {0, J}. Further, notice that for the element-wise nature of the
absolute value nonlinearity yields |Πx| = Π|x| for any permutation matrix Π. Using these two
observations, it follows inductively that

U
′
pΠx :=Ψ′jm |Ψ

′
jm−1

. . . |Ψ′j2 |Ψ
′
j1Πx|| . . . |

=Ψ′jm |Ψ
′
jm−1

. . . |Ψ′j2Π|Ψ′j1x|| . . . |
...

=ΠΨ′jm |Ψ
′
jm−1

. . . |Ψ′j2 |Ψ
′
j1x|| . . . |

=ΠU ′px.

To show S′p,q is permutation invariant, first notice that for any statistical moment q > 0, we have
|Πx|q = Π|x|q and further as sums are commutative,

∑
j(Πx)j =

∑
j xj . We then have

S
′
p,qΠx =

n∑
i=1

|U ′pΠx[vi]|q =

n∑
i=1

|ΠU ′px[vi]|q =

n∑
i=1

|U ′px[vi]|q = S′p,qx,

which, together with the previous result, completes the proof of the theorem.

B DATASETS

In this section we further analyze individual datasets. Relating composition of the dataset as shown
in Table S1 to the relative performance of our models as shown in Table S2.

DD Dobson & Doig (2003): Is a dataset extracted from the protein data bank (PDB) of 1178
high resolution proteins. The task is to distinguish between enzymes and non-enzymes. Since these
are high resolution structures, these graphs are significantly larger than those found in our other
biochemical datasets with a mean graph size of 284 nodes with the next largest biochemical dataset
with a mean size of 39 nodes.
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ENZYMES Borgwardt et al. (2005): Is a dataset of 600 enzymes divided into 6 balanced classes
of 100 enzymes each. As we analyzed in the main text, scattering features are better able to preserve
the structure between classes. LEGS-FCN slightly relaxes this structure but improves accuracy from
32 to 39% over LEGS-FIXED.

NCI1, NCI109 Wale et al. (2008): Contains slight variants of 4100 chemical compounds encoded
as graphs. Each compound is separated into one of two classes based on its activity against non-
small cell lung cancer and ovarian cancer cell lines. Graphs in this dataset are 30 nodes with a
similar number of edges. This makes for long graphs with high diameter.

PROTEINS Borgwardt et al. (2005): Contains 1178 protein structures with the goal of classifying
enzymes vs. non enzymes. GCN outperforms all other models on this dataset, however the Baseline
model, where no structure is used also performs very similarly. This suggests that the graph structure
within this dataset does not add much information over the structure encoded in the eccentricity and
clustering coefficient.

PTC Toivonen et al. (2003): Contains 344 chemical compound graphs divided into two classes
based on whether or not they cause cancer in rats. This dataset is very difficult to classify without
features however LEGS-RBF and LEGS-FCN are able to capture the long range connections slightly
better than other methods.

COLLAB Yanardag & Vishwanathan (2015): 5000 ego-networks of different researchers from
high energy physics, condensed matter physics or astrophysics. The goal is to determine which
field the research belongs to. The GraphSAGE model performs best on this dataset although the
LEGS-RBF network performs nearly as well. Ego graphs have a very small average diameter. Thus
shallow networks can perform quite well on them as is the case here.

IMDB Yanardag & Vishwanathan (2015): For each graph nodes represent actresses/actors and
there is an edge between them if they are in the same move. These graphs are also ego graphs around
specific actors. IMDB-BINARY classifies between action and romance genres. IMDB-MULTI
classifies between 3 classes. Somewhat surprisingly GS-SVM performs the best with other LEGS
networks close behind. This could be due to oversmoothing on the part of GCN and GraphSAGE
when the graphs are so small.

REDDIT Yanardag & Vishwanathan (2015): Graphs in REDDIT-BINARY/MULTI-5K/MULTI-
12K datasets each graph represents a discussion thread where nodes correspond to users and there
is an edge between two nodes if one replied to the other’s comment. The task is to identify which
subreddit a given graph came from. On these datasets GCN outperforms other models.

QM9 Gilmer et al. (2017); Wu et al. (2018): Graphs in the QM9 dataset each represent chemicals
with 18 atoms. Regression targets represent chemical properties of the molecules.

B.1 PERFORMANCE OF LEGSNET ON SOCIAL NETWORK DATASETS

Table S2 shows that our model outperforms other GNNs on some biomedical benchmarks and that
it performs comparably on social network datasets. Out of the six social network datasets, ignoring
the fixed scattering model GS-SVM, which has been hand tuned with these datasets in mind, our
model outperforms both GNN models on three of them, and is second best on the other three. This
is at least comparable if not slightly superior performance. GraphSAGE does a bit better on Collab,
but much worse on IMDB-Binary and Reddit-Binary. GCN does a bit better on Reddit-Multi, but
worse on Collab, IMDB-Binary, and Reddit-Binary.

LEGSNet has significantly fewer parameters and achieves comparable or superior accuracy on com-
mon benchmarks. Even when our method shows comparable results, and definitely when it outper-
forms other GNNs, we believe that its smaller number of parameters could be useful in applications
with limited compute or limited training examples.
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Table S1: Dataset statistics, diameter, nodes, edges, clustering coefficient averaged over all graphs.
Split into bio-chemical and social network types.

# Graphs # Classes Diameter Nodes Edges Clust. Coeff

DD 1178 2 19.81 284.32 715.66 0.48
ENZYMES 600 6 10.92 32.63 62.14 0.45
MUTAG 188 2 8.22 17.93 19.79 0.00
NCI1 4110 2 13.33 29.87 32.30 0.00
NCI109 4127 2 13.14 29.68 32.13 0.00
PROTEINS 1113 2 11.62 39.06 72.82 0.51
PTC 344 2 7.52 14.29 14.69 0.01

COLLAB 5000 3 1.86 74.49 2457.22 0.89
IMDB-BINARY 1000 2 1.86 19.77 96.53 0.95
IMDB-MULTI 1500 3 1.47 13.00 65.94 0.97
REDDIT-BINARY 2000 2 8.59 429.63 497.75 0.05
REDDIT-MULTI-12K 11929 11 9.53 391.41 456.89 0.03
REDDIT-MULTI-5K 4999 5 10.57 508.52 594.87 0.03

Table S2: Mean ± std. over 10 test sets on bio-chemical and social datasets.

LEGS-RBF LEGS-FCN LEGS-FIXED GCN GraphSAGE GAT GIN GS-SVM Baseline

DD 72.58 ± 3.35 72.07 ± 2.37 69.09 ± 4.82 67.82 ± 3.81 66.37 ± 4.45 68.50 ± 3.62 42.37 ± 4.32 72.66 ± 4.94 75.98 ± 2.81
ENZYMES 36.33 ± 4.50 38.50 ± 8.18 32.33 ± 5.04 31.33 ± 6.89 15.83 ± 9.10 25.83 ± 4.73 36.83 ± 4.81 27.33 ± 5.10 20.50 ± 5.99
MUTAG 33.51 ± 4.34 82.98 ± 9.85 81.84 ± 11.24 79.30 ± 9.66 81.43 ± 11.64 79.85 ± 9.44 83.57 ± 9.68 85.09 ± 7.44 79.80 ± 9.92
NCI1 74.26 ± 1.53 70.83 ± 2.65 71.24 ± 1.63 60.80 ± 4.26 57.54 ± 3.33 62.19 ± 2.18 66.67 ± 2.90 69.68 ± 2.38 56.69 ± 3.07
NCI109 72.47 ± 2.11 70.17 ± 1.46 69.25 ± 1.75 61.30 ± 2.99 55.15 ± 2.58 61.28 ± 2.24 65.23 ± 1.82 68.55 ± 2.06 57.38 ± 2.20
PROTEINS 70.89 ± 3.91 71.06 ± 3.17 67.30 ± 2.94 74.03 ± 3.20 71.87 ± 3.50 73.22 ± 3.55 75.02 ± 4.55 70.98 ± 2.67 73.22 ± 3.76
PTC 57.26 ± 5.54 56.92 ± 9.36 54.31 ± 6.92 56.34 ± 10.29 55.22 ± 9.13 55.50 ± 6.90 55.82 ± 8.07 56.96 ± 7.09 56.71 ± 5.54
COLLAB 75.78 ± 1.95 75.40 ± 1.80 72.94 ± 1.70 73.80 ± 1.73 76.12 ± 1.58 72.88 ± 2.06 62.98 ± 3.92 74.54 ± 2.32 64.76 ± 2.63
IMDB-BINARY 64.90 ± 3.48 64.50 ± 3.50 64.30 ± 3.68 47.40 ± 6.24 46.40 ± 4.03 45.50 ± 3.14 64.20 ± 5.77 66.70 ± 3.53 47.20 ± 5.67
IMDB-MULTI 41.93 ± 3.01 40.13 ± 2.77 41.67 ± 3.19 39.33 ± 3.13 39.73 ± 3.45 39.73 ± 3.61 38.67 ± 3.93 42.13 ± 2.53 39.53 ± 3.63
REDDIT-BINARY 86.10 ± 2.92 78.15 ± 5.42 85.00 ± 1.93 81.60 ± 2.32 73.40 ± 4.38 73.35 ± 2.27 71.40 ± 6.98 85.15 ± 2.78 69.30 ± 5.08
REDDIT-MULTI-12K 38.47 ± 1.07 38.46 ± 1.31 39.74 ± 1.31 42.57 ± 0.90 32.17 ± 2.04 32.74 ± 0.75 24.45 ± 5.52 39.79 ± 1.11 22.07 ± 0.98
REDDIT-MULTI-5K 47.83 ± 2.61 46.97 ± 3.06 47.17 ± 2.93 52.79 ± 2.11 45.71 ± 2.88 44.03 ± 2.57 35.73 ± 8.35 48.79 ± 2.95 36.41 ± 1.80

C TRAINING DETAILS

We train all models for a maximum of 1000 epochs with an initial learning rate of 1e−4 using the
ADAM optimizer (Kingma & Ba, 2015). We terminate training if validation loss does not improve
for 100 epochs testing every 10 epochs. Our models are implemented with Pytorch Paszke et al.
(2019) and Pytorch geometric. Models were run on a variety of hardware resources. For all models
we use q = 4 normalized statistical moments for the node to graph level feature extraction and
m = 16 diffusion scales in line with choices in Gao et al. (2019).

C.1 CROSS VALIDATION PROCEDURE

For all datasets we use 10-fold cross validation with 80% training data 10% validation data and 10%
test data for each model. We first split the data into 10 (roughly) equal partitions. For each model we
take exactly one of the partitions to be the test set and one of the remaining nine to be the validation
set. We then train the model on the remaining eight partitions using the cross-entropy loss on the
validation for early stopping checking every ten epochs. For each test set, we use majority voting
of the nine models trained with that test set. We then take the mean and standard deviation across
these test set scores to average out any variability in the particular split chosen. This results in 900
models trained on every dataset. With mean and standard deviation over 10 ensembled models each
with a separate test set.

D ENSEMBLING EVALUATION

Recent work by Min et al. (2020) combines the features from a fixed scattering transform with a
GCN network, showing that this has empirical advantages in semi-supervised node classification,
and theoretical representation advantages over a standard Kipf & Welling (2016) style GCN. We
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Table S3: Mean ± std. over test set selection on cross-validated LEGS-RBF Net with reduced
training set size.

Train, Val, Test % 80%, 10%, 10% 70%, 10%, 20% 40%, 10%, 50% 20%, 10%, 70%

COLLAB 75.78 ± 1.95 75.00 ± 1.83 74.00 ± 0.51 72.73 ± 0.59
DD 72.58 ± 3.35 70.88 ± 2.83 69.95 ± 1.85 69.43 ± 1.24
ENZYMES 36.33 ± 4.50 34.17 ± 3.77 29.83 ± 3.54 23.98 ± 3.32
IMDB-BINARY 64.90 ± 3.48 63.00 ± 2.03 63.30 ± 1.27 57.67 ± 6.04
IMDB-MULTI 41.93 ± 3.01 40.80 ± 1.79 41.80 ± 1.23 36.83 ± 3.31
MUTAG 33.51 ± 4.34 33.51 ± 1.14 33.52 ± 1.26 33.51 ± 0.77
NCI1 74.26 ± 1.53 74.38 ± 1.38 72.07 ± 0.28 70.30 ± 0.72
NCI109 72.47 ± 2.11 72.21 ± 0.92 70.44 ± 0.78 68.46 ± 0.96
PROTIENS 70.89 ± 3.91 69.27 ± 1.95 69.72 ± 0.27 68.96 ± 1.63
PTC 57.26 ± 5.54 57.83 ± 4.39 54.62 ± 3.21 55.45 ± 2.35
REDDIT-BINARY 86.10 ± 2.92 86.05 ± 2.51 85.15 ± 1.77 83.71 ± 0.97
REDDIT-MULTI-12K 38.47 ± 1.07 38.60 ± 0.52 37.55 ± 0.05 36.65 ± 0.50
REDDIT-MULTI-5K 47.83 ± 2.61 47.81 ± 1.32 46.73 ± 1.46 44.59 ± 1.02

Table S4: Test set mean squared error on CASP GDT regression task across targets over 3 non-
overlapping test sets.

LEGS-RBF LEGS-FCN LEGS-FIXED GCN GraphSAGE GIN Baseline

t0860 197.68 ± 34.29 164.22 ± 10.28 206.20 ± 28.46 314.90 ± 29.66 230.45 ± 79.72 262.35 ± 66.88 414.41 ± 26.96
t0868 131.42 ± 8.12 127.71 ± 14.26 178.45 ± 5.64 272.14 ± 26.34 191.08 ± 21.96 170.05 ± 27.26 411.98 ± 57.39
t0869 106.69 ± 9.97 132.12 ± 31.37 104.47 ± 14.16 317.22 ± 12.75 244.38 ± 40.58 217.02 ± 57.01 393.12 ± 48.70
t0872 144.11 ± 24.88 148.20 ± 23.63 134.48 ± 8.25 293.96 ± 19.00 221.13 ± 28.74 240.89 ± 24.17 374.48 ± 33.70
t0879 89.00 ± 44.94 80.14 ± 16.21 64.63 ± 15.92 309.23 ± 69.40 172.41 ± 73.07 147.77 ± 15.72 364.79 ± 144.32
t0900 193.74 ± 10.78 171.05 ± 25.41 158.56 ± 9.87 254.11 ± 18.63 209.07 ± 11.90 265.77 ± 79.99 399.16 ± 83.48
t0912 113.00 ± 22.31 169.55 ± 27.35 150.70 ± 8.53 227.17 ± 22.11 192.28 ± 39.45 271.30 ± 28.89 406.25 ± 31.42
t0920 80.46 ± 14.98 136.94 ± 36.43 84.83 ± 19.70 361.19 ± 71.25 261.72 ± 59.67 191.86 ± 37.85 398.22 ± 25.60
t0921 187.89 ± 46.15 165.97 ± 42.39 142.97 ± 27.09 382.69 ± 20.27 260.49 ± 16.09 207.19 ± 24.84 363.92 ± 35.79
t0922 254.83 ± 91.28 110.54 ± 43.99 227.73 ± 26.41 366.72 ± 8.10 290.71 ± 7.22 130.46 ± 11.64 419.14 ± 45.49
t0942 188.55 ± 11.10 167.53 ± 22.01 137.21 ± 7.43 371.31 ± 9.90 233.78 ± 84.95 254.38 ± 47.21 393.03 ± 24.93
t0944 146.59 ± 8.41 138.67 ± 50.36 245.79 ± 58.16 263.03 ± 9.43 199.40 ± 51.11 157.90 ± 2.57 404.12 ± 40.82

Table S5: Quantified distance between the empirically observed enzyme class exchange preferences
of Cuesta et al. (2015) and the class exchange preferences inferred from LEGS-FIXED, LEGS-FCN,
and a GCN. We measure the cosine distance between the graphs represented by the chord diagrams
in Figure 2. As before, the self-affinities were discarded. LEGS-Fixed reproduces the exchange
preferences the best, but LEGS-FCN still reproduces well and has significantly better classification
accuracy.

LEGS-FIXED LEGS-FCN GCN

0.132 0.146 0.155

ensemble the learned features from a learnable scattering network (LEGS-FCN) with those of GCN
and compare this to ensembling fixed scattering features with GCN as in Min et al. (2020), as well
as the solo features. Our setting is slightly different in that we use the GCN features from pretrained
networks, only training a small 2-layer ensembling network on the combined graph level features.
This network consists of a batch norm layer, a 128 width fully connected layer, a leakyReLU ac-
tivation, and a final classification layer down to the number of classes. In Table S6 we see that
combining GCN features with fixed scattering features in LEGS-FIXED or learned scattering fea-
tures in LEGS-FCN always helps classification. Learnable scattering features help more than fixed
scattering features overall and particularly in the biochemical domain.
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Table S6: Mean ± standard deviation test set accuracy on biochemical and social network datasets.

GCN GCN-LEGS-FIXED GCN-LEGS-FCN

DD 67.82 ± 3.81 74.02 ± 2.79 73.34 ± 3.57
ENZYMES 31.33 ± 6.89 31.83 ± 6.78 35.83 ± 5.57
MUTAG 79.30 ± 9.66 82.46 ± 7.88 83.54 ± 9.39
NCI1 60.80 ± 4.26 70.80 ± 2.27 72.21 ± 2.32
NCI109 61.30 ± 2.99 68.82 ± 1.80 69.52 ± 1.99
PROTEINS 74.03 ± 3.20 73.94 ± 3.88 74.30 ± 3.41
PTC 56.34 ± 10.29 58.11 ± 6.06 56.64 ± 7.34
COLLAB 73.80 ± 1.73 76.60 ± 1.75 75.76 ± 1.83
IMDB-BINARY 47.40 ± 6.24 65.10 ± 3.75 65.90 ± 4.33
IMDB-MULTI 39.33 ± 3.13 39.93 ± 2.69 39.87 ± 2.24
REDDIT-BINARY 81.60 ± 2.32 86.90 ± 1.90 87.00 ± 2.36
REDDIT-MULTI-12K 42.57 ± 0.90 45.41 ± 1.24 45.55 ± 1.00
REDDIT-MULTI-5K 52.79 ± 2.11 53.87 ± 2.75 53.41 ± 3.07

Table S7: Mean ± std. over four runs of mean squared error over 19 targets for the QM9 dataset,
lower is better.

LEGS-FCN LEGS-FIXED GCN GraphSAGE GIN Baseline

Target 0 0.749 ± 0.025 0.761 ± 0.026 0.776 ± 0.021 0.876 ± 0.083 0.786 ± 0.032 0.985 ± 0.020
Target 1 0.158 ± 0.014 0.164 ± 0.024 0.448 ± 0.007 0.555 ± 0.295 0.191 ± 0.060 0.593 ± 0.013
Target 2 0.830 ± 0.016 0.856 ± 0.026 0.899 ± 0.051 0.961 ± 0.057 0.903 ± 0.033 0.982 ± 0.027
Target 3 0.511 ± 0.012 0.508 ± 0.005 0.549 ± 0.010 0.688 ± 0.216 0.555 ± 0.006 0.805 ± 0.025
Target 4 0.587 ± 0.007 0.587 ± 0.006 0.609 ± 0.009 0.755 ± 0.177 0.613 ± 0.013 0.792 ± 0.010
Target 5 0.646 ± 0.013 0.674 ± 0.047 0.889 ± 0.014 0.882 ± 0.118 0.699 ± 0.033 0.833 ± 0.026
Target 6 0.018 ± 0.012 0.020 ± 0.011 0.099 ± 0.011 0.321 ± 0.454 0.012 ± 0.006 0.468 ± 0.005
Target 7 0.017 ± 0.005 0.024 ± 0.008 0.368 ± 0.015 0.532 ± 0.405 0.015 ± 0.005 0.379 ± 0.013
Target 8 0.017 ± 0.005 0.024 ± 0.008 0.368 ± 0.015 0.532 ± 0.404 0.015 ± 0.005 0.378 ± 0.013
Target 9 0.017 ± 0.005 0.024 ± 0.008 0.368 ± 0.015 0.532 ± 0.404 0.015 ± 0.005 0.378 ± 0.013
Target 10 0.017 ± 0.005 0.024 ± 0.008 0.368 ± 0.015 0.533 ± 0.404 0.015 ± 0.005 0.380 ± 0.014
Target 11 0.254 ± 0.013 0.279 ± 0.023 0.548 ± 0.023 0.617 ± 0.282 0.294 ± 0.003 0.631 ± 0.013
Target 12 0.034 ± 0.014 0.033 ± 0.010 0.215 ± 0.009 0.356 ± 0.437 0.020 ± 0.002 0.478 ± 0.014
Target 13 0.033 ± 0.014 0.033 ± 0.010 0.214 ± 0.009 0.356 ± 0.438 0.020 ± 0.002 0.478 ± 0.014
Target 14 0.033 ± 0.014 0.033 ± 0.010 0.213 ± 0.009 0.355 ± 0.438 0.020 ± 0.002 0.478 ± 0.014
Target 15 0.036 ± 0.014 0.036 ± 0.011 0.219 ± 0.009 0.359 ± 0.436 0.023 ± 0.002 0.479 ± 0.014
Target 16 0.002 ± 0.002 0.001 ± 0.001 0.017 ± 0.034 0.012 ± 0.022 0.000 ± 0.000 0.033 ± 0.013
Target 17 0.083 ± 0.047 0.079 ± 0.033 0.280 ± 0.354 0.264 ± 0.347 0.169 ± 0.206 0.205 ± 0.220
Target 18 0.062 ± 0.005 0.176 ± 0.231 0.482 ± 0.753 0.470 ± 0.740 0.321 ± 0.507 0.368 ± 0.525
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