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Abstract—This paper presents a quantum computing frame-
work to solve a system of nonlinear ordinary differential equa-
tions (ODEs) used in the power system dynamic analysis. The
framework exploits the linearization of power system dynamics’
nonlinear ODEs at particular points of state variable vector
to construct a system of linear ODEs (LDE) modeling the
system dynamics around considered points within a small time
interval. The analytical solution of this LDE system in the
matrix exponential form can be simulated and transformed
into quantum states using the popular design of a Variational
Quantum Circuit (VQC) acting as a quantum LDE solver oracle.
The oracle can be used repeatedly to construct the trajectory
of the original nonlinear power system dynamics along the
time evolution. Obtained numerical results using Julia-based
simulatable quantum circuits demonstrate that we can tailor
and leverage recent advances in quantum computing algorithms,
originally designed for linear systems, to model nonlinear power
system dynamics with high accuracy.

Keywords—Power system dynamics, quantum linear differen-
tial equation solver, quantum computing, nonlinear ODEs.

I. INTRODUCTION

Power system dynamic analysis is a challenging research

task due to the large number of interconnected components

such as generators, loads, and transmission lines along with

the nonlinear nature of ordinary differential equations (ODEs)

modeling system dynamics [1]. Classical computing methods,

such as Euler, Runge-Kutta, and backward differentiation

formula, are based on numerical discretization approaches [2]

and might not scale well with the exponential increase of

the system complexity induced by the growing penetration of

distributed energy resources. Thus, there is an urgent need

for a computationally effective approach with high solution

accuracy for modern power system dynamic analysis [2].

Quantum computing as a novel computation method en-

ables superior scaling with certain complex problems, such

as linear algebra and matrix exponential calculations [3]. One

application with proven quantum advances is solving linear

equations. The most well-known quantum linear algebraic

equation solver is the Harrow-Hassidim-Lloyd (HHL) algo-

rithm [4]. The work [5] expanded the capability of quantum

linear algebraic equation solvers, allowing them to handle

high-dimensional linear systems. This is accomplished by

proportionally setting the quantum states to the solution of
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the block-encoded N -dimensional system of linear equations,

unlocking the potential for rapid characterization of solutions

to high-dimensional linear systems. The work [6] presents an

alternative linear equation solver using the variant of adiabatic

quantum computing (AQC) for solving linear equations. By

modeling a multi-step forward difference method as a system

of linear equations, the work [7] showed that linear differential

equations (LDEs) can be also solved effectively using the HHL

circuit. The work [8] employs a quantum variational circuit

(VQC) to solve the LDEs. Different from the HHL method,

the VQC simulates directly the analytical solutions of LDEs,

which are in matrix exponential forms and can be computed

in quantum computers effectively via truncated Taylor series.

While existing quantum algorithms have succeeded in solv-

ing linear equations, both algebraic and differential forms, they

cannot be applied to solve nonlinear ODEs for power system

dynamics analysis. This paper presents a quantum computing

approach to address the problem of solving nonlinear ODEs

arising in power system dynamic analysis. We exploit the

fact that the nonlinear dynamics of power systems around a

particular point with a small time step of evolution can be

linearly approximated and the resulting LDEs can be computed

effectively using recent advances in quantum LDE solver.

Among different quantum LDE solvers, such as the AQC

method [6], which is costly to realize, and the HHL-based

method [7], which is susceptible to noises, we choose VQC

since it is resilient to quantum noise errors and has high

flexibility for coherence time and gate requirements, thus more

suitable for Noisy Intermediate Scale Quantum devices. Within

this context, we construct the VQC in accordance to [8] as an

oracle for sequentially solving LDEs to construct the trajectory

of the original nonlinear power system dynamics’ ODEs.

The rest of the paper is as follows. Section II reviews

the mathematical model of power system dynamics. Section

III presents the VQC-based LDE solver oracle to solve the

nonlinear systems Case studies and numerical results are

presented in Section IV, and Section V concludes the paper.

II. MATHEMATICAL MODEL

An electric power network is an interconnection of m ma-

chines in a network of n buses with an admittance matrix Y N

[1] as shown in Figure 1 (Rsi and X ′
di are stator resistance and

the d-axis transient reactance of the generator located in node i
respectively). The load at node i can be modeled as a constant
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Fig. 1: Interconnection of m synchronous machine dynamic circuits
and n buses with network admittance matrix ȲN [1].

impedance, particularly an admittance yLi, consuming power

PLi + jQLi at a voltage magnitude Vi as follows [1]:

−(PLi − jQLi) = yLiV
2
i ∀i = 1, . . . , n. (1)

Since Rsi is generally very small and can be ignored, the

network becomes an interconnection of m generation buses

only as in Figure 2. This is called the internal node model

with a new network equation I int = Y intE. where Ei = Ei∠δi
is the nodal voltage and Y int is the internal node matrix

constructed from network parameters such as Y N , X ′
d, and

yL [1]. Then, the system dynamics (including the governor

system displayed in Figure 3) can be represented as:

dδi
dt

= ωi − ωs, (2a)

dωi

dt
=

ωs

2Hi
(TMi − Pei) , (2b)

dTMi

dt
=

1

TCHi
(PSV i − TMi) , (2c)

dPSV i

dt
=

1

TSV i
(PCi−PSV i)− 1

RDiTSV i

(
ωi

ωs
−1

)
, (2d)

∀i = 1, . . . ,m,

where Pei is the active electrical power output of the generator:

Pei = GiiE
2
i +

m∑
j=1,j �=i

(
GijEiEj cos(δi − δj)

+BijEiEj sin(δi − δj)
)
. (3)

The parameters used in (2) include ωs (the reference angular

speed), Hi (the machine’s initial constant), TCHi (the steam

chest time constant), TSV i (the steam valve time constant),

RDi (speed regulation quantity), PCi (the power control), and

Gij + jBij = Y ij is ijth element of Y int. The state variables

include Pei, the electric power output of generator i given

in (3), δi, the rotor angle, ωi, the angular speed, TMi, the

mechanical torque, and PSV i, the steam valve position. Equa-

tions (2a) and (2b) represent the dynamic of the generators.

Equations (2c) and (2d) represent the dynamic of the turbine

and governor systems. Since Pei is a trigonometric function of

all generators’ rotor angles, equation (2) indeed is a nonlinear

ODE system that can be compactly rewritten as:

dx

dt
= f(x) (4)

where x� = [x�
1 , x

�
2 , . . . , x

�
m], x�

i = [δi, ωi, TMi, PSV i].

Fig. 2: Internal node model with loads as constant impedances [1].

Fig. 3: Turbine and speed governor model [9].

III. QUANTUM COMPUTING APPROACHES

A. Quantum Linear Differential Equation Solver Oracle
Consider a system of linear ordinary differential equations:

dx

dt
= Ax(t) + b, t ∈ [0, T ] ⊂ R

+, (5)

where A ∈ R
N×N and b ∈ R

N are system matrix and

vector input, and x(t) ∈ R
N is the vector of state variables,

respectively. It can be solved analytically as:

x(t) = eAtx(0) +
(
eAt − I

)
A−1b (6)

where x(0) is a vector of initial conditions. Using Taylor

series, the solution x(t) is approximated as:

x(t) ≈
k∑

m=0

(At)m

m!
x(0) +

k∑
n=1

An−1tn

n!
b, (7)

where k denotes the Taylor polynomial’s approximation order.
The equation (7) can be rewritten in terms of quantum states

and operators. In particular, we can produce an operator U =∑
i,j Aij |i〉 〈j| and encode x(0) and b into quantum states

using the probability amplitude encoding as follows [8]:

|x(0)〉 =
N−1∑
j=0

xj(0)

‖x(0)‖ |j〉 , |b〉 =
N−1∑
j=0

bj
‖b‖ |j〉

where |j〉 is the j-th computational basis vector in the Hilbert

space. Using these representations, we can rewrite (7) in Dirac

notations of bra and ket as follows:

|x(t)〉 ≈
k∑

m=0

‖x(0)‖(‖(A)‖Ut)m

m!︸ ︷︷ ︸
Cm

|x(0)〉

+
k∑

n=1

‖b‖(‖(A)‖Ut)n−1tn

n!︸ ︷︷ ︸
Dn

|b〉 (8)

To represent the state vector |x(t〉 at time t in (8) as a

quantum state, we must normalize it as follows:

|x(t)〉 = 1

M2

(
k∑

m=0

CmUm |x(0)〉+
k∑

n=1

DnUn−1 |b〉
)

(9)
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where M2 =
∑

Cm +
∑

Dn is the normalization factor, and

coefficients Cm and Dn are based on the initial state and the

unitary operator U as given in (8).

Remark: Equation (9) represents the implementation of the

analytical solution (7) in quantum computer where xj(t) =
M2〈j |x(t)〉 is the j-th element of the solution x(t). In other

words, since the normalized |x(t)〉 can represent a quantum

state and the formulation (9) is indeed a linear expression, it

can be implemented by quantum circuits, for instance, VQC.

Figure 4 represents the VQC that implements equation

(9) [8]. The VQC consists of 3 layers whose resulting state

vectors are denoted as |ψ1〉 , |ψ2〉, and |ψ3〉, respectively and

the solution of state variable vector x(t) is the output of the

circuit. The operators listed in the VQC include:

V =
1

M
[√∑

Cm

√∑
Dm√∑

Dm −√∑
Cm

]
(10a)

VS1 =
1√∑
Cm

[√
C0,

√
C1, . . . ,

√
Ck

]
(10b)

VS2 =
1√∑
Dm

[√
D0,

√
D1, . . . ,

√
Dk

]
(10c)

WS1 = V †
S1, WS1 = V †

S2, W = V †, (10d)

which will be explained as follows:

The first layer employs log2 N working qubits to encode

the N -dimensional vector, 1 qubit for the first ancilla register

and log2k qubits for the second ancilla register [8]. Then, the

unitary operators Ux and Ub are applied to the working qubits

to create the states |x(0)〉 and |b〉 whereas V and VS1/VS2

respectively are applied to the first and second ancilla qubits

to assist the probability amplitude encoding. The resulting

quantum state of the first layer is:

|ψ1〉= 1

M
(
|0〉

k∑
m=0

√
Cm|m〉|x(0)〉+

k∑
n=1

√
Dn|n−1〉|b〉

)
.

(11a)

In the second layer, the working qubits and the second

ancilla qubit are entangled whereas a sequence of operators

U0, U1, . . . , Uk is applied on the working qubits, consequently

producing the following quantum state:

|ψ2〉 = 1

M
(
|0〉

k∑
m=0

√
Cm |m〉Um |x(0)〉

+ |1〉
k∑

n=1

√
Dn |n− 1〉Un−1 |b〉

)
. (11b)

In the third layer, operation |0〉 〈0|⊗WS1 + |1〉 〈1|⊗WS2

is applied on ancilla qubits, which decodes the quantum state

|ψ2〉 to produce:

|ψ3〉 = 1

M2
|0〉|0〉

⊗T
( k∑
m=0

CmUm|x(0)〉+
k∑

n=1

DnUn−1 |b〉
)
.

(11c)

Finally, we measure the working qubits with ancilla qubits

set to |0〉, to extract the solution |x(t)〉 of the linear ODE (5).

Fig. 4: VQC for quantum LDE oracle: |0〉 and |0〉
⊗

T
are respec-

tively the first and second ancilla qubits, |φ〉 are working qubits,
where the initial quantum states are fed into the system (specifically,
|x(0)〉 and |b〉 are generated by operators Ux and Ub) [8].

B. Solving nonlinear power system dynamics

The VQC circuit presented above can act as a quantum LDE

oracle. The power system dynamics in the compact form (4),

however, is nonlinear ODEs. Its linearization at a particular

starting point x∗ can be represented as follows:

dΔ(x)

dt
= JΔ(x) + b with

⎧⎨
⎩

Δ(x) = x(t)− x∗

J = ∇�
f (x

∗)
b = f(x∗)

(12)

Because we approximate the state evolution around the

starting point x∗, i.e., x(0) = x∗, we have Δx(0) = 0 and the

change of state variable x from x∗ after a small time t is:

Δx(t) =
(
eJt − I

)
J−1b, (13)

The equation (13) is a special case of (6). Thus it can be

solved by the VQC presented above for Δx(t) and the new

state variable at time t will be x(t) = x∗ +Δx(t). Thus, we

can approximate the trajectory of x(t) with the time step-size τ
by sequentially performing computing x(tr) at individual time

points: tr ∈ {0, τ, 2τ, 3τ . . .} using the VQC based quantum

LDE oracle with x∗ = x(tr−1) and t = τ .

IV. CASE STUDIES AND NUMERICAL RESULTS

We consider two test cases: (i) a single-machine infinite

bus (SMIB) system, and (ii) the Western System Coordinat-

ing Council three-machine nine-bus (WSCC 3M9B) system,

whose parameters are referred from [1] (Chapter 5 and Chapter

7, respectively). The ODEs modeling power system dynamics

are implemented in Julia using the ModelingToolkit (MTK)

package [10] whereas the Yao package is used as the quan-

tum simulator [11]. We leverage the QuDiffEq package for

implementing the quantum LDE oracle. We use root mean

square error (RMSE) and maximum absolute error (MAE) to

compare the difference between the results of classical and

quantum computing-based approaches. Dashed lines represent

the results of the Runge-Kutta method [12] while solid lines

represent the results obtained by the Quantum LDE oracle.

The complete implementation details and source code of this

study are available on the GitHub repository [13].

A. Single machine infinite bus system

The SMIB system depicted in Figure 5 consists of a single

generator and an extremely robust grid (infinite bus) connected

by a lossless transmission line [14]. Let Ec, V denote the

magnitudes of the machine’s internal and the infinite bus

voltages, and Xd, X� are the machine’s internal and trans-

mission line reactances. Also, T 0
M , H,D are the constant
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Fig. 5: Single machine infinite bus system [1].
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Fig. 6: SMIB system’s results.

mechanical torque, the machine’s inertial constant, and the

damping constant, respectively. Thus, equation (2) becomes:

dδ

dt
= ω − ωs (14a)

d(ω − ωs)

dt
= K1 −K2 sin(δ)−K3(ω − ωs), (14b)

where K1 =
ωs

2H
T 0
M , K2 =

ωs

2H

EcV

Xd +X�
, K3 =

ωs

2H
D.

We simulate the SMIB dynamics (14) with an initial

transient speed of ω(0)−ωs=5rad/s and rotor angle of

δ(0)=−2rad in two scenarios: (i) normal condition with

K1=5, K2=10, and K3=1.7, and (ii) pole slipping con-

ditioning (by altering K3 to 1.5). Figure 6 shows that the

system converges to the equilibrium in both scenarios where

the pole slipping case has a longer transient time with a new

equilibrium point (6.81rad from 0.52rad) as shown in the phase

portraits. Both quantum computing and classical methods have

almost identical simulation results with small errors, i.e.,

RMSEs of angular velocities are 1.7259· 10−4 for the normal

condition and 2.8068·10−4 for the pole slipping case. The

MAEs of angular velocities are higher, as they represent the

maximum error between the quantum LDE and Runge-Kutta

methods, which are 9.1726·10−4 and 1.132·10−3, respectively.

B. WSCC three-machine nine-bus system

The WSCC three-machine nine-bus system, depicted in

Figure 7, is assumed to operate normally until the demand

changes at t = 5s. Its original equilibrium can be found in

[1]. We evaluate the dynamics of the system in two scenarios:

• Increasing demand: demand at Bus 5 and Bus 8 increase

by 0.4 + j0.2pu, and 0.3 + 0.15pu, respectively.

• Decreasing demand: demand at Bus 5, Bus 6, and Bus 8

decrease by 0.2+j0.1pu, 0.2 + j0.05pu, and 0.1+j0.1pu.

Figure 8 illustrates the changes in the variables of three

generators, i.e., transient speed ωi − ωs (left column) and the

Fig. 7: WSCC three-machine nine-bus system [1].
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Fig. 8: The WSCC 3M9B system with increased demand.

phase portrait (right column) (i = 1, 2, 3) for generators G1,

G2, G3, respectively, with Taylor polynomial approximation

order is 5 and time steps is 0.01. At t = 5s, there is a short

rise in the demand, leading to a power shortage in the system.

Consequently, the angular speed of the synchronous machines

decreases before becoming stable thanks to the governors’

response which increases the power generation of the machine.

As shown in the phase portrait, the system attains a new

equilibrium point at a rotor angle lower than the initial point.

Figure 9 reveals an inverse observation when the demand

drops abruptly at t = 5s. Since the power generated by the

generators exceeds the load, its angular speed increases. The

system exhibits oscillation before settling down to a new state

when the transient speeds of all generators converge to zero

due to the governor system’s operation. In both Figures 8-9,

all generators revert to the equilibrium state. It also highlights

that regardless of whether the demand increased or decreased,

the RMSEs and MAEs of three generators increased from

generator 1 to generator 3, but remain insignificant. This

demonstrates the efficiency and accuracy of the quantum LDE

oracle in simulating power system dynamics.
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Fig. 9: The WSCC 3M9B system with decreased demand.
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Fig. 10: Root mean square error: a) with different time steps, b)
with different Taylor polynomial approximation order.

Figure 10 shows the RMSEs of two scenarios with different

time steps when the order of Taylor polynomial approximation

is 5 (Figure 10a) and different Taylor polynomial approxima-

tion order with 0.01-time step (Figure 10b) for all generators.

It is observed that the RMSEs of all generators decrease

as we reduce the time step τ or increase the order of the

truncated Taylor expansion. Note that the number of qubits

for the second ancilla register is equal to the logarithmic of

the order of truncated Taylor polynomial [8]. It does not affect

the number of qubits used to encode the N -dimensional state

vector of the system dynamics, which equals log2 N . Since

the number of state variables in the internal node model with

m machines in equation (2) is N = 4×m, we need 2+log2 m
qubits for the probability amplitude encoding task.

V. CONCLUSION

This paper introduces a quantum computing framework for

solving nonlinear ODEs in power system dynamic analysis.

For small time steps, the nonlinear ODEs can be linearized

as LDEs to be solved by VQC, a matured algorithm suitable

for Noisy Intermediate-Scale Quantum devices. Specifically,

the analytical solutions of LDEs in the matrix exponential

form are computed by VQC using truncated Taylor expansion

through a set of quantum operators and measurements. The

VQC is sequentially employed to construct the full trajectory

of the originally nonlinear ODEs modeling the power system

dynamics. Our numerical results conducted on the SMIB

and the WSCC three-machine nine-bus systems using Julia-

based simulatable quantum circuits demonstrate the potential

of modeling nonlinear power system dynamics with recent

advances in quantum computing algorithms, which were orig-

inally designed for solving linear systems.
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[6] Y. Subaşı, R. D. Somma, and D. Orsucci, “Quantum algorithms for
systems of linear equations inspired by adiabatic quantum computing,”
Physical review letters, vol. 122, no. 6, p. 060504, 2019.

[7] D. W. Berry, “High-order quantum algorithm for solving linear differ-
ential equations,” Journal of Physics A: Mathematical and Theoretical,
vol. 47, no. 10, p. 105301, 2014.

[8] T. Xin, S. Wei, J. Cui, J. Xiao, I. Arrazola, L. Lamata, X. Kong,
D. Lu, E. Solano, and G. Long, “Quantum algorithm for solving linear
differential equations: Theory and experiment,” Physical Review A, vol.
101, no. 3, p. 032307, 2020.

[9] F. L. Alvarado, J. Meng, C. L. DeMarco, and W. S. Mota, “Stability
analysis of interconnected power systems coupled with market dynam-
ics,” IEEE Transactions on power systems, vol. 16, no. 4, pp. 695–701,
2001.

[10] Y. Ma, S. Gowda, R. Anantharaman, C. Laughman, V. Shah, and
C. Rackauckas, “Modelingtoolkit: A composable graph transformation
system for equation-based modeling,” 2021.

[11] X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang, “Yao. jl: Extensible,
efficient framework for quantum algorithm design,” Quantum, vol. 4,
p. 341, 2020.

[12] C. Rackauckas and Q. Nie, “Differentialequations.jl–a performant and
feature-rich ecosystem for solving differential equations in julia,” Jour-
nal of Open Research Software, vol. 5, no. 1, p. 15, 2017.

[13] H. T. Tran, P. Ngo, and H. T. Nguyen, “Code repository for
this paper,” 2024. [Online]. Available: https://github.com/ThanhEthan/
PowerSystemDynamics Quantum

[14] S. Wang, W. Gao, and A. S. Meliopoulos, “An alternative method for
power system dynamic state estimation based on unscented transform,”
IEEE transactions on power systems, vol. 27, no. 2, pp. 942–950, 2011.

Authorized licensed use limited to: University of West Florida. Downloaded on September 29,2025 at 13:49:15 UTC from IEEE Xplore.  Restrictions apply. 


