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ABSTRACT

Model pruning is an effective approach for compressing Large Language Models
(LLMs) and improving inference efficiency. However, this process often leads
to significant degradation of model capabilities. While post-training techniques
such as instruction tuning are commonly employed to recover model performance,
existing methods often overlook the uneven deterioration of model capabilities and
incur high computational costs due to extensive recovery training. Moreover, some
instruction data irrelevant to model capability recovery may introduce negative
effects. To address these challenges, we propose the Post-training dAta Selection
method for Efficient pruned large language model Recovery (PASER). PASER
aims to identify instructions where model capabilities are most severely compro-
mised within a certain recovery data budget. Our approach first applies manifold
learning and spectral clustering to group recovery data in the semantic space, re-
vealing capability-specific instruction sets. We then adaptively allocate the data
budget to different clusters based on the degrees of model capability degradation.
In each cluster, we prioritize data samples where model performance has declined
dramatically. To mitigate potential negative transfer, we also detect and filter out
conflicting or irrelevant recovery data. Extensive experiments demonstrate that
PASER significantly outperforms conventional baselines, effectively recovering the
general capabilities of pruned LLMs while utilizing merely 4%-20% of the original
post-training data and substantially reducing training computational overhead.

1 INTRODUCTION

Model pruning, which aims at reducing the model size while maintaining or enhancing model
capabilities, has been a promising approach towards large language model (LLM) compression and
efficient inference. Mainstream LLM pruning schemes include unstructured (Frantar & Alistarh,
2023), semi-structured (Sun et al., 2024), and structured pruning (Ma et al., 2023). In practice, the
capability degradation of the pruned model compared with the original LLM is almost unavoidable,
especially under high pruning ratios. This degradation phenomenon is more severe for the structured
pruning scheme, which has been widely adopted in industrial LLM compression thanks to its
hardware-friendly property. Therefore, first pruning, then post-training has been one of the standard
pipelines, where the recovery post-training is incorporated to restore the critical capabilities and adapt
to the reduced model capacity (Ma et al., 2023; Zhao et al.).

While various types of post-training data, including pre-training corpora and extensive fine-tuning
datasets, have been explored (Xia et al., 2024; Sun et al., 2024), instruction tuning data has demon-
strated unique advantages for efficient capability recovery (Ma et al., 2023; Zhao et al.; Zhang et al.,
2024; Chen et al., 2023). Compared to pre-training that requires massive computational resources, in-
struction tuning enables effective recovery with much smaller data scale through explicit supervision.
Besides, instruction tuning helps maintain the model’s general-purpose abilities through diverse task
coverage while avoiding overly specialized recovery.

Conventional schemes (Ma et al., 2023) usually employ the full version of publicly available instruc-
tion tuning datasets like Alpaca (Taori et al., 2023) to conduct the recovery post-training. However,
this can bring significant computation overhead and even unsatisfactory recovery performance, as
shown in Figure 1. An intuitive solution is to take part of the original data for training, thus con-
suming less data and correspondingly reducing the computation resource demand. Nevertheless,
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Figure 1: Average performance on seven common LLM reasoning evaluation tasks after recovery
post-training with different data. The numbers in brackets represent the group index of the data subset
in the full dataset. Unpruned indicates the original model and w/o Training indicates the pruned
model (using LLM-Pruner (Ma et al., 2023)) without the recovery post-training.

directly utilizing the uniformly split data subset (e.g., first 20% of the data), can lead to sub-optimal
performance, or even performance degradation. Moreover, the recovered performance considerably
varies for models trained with different subsets. Therefore, selecting the most valuable instruction-
tuning data that can contribute to recovery performance and reduce training costs becomes crucial.
Though previous works have noticed the significance of selecting high-quality data to conduct the
general instruction tuning (Wang et al., 2024), few of them are specifically designed for the recovery
post-training. Note that general high quality does not necessarily mean useful for recovery.

Considering above limitations, the ideal recovery training data selection approach should exhibit
following properties: (1) Targeted and Balanced Capability Recovery: The ideal selection method
should address the disproportionate impact of pruning on various model capabilities by enabling
targeted recovery of critically affected ones, while maintaining a balanced approach overall. It should
curate a diverse instruction set that prioritizes severely impacted capabilities without neglecting
holistic model functionality. (2) Recovery Training Efficiency: Limited computing resources pose
serious efficiency challenges to the LLM recovery post-training. An ideal method should be able to
select instructions that are both most beneficial for recovery and low in computational cost, thereby
accelerating the recovery training process and optimizing resource utilization. (3) Mitigation of
Negative Transfer: Recognizing that not all instruction data is beneficial for model recovery, an
optimal approach should not only identify the most advantageous instructions, but also filter out
potentially harmful or irrelevant ones. This significantly reduces the risk of negative transfer during
the recovery training, ensuring that the selected data contributes positively to model performance.

To achieve such goals, we propose the Post-training dAta Selection method for Efficient pruned
large language model Recovery (PASER). First, we perform semantic-structural recovery instruction
clustering to obtain different data groups corresponding to different LLM capabilities. Second,
we select the recovery instructions in a capability degradation-aware manner, where the overall
data budget is allocated to different clusters based on their corresponding capability degradation
degrees. In particular, the computation cost of each sample is also taken into consideration during the
inner-capability sample selection. Finally, we construct the concept consistency graph to maintain
the semantic consistency across the selected instructions, thus preventing introducing conflicting
or irrelevant samples. We take the LLaMA 2/3 and Baichuan2 as the target LLMs and perform the
experiments under different LLM pruning schemes and different-sized instruction tuning datasets. The
comparison with random and conventional instruction tuning data selection baselines demonstrates
that PASER can more effectively enhance the recovered LLM performance on language modeling and
various reasoning tasks. Meanwhile, the recovery training overhead can also be reduced significantly.

2 RELATED WORKS

Large Language Model Pruning can be generally divided into three categories: unstructured
pruning, semi-structured pruning, and structured pruning. Unstructured pruning removes individual
weights without structural constraints, with representative works including SparseGPT (Frantar &
Alistarh, 2023), Wanda (Sun et al., 2024), BESA (Xu et al., 2024b), and OWL (Yin et al., 2024).
This technique allows for maximum flexibility in weight selection and can achieve high compression
rates while maintaining model performance. However, the resulting irregular sparsity patterns limits
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the practical acceleration. Semi-structured pruning (Guo et al., 2024; Malla et al., 2024; Frantar
& Alistarh, 2023; Sun et al., 2024) targets specific patterns like N:M sparsity, balancing flexibility
and hardware efficiency. Structured pruning approaches like LLM-Pruner (Ma et al., 2023) and
SliceGPT (Ashkboos et al., 2024) remove entire structural components, offering better hardware
compatibility and attracting industry attention (Ko et al., 2023; An et al., 2024; Song et al., 2024; Xia
et al., 2024). However, structured pruning faces more severe performance degradation, highlighting
the importance of recovery post-training.

Instruction Tuning has emerged as a crucial technique for enhancing LLMs (Wei et al.; Wang et al.,
2023), improving their adaptability to novel tasks (Sanh et al.; Liang et al.; Zhou et al., 2024). Recent
works have explored instruction tuning as a post-compression recovery mechanism (Zhao et al.; Ma
et al., 2023). While promising, this combination faces challenges from reduced model capacity and
computational costs. Most current approaches use general instruction datasets without considering
compressed model’s characteristics or disproportionately affected capabilities. Our work addresses
these gaps by proposing a novel framework for post-training data selection in pruned LLM recovery.

3 PRELIMINARIES

Let Mo denote the original large language model (LLM) and Mp the pruned version of this model.
We define the instruction tuning dataset as D = {(xi, yi)}Ni=1, where xi represents an instruction
and yi its corresponding output. Our goal is to select a subset S ⊂ D to efficiently recover the
performance of Mp. We formulate the problem as an optimization task:

S∗ = argmin
S⊂D,|S|≤B

E(x,y)∼T [L(Mr(S), x, y)],

subject to Mr(S) = RecoveryTrain(Mp, S)
(1)

where Mr(S) is the recovered model after training on subset S, T is the distribution of downstream
evaluation tasks, L is a loss function. B(B < N) is the recovery data budget, i.e., maximum number
of samples allowed in the selected subset.

4 METHODOLOGY

In this section, we introduce the three main components of the PASER framework: semantic-structural
recovery instruction clustering, capability degradation-aware adaptive recovery instruction selection,
and negative transfer mitigation. Furthermore, we provide the time complexity analysis for PASER in
the selection process.

4.1 SEMANTIC-STRUCTURAL RECOVERY INSTRUCTION CLUSTERING

During the LLM pruning process, different model capabilities may be affected unevenly by pruning.
To ensure balanced recovery, we need to identify and group data points that target similar capabilities.
To achieve this, we hypothesize that distinct geometric topological structures of recovery instruction
data in the high-dimensional semantic space may correspond to different aspects of LLM capabilities.
This hypothesis is based on the intuition that instructions requiring similar capabilities are likely
to cluster together in the semantic space, forming identifiable topological structures. In detail, we
employ a two-step approach on the embedding space of instructions. First, we apply a diffusion
kernel to SentenceBERT (Reimers & Gurevych, 2019) embeddings for manifold learning to uncover
the intrinsic geometric structure in the semantic space and reduce dimensionality while preserving
non-linear relationships:

e(xi) = DiffusionKernel(SentenceBERT(xi)). (2)

Here, e(xi) is the obtained low-dimensional manifold representation of instruction xi. Then, non-
negative matrix factorization(NMF)-based spectral clustering (Ding et al., 2005) is conducted to
identify natural groupings of instructions that potentially correspond to different LLM capabilities,
leveraging the low-dimensional manifold representation:

C = {c1, . . . , cK} = NMFSpectralClustering({e(xi)|(xi, yi) ∈ D}). (3)
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As for the details in the first step, we first obtain the SentenceBERT embedding of each instruction.
Then, we construct an adjacency matrix A based on the pairwise distances of these embeddings:
Aij = exp(−∥SentenceBERT(xi)−SentenceBERT(xj)∥2

2σ2 ), where σ is a scaling parameter, typically set to
the median of all pairwise distances. The degree matrix D is then computed as a diagonal matrix
where each diagonal element is the sum of the corresponding row in A:Dii =

∑n
j=1 Aij . Using

these matrices, we define the normalized graph Laplacian L:L = I − D−1/2AD−1/2, where I
is the identity matrix. We then apply the diffusion kernel to this Laplacian: Kt = exp(−tL),
where Kt is the diffusion kernel at time t. The diffusion time t is selected using the spectral gap
method:topt = argmaxt

(
d log(λ2(t))

d log(t)

)
, where λ2(t) is the second eigenvalue of Kt. The low-

dimensional manifold representation e(xi) is then obtained by selecting the top d eigenvectors of
Ktopt :e(xi) = [ϕ1(xi), ϕ2(xi), ..., ϕd(xi)], where ϕj are the eigenvectors of Ktopt corresponding to
the d largest eigenvalues.

In the second step, we perform NMF-based spectral clustering on these low-dimensional represen-
tations. Specifically, we construct a similarity matrix S from the manifold representations:Sij =

exp(−∥e(xi)−e(xj)∥2

2σ2 ). We then determine the optimal number of clusters K by performing NMF
with different values of k and selecting the one that minimizes the Frobenius norm of the approxima-
tion error: K = argmink ∥S −WkH

T
k ∥F , where Wk and Hk are non-negative matrices resulting

from NMF with k components. Using this optimal K, we perform the final NMF: ≈WHT , where
W and H are non-negative matrices with K columns. Finally, we assign each data point to a cluster
based on the maximum value in each row of W :ci = argmaxj Wij , i = 1, ..., N . This results in
K clusters C = {c1, . . . , cK}, where the number of clusters K is adaptively determined through the
NMF process.

4.2 CAPABILITY DEGRADATION-AWARE RECOVERY INSTRUCTION SELECTION

Capability Degradation Assessment To prioritize the severely affected capabilities and finally
achieve the balanced recovery of pruned LLMs, we need a measure of capability degradation to guide
the data selection. For each cluster ck obtained in Section 4.1, we define the Capability degradation
Score (CDS) with the Jensen-Shannon divergence (JSD) (Fuglede & Topsoe, 2004):

CDS(ck) =
1

|ck|
∑

(x,y)∈ck

1

|y|

|y|∑
m=1

JSD(P (tm|Mp, x)||P (tm|Mo, x)). (4)

Here, P (tm|Mp, x) represents the output probability distribution on the m-th token of the pruned
model Mp given input x. Taking an token tim in this distribution as an example, its corresponding
probability is as follows:

P (tim|Mp, x) =
exp( logit(tim)

τ )∑|Voc|
j=1 exp( logit(tjm)

τ )
, (5)

where τ is the softmax temperature and the |Voc| indicates the vocabulary size. logit(·) is the logit
value for tokens by LLM. Similarly, the P (tm|Mo, x) represents the output probability distribution
for the original model Mo. The JSD is actualy the smoothed symmetrized and smoothed version of the
Kullback–Leibler divergence (KLD) (Kullback & Leibler, 1951): JSD(X||Y ) = 1

2KLD(X||M) +
1
2KLD(Y ||M). The distribution M = 1

2 (X + Y ) is the mixed distribution of X and Y .

Thus, the obtained CDS quantifies the average performance degradation for data points in each
capability cluster. The choice of JSD over simple loss variations as the performance degradation
signal is motivated by its unique properties. First, its symmetry ensures consistent comparison
between the pruned model Mp and the original model Mo, while its bounded range (0 to 1) provides
a normalized measure of divergence. This facilitates easier interpretation and comparison across
different capability clusters. Moreover, JSD’s robustness to outliers and its information-theoretic
foundation allow for a more nuanced assessment of capability degradation, capturing subtle changes in
model outputs that might not be apparent from loss or accuracy values alone (Dutta et al., 2024). The
smoothing effect introduced by the use of the mixed distribution in JSD calculation also contributes to
a more stable assessment across diverse instruction types. By employing JSD in our CDS calculation,
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we obtain a comprehensive and reliable assessment of capability degradation, enabling more accurate
identification and prioritization of the capabilities most severely affected by model pruning.

Inter-capability Budget Allocation Sampling a subset of high-quality data from the original set
to achieve better training performance is the objective of the data selection process. To ensure the
efficiency on data utilization and training process, the instruction data budget B(B < N) should be
maintained. Under this budget, we design an adaptive selection approach based on the above CDS for
balanced recovery while focusing on severely affected capabilities. In detail, we allocate sampling
budget to each cluster proportionally to its corresponding CDS:

nk =

⌊
B · CDS(ck)∑K

j=1 CDS(cj)

⌋
(6)

where nk is the number of samples allocated to cluster ck.

Intra-capability Efficiency-Driven Sample Selection To maximize computational efficiency during
the recovery post-training phase, we need to select samples that offer the highest recovery benefit
relative to their computational cost. Within each cluster ck, we select top nk samples based on their
Individual Efficiency Score (IES):

IES(x, y) =
1
|y|

∑|y|
m=1 JSD(P (tm|Mp, x)||P (tm|Mo, x))

logComputationalCost(x, y)
. (7)

Here, ComputationalCost is instantiated with the quadratic term of sequence length (|x|+ |y|)2 as
the approximated complexity for LLM training. The use of JSD captures the degree of divergence
between the pruned and original models’ outputs, indicating areas where capabilities have been most
affected and thus offering the highest potential for targeted recovery. The logarithmic term balances
the consideration of computational cost, allowing for a more nuanced selection that favors efficient
samples without overly penalizing high-potential, moderately costly instances.

4.3 NEGATIVE TRANSFER MITIGATION

To prevent performance degradation due to conflicting or irrelevant information, we need to detect
and mitigate potential negative transfer. We introduce a Concept Consistency Graph (CCG) to model
relationships between concepts in the selected data. Here, a concept refers to a key knowledge unit
or semantic element extracted from an instruction tuning sample. Concepts play a crucial role in
capturing the essential information within instructions and help in identifying potential conflicts that
could lead to negative transfer. By managing relationships between concepts, we aim to maintain
semantic consistency across the selected instruction tuning dataset, thereby reducing the risk of
learning conflicting or irrelevant information during the recovery process.
Definition 1 (Concept Consistency Graph). A CCG is a graph G = (V,E) where vertices V represent
concepts, and an edge (vi, vj) ∈ E exists if concepts vi and vj co-occur in at least one instruction
tuning sample without conflict.

For each new sample (x, y), we extract its concepts C(x, y) and check for consistency:

IsConsistent(x, y) = ∀vi, vj ∈ C(x, y) : (vi, vj) ∈ E or {vi, vj} ̸⊂ V (8)

We only add samples that are consistent with the existing CCG, updating the graph with each addition.
This approach ensures that we maintain a coherent set of instructions, minimizing the risk of negative
transfer by avoiding the introduction of conflicting concepts during the recovery training process.
The full version of our algorithm is provided in Algorithm 1.

4.4 TIME COMPLEXITY ANALYSIS

We provide a comprehensive analysis of the time complexity for the PASER algorithm.
Theorem 1. The overall time complexity of PASER is O(N logN +NC2), where N is the number
of instructions in D, and C is the maximum number of concepts in any instruction tuning sample.
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Algorithm 1 Post-training data Selection for efficient pruned large language model recovery (PASER)
Input: Mo: original model, Mp: pruned model, D: instruction tuning dataset, B: data budget, U :
computational cost budget

procedure PASER(Mo,Mp, D,B,U )
C ← NMFSpectralClustering({e(xi)|(xi, yi) ∈ D})
for ck ∈ C do

CDS(ck)← ComputeCapabilityDegradationScore(ck,Mo,Mp)
end for
{nk} ← AllocateSamples({CDS(ck)}, B)
S ← ∅, G← InitializeCCG()
for ck ∈ C do

Lk ← SortByIESDescending(ck)
i← 0, count← 0
while count < nk and i < |Lk| do

(x, y)← Lk[i]
if IsConsistent(x, y,G) and

∑
(x′,y′)∈S∪{(x,y)}

ComputationalCost(x′, y′) ≤ U then

S ← S ∪ {(x, y)}
G← UpdateCCG(G, x, y)
count← count + 1

end if
i← i+ 1

end while
end forreturn S

end procedure

Proof. We analyze each step of the algorithm in detail: The Semantic-Structural Recovery Instruction
Clustering step, including SentenceBERT embedding, Diffusion Kernel computation, and NMF
Spectral Clustering, has a dominant complexity of O(N logN). For the Capability Degradation
Assessment step, computing JSD for each sample and calculating CDS for each cluster take O(N)
time in total. The Inter-capability Budget Allocation, which involves allocating the budget to clusters,
has a time complexity of O(K), where K is the number of clusters. However, since K ≤ N , this
step does not dominate the overall complexity. During Intra-capability Efficiency-Driven Sample
Selection, for each cluster ck, we perform sorting by JSD (O(|ck| log |ck|)), iterate through sorted
samples (O(|ck|)), perform consistency checks (IsConsistent, O(C2) per sample), and update the
CCG (O(C2) per sample). Considering all clusters, this step’s total complexity is O(N logN+NC2).
Thus, the overall time complexity is dominated by the clustering step and the intra-capability sample
selection step. Therefore, the total time complexity is O(N logN +NC2).

In practice, C is often much smaller than N (C ≪ N ) and can be considered as a constant factor
for large N . Thus, we can simplify the complexity to O(N logN). This analysis demonstrates that
PASER is computationally efficient and scalable for large instruction tuning datasets.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Target LLMs: The experiments are performed on several open-source popular English LLMs:
LLaMA2-7B/13B/70B (Touvron et al., 2023) (hf version), LLaMA3-8B (Dubey et al., 2024)(instruct
version), and bilingual LLMs: Baichuan2-7B/13B (Yang et al., 2023)(base version), which support
both English and Chinese.

Instruction Tuning Datasets: As for the original recovery post-training data, we choose two
different-size instruction tuning datasets: Alpaca (Taori et al., 2023) and LaMini (Wu et al., 2024).
Alpaca contains 52K instruction-following samples generated using OpenAI’s text-davinci-003 model
based on 175 human-written seed tasks. LaMini contains a total of 2.58M pairs of instructions and
responses synthesized with gpt-3.5-turbo based on several existing resources of prompts, including
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Table 1: Recovery performance of different instruction tuning data selection methods under various
pruning schemes on LLaMA2-7B model. The ‘bold’ represents the best performance under the same
pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
Full Data 736.42 1273.10 37.83 53.21 26.42 49.57 25.29 28.16 29.00 35.64
Random 93.77 180.62 57.61 64.37 45.39 55.87 43.78 31.94 34.90 47.69
Instruction Mining 23.31 40.63 61.59 75.68 66.08 60.71 62.34 37.96 39.20 57.65
IFD 19.76 33.30 63.55 77.23 67.21 60.90 63.46 37.81 40.00 58.59
Nuggets 20.02 35.19 63.62 77.43 67.36 61.08 63.77 37.64 39.90 58.69
PASER 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
Full Data 38.24 68.53 68.75 69.84 57.92 66.18 62.37 36.82 38.30 57.17
Random 41.86 74.92 66.89 68.21 55.79 64.56 60.23 35.47 37.60 55.54
Instruction Mining 39.75 71.28 67.87 68.93 56.42 65.76 61.89 36.23 37.60 56.39
IFD 37.75 67.48 69.23 70.54 58.38 67.12 63.75 37.18 38.40 57.80
Nuggets 23.86 35.42 69.89 71.21 58.79 67.56 72.23 37.47 38.60 59.39
PASER 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
Full Data 27.63 50.22 70.77 74.87 63.78 65.26 65.30 34.04 37.10 58.73
Random 35.98 65.24 69.68 73.14 58.65 63.69 63.16 31.91 36.20 56.63
Instruction Mining 31.47 57.17 70.61 73.85 61.27 64.13 64.72 33.79 36.80 57.88
IFD 25.82 46.78 71.06 75.57 64.15 65.38 66.55 35.63 37.60 59.42
Nuggets 23.98 43.24 71.68 76.14 64.65 65.69 66.16 36.91 38.20 59.92
PASER 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
Full Data 25.83 47.26 69.10 74.15 59.68 67.76 63.74 39.59 37.80 58.83
Random 28.74 50.85 67.84 75.39 57.14 68.92 59.76 37.34 36.60 57.57
Instruction Mining 24.08 45.51 70.50 74.47 61.91 65.40 67.73 36.49 37.40 59.13
IFD 21.19 40.05 71.06 75.13 62.79 65.72 68.80 36.23 37.20 59.56
Nuggets 16.21 28.95 71.64 75.67 63.33 66.05 69.49 36.60 37.40 60.03
PASER 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

self-instruct (Wang et al., 2023), P3 (Sanh et al., 2022), FLAN (Longpre et al., 2023) and Alpaca (Taori
et al., 2023).

Base Pruning Schemes: Different pruning schemes are incorporated into our experiments to explore
the applicability of PASER, ranging from structured pruning methods: LLM-Pruner (Ma et al.,
2023), SliceGPT (Ashkboos et al., 2024), semi-structured method: Wanda (Sun et al., 2024), and
unstructured pruning methods: SparseGPT (Frantar & Alistarh, 2023).

Instruction Tuning Data Selection Baselines: In addition to the random data selection, we also
compare PASER with several recent general instruction tuning data selection baselines: Instruction
Mining (Cao et al.), IFD (Li et al., 2024a), Nuggets (Li et al., 2024b). Note none of these baselines
are customized for post-pruning recovery training scenario. Besides, the evaluation performance of
recovery training with the full original dataset is also compared.

Evaluation Datasets and Tasks To comprehensively evaluate the performance of recovered LLMs,
we employ seven common sense reasoning datasets:BoolQ (Clark et al., 2019), PIQA (Bisk et al.,
2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy (Clark
et al., 2018), ARC-Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). In the
practice, we relies on the open-source library1 to implement the evaluation, where the model needs to
rank the choices in the multiple choice tasks or generate the answer in the open-ended generation
tasks. The whole process is conducted in the zero-shot manner. Besides, we follow (Ma et al.,
2023) to evaluate the language modeling capability with the zero-shot perplexity (PPL) analysis on
WikiText2 (Merity et al., 2022) and PTB (Marcus et al., 1993).

More experimental details on the implementation are provided in the appendix A.

5.2 RECOVERY PERFORMANCE FOR DIFFERENT PRUNING SCHEMES

We evaluate the recovery performance of LLaMA2-7B using different instruction tuning data selection
methods under structured pruning, semi-structured pruning, and unstructured pruning, respectively.

1https://github.com/EleutherAI/lm-evaluation-harness
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According to the results in Table 1, directly employing full data can indeed bring the sub-optimal
recovery performance, especially under the LLM-Pruner. This is because the full version of data
contains some irrelevant or conflicting information for capability recovery, resulting in the negative
transfer during the training phase. Meanwhile, even the general instruction tuning data selection
methods like IFD and Nuggets can bring better reasoning and language model performance than
full data and random in most cases, validating the necessity of conducting recovery data selection.
Furthermore, we can find that previous selection methods can hardly help model recover to the level
of unpruned status, under the limited data budget. However, our PASER can not only outperform
baselines, but also reduce the averaged reasoning performance degradation to less than 3% under LLM-
Pruner, Wanda, and SparseGPT. Especially, when pruning LLaMA2-7B with SliceGPT, our PARSER
can improve the average reasoning performance to 64.31, higher than the unpruned model. Besides,
its zero-shot perplexity on WikiText2 and PTB is also lower than unpruned model slightly. This
suggests that allocating recovery budget according to capability degradation levels and prioritizing
most-affected samples exhibit the potential of help pruned LLM recover to the capability level of
unpruned status. Besides, PASER can also be extended to other LLM post-compression scenarios, like
the post-quantization recovery. The corresponding results and analysis are provided in Appendix B.

5.3 RECOVERY PERFORMANCE WITH DIFFERENT INSTRUCTION TUNING DATASETS

In addition to the recovery performance on Alpaca shown in Table 1, we also explore the correspond-
ing results on another larger dataset, LaMini. Especially, considering the space limitation and more
severe performance degradation of structured pruning schemes, we provide the experiments results
on LLM-Pruner and SliceGPT on Table 2. From this table, we can observe that PASER can still
consistently outperform other data selection and random methods. Besides, comparing the results
in Table 1 and 2, it can be found that improving the data scale (from 10K to 10K samples) indeed
facilitates the recovery performance though the significantly increased computational overhead, which
is consistent with the Scaling Law (Kaplan et al., 2020). We can also notice that the performance
of full data on LaMini is relatively competitive, which is because the proportion of conflicting or
negative data for recovery is much lower than that in Alpaca.

Table 2: Recovery performance of different instruction tuning data selection methods under two
structured pruning schemes on LLaMA2-7B model. The ‘bold’ represents the best performance
under the same pruning scheme. Here, the LaMini is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
Full Data 16.28 27.12 76.79 77.26 66.93 65.75 72.18 40.44 39.40 62.68
Random 18.40 32.15 70.52 77.21 67.42 64.89 69.41 38.14 38.90 60.93
Instruction Mining 17.83 28.87 69.62 77.45 67.26 65.34 69.14 37.71 38.80 60.76
IFD 18.54 31.23 71.29 77.21 67.05 64.88 68.26 37.23 38.60 60.65
Nuggets 18.27 30.90 69.38 77.35 67.91 63.59 70.11 39.02 39.60 60.99
PASER 13.45 22.63 77.98 78.36 69.93 67.31 72.05 40.28 40.60 63.79

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
Full Data 24.36 35.64 70.75 70.84 58.92 67.18 64.37 37.82 38.30 58.31
Random 39.86 70.92 68.89 69.21 56.79 65.56 62.23 36.47 37.60 56.68
Instruction Mining 37.75 67.28 69.87 69.93 57.42 66.76 63.89 37.23 37.60 57.53
IFD 25.75 53.48 71.23 71.54 59.38 68.12 65.75 38.18 38.40 58.94
Nuggets 21.86 31.42 71.89 72.21 59.79 68.56 74.23 38.47 41.60 60.96
PASER 14.27 23.53 74.75 81.84 75.92 70.18 73.37 42.82 41.30 65.74

5.4 ROBUSTNESS OVER VARIOUS TARGET LARGE LANGUAGE MODELS

To validate whether PASER can maintain the robust effectiveness among various target LLMs,
we conduct the experiments on LLaMA2-7B/13B/70B, LLaMA3-8B, Baichuan2-7B/13B, under
LLM-Pruner. According to results in Table 3, we can first observe the model capability under high
pruning ratio (50%) is hard to recover to unpruned level, especially for relatively smaller model like
LLaMA2-13B and Baichuan2-13B. Though, PASER can still outperform random and best-performing
data selection baseline, Nuggets, by 4.41 and 2.31 points, respectively on average. Especially, for
LLaMA2-70B, our PARSER can control the averaged reasoning performance degradation to less than
3%. This can be explained that the structure redundancy in 70B model is relatively higher, paving
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Table 3: Recovery performance of different instruction tuning data selection methods on different
target LLMs under LLM-Pruner scheme. The ‘bold’ represents the best performance on the same
target LLM. Here, the Alpaca is taken as the original dataset.

Target LLM Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LLaMA2-13B
ratio=50%

w/o pruning 11.58 20.24 69.02 78.73 76.60 69.69 73.23 44.20 42.00 64.78
w/o Training 73.52 151.19 48.99 69.10 53.03 53.12 46.80 31.40 39.60 48.86
Full Data 27.74 45.08 63.52 74.21 62.28 56.43 62.79 35.75 39.80 56.40
Random 39.85 76.20 59.28 73.71 60.02 56.09 59.81 34.04 39.40 54.62
Instruction Mining 44.37 80.82 57.25 73.22 59.02 57.28 62.34 34.64 34.90 54.09
IFD 38.61 73.25 57.63 72.89 59.20 57.81 62.19 34.90 38.80 54.77
Nuggets 33.50 61.26 61.08 74.24 60.98 55.39 60.96 34.90 39.20 55.25
PASER 21.67 35.09 65.42 75.69 63.24 58.56 63.35 36.45 40.60 57.62

LLaMA2-70B
ratio=50%

w/o pruning 8.92 15.59 81.25 79.98 82.45 76.56 80.85 54.74 46.20 71.72
w/o Training 46.81 92.36 68.43 72.14 66.87 65.43 67.32 45.18 42.60 61.14
Full Data 31.76 56.83 74.89 74.62 74.93 69.84 74.41 48.45 41.80 65.56
Random 25.34 48.72 72.56 73.83 72.21 68.18 72.38 47.27 41.80 64.03
Instruction Mining 23.16 43.45 74.13 76.39 74.38 70.75 76.19 48.92 44.40 66.74
IFD 22.87 43.68 75.32 78.50 75.04 71.23 75.97 50.61 44.20 67.27
Nuggets 19.63 36.24 76.18 77.18 76.28 71.89 76.80 51.20 44.60 67.73
PASER 12.35 21.82 78.81 78.38 79.15 74.25 78.42 52.95 45.40 69.62

LLaMA3-8B
ratio=25%

w/o pruning 7.36 12.87 83.09 78.62 75.80 72.06 81.65 56.74 43.00 70.14
w/o Training 15.47 28.31 74.78 72.95 67.22 65.85 73.49 50.07 39.80 63.45
Full Data 9.58 16.73 80.60 76.87 72.91 69.82 78.38 54.47 41.80 67.84
Random 12.52 22.17 77.69 74.91 70.06 67.73 75.93 52.20 40.80 65.60
Instruction Mining 13.25 23.47 76.85 74.69 69.74 67.52 76.34 52.55 40.60 65.47
IFD 11.04 19.31 78.94 75.69 71.25 68.46 77.57 53.34 41.20 66.64
Nuggets 10.31 18.02 79.77 76.28 72.01 69.18 78.38 53.90 41.60 67.30
PASER 8.09 14.16 82.43 78.44 75.29 71.62 81.02 56.61 43.40 69.83

Baichuan2-7B
ratio=25%

w/o pruning 14.42 26.78 74.04 77.26 72.24 68.43 75.08 42.49 39.80 64.19
w/o Training 28.30 53.34 49.76 73.29 63.85 60.14 67.00 40.27 40.00 56.33
Full Data 25.29 35.81 52.20 74.81 66.24 62.75 67.72 39.42 38.60 57.39
Random 27.04 46.83 53.15 73.94 64.60 60.62 68.73 39.39 39.20 57.09
Instruction Mining 34.24 60.93 71.39 69.56 55.65 61.74 57.13 33.90 34.10 54.78
IFD 24.83 37.81 53.49 73.86 64.69 61.25 68.77 40.24 39.20 57.36
Nuggets 21.48 37.65 56.25 74.27 66.41 62.73 68.73 38.29 38.20 57.84
PASER 16.92 30.76 66.95 74.82 65.19 63.38 69.69 38.98 39.00 59.70

Baichuan2-13B
ratio=50%

w/o pruning 11.23 18.04 79.60 77.31 75.32 70.09 77.36 47.10 44.00 67.25
w/o Training 58.41 116.26 65.27 69.58 62.91 60.98 64.24 39.55 40.60 57.59
Full Data 24.35 42.68 71.84 72.15 68.73 63.75 70.67 42.91 41.40 61.64
Random 40.44 76.57 67.06 70.23 65.72 61.29 68.33 41.02 40.20 59.12
Instruction Mining 36.82 70.45 68.26 70.60 66.47 61.64 67.56 40.55 40.60 59.38
IFD 33.45 63.23 69.45 71.38 67.38 62.55 69.12 41.49 41.00 60.34
Nuggets 28.96 53.31 70.64 71.99 68.48 63.30 69.89 41.96 41.40 61.09
PASER 14.62 29.82 75.83 71.76 72.18 67.24 73.95 42.52 42.80 63.75

the way for effective recovery through data selection under high pruning ratios. As for the second
smallest model, LLaMA3-8B, PARSER can recover the reasoning performance to the 99.56% of the
unpruned status, which further demonstrates the robustness of PARSER over different target LLMs.
Finally, the performance of various recovery methods including PARSER on Baichuan2-7B is not
satisfying enough given only 25% pruning ratio, which can be attributed to the fact that the pruning
process has severely damaged the model internal structure.

5.5 ABLATION STUDY

To validate the contribution of each component in PASER, we conduct comprehensive ablation
studies. Specifically, we evaluate three variants: (1) PASER w/o S2RIC: replacing semantic-structural
clustering with random clustering while keeping other modules unchanged; (2) PASER w/o CDARIS:
randomly sampling equal number of instructions from each cluster instead of using capability
degradation-aware selection; (3) PASER w/o NTM: removing the negative transfer mitigation module.

The results in Table 4 demonstrate that all three components contribute positively to model recovery
across different pruning schemes. The semantic-structural clustering effectively identifies capability-
specific instruction groups, leading to 0.18-1.43 points improvement in reasoning performance.
Its removal causes degradation in both language modeling (increased perplexity) and reasoning
tasks, particularly evident under structured pruning schemes like LLM-Pruner and SliceGPT. The
capability degradation-aware selection mechanism enhances recovery efficiency through adaptive
budget allocation, contributing 0.29-1.63 points improvement in reasoning tasks while maintaining
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Table 4: Ablation study results on LLaMA2-7B for each component under different pruning schemes.
The “Reason” indicates the averaged performance on 7 reasoning datasets.

Ablation Variant LLM-Pruner (25%) SliceGPT (25%) Wanda (2:4) SparseGPT (50%)

WikiText2↓ PTB↓ Reason↑ WikiText2↓ PTB↓ Reason↑ WikiText2↓ PTB ↓ Reason↑ WikiText2↓ PTB↓ Reason↑

w/o S2RIC 18.73 32.84 59.67 14.83 25.42 63.03 15.84 30.25 61.19 14.89 26.31 62.60
w/o CDARIS 17.56 30.15 60.26 14.16 24.92 62.68 15.46 29.48 61.23 14.62 25.84 62.49
w/o NTM 19.82 35.60 59.25 15.37 27.81 61.92 16.79 31.52 61.34 15.91 28.19 61.76
PASER 16.40 26.35 61.10 12.24 21.53 64.31 14.13 27.22 62.02 13.33 23.77 62.78

stable language modeling performance. Notably, negative transfer mitigation shows significant impact
(0.68-2.39 points improvement), especially under high pruning ratios, highlighting its importance in
preventing conflicting information during recovery training. These improvements are consistently
observed across different pruning schemes, with particularly pronounced effects in structured pruning
where capability degradation tends to be more severe and uneven.

Figure 2: Average reasoning performance and recovery post-training time consumption curves
corresponding to different instruction tuning data selection methods.

5.6 RECOVERY POST-TRAINING EFFICIENCY ANALYSIS

To highlight PARSER’s advantages on recovery post-training efficiency, we conduct the experiments
under different data budgets B and different datasets and record the corresponding averaged reasoning
performance and training time in Figure 2. From the first and third subfigures, we can observe
that PARSER can obtain best recovery performance under different B/N on Alpaca and LaMini.
Interestingly, in the first subfigure, when rising B/N from 0.3 to 0.4, the reasoning performance of
Random even decreases. It is because expanding data scale also introduces the conflicting or negative
data existing in the original dataset. From the second and fourth subfigures, PARSER consistently
consumes the least training time, which can be attributed to the efficiency-driven sample selection
process in PARSER. This advantage can be more obvious under low B/N like 0.02 on LaMini. This
is because increasing data budget will force PARSER to select some relatively more time-consuming
samples given the fixed original dataset, weakening its efficiency superiority.

In addition, we also discuss the performance under knowledge distillation in Appendix C, provide
the detailed ablation study results in Appendix D, explore other possible clustering methods in
Appendix E, evaluate on mathematical tasks F and provide case study in Appendix G and H.

6 CONCLUSION AND FUTURE WORKS

Recovery post-training has been an important procedure after large language model pruning to restore
the critical capabilities. Previous works directly utilize the full instruction tuning dataset, facing high
computation cost and risks of untargeted recovery and negative transfer. In this work, we propose
the post-training data selection method for efficient pruned model recovery. According to capability
degradation degrees, we allocate selection budget among different capability data obtained through
semantic-structural clustering. We then select samples where model behavior has been severely
affected while considering computation cost, and introduce a concept consistency graph to mitigate
negative transfer. Extensive experiments on different LLMs and pruning schemes demonstrate the
effectiveness of our framework. Future work will explore other optimization approaches like data
augmentation and scheduling to further improve recovery efficiency.
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A IMPLEMENTATION DETAILS

Most of experiments are conducted on the server with 8× RTX 6000 Ada GPUs. During the recovery
post-training phase, we take the the low-rank approximation, LoRA (Hu et al.), to improve the
efficiency. The corresponding hyperparameters are set as following: rank=8, batch size=64, epochs=2,
learning rate = 1e-4 (Alpaca series experiments), 5e-5 (LaMini series experiments). As for the
structured pruning, we set the pruning ratio as 25% for LLaMA2-7B/LLaMA3-8B/Baichuan2-7B
and 50% for LLaMA2-13B/LLaMA2-70B/Baichuan-13B models. For the other two kinds of pruning
schemes, we follow the previous work (Frantar & Alistarh, 2023); Specifically, we adopt the 2:4 semi-
structured sparsity patterns and implement 50% unstructured weight sparsity. Except the experiments
in Section 5.6, we set the ratio of recovery data budget B to original dataset size N as 20% for
Alpaca and 4% for LaMini. As for the implementation of concept extraction in Section 4.3, we use
the open-source library rake-nltk 2. To ensure statistical robustness, all the results reported in
this paper are the averages of five runs with different seeds. Statistical significance is also assessed
using two-tailed independent t-tests, with results considered significant when p < 0.01.

Table 5: Recovery performance of different instruction tuning data selection methods under various
LLM quantization schemes on LLaMA2-7B model. The ‘bold’ represents the best performance under
the same quantization scheme. Here, the Alpaca is taken as the original dataset.

Quantization Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o Quant w/o training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

RTN
4 bits

w/o training 18.14 33.28 66.52 74.95 69.24 63.91 65.58 38.07 35.10 59.05
Full Data 15.83 27.41 67.35 75.70 69.94 64.57 66.22 38.48 35.90 59.74
Random 16.72 29.56 64.53 73.08 67.48 62.28 63.93 37.13 33.90 57.48
Instruction Mining 16.05 27.83 66.73 75.15 69.43 64.08 65.74 38.18 35.30 59.23
IFD 15.21 25.74 68.16 76.40 70.60 65.18 66.83 38.83 37.40 60.49
Nuggets 14.68 24.53 68.99 77.13 71.28 65.82 67.46 39.21 38.70 61.23
PASER 14.21 23.37 70.43 78.41 72.47 66.92 68.54 39.81 41.50 62.58

GPTQ
4 bits

w/o training 15.96 27.86 67.82 76.15 70.35 64.95 66.59 38.69 36.90 60.21
Full Data 15.62 26.95 68.00 76.31 70.50 65.09 66.73 38.78 37.40 60.40
Random 16.31 28.74 66.81 75.24 69.49 64.14 65.79 38.22 35.70 59.34
Instruction Mining 15.37 26.42 68.31 76.58 70.75 65.33 66.96 38.93 37.90 60.68
IFD 14.83 25.16 68.96 77.15 71.29 65.83 67.47 40.21 39.00 61.42
Nuggets 13.52 22.93 69.74 77.83 71.93 66.43 68.06 39.56 40.20 61.96
PASER 12.95 21.84 71.20 79.12 73.12 67.53 69.14 40.18 42.90 63.31

B EXTENDED EXPERIMENTS ON POST-QUANTIZATION RECOVERY TRAINING

Though the method descriptions and the experiments in the main body are mainly around the
LLM pruning scenario, our PASER framework can actually be extended seamlessly to other LLM
compression scenario. To further demonstrate its applicability, we conduct the experiments on
post-quantization recovery training and compare our PASER with corresponding instruction tuning
data selection baselines. In detail, we choose two most representative methods: Round-To-Nearest
(RTN) (Frantar & Alistarh, 2022; Yao et al., 2022), GPTQ (Frantar et al., 2023), to perform the
LLM quantization. It should be clarified that RTN method, which rounds all weights to the nearest
quantized value on exactly the same asymmetric per-row grid, is actually the fundamental technique
in most works about LLM quantization (Frantar & Alistarh, 2022; Yao et al., 2022; Park et al.).
Its runtimes scales well to the models with many billion parameters due to the direct rounding.
According to the results provided in Table 5 and 6, we can observe that the PASER can still effectively
enhance the recovery performance and outperform the data selection baselines on averaged reasoning
performance and zero-shot perplexity for both LLaMA2-7B and LLaMA2-13B models. Meanwhile,
recovery data selection baselines can indeed achieve the stronger performance than full data and
random baselines, which validates the necessity of conducting recovery data selection even in the
LLM quantization scenario. Furthermore, comparing these results with Table 1 and 3, it can be
noticed that the improvement space of PASER in Table 5 and 6 has been reduced to some extent. This
is because the post-compression performance of such quantization schemes has been competitive
enough, which can reflected from the w/o training row.

2https://pypi.org/project/rake-nltk/
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Table 6: Recovery performance of different instruction tuning data selection methods under various
LLM quantization schemes on LLaMA2-13B model. The ‘bold’ represents the best performance
under the same quantization scheme. Here, the Alpaca is taken as the original dataset.

Quantization Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o Quant w/o training 11.58 20.24 69.02 78.73 76.60 69.69 73.23 44.20 42.00 64.78

RTN
4 bits

w/o training 17.53 32.34 63.15 74.59 72.62 65.94 69.17 41.49 37.00 60.57
Full Data 16.95 31.02 63.59 75.02 73.04 66.33 69.58 41.75 37.50 60.97
Random 17.86 33.15 62.00 73.48 71.55 64.94 68.13 40.84 35.20 59.45
Instruction Mining 17.24 31.68 62.83 74.27 72.32 65.65 68.87 41.29 36.10 60.19
IFD 15.63 28.39 65.03 76.37 74.34 67.49 70.80 42.46 39.60 62.30
Nuggets 15.08 27.15 65.45 76.76 76.72 67.84 71.17 42.70 40.20 62.98
PASER 12.34 23.08 67.33 78.50 76.41 69.37 72.78 43.67 41.70 64.25

GPTQ
4 bits

w/o training 14.74 26.86 64.68 76.04 74.02 67.20 70.49 42.28 39.10 61.97
Full Data 16.02 29.34 63.62 75.05 73.07 66.35 69.61 41.76 37.40 60.98
Random 14.58 26.52 64.82 76.17 74.15 67.32 70.61 42.36 39.30 62.10
Instruction Mining 13.67 24.59 66.37 77.58 75.51 68.56 71.91 44.15 41.30 63.63
IFD 13.51 24.26 68.46 77.66 75.59 68.63 71.99 43.20 41.40 63.85
Nuggets 12.76 22.92 67.21 78.34 76.25 69.24 72.63 43.59 42.70 64.28
PASER 11.25 20.93 68.11 79.16 77.05 69.97 73.39 44.04 44.20 65.13

Table 7: Knowledge distillation recovery performance of different instruction tuning data selection
methods under various pruning schemes on LLaMA2-7B model. The ‘bold’ represents the best
performance under the same pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
Full Data 24.72 43.91 63.30 76.01 67.18 62.27 64.23 36.86 39.20 58.44
Random 23.82 41.20 68.03 74.89 66.27 64.51 64.65 32.58 38.30 58.46
Instruction Mining 22.65 39.40 62.17 75.98 66.74 61.29 63.01 38.32 39.60 58.16
IFD 19.17 32.30 64.13 77.55 67.89 61.56 64.09 38.19 40.40 59.12
Nuggets 18.64 32.19 64.46 76.66 67.26 64.88 66.50 36.52 39.20 59.35
PARSER 15.91 25.39 67.89 77.81 69.62 67.63 68.46 39.87 40.20 61.64

SliceGPT
ratio=25%

w/o training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
Full Data 35.48 66.25 69.35 70.34 58.50 66.76 62.95 37.14 38.70 57.68
Random 38.63 65.67 67.19 68.59 56.21 64.94 60.63 35.61 37.80 55.85
Instruction Mining 35.56 62.14 68.41 69.51 57.08 66.33 62.51 36.59 38.00 56.92
IFD 33.50 61.33 69.51 70.82 58.70 67.49 64.09 37.22 38.50 58.05
Nuggets 21.39 32.83 70.17 71.49 59.11 67.94 72.51 37.54 38.70 59.64
PASER 11.87 20.91 73.43 80.32 74.46 69.76 71.95 42.26 41.70 64.84

Wanda
sparsity=2:4

w/o training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
Full Data 25.92 47.85 71.09 75.14 64.10 65.62 65.64 34.38 37.50 59.07
Random 34.98 63.47 70.18 73.62 59.15 63.83 63.70 32.13 36.50 57.02
Instruction Mining 30.56 55.56 71.03 73.97 61.69 64.56 64.86 33.93 37.00 58.15
IFD 24.08 41.44 71.78 75.89 64.83 65.72 68.89 35.97 38.00 60.15
Nuggets 23.14 40.10 72.26 76.50 65.33 66.03 66.52 37.27 38.60 60.36
PASER 13.84 23.54 71.25 78.15 72.06 66.64 68.66 39.38 40.50 62.38

SparseGPT
sparsity=50%

w/o training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
Full Data 28.17 52.82 68.52 75.77 57.84 69.26 60.43 37.72 37.00 58.08
Random 25.31 43.22 69.74 74.91 60.28 68.10 64.06 39.95 39.80 59.55
Instruction Mining 21.56 39.61 71.12 74.85 62.53 66.06 68.07 36.85 37.80 59.61
IFD 17.76 31.25 71.70 75.76 63.43 66.06 69.14 36.59 37.60 60.04
Nuggets 14.83 25.38 72.18 75.95 63.91 66.29 69.75 36.86 37.70 60.38
PASER 13.00 22.24 75.07 78.66 66.90 69.31 72.85 38.89 39.60 63.04

C EXTENDED EXPERIMENTS ON RECOVERY TRAINING WITH KNOWLEDGE
DISTILLATION

Inspired by (Muralidharan et al., 2024), we explore the knowledge distillation as the recovery
post-training paradigm instead of the standard supervised learning with the groundtruth label. Here,
we set the original model Mo as the teacher and the pruned model Mp as the student. The mean
KL divergence (Kullback & Leibler, 1951) between the output probability distribution of Mo and
that of Mp is taken as the objective function. Comparing the corresponding results under different
pruning schemes in Table 7 with that in Table 1, we can first observe that knowledge distillation can
effectively improve the recovery performance on both reasoning and language modeling tasks in most
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Table 8: Recovery performance comparison between different combinations of knowledge distillation
(KD) and supervised fine-tuning (SF) under various pruning schemes. The ’bold’ represents the best
performance under the same pruning scheme.

Recovery Training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LLM-Pruner (ratio=25%)

KD 15.91 25.39 67.89 77.81 69.62 67.63 68.46 39.87 40.20 61.64
SF 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10
First KD, then SF 16.15 25.87 67.57 77.55 69.31 67.30 68.15 39.71 40.00 61.37
First SF, then KD 16.28 26.02 67.41 77.43 69.15 67.11 67.96 39.63 39.90 61.23

SliceGPT (ratio=25%)

KD 11.87 20.91 73.43 80.32 74.46 69.76 71.95 42.26 41.70 64.84
SF 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31
First KD, then SF 12.06 21.24 73.12 80.05 74.18 69.45 71.62 42.03 41.50 64.56
First SF, then KD 12.15 21.38 72.94 79.95 74.05 69.32 71.51 41.95 41.40 64.45

Wanda (sparsity=2:4)

KD 13.84 23.54 71.25 78.15 72.06 66.64 68.66 39.38 40.50 62.38
SF 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02
First KD, then SF 13.97 25.31 71.02 78.03 71.94 66.47 68.49 39.23 40.30 62.21
First SF, then KD 14.05 26.28 70.89 77.95 71.85 66.35 68.41 39.15 40.20 62.11

SparseGPT (sparsity=50%)

KD 13.00 22.24 75.07 78.66 66.90 69.31 72.85 38.89 39.60 63.04
SF 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78
First KD, then SF 13.15 22.96 74.94 78.53 66.78 69.18 72.72 38.81 39.50 62.92
First SF, then KD 13.24 23.35 74.85 78.45 66.70 69.11 72.64 38.75 39.45 62.85

cases. In particular, the reasoning performance of PASER is improved by 0.348 points on average
among such four pruning schemes. Interestingly, the knowledge distillation recovery performance
of Full Data under LLM-Pruner is much better than that with standard label-supervised learning.
This demonstrates that knowledge distillation is also a promising approach to avoid the misleading
information from the irrelevant or conflicting samples existing in the original dataset, because its
learning process directly imitates the unpruned model behavior instead of the provided labels. As
a summary, distilling the knowledge of unpruned model into the pruned model can be regarded
as an effective way to enhance the recovery performance, though bring more memory overhead.
Furthermore, stronger layer-wise distillation can also be taken into consideration (Jiao et al., 2020).

Exploration on Combined Training Strategies Given the complementary potential of knowledge
distillation (KD) and supervised fine-tuning (SF), we further explore whether combining these two
approaches could lead to enhanced recovery performance. Specifically, we investigate two cascading
strategies: (1) first applying KD followed by SF, and (2) first conducting SF followed by KD. Table 8
presents the results under different pruning schemes.

Interestingly, the results show that neither cascading strategy consistently outperforms individual
KD or SF approaches. This suggests that these two training paradigms might actually serve similar
functions in recovering model capabilities, making their combination redundant rather than comple-
mentary. Knowledge distillation shows slightly better performance across all pruning schemes, which
could be attributed to its ability to capture the nuanced knowledge encoded in the teacher model’s
full output distribution. However, the marginal gains from combining approaches do not justify the
additional computational overhead required for cascaded training.

D DETAILED ABLATION STUDY RESULTS

In this section, we present comprehensive ablation results of the three key components in PASER:
semantic-structural recovery instruction clustering (S2RIC), capability degradation-aware recovery
instruction selection (CDARIS), and negative transfer mitigation (NTM). Table 9 shows the detailed
performance across different evaluation metrics.

The detailed results reveal the distinct contributions of each component under different pruning
schemes. For structured pruning like LLM-Pruner, removing S2RIC leads to significant degradation
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Table 9: The detailed ablation study for our proposed three components under various pruning
schemes on LLaMA2-7B model. The ‘bold’ represents the best performance under the same pruning
scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LLM-Pruner
ratio=25%

PASER w/o S2RIC 18.73 32.84 65.31 76.84 67.59 64.85 65.92 37.96 39.20 59.67
PASER w/o CDARIS 17.56 30.15 66.27 77.03 68.15 65.73 66.58 38.54 39.50 60.26
PASER w/o NTM 19.82 35.60 64.83 77.52 67.34 64.48 63.59 36.78 40.20 59.25
PASER 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

PASER w/o S2RIC 14.83 25.42 71.15 78.91 72.25 67.84 69.95 40.82 40.30 63.03
PASER w/o CDARIS 14.16 24.92 70.89 78.56 71.84 67.45 69.58 40.47 40.00 62.68
PASER w/o NTM 15.37 27.81 69.97 77.33 70.68 65.92 68.03 39.39 42.10 61.92
PASER 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

PASER w/o S2RIC 15.84 30.25 69.26 77.42 70.31 65.82 67.84 38.67 39.00 61.19
PASER w/o CDARIS 15.46 29.48 69.14 77.35 70.27 65.74 67.79 38.75 39.60 61.23
PASER w/o NTM 16.79 31.52 69.51 76.92 70.76 65.23 67.28 38.47 41.20 61.34
PASER 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

PASER w/o S2RIC 14.89 26.31 73.25 77.45 70.15 68.47 69.28 39.82 39.80 62.60
PASER w/o CDARIS 14.62 25.84 72.91 77.50 69.93 68.12 69.05 39.94 40.00 62.49
PASER w/o NTM 15.91 28.19 71.53 78.62 65.48 67.21 69.79 39.18 40.50 61.76
PASER 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

in both language modeling (perplexity increases from 16.40 to 18.73 on WikiText2) and reasoning
tasks (average score drops by 1.43 points), highlighting its importance in addressing uneven capability
degradation. The impact of CDARIS is particularly evident under SliceGPT, where its removal
causes a 1.63-point drop in average reasoning performance while maintaining relatively stable
language modeling metrics, demonstrating its effectiveness in balancing recovery priorities. Under
semi-structured pruning (Wanda), all three components show more balanced contributions, with
performance drops ranging from 0.68 to 0.83 points when each is removed. This suggests that semi-
structured pruning requires a more holistic recovery approach. For unstructured pruning (SparseGPT)
where capability degradation tends to be more uniform, NTM plays a particularly crucial role - its
removal leads to the largest drop in language modeling performance (perplexity increases from
13.33 to 15.91 on WikiText2) and affects complex reasoning tasks like WinoGrande and ARC-e
significantly. Notably, the full PASER framework consistently achieves the best performance across
almost all metrics under various pruning schemes, with only occasional exceptions in individual tasks
(e.g., OBQA in LLM-Pruner and PIQA in SparseGPT). This comprehensive superiority validates our
design choice of combining these three components for effective pruned model recovery.

E EXPLORATION ON OTHER POSSIBLE CLUSTERING METHODS

To discuss the impact of different instruction tuning data clustering approaches, we replace our
Semantic-structural Recovery Instruction Clustering (S2RIC) module with some other common
text clustering method: NMF_TFIDF, LDA_TFIDF, KMeans_TFIDF, Spectral_MTEB, Spec-
tral_BERT (Xu et al., 2024a). The reasoning performance comparison among different PASER
versions with such clustering methods is provided in Figure 10. From the table, we can find that inte-
grating other instruction clustering methods with PASER can bring the performance decline to some
extent among all four pruning schemes. Especially, the clustering method with traditional statistics-
based text representation technique, TFIDF, generally behaves worse than semantic embedding-based
text representation techniques like BERT. Therefore, we can conclude that our semantic-structural
recovery instruction clustering is at least a competitive approach as the clustering component of
PASER. Though, comparing these results with those in Table 1, we can observe the advantages of
PASER over other general instruction tuning data selection methods can still be stably maintained.
This further demonstrates that the potential of the clustering-based data selection for effective and
balanced LLM capability recovery.

F EVALUATION ON MATHEMATICAL REASONING TASKS

To validate the effectiveness of PASER beyond common sense reasoning tasks, we conduct additional
experiments on mathematical reasoning capabilities. Specifically, we employ two widely-adopted
mathematical reasoning benchmarks:
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Table 10: Recovery performance of multiple PASER versions integrated with different data clustering
approaches under various pruning schemes on LLaMA2-7B model. The PASER(S2RIC) is the
version we employ in the main body. The ‘bold’ represents the best performance under the same
pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
PASER(NMF_TFIDF) 17.82 29.45 65.93 76.88 67.42 65.19 66.37 38.81 39.60 60.03
PASER(LDA_TFIDF) 17.56 28.91 66.18 77.02 67.76 65.58 66.92 38.95 39.70 60.30
PASER(KMeans_TFIDF) 17.21 28.13 66.47 77.15 68.04 65.92 67.23 39.12 39.80 60.53
PARSER(Spectral_MTEB) 16.82 27.24 66.89 77.23 68.46 66.38 67.56 39.31 39.80 60.80
PARSER(Spectral_BERT) 16.61 26.79 67.06 77.26 68.72 66.68 67.71 39.43 39.80 60.95
PASER(S2RIC) 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
PASER(NMF_TFIDF) 14.27 24.36 70.89 78.76 72.13 67.69 70.12 41.95 40.80 63.21
PASER(LDA_TFIDF) 14.86 25.19 70.31 78.42 71.64 67.25 69.58 40.37 40.60 62.60
PASER(KMeans_TFIDF) 13.58 23.42 71.46 79.07 72.61 68.14 70.48 41.08 41.00 63.41
PARSER(Spectral_MTEB) 12.91 22.47 72.08 79.41 73.18 68.62 70.87 41.43 41.10 63.81
PARSER(Spectral_BERT) 12.58 22.01 72.41 79.63 73.55 68.91 71.12 41.63 41.20 64.06
PASER 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
PASER(NMF_TFIDF) 16.18 30.94 70.09 76.68 69.98 64.82 66.92 38.14 39.60 60.89
PASER(LDA_TFIDF) 18.74 34.98 69.85 76.31 69.42 64.37 66.48 37.82 39.40 60.52
PASER(KMeans_TFIDF) 15.49 29.76 70.92 77.03 70.51 65.28 67.38 38.47 40.30 61.41
PARSER(Spectral_MTEB) 14.81 28.49 70.54 77.42 71.12 65.75 67.82 38.74 39.90 61.61
PARSER(Spectral_BERT) 14.47 27.86 70.66 77.65 71.45 66.01 68.06 38.89 40.00 61.82
PASER 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
PASER(NMF_TFIDF) 15.97 28.13 72.63 76.94 64.37 67.18 70.39 37.54 38.60 61.09
PASER(LDA_TFIDF) 15.41 27.09 73.12 77.31 64.93 67.63 70.92 37.86 38.80 61.51
PASER(KMeans_TFIDF) 14.72 25.91 73.61 77.66 65.46 68.09 71.48 38.19 39.00 61.93
PARSER(Spectral_MTEB) 14.03 24.84 74.16 78.01 66.02 68.54 71.98 38.44 39.20 62.34
PARSER(Spectral_BERT) 13.68 24.31 74.48 78.21 66.32 68.79 72.28 38.75 39.30 62.59
PASER 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

Table 11: Recovery performance of different instruction tuning data selection methods on mathemati-
cal reasoning tasks under various pruning schemes. The ’bold’ represents the best performance under
the same pruning scheme.

Recovery Method LLM-Pruner (25%) SliceGPT (25%) Wanda (2:4) SparseGPT (50%)

GSM8K Minerva GSM8K Minerva GSM8K Minerva GSM8K Minerva

w/o Training 44.3 17.8 42.5 16.9 43.8 17.4 43.1 17.2
Full Data 46.5 19.1 44.8 18.3 45.9 18.7 45.2 18.5
Random 45.8 18.4 43.9 17.8 44.7 18.1 44.3 17.9
Instruction Mining 46.2 18.9 44.5 18.1 45.4 18.5 44.9 18.3
IFD 46.8 19.3 45.1 18.5 45.8 18.8 45.4 18.6
Nuggets 47.1 19.5 45.4 18.7 46.2 19.0 45.7 18.8
PASER 49.4 21.2 47.8 20.5 48.5 20.8 47.2 20.1

• GSM8K (Cobbe et al., 2021): A dataset containing 8.5K high-quality grade school math word
problems that test various mathematical reasoning capabilities, including arithmetic, algebra, and
word problem solving.

• Minerva Math (Lewkowycz et al., 2022): A comprehensive mathematical evaluation dataset
covering diverse topics in mathematics ranging from arithmetic to calculus, with problems requiring
multi-step reasoning.

The recovery performance under different pruning schemes is presented in Table 11. From these
results, we can observe that PASER consistently outperforms baseline methods across all pruning
schemes on both mathematical reasoning benchmarks. The improvements are particularly significant
under the LLM-Pruner scheme, where PASER achieves 5.1% and 3.4% absolute improvements over
w/o Training on GSM8K and Minerva Math, respectively. While different pruning schemes affect
the base performance levels, PASER maintains its effectiveness in recovery. For example, under the
more aggressive SparseGPT (50%) setting, PASER still achieves 4.1% and 2.9% improvements on
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GSM8K and Minerva Math over w/o Training. Compared to Full Data training, PASER achieves
better performance while using only 20% of the instruction data, demonstrating its efficiency in
recovering mathematical reasoning capabilities.

These results, combined with the common sense reasoning results presented in the main paper,
demonstrate that PASER is effective across diverse reasoning tasks. The strong performance on
mathematical tasks is particularly noteworthy given that these problems often require precise, step-
by-step reasoning and have less tolerance for errors compared to common sense reasoning tasks. This
validates the effectiveness of our capability degradation score in identifying and prioritizing recovery
for severely affected capabilities, even in domains requiring high precision.

G CASE STUDY FOR RECOVERY INSTRUCTION CLUSTERING

To illustrate the effectiveness of our Semantic-Structural Recovery Instruction Clustering (S2RIC)
approach for grouping samples focusing on similar capabilities together, we conduct a case study
of clustered instruction samples from the Alpaca dataset. Specifically, we provide representative
samples from several obtained clusters as follows.

G.1 CLUSTER 1: BASIC FACTUAL KNOWLEDGE AND INFORMATION RETRIEVAL

• Instruction: “Find the five largest cities in France.”

• Instruction: “What is the capital of France?”

• Instruction: “Find the population density of United States.”

These instructions primarily test the model’s ability to recall basic facts and information, correspond-
ing to general knowledge capabilities.

G.2 CLUSTER 2: LANGUAGE UNDERSTANDING AND TRANSLATION

• Instruction: “Translate the word ’giraffe’ to French.”

• Instruction: “Pick the correct Spanish translation of “Hello”.”

• Instruction: “Difference in meaning between "done freely" and "freely done¨? For instance, is
there any difference in meaning between these two sentences?”’

This cluster focuses on language-related tasks, including translation, idiomatic expressions, and
grammatical analysis.

G.3 CLUSTER 3: LOGICAL REASONING AND PROBLEM SOLVING

• Instruction: “A friend shares the following text with you and asks for your opinion: ’Purple-eyed
individuals have a stronger psychic connection to the cosmos and have more chances to predict the
future.’ Analyze the statements and point out logical fallacies or unsupported claims.”

• Instruction: “Explain how to solve a Sudoku puzzle in three steps.”

• Instruction: “Answer this math question: What is the value of 3 to the power of 5?”

These instructions test the model’s ability to perform mathematical calculations, logical deductions,
and pattern recognition.

G.4 CLUSTER 4: CREATIVE WRITING AND TEXT GENERATION

• Instruction: “Write a microblog post about a recent experience you had.”

• Instruction: “Compose a haiku about the wonders of technology.”

• Instruction: “Create an illustration of the inside of a castle.”

This cluster groups tasks that require creative text generation, showcasing the model’s ability to
produce original content across various formats and topics.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G.5 CLUSTER 5: SUMMARIZATION AND INFORMATION EXTRACTION

• Instruction: “Summarize the techniques used for summarizing text.”

• Instruction: “Extract the main argument from the passage.”

• Instruction: “Provide a brief summary of the article "A Brief History of the Automobile Industry.”

These instructions focus on the model’s capability to condense information and identify key points
from longer texts.

This study demonstrates that S2RIC effectively groups instructions targeting similar LLM capabilities,
enabling PASER to allocate recovery efforts, i.e., data budget, more strategically. By focusing
intensively on clusters where capabilities have degraded most after the pruning, while maintaining
awareness of all capability clusters, PASER achieves both targeted and balanced recovery. This
dual approach ensures efficient and comprehensive restoration of the model’s diverse functionalities,
optimizing the recovery process for pruned LLMs.

H CASE STUDY FOR NEGATIVE TRANSFER MITIGATION

To illustrate the negative transfer mitigation process in PASER, we present the following case study,
including both initial concept consistency graph construction and new sample evaluation.

H.1 CONSTRUCTING INITIAL CONCEPT CONSISTENCY GRAPH

We begin with three accepted instruction-output pairs to construct our initial Concept Consistency
Graph (CCG):

1. Instruction: "Explain the basic principles of quantum computing."
Output: "Quantum computing is based on the principles of quantum mechanics. It uses quantum
bits or qubits, which can exist in multiple states simultaneously due to superposition. Quantum
entanglement allows qubits to be correlated with each other. These properties enable quantum
computers to perform certain calculations much faster than classical computers for specific
problems."
Concepts: {quantum computing, qubit, superposition, entanglement}

2. Instruction: "Describe the main components of a classical computer."
Output: "A classical computer typically consists of several key components: the Central Pro-
cessing Unit (CPU) which performs calculations and controls other components; Random Access
Memory (RAM) for temporary data storage; a hard drive for long-term data storage; and various
input/output devices. These components work together to process and store information using
binary logic."
Concepts: {CPU, RAM, hard drive, binary logic}

3. Instruction: "What are the fundamental concepts in deep learning?"
Output: "Deep learning is a subset of machine learning based on artificial neural networks. Key
concepts include: neural networks with multiple layers (deep neural networks), which can learn
hierarchical representations of data; backpropagation, an algorithm for training these networks by
adjusting weights; and various optimization techniques to improve learning. Deep learning has
shown remarkable success in tasks such as image and speech recognition."
Concepts: {deep learning, neural network, backpropagation, optimization}

Based on these samples, we construct an initial Concept Consistency Graph (CCG):

V = {quantum computing, qubit, superposition, entanglement,
CPU, RAM, hard drive, binary logic,
deep learning, neural network, backpropagation, optimization}
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The edges E in the graph represent the co-occurrence of concepts within each instruction-output pair.

E = {(quantum computing, qubit), (quantum computing, superposition),
(quantum computing, entanglement), (qubit, superposition),
(qubit, entanglement), (superposition, entanglement),
(CPU, RAM), (CPU, hard drive), (CPU, binary logic),
(RAM, hard drive), (RAM, binary logic), (hard drive, binary logic),
(deep learning, neural network), (deep learning, backpropagation),
(deep learning, optimization), (neural network, backpropagation),
(neural network, optimization), (backpropagation, optimization)}

This explicit definition of E clearly shows the relationships between concepts within each domain,
while highlighting the absence of edges between concepts from different domains.

H.2 EVALUATING NEW SAMPLES

We now evaluate two new samples using PASER’s negative transfer mitigation process.

H.2.1 SAMPLE 1: ACCEPTED

Instruction: "How does increasing the number of qubits affect a quantum computer’s performance?"

Output: "Increasing the number of qubits in a quantum computer can significantly enhance its
performance and capabilities:

1. Exponential growth in computational power: Each additional qubit doubles the number of quantum
states that can be represented, leading to an exponential increase in computational power.

2. Handling more complex problems: More qubits allow quantum computers to tackle larger and
more complex problems that are intractable for classical computers.

3. Improved error correction: A larger number of qubits can be used to implement more robust quan-
tum error correction codes, improving the overall stability and reliability of quantum computations.

4. Enhanced quantum parallelism: More qubits enable greater parallelism in quantum algorithms,
potentially leading to faster solution times for certain problems.

5. Challenges in scalability: However, increasing the number of qubits also introduces challenges
in maintaining coherence and reducing error rates, which are active areas of research in quantum
computing.

In summary, while increasing the number of qubits can dramatically improve a quantum computer’s
capabilities, it also comes with technical challenges that researchers are working to overcome."

Concepts: {qubit, quantum computer, computational power, quantum states, error correction, quan-
tum parallelism, coherence}

Applying PASER’s negative transfer mitigation process:

1. Concept Extraction: C(x, y) = {qubit, quantum computer, computational power, quantum
states, error correction, quantum parallelism, coherence}

2. Consistency Check: For each pair (vi, vj) ∈ C(x, y):

• (qubit, quantum computer): both ∈ V and (vi, vj) ∈ E

• (qubit, computational power): qubit ∈ V , computational power /∈ V

• (qubit, quantum states): qubit ∈ V , quantum states /∈ V

• Other pairs: at least one concept /∈ V

3. Decision: IsConsistent(x, y) = True, because for all pairs, either (vi, vj) ∈ E or {vi, vj} ̸⊂ V

PASER accepts this sample as it is consistent with the existing CCG and introduces relevant new
concepts without conflicts.
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H.2.2 SAMPLE 2: REJECTED

Instruction: "Explain how quantum computing can be used to significantly speed up deep learning
algorithms."

Output: "Quantum computing has the potential to speed up certain aspects of deep learning al-
gorithms. Quantum algorithms could potentially optimize the training process of neural networks,
especially in handling large-dimensional data. However, it’s important to note that the exact advan-
tages and applications are still being researched, and classical computers remain more practical for
most current deep learning tasks."

Concepts: {quantum computing, deep learning, neural network, speedup}

Applying PASER’s negative transfer mitigation process:

1. Concept Extraction: C(x, y) = {quantum computing, deep learning, neural network, speedup}
2. Consistency Check: For each pair (vi, vj) ∈ C(x, y):

• (quantum computing, deep learning): both ∈ V , but (vi, vj) /∈ E

• (quantum computing, neural network): both ∈ V , but (vi, vj) /∈ E

• (deep learning, neural network): both ∈ V and (vi, vj) ∈ E

• (speedup, any other concept): speedup /∈ V

3. Decision: IsConsistent(x, y) = False, because the pairs (quantum computing, deep learning) and
(quantum computing, neural network) have both concepts in V, but these edges do not exist in E.
This introduces new relationships between existing concepts that are not present in the current
CCG.

PASER rejects this sample because it introduces direct relationships between quantum computing
and deep learning/neural networks, which were not present in the initial CCG. While these concepts
existed separately in the CCG, their combination in this context could lead to potential misunder-
standings or oversimplifications about the current state and capabilities of quantum computing in
machine learning.

H.3 CONCLUSION

This case study demonstrates PASER’s negative transfer mitigation process in action. By accepting
Sample 1, PASER allows for the introduction of new, relevant concepts that expand the concept
consistency graph without introducing conflicts. By rejecting Sample 2, PASER prevents the intro-
duction of potentially misleading relationships between existing concepts from different domains,
thus mitigating the risk of negative transfer during the recovery process.

I LIMITATION ANALYSIS

While PASER demonstrates significant improvements in recovery performance and efficiency for
pruned large language models, there are several limitations to consider:

• Computational overhead: Although PASER reduces the recovery training time, the initial cluster-
ing and data selection process introduces some computational overhead. For very large instruction
tuning datasets, this overhead may become non-trivial.

• Dependence on initial pruning quality: The effectiveness of PASER may vary depending on the
quality and method of the initial model pruning. Poorly pruned models might not benefit as much
from the targeted recovery approach.

• Potential bias in capability recovery: While PASER aims for balanced capability recovery, there
might still be some bias towards certain capabilities based on the initial clustering results and the
composition of the instruction tuning dataset.

• Scalability to extremely large models: The paper primarily demonstrates results on models up to
70B parameters. The scalability and effectiveness of PASER on even larger models (e.g., 100B+
parameters) need further investigation.
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• Long-term Stability: The long-term stability of models recovered using PASER, especially under
continued fine-tuning or adaptation, has not been thoroughly examined in this work.

J ETHICS STATEMENT

The development and deployment of technologies like PASER for efficient recovery of pruned large
language models necessitates careful consideration of ethical implications. While PASER contributes
to reducing environmental impact and potentially democratizing AI access by lowering computational
requirements, it also raises concerns about potential misuse, bias amplification, and privacy. It’s
crucial to remain vigilant about these risks, implement robust safeguards, and maintain transparency
in the recovery process. Continuous monitoring for fairness and bias in model outputs is essential, as
is responsible deployment with appropriate human oversight, especially in high-stakes applications.
As the field evolves, ongoing ethical assessment and dialogue with stakeholders are vital to ensure that
advancements in large language model efficiency contribute positively to society while minimizing
potential harm. Ultimately, the goal should be to harness the benefits of improved model recovery
techniques like PASER while proactively addressing the complex ethical challenges they present.
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