
AlphaGAN: Fully Differentiable Architecture Search
for Generative Adversarial Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Generative Adversarial Networks (GANs) are formulated as minimax game prob-1

lems, whereby generators attempt to approach real data distributions by virtue of2

adversarial learning against discriminators. In this work, we aim to boost model3

learning from the perspective of network architectures, by incorporating recent4

progress on automated architecture search into GANs. To this end, we propose a5

fully differentiable search framework for generative adversarial networks, dubbed6

alphaGAN. The searching process is formalized as solving a bi-level minimax7

optimization problem, where the outer-level objective aims for seeking a suitable8

network architecture towards pure Nash Equilibrium conditioned on the network pa-9

rameters optimized in the inner level. The entire optimization performs a first-order10

method by alternately optimizing the two-level objective in a fully differentiable11

manner, enabling architecture search to be completed in an enormous search space.12

Extensive experiments on CIFAR-10 and STL-10 datasets show that our algorithm13

can obtain high-performing architectures only with 3-GPU hours on a single GPU14

in the search space comprised of approximate 2× 1011 possible configurations.15

1 Introduction16

Generative Adversarial Networks (GANs) [1] have shown promising performance on a variety of17

generative tasks (e.g., image generation [2], image translation [3, 4], dialogue generation [5], and18

image inpainting [6]). However, pursuing high-performance generative networks is non-trivial due19

to the non-convex non-concave property. There is a rich history of research aiming to improve the20

training stabilization and alleviate mode collapse by introducing generative adversarial functions (e.g.,21

Wasserstein distance [7], Least Squares loss [8], and hinge loss [9]) or regularization (e.g., gradient22

penalty [10, 11]).23

Alongside the direction of improving loss functions, improving architectures has been proven to be24

important for stabilizing training and improving generalization. Previous works [12, 9, 10, 13, 2]25

employ deep convolutional networks to boost the performance of GANs. However, such a manual26

architecture design typically requires domain-specific knowledge from human experts, which is27

even challenging for GANs due to the minimax formulation that it intrinsically possesses. Recent28

progress of architecture search on a variety of supervised learning tasks [14, 15, 16, 17] has shown29

that remarkable achievements can be achieved by automating the architecture search process.30

In this paper, we aim to address the problem of GAN architecture search from the perspective of31

Game theory since it is essentially a minimax problem [1] targeting at finding pure Nash Equilibrium32

of generator and discriminator [18, 19]. From this perspective, we propose a fully differentiable33

architecture search framework for GANs, dubbed alphaGAN, in which a differentiable evaluation34

metric is introduced for guiding architecture search towards pure Nash Equilibrium [20]. Motivated35

by DARTS [15], we formulate the search process of alphaGAN as a bi-level minimax optimization36

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



problem, and solve it efficiently via stochastic gradient-type methods. Specifically, the outer level37

objective aims to optimize the generator architecture parameters towards pure Nash Equilibrium,38

whereas the inner level constraint targets at optimizing the weight parameters conditioned on the39

architecture currently searched.40

This work is related to several recent methods. GAN architecture search is performed with a41

reinforcement learning paradigm [21, 22, 23] or a gradient-based paradigm [24].42

Extensive experiments including comparison to these methods and analysis of the searched archi-43

tectures, demonstrate the effectiveness of the proposed algorithm in performance and efficiency.44

Specially, alphaGAN can discover high-performance architectures while being much faster than the45

other automated architecture search methods.46

2 GAN Architecture Search as Fully Differential Optimization47

Differentiable Architecture Search was first proposed in [15], where the problem is formulated as a48

bi-level optimization. Weight parameters and architecture parameters are optimized in the inner level49

and outer level, respectively. The objective function in both levels is the cross entropy loss, which50

can reflect the quality of current models in classification tasks.51

However, deploying such a framework to searching architectures of GANs is non-trivial. The training52

of GANs corresponds to the optimization of a minimax problem. Many previous works [2, 25] have53

pointed that the adversarial loss cannot refect the quality of GANs. A suitable evaluation metric is54

essential for a gradient-based NAS-GAN framework.55

Evaluation function. Due to the intrinsic minimax property of GANs, the training process of56

GANs can be viewed as a zero-sum game as in [18, 1]. The universal objective of training GANs57

consequentially can be regarded as reaching pure equilibrium. Hence, we adopt the primal-dual gap58

function [25, 26] for evaluating the generalization of vanilla GANs. Given a pair of G and D, the59

duality-gap function is defined as60

V(G,D) = Adv(G,D)−Adv(G,D) := max
D

Adv(G,D)−min
G

Adv(G,D). (1)

The evaluation metric V(G,D) is non-negative and V (G,D) = 0 can be only achieved when the61

pure equilibrium holds. Function (1) provides a quantified measure of describing “how close is62

current GAN to pure equilibrium", which can be used for assessing model capacity.63

The architecture search for GANs can be formulated as a specific bi-level optimization problem:64

min
α

{
V(G,D) : (G,D) := argmin

G
max
D

Adv (G,D)
}
, (2)

where V(G,D) performs on the validation dataset and supervises seeking the optimal generator65

architecture as an outer-level problem, and the inner-level optimization on Adv (G,D) aims to learn66

suitable network parameters (including both the generator and discriminator) for GAN on the current67

architecture.68

In this work, we exploit the hinge loss from [9, 27] as the generative adversarial function Adv (G,D).69

AlphaGAN formulation. By integrating the generative adversarial function (i.e., hinge loss) and70

evaluation function (1) into the bi-level optimization (2), we can obtain the final objective for the71

framework as follows,72

min
α
Vval(G,D) = Adv(G,D)−Adv(G,D) (3)

s.t. ω ∈ argmin
ωG

max
ωD

Advtrain(G,D) (4)

where generator G and discriminator D are parameterized with variables (αG, ωG) and (ωD), re-73

spectively, D = argmaxD Advval(G,D), and G = argminGAdvval(G,D). The detailed search74

algorithm and other details are in the supplementary material.75

2



Table 1: Comparison with state-of-the-art GANs on CIFAR-10. † denotes the results reproduced by
us, with the structure released by Auto-GAN and trained under the same setting as AutoGAN.

Architecture Params
(M)

FLOPs
(G)

search time
(GPU-hours)

search
space

search
method

IS
(↑ is better)

FID
(↓ is better)

DCGAN([12]) - - - - manual 6.64± 0.14 -
SN-GAN([9]) - - - - manual 8.22± 0.05 21.7± 0.01
Progressive GAN([13]) - - - - manual 8.80±0.05 -
WGAN-GP, ResNet([10]) - - - - manual 7.86± 0.07 -

AutoGAN([22]) 5.192 1.77 - ∼ 105 RL 8.55± 0.1 12.42
AutoGAN† 5.192 1.77 82 ∼ 105 RL 8.38± 0.08 13.95
AGAN([21]) - - 28800 ∼ 20000 RL 8.29± 0.09 30.5
Random search([30]) 2.701 1.11 40 ∼ 2× 1011 Random 8.46± 0.09 15.43
alphaGAN(l) 8.618 2.78 22 ∼ 2× 1011 gradient 8.71± 0.12 11.23
alphaGAN(s) 2.953 1.32 3 ∼ 2× 1011 gradient 8.60± 0.11 11.85

3 Experiments76

In this section, we conduct extensive experiments on CIFAR-10 [28] and STL-10 [29]. First, the77

generator architecture is searched on CIFAR-10 and the discretized optimal structure is fully re-78

trained from scratch following [22] in Section 3.1. We compare alphaGAN with the other automated79

GAN methods in multiple measures to demonstrate its effectiveness. Second, the generalization of80

the searched architectures is verified by fully training on STL-10 and evaluation in Section 3.2. To81

further understand the properties of our method, a series of studies on the key components of the82

framework are shown in Section 3.3. Experiment details are in the supplementary material.83

3.1 Searching on CIFAR-1084

We first compare our method with recent automated GAN methods. For a fair comparison, we report85

the performance of best run (over 3 runs) for reproduced baselines and ours in the Table 1 and provide86

the performance of several representative works with manually designed architectures for reference.87

We provide a detailed analysis and discussion about the searching process. And the statistic properties88

of architectures searched by alphaGAN are in the supplementary material.89

Performances of alphaGAN with two search configurations are shown In Tab. 1 by adjusting step90

sizes of the inner loop and the outer loop, where alphaGAN(l) represents passing through every epoch91

on the training and validation sets for each loop, i.e., steps = 390. And alphaGAN(s) represents92

using smaller interval steps with steps = 20.93

The results show that our method performs well in the two settings and outperforms the other94

automated GAN methods in terms of both efficiency and performance. alphaGAN(l) obtains the95

lowest FID compared to all the baselines. Particularly, alphaGAN(s) can attain the best tradeoff96

between efficiency and performance, and it can be achieve comparable results by searching in a97

large search space (significantly larger than RL-based baselines) in a considerably efficient manner98

(i.e., only 3 GPU hours compared to the baselines with tens to thousands of GPU hours). The99

architecture obtained by alphaGAN(s) is light-weight and computationally efficient, which reaches a100

good trade-off between performance and time complexity.101

3.2 Transferability on STL-10102

To validate the transferability of the architectures obtained by alphaGAN, we directly train models103

by using the obtained architectures on the STL-10 dataset. The results are shown in Table 2. Both104

alphaGAN(l) and alphaGAN(s) show remarkable superiority in performance over the baselines with105

either automated or manually designed architectures. It reveals the benefit that the architecture106

searched by alphaGAN can be effectively exploited across datasets. It is surprising that alphaGAN(s)107

is best-behaved, which achieves the best performance in both IS and FID scores. It also shows that108

compared to increase on model complexity, appropriate selection and composition of operations can109

contribute to model performance in a more efficient manner which is consistent with the primary110

motivation of automating architecture search.111

3



Table 2: Results on STL-10. The structures of alphaGAN(l) and alphaGAN(s) are searched on
CIFAR-10 and fully trained on STL-10. † denotes the reproduced results, with the architectural
configurations released by the original papers.

Architecture Params (M) FLOPs (G) IS FID

SN-GAN([9]) - - 9.10± 0.04 40.1± 0.5
ProbGAN([31]) - - 8.87± 0.095 46.74
Improving MMD GAN([32]) - - 9.36 36.67

Auto-GAN([22]) 5.853 3.98 9.16± 0.12 31.01
Auto-GAN† 5.853 3.98 9.38± 0.08 27.69
AGAN([21]) - - 9.23± 0.08 52.7
alphaGAN(l) 9.279 6.26 9.53± 0.12 24.52
alphaGAN(s) 3.613 2.97 10.12±0.13 22.43

3.3 Ablation Study112

We conduct ablation experiments on CIFAR-10 to better understand the influence of components113

when applying different configurations on both alphaGAN(l) and alphaGAN(s), including the studies114

with the questions: the effect of searching the discriminator architecture and obtaining the optimal115

generator G. More experiments are shown in the supplementary material.116

Table 3: Ablation studies on CIFAR-10.
Type Search D? Obtain G IS FID

Update αG Update ωG

alphaGAN(l)

X × X 8.51± 0.09 18.07
× × X 8.51± 0.06 11.38

× × X 8.51± 0.06 11.38
× X × 7.06± 0.06 43.99
× X X 8.43± 0.11 13.91

alphaGAN(s)

X × X 8.70± 0.11 15.56
× × X 8.72± 0.11 12.86

× × X 8.72± 0.11 12.86
× X × 8.45± 0.09 15.47
× X X 8.18± 0.11 18.85

Search D’s architecture or not?117

A problem may arise from al-118

phaGAN: If searching discrimi-119

nator structures can facilitate the120

searching and training of genera-121

tors? The results in Table 3 show122

that searching the discriminator123

cannot help the search of the op-124

timal generator. We also con-125

ducted the trial by training GANs126

with the obtained architectures by127

searching G and D, while the fi-128

nal performance is inferior to the129

setting of retraining with a given discriminator configuration. Simultaneously searching architectures130

of both G and D potentially increases the effect of inferior discriminators which may hamper the131

search of optimal generators conditioned on strong discriminators. In this regard, solely learning132

generators’ architectures may be a better choice.133

How to obtain G? In the definition of duality gap, G and D denote the optima of G and D,134

respectively. As both of the architecture and network parameters are variables for G, we do the135

experiments of investigating the effect of updating ωG and αG for attaining G. The results in Table 3136

show that updating ωG solely achieves the best performance. ApproximatingG with ωG update solely137

means that the architectures of G and G are identical, and hence optimizing architecture parameters138

αG in (3) can be viewed as the compensation for the gap brought by the weight parameters of ωG139

and ωG.140

4 Conclusion141

We presented alphaGAN, a fully differentiable architecture search framework for GANs, which is142

efficient and effective to seek high-performing generator architectures from vast possible configura-143

tions, achieving comparable or superior performance compared to state-of-the-art architectures being144

either manually designed or automatically searched. In addition, the analysis of tracking the behavior145

of architecture performance and operation distribution gives some insights about architecture design,146

which may promote further research on architecture improvement. We mainly focused on vanilla147

GANs in this work and would like to extend such a framework to conditional GANs, in which extra148

regularization on the parts of networks is typically imposed for task specialization, as future work.149

4



Broader Impact150

AlphaGAN will have potential positive impacts on the tasks of image/video generation, natural151

language generation, and high fidelity speech synthesis. Researchers can utilize alphaGAN to design152

a powerful generator adversarial network with superior performance. On the other hand, we would153

hope that this work can attract more attention in the AI research community to design architectures154

of generation tasks rather than classification tasks. Moreover, the theory behind alphaGAN is so155

transferable that it can apply to conditional GANs on several conditionally generative tasks, e.g.,156

style transfer, image-to-image translation, etc.157

References158

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil159

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural160

information processing systems, pages 2672–2680, 2014.161

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity162

natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.163

[3] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image164

translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international165

conference on computer vision, pages 2223–2232, 2017.166

[4] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo.167

Stargan: Unified generative adversarial networks for multi-domain image-to-image translation.168

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages169

8789–8797, 2018.170

[5] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. Adversarial171

learning for neural dialogue generation. arXiv preprint arXiv:1701.06547, 2017.172

[6] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Generative image173

inpainting with contextual attention. In Proceedings of the IEEE conference on computer vision174

and pattern recognition, pages 5505–5514, 2018.175

[7] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint176

arXiv:1701.07875, 2017.177

[8] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.178

Least squares generative adversarial networks. In Proceedings of the IEEE International179

Conference on Computer Vision, pages 2794–2802, 2017.180

[9] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization181

for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.182

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.183

Improved training of wasserstein gans. In Advances in neural information processing systems,184

pages 5767–5777, 2017.185

[11] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of186

gans. arXiv preprint arXiv:1705.07215, 2017.187

[12] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with188

deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.189

[13] Shaokai Ye, Xiaoyu Feng, Tianyun Zhang, Xiaolong Ma, Sheng Lin, Zhengang Li, Kaidi Xu,190

Wujie Wen, Sijia Liu, Jian Tang, et al. Progressive dnn compression: A key to achieve ultra-high191

weight pruning and quantization rates using admm. arXiv preprint arXiv:1903.09769, 2019.192

[14] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv193

preprint arXiv:1611.01578, 2016.194

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.195

arXiv preprint arXiv:1806.09055, 2018.196

[16] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable197

architectures for scalable image recognition. In Proceedings of the IEEE conference on computer198

vision and pattern recognition, pages 8697–8710, 2018.199

5



[17] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model200

architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.201

[18] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.202

Improved techniques for training gans. In Advances in neural information processing systems,203

pages 2234–2242, 2016.204

[19] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.205

Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances206

in neural information processing systems, pages 6626–6637, 2017.207

[20] John F Nash et al. Equilibrium points in n-person games. Proceedings of the national academy208

of sciences, 36(1):48–49, 1950.209

[21] Hanchao Wang and Jun Huan. Agan: Towards automated design of generative adversarial210

networks. arXiv preprint arXiv:1906.11080, 2019.211

[22] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. Autogan: Neural architecture212

search for generative adversarial networks. In Proceedings of the IEEE International Conference213

on Computer Vision, pages 3224–3234, 2019.214

[23] Yuan Tian, Qin Wang, Zhiwu Huang, Wen Li, Dengxin Dai, Minghao Yang, Jun Wang, and215

Olga Fink. Off-policy reinforcement learning for efficient and effective gan architecture search.216

arXiv preprint arXiv:2007.09180, 2020.217

[24] Chen Gao, Yunpeng Chen, Si Liu, Zhenxiong Tan, and Shuicheng Yan. Adversarialnas:218

Adversarial neural architecture search for gans. arXiv preprint arXiv:1912.02037, 2019.219

[25] Paulina Grnarova, Kfir Y Levy, Aurelien Lucchi, Nathanael Perraudin, Ian Goodfellow, Thomas220

Hofmann, and Andreas Krause. A domain agnostic measure for monitoring and evaluating gans.221

In Advances in Neural Information Processing Systems, pages 12069–12079, 2019.222

[26] Cheng Peng, Hao Wang, Xiao Wang, and Zhouwang Yang. {DG}-{gan}: the {gan} with the223

duality gap, 2020.224

[27] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative225

adversarial networks. arXiv preprint arXiv:1805.08318, 2018.226

[28] Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data227

set for nonparametric object and scene recognition. IEEE transactions on pattern analysis and228

machine intelligence, 30(11):1958–1970, 2008.229

[29] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-230

vised feature learning. In Proceedings of the fourteenth international conference on artificial231

intelligence and statistics, pages 215–223, 2011.232

[30] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.233

arXiv preprint arXiv:1902.07638, 2019.234

[31] Hao He, Hao Wang, Guang-He Lee, and Yonglong Tian. Probgan: Towards probabilistic gan235

with theoretical guarantees.236

[32] Wei Wang, Yuan Sun, and Saman Halgamuge. Improving mmd-gan training with repulsive loss237

function. arXiv preprint arXiv:1812.09916, 2018.238

[33] Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press, 1994.239

[34] Ding-Zhu Du and Panos M Pardalos. Minimax and applications, volume 4. Springer Science &240

Business Media, 2013.241

[35] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in242

neural information processing systems, pages 4565–4573, 2016.243

[36] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial244

reinforcement learning. In Proceedings of the 34th International Conference on Machine245

Learning-Volume 70, pages 2817–2826. JMLR. org, 2017.246

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint247

arXiv:1412.6980, 2014.248

[38] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Advances in Neural249

Information Processing Systems, pages 3086–3094, 2014.250

6



[39] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank251

Hutter. Understanding and robustifying differentiable architecture search. arXiv preprint252

arXiv:1909.09656, 2019.253

7



A Preliminaries254

Minimax Games have regained a lot of attraction [33, 34] since they are popularized in machine255

learning, such as generative adversarial networks (GAN) [18], reinforcement learning [35, 36], etc.256

Given the function Adv : X× Y→ R, we consider a minimax game and its dual form:257

min
G

max
D

Adv(G,D)=min
G

{
max
D

Adv(G,D)
}
,max
D

min
G

Adv(G,D)=max
D

{
min
G

Adv(G,D)
}
.

The pure equilibrium [20] of minimax game can be used to characterize the best decisions of two258

players G and D for above minmax game.259

Definition 1 (G,D) is called a pure equilibrium of game minGmaxD Adv(G,D) if it holds that260

max
D

Adv(G,D) = min
G

Adv(G,D), (5)

where G = argminGAdv(G,D) and D = argmaxD Adv(G,D). When minimax game equals to261

its dual problem, (G,D) is the pure equilibrium of the game. Hence, the gap between the minimax262

problem and its dual form can be used to measure the degree of approaching pure equilibrium [25].263

Generative Adversarial Network (GAN) proposed in [1] is mathematically defined as a minimax game264

problem with a binary cross entropy loss of competing between the distributions of real and synthetic265

images generated by the GAN model. Despite remarkable progress achieved by GANs, training266

high-performance models is still challenging for many generative tasks due to its fragility to almost267

every factor in the training process. Architectures of GANs have proven useful for stabilizing training268

and improving generalization [9, 10, 13, 2], and we hope to discover architectures by automating the269

design process with limited computational resource in a principled differentiable manner.270

B Algorithm and Optimization271

In this section, we will give a detailed description for the training algorithm and optimization process272

of alphaGAN. We first describe the entire network structure of the generator and the discriminator,273

the search space of the generator, and the continuous relaxation of architectural parameters.274

Base Backbone of G and D. The illumination of the entire structure for the generator and discrimi-275

nator is shown in the supplementary material. The generator is constructed by stacking several cells276

whose topology is identical to those in AutoGAN [22] and SN-GAN [9] (shown in the supplementary277

material). Each cell, regarded as a directed acyclic graph, is comprised of the nodes representing278

intermediate feature maps and the edges connecting pairs of nodes via different operations. We apply279

a fixed network architecture for the discriminator, based on the conventional design as [9].280

Search space of G. The search space is compounded from two types of operations, i.e., normal281

operations and up-sampling operations. The pool of normal operations, denoted as On, is comprised282

of {conv_1x1, conv_3x3, conv_5x5, sep_conv_3x3, sep_conv_5x5, sep_conv_7x7} . The283

pool of up-sampling operations, denoted asOu, is comprised of { deconv, nearest, bilinear}, where284

“deconv” denotes the ConvTransposed_2x2. operation. Our method allows (63×32)3×33 ≈ 2×1011285

possible configurations for the generator architecture, which is larger than ∼ 105 of AutoGAN [22].286

Continuous relaxation. The discrete selection of operations is approximated by using a soft decision287

with a mutually exclusive function, following [15]. Formally, let o ∈ On denote some normal288

operations on node i, and αoi,j represent the architectural parameter with respect to the operation289

between node i and its adjacent node j, respectively. Then the node output induced by the input node290

i can be calculated by291

Oi,j(x) =
∑
o∈On

exp
(
αoi,j
)∑

o′∈On
exp

(
αo

′
i,j

)o(x), (6)

and the final output is summed over all of its preceding nodes, i.e., xj =
∑
i∈Pr(j)Oi,j(x

i). The292

selection on up-sampling operations follows the same procedure.293

Solving alphaGAN. We apply an alternating minimization method to solve alphaGAN with respect294

to variables
(
(ωG, ωD), (ωG, ωD), αG

)
in Algorithm 1, which is a fully differentiable gradient-type295

8



Algorithm 1 Searching the architecture of alphaGAN
Parameters: Initialize weight parameters (ω1

G,ω1
G). Initialize generator architecture parameters α1

G.
Initialize base learning rate η, momentum parameter β1, and exponential moving average parameter
β2 for Adam optimizer.

1: for k = 1, 2, · · · ,K do
2: Set (ωk,1G , ωk,1D ) = (ωkG, ω

k
D) and set αk,1G = αkG;

3: for t = 1, 2, · · · , T do
4: Sample real data {x(l)}ml=1 ∼ Pr from training set and noise {z(l)}ml=1 ∼ Pz; Estimate

gradient of Adv loss with {x(l), z(l)} at (ωk,tG , ωk,tD ), dubbed ∇Adv(ωk,tG , ωk,tD );

5: ωk,t+1
D = Adam

(
∇ωD

Adv(ωk,tG , ωk,tD ), ωk,tD , η, β1, β2
)
;

6: ωk,t+1
G = Adam

(
∇ωG

Adv(ωk,tG , ωk,tD ), ωk,tG , η, β1, β2
)
;

7: end for
8: Set (ωk+1

G , ωk+1
D ) = (ωk,TG , ωk,TD );

9: Receive architecture searching parameter αkG and network weight parameters (ωk+1
G ,ωk+1

D );
Estimate neural architecture parameters (ωk+1

G
, ωk+1

D
) of (G,D) via Algorithm 2;

10: for s = 1, 2, · · · , S do
11: Sample real data {x(l)}ml=1 ∼ Pr from the validation set and latent variables {z(l)}ml=1 ∼ Pz .

Estimate gradient of the duality gap V with {x(l), z(l)} at (αk,s), dubbed ∇V (αk,sG );

12: αk,s+1
G = Adam(∇αG

V (αk,sG ), αk,sG , η, β1, β2);
13: end for
14: Set αk+1

G =αk,SG ;
15: end for
16: Return αG=αKG .

Algorithm 2 Solving G and D
Parameters: Receive architecture searching parameter αG and weight parameter (ωG,ωD). Initialize
weight parameter (ω1

G
, ω1

D
) = (ωG, ωD) for (G,D). Initialize base learning rate η, momentum

parameter β1, and EMA parameter β2 for Adam optimizer.
1: for r = 1, 2, · · · , R do
2: Sample real data {x(l)}ml=1 ∼ Pr from validation dataset and noise {z(l)}ml=1 ∼ Pz; Estimate

gradient of Adv loss with {x(l), z(l)} at (ωG, ωrD), dubbed ∇Adv(ωG, ω
r
D
);

3: ωr+1

D
= Adam

(
∇ωD

Adv(ωG, ω
r
D
), ωr

D
, η, β1, β2

)
;

4: end for
5: for r = 1, 2, · · · , R do
6: Sample noise {z(l)}ml=1 ∼ Pz; Estimate gradient of the Adv loss with {z(l)} at point (ωr

G
, ωD),

dubbed∇Adv(ωr
G
, ωD);

7: ωr+1

G
= Adam

(
∇ωG

Adv(ωr
G
, ωD), ω

r
G
, η, β1, β2

)
;

8: end for
9: Return (ωG, ωD) = (ωR

G
, ωR

D
).

algorithm. Algorithm 1 is composed of three parts. The first part (line 3-8), called “weight_part",296

aims to optimize weight parameters ω on the training dataset via Adam optimizer [37]. The second297

part (line 9), called “test-weight_part", aims to optimize the weight parameters (ωG, ωD), and the298

third part (line 10-12), called ’arch_part’, aims to optimize architecture parameters αG by minimizing299

the duality gap. Both ’test-weight_part’ and ’arch_part’ are optimized over the validation dataset via300

Adam optimizer. Algorithm 2 illuminates the detailed process of computing G and D by updating301

weight parameters (ωG, ωD) with last searched generator network architecture parameters αG and302

related network weight parameters (ωG, ωD). In summary, the variables
(
(ωG, ωD), (ωG, ωD), αG

)
303

are optimized in an alternating fashion.304

9



C Experiment Details305

C.1 Searching on CIFAR-10306

The CIFAR-10 dataset is comprised of 50000 images for training. The resolution of the images is307

32x32. We randomly split the dataset into two sets during searching: one is used as the training set308

for optimizing network parameters ωG and ωD (25000 images), and another is used as the validation309

set for optimizing architecture parameters αG (25000 images). The search iterations for alphaGAN(l)310

and alphaGAN(s) are set to 100. We use a minibatch size of 64 for both generators and discriminators,311

channel number of 256 for generators and 128 for discriminators. The dimension of the noise vector312

is 128. For a fair comparison, the discriminator adopted in searching is the same as the discriminator313

in AutoGAN [22]. Batch sizes of both the generator and the discriminator are set to 64. The learning314

rates of weight parameters ωG and ωD are 2e− 4 and the learning rate of architecture parameter αG315

is 3e− 4. We use Adam as the optimizer. The hyperparameters for optimizing weight parameters316

ωG and ωD are set as, 0.0 for β1 and 0.999 for β2, and 0 for the weight decay. The hyperparameters317

for optimizing architecture parameters αG are set as 0.5 for β1, 0.999 for β2 and 1e− 3 for weight318

decay.319

We use the entire training set of CIFAR-10 for retraining the network parameters after obtaining320

architectures. we use a minibatch size of 128 for generators and 64 for discriminators. The channel321

number is set to 256 for generators and 128 for discriminators. The dimension of the noise vector is322

128. Discriminator exploited in the re-training phase is identical to that during searching. The batch323

size of the generator is set to 128. The batch size of the discriminator is set to 64. The generator is324

trained for 50000 iterations. The learning rates of the generator and discriminator are set to 2e− 4.325

The hyperparameters for the Adam optimizer are set to 0.0 for β1, 0.9 for β2 and 0 for weight decay.326

When testing, 50000 images are generated with random noise, and IS [18] and FID [19] are used to327

evaluate the performance of generators.328

C.2 Transferability329

The STL-10 dataset is comprised of ∼ 105k training images. We resize the images to the size330

of 48x48 due to the consideration of memory and computational overhead. The dimension of the331

noise vector is 128. We train the generator for 80000 iterations. The batch sizes for optimizing332

the generators and the discriminator are set to 128 and 64, respectively. The channel numbers of333

the generator and the discriminator are set to 256 and 128, respectively. The learning rates for the334

generator and the discriminator are both set to 2e− 4. We also use the Adam as the optimizer, where335

β1 is set to 0.5, β2 is set to 0.9 and weight decay is set to 0.336

D The structures of the generator and the discriminator337

The entire structures of the generator and the discriminator are illustrated in Fig. 1.338

The topology of cells in the generator and the discriminator is illustrated in the Fig. 2. In the cell of339

the generator, the edges from the node 0 to the node 1 and from the node 0 to the node 3 correspond340

to up-sampling operations, and the rest edges are normal operations. In the cell of the discriminator,341

the edges from the node 2 to the node 4 and from the node 3 to the node 4 are the operation of342

avg_pool_2x2 with stride 2, the edges from the node 0 to the node 1 and from the node 1 to the343

node 2 are the operation of conv_3x3 with stride 1, and the edge from the node 0 to the node 3 is the344

operation of conv_1x1 with stride 1.345

The structures of alphaGAN(l) and alphaGAN(s) are shown in Fig. 4 and Fig. 3.346

E Relation between performance and structure347

The distributions of operations in ’superior’ and ’inferior’ are shown in Fig. 5 and Fig. 6, respectively.348

We get the following observations: first, for up-sampling operations, superior architectures tend to349

exploit “nearest" or “bilinear" rather than “deconvolution" operations. Second, “conv_1x1" operations350

dominate in the cell_1 of superior generators, suggesting that convolutions with large kernel sizes may351

not be optimal when the spatial dimensions of feature maps are relatively small (i.e., 8x8). Finally,352

10



FC

cell_1

cell_2

cell_3

BN+ReLU+Conv+tanh

input

fake_sample

(a) G

cell_1

cell_2

cell_3

cell_4

FC

GAP

input

output

(b) D

Figure 1: The topology of the generator and the discriminator.

(a) The cell of G (b) The cell of D

Figure 2: The topology of the cell in the generator and the discriminator. The topology of the
generator and the discriminator is identical to those of AutoGAN [22] and SN-GAN [9].

convolutions with large kernels (e.g., conv_5x5, sep_conv_3x3, and sep_conv_5x5) are preferred on353

higher resolutions (i.e., cell_3 of superior generators), indicating the benefit of integrating information354

from relatively large receptive fields for low-level representations on high resolutions.355

11



conv_1x1

FC

bilinear

deconv

conv_1x1

sep_conv_3x3

sep_conv_5x5

deconv

deconv

sep_conv_3x3
sep_conv_3x3

sep_conv_5x5

deconv

nearest

sep_conv_3x3
sep_conv_3x3

conv_3x3 + tanh

nearest

deconv

bilinear

Figure 3: The structure of alphaGAN(s).

F Generated Samples356

Generated samples of alphaGAN(s) on STL-10 are shown in Fig. 7.357

G Additional Results358

In this section, we present the more experimental results and analysis (due to page limit), including359

model scaling, intermediate architectures in searching, using Gumbel-max trick, warm-up, ablation360

study on step sizes for ’arch_part’, effect of channel numbers for searching, searching on STL-10,361

and the analysis of failure cases. The ’baseline’ in Tab. 4 denotes the structure searched under the362

default settings of alphaGAN.363

G.1 Robustness on Model Scaling364

It would be interesting to know how the architecture performs when scaling up/down model com-365

plexity. To this regard, we introduce a ratio to simply re-scale the channel dimension of the network366

configuration for the fully training step. The relation between performance and parameter size367

is illuminated in Fig. 8. The range of attaining promising performance is relatively narrow for368

alphaGAN(s), mainly caused by the light-weight property induced by dominated depthwise separa-369

ble convolutions. Light-weight architectures naturally result in highly sparse connections between370

network neurons which may be sensitive to the configuration difference between searching and371

re-training. In contrast, alphaGAN(l) shows acceptable performance in a wide range of parameter372

12



conv_5x5

FC

deconv

bilinear

sep_conv_5x5

conv_5x5

conv_5x5

deconv

bilinear

conv_3x3
conv_1x1

conv_1x1

nearest

bilinear

sep_conv_3x3
conv_5x5

conv_3x3 + tanh

nearest

bilinear

nearest

Figure 4: The structure of alphaGAN(l).

sizes (from 2M to 18M). While both of them present some degree of robustness on the scaling of the373

original searching configuration.374

G.2 Intermediate Architectures in Searching375

0 20 40 60 80 100
Search iterations

6.0

6.5

7.0

7.5

8.0

8.5

IS

IS during search
alphaGAN(l)
alphaGAN(s)

(a) IS in search

0 20 40 60 80 100
Search iterations

10

20

30

40

50

60

FI
D

FID during search
alphaGAN(l)
alphaGAN(s)

(b) FID in search

Figure 9: Tracking architectures during searching.
alphaGAN(s) is denoted by blue color with plus
marker and alphaGAN(l) is denoted by red color
with triangle marker.

To understand the search process of alpha-376

GAN, we track the intermediate structures of377

alphaGAN(s) and alphaGAN(l) during search-378

ing, and fully train them on CIFAR-10 (in Fig.379

9). We observe a clear trend that the archi-380

tectures are learned towards high performance381

during searching though slight oscillation may382

happen. Specially, alphaGANl realizes grad-383

ual improvement in performance during the384

process, while alphaGAN(s) displays a faster385

convergence on the early stage of the process386

and can achieve comparable results, indicat-387

ing solving inner-level optimization problem388

by virtue of rough approximations (as using389

more steps can always achieve a closer approximation of the optimum) can significantly benefit the390

efficiency of solving the bi-level problem without sacrifice in accuracy.391

13



co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%10
%

20
%

30
%

40
%

50
%

60
%

Proportion

Ce
ll1

_N
od

e1
->

No
de

2
in

fe
rio

r
su

pe
rio

r

co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%10
%

20
%

30
%

40
%

50
%

Proportion

Ce
ll1

_N
od

e2
->

No
de

4
in

fe
rio

r
su

pe
rio

r

co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%10
%

20
%

30
%

40
%

50
%

60
%

70
%

Proportion

Ce
ll1

_N
od

e3
->

No
de

4
in

fe
rio

r
su

pe
rio

r

co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%5%10
%

15
%

20
%

25
%

30
%

35
%

40
%

Proportion

Ce
ll2

_N
od

e1
->

No
de

2
in

fe
rio

r
su

pe
rio

r

co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%5%10
%

15
%

20
%

25
%

30
%

35
%

40
%

Proportion

Ce
ll2

_N
od

e2
->

No
de

4

co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%5%10
%

15
%

20
%

25
%

30
%

35
%

Proportion

Ce
ll2

_N
od

e3
->

No
de

4

co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%5%10
%

15
%

20
%

25
%

30
%

35
%

40
%

Proportion

Ce
ll3

_N
od

e1
->

No
de

2
in

fe
rio

r
su

pe
rio

r

co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%10
%

20
%

30
%

40
%

50
%

Proportion

Ce
ll3

_N
od

e2
->

No
de

4
in

fe
rio

r
su

pe
rio

r

co
nv

_1
x1

co
nv

_3
x3

co
nv

_7
x7

se
p_

3x
3

se
p_

5x
5

se
p_

7x
7

No
rm

al
 o

pr

0%5%10
%

15
%

20
%

25
%

30
%

35
%

Proportion

Ce
ll3

_N
od

e3
->

No
de

4
in

fe
rio

r
su

pe
rio

r

Figure 5: The distributions of normal operations.

14



deconv nearest bilinear
Up opr

0%

20%

40%

60%

80%

Pr
op

or
tio

n

Cell1_Node0->Node1
superior
inferior

deconv nearest bilinear
Up opr

0%

20%

40%

60%

80%

Pr
op

or
tio

n

Cell1_Node0->Node3
superior
inferior

deconv nearest bilinear
Up opr

0%

10%

20%

30%

40%

50%

60%

Pr
op

or
tio

n

Cell2_Node0->Node1
superior
inferior

deconv nearest bilinear
Up opr

0%

10%

20%

30%

40%

50%

Pr
op

or
tio

n

Cell2_Node0->Node3
superior
inferior

deconv nearest bilinear
Up opr

0%

20%

40%

60%

80%

Pr
op

or
tio

n

Cell3_Node0->Node3
superior
inferior

deconv nearest bilinear
Up opr

0%

10%

20%

30%

40%

50%

60%

70%

Pr
op

or
tio

n

Cell3_Node0->Node1
superior
inferior

Figure 6: The distributions of up-sampling operations.

Figure 7: Generated samples of alphaGAN(s) on STL-10.

G.3 Gumbel-max Trick392

Gumbel-max trick [38] can be written as,393

βo
′
=

exp
((
αo

′
+ go

′)
/τ
)

∑
o∈On

exp
((
αo + go

)
/τ
) , (7)

where βo
′

is the probability of selecting operation o′ after Gumbel-max, and αo
′

represents the394

architecture parameter of operation o′, respectively. On represents the operation search space. go395

15



0 2 4 6 8 10
Params (M)

7.4

7.6

7.8

8.0

8.2

8.4

8.6

IS

IS of alphaGAN(s) and AutoGAN
alphaGAN(s)
AutoGAN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Params (M)

7.4

7.6

7.8

8.0

8.2

8.4

8.6

IS

IS of alphaGAN(l) and AutoGAN

alphaGAN(l)
AutoGAN

0 2 4 6 8 10
Params (M)

12

14

16

18

20

22

24

26

FI
D

FID of alphaGAN(s) and AutoGAN
alphaGAN(s)
AutoGAN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Params (M)

12

14

16

18

20

22

24

26

FI
D

FID of alphaGAN(l) and AutoGAN
alphaGAN(l)
AutoGAN

Figure 8: Relation between model capacity and performance. To align the model capacities with
AutoGAN, the channels for G and D in alphaGAN(l) are [64, 96, 128, 192, 256, 384], the channels
for G and D in alphaGANs are [64, 128, 160, 256, 384], and the channels for G and D in AutoGAN
are [64, 128, 192, 256, 384, 512].

Table 4: Gumbel-max trick and Warm-up.

Type Name Gumbel-max? Fix alphas? IS FID

alphaGAN(l)

baseline × × 8.51± 0.06 11.38
Gumbel-max X × 8.48± 0.10 20.69
Warm-up × X 8.34± 0.07 15.49

alphaGAN(s)

baseline × × 8.72± 0.11 12.86
Gumbel-max X × 8.56± 0.06 15.66
Warm-up × X 8.25± 0.12 19.07

denotes samples drawn from the Gumbel (0,1) distribution, and τ represents the temperature to control396

the sharpness of the distribution. Instead of continuous relaxation, the trick chooses an operation on397

each edge, enabling discretization during searching. We compare the results by searching with and398

without Gumbel-max trick. The results in Tab. 4 show that searching with Gumbel-max may not be399

the essential factor for obtaining high-performance generator architectures.400

G.4 Warm-up protocols401

The generator contains two parts of parameters, (ωG, αG). The optimization of αG is highly related402

to network parameters ωG. Intuitively, pretraining the network parameters ωG can benefit the search403

of architectures since a better initialization may facilitate the convergence. To investigate the effect,404

we fix αG and only update ωG at the initial half of the searching schedule, and then αG and ωG are405

optimized alternately. This strategy is denoted as ’Warm-up’ in Table 4.406

The results show that the strategy may not help performance, i.e., IS of ’Warm-up’ is slightly worse407

than that of the baseline and FID of ’Warm-up’ is worse than that of the baseline, while it can408

benefit the searching efficiency, i.e., it spends ∼ 15 GPU-hours for alphaGAN(l) (compared to ∼22409

GPU-hours via the baseline) , and ∼ 1 GPU-hour for alphaGAN(s) (compared to ∼ 3 GPU-hours via410

the baseline).411

G.5 Effect of Step Sizes412

To analyze the effect of different step sizes on the “arch part", corresponding to the optimization413

process of the architecture parameters αG in Algorithm 1 (line 10-13). Since alphaGAN(l) has larger414

step sizes for ’weight part’ and ’test-weight part’ compared with alphaGAN(s), the step size of ’arch415

part’ can be adjusted in a wider range. We select the alphaGAN(l) to conduct the experiments and the416

results are shown in Fig. 10. We can observe that the method perform fair robustness among different417

step sizes on the IS metric, while network performance based on the FID metric may be hampered418

with a less proper step.419

G.6 Effect of Channels in Searching420

As the default settings of alphaGAN, we search and re-train the networks with the same channel421

dimensions (i.e., G_channels=256 and D_channels=128), which are predefined. To explore the impact422

16



5 10 20 30 390
Step size

0

2

4

6

8

IS

8.35 8.52 8.51 8.51
8.8

IS of different step sizes

(a) IS

5 10 20 30 390
Step size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

FI
D

17.09

18.73

11.38

13.42

16.94

FID of different step sizes

(b) FID

Figure 10: The effect of different step sizes of ’arch part’.

Table 5: The channels in searching on the alphaGAN(s).

Search channels Re-train channels Params (M) FLOPs (G) IS FID

G_32 D_32 G_32 D_32 0.109 0.02 7.10± 0.08 36.22
G_256 D_128 2.481 1.12 8.61± 0.12 14.98

G_64 D_64 G_64 D_64 0.403 0.212 7.97± 0.09 22.49
G_256 D_128 4.658 3.26 8.70± 0.17 14.02

G_128 D_128 G_128 D_128 1.967 0.91 8.26± 0.08 16.50
G_256 D_128 7.309 3.64 8.75± 0.09 13.02

G_256 D_128

G_256 D_128 2.953 1.32 8.72± 0.11 12.86
G_128 D_128 0.887 0.34 8.36± 0.08 17.12
G_64 D_64 0.296 0.09 7.73± 0.08 24.81
G_32 D_32 0.111 0.025 6.85± 0.1 35.6

of the channel dimensions during searching on the final performance of the searched architectures,423

we adjust the channel numbers of the generator and the discriminator during searching based on424

the searching configuration of alphaGAN(s). The results are shown in Tab. 5. We observe that our425

method can achieve acceptable performance under a wide range of channel numbers (i.e., 32 ∼ 256).426

We also find that using consistent channel dimensions during searching and re-training phases is427

beneficial to the final performance.428

When reducing channels during searching, we observe an increasing trend on the operations of429

depth-wise convolutions with large kernels (e.g. 7x7), indicating that the operation selection induced430

by such automated mechanism is adaptive to need of preserving the entire information flow (i.e.,431

increasing information extraction on the spatial dimensions to compensate for the channel limits).432

G.7 Searching on STL-10433

We also search alphaGAN(s) on STL-10. The channel dimensions in the generator and the discrimi-434

nator are set to 64 (due to the consideration of GPU memory limit). We use the size of 48x48 as the435

resolution of images. The rest experimental settings are same as the one of searching on CIFAR-10.436

The settings remain the same as Section C.2 when retraining the networks.437

The results of three runs are shown in Tab. 6. Our method achieves high performance on both438

STL-10 and CIFAR-10, demonstrating the effectiveness and transferability of alphaGAN are not439

confined to a certain dataset. alphaGAN(s) remains efficient which can obtain the structure reaching440

the state-of-the-art on STL-10 with only 2 GPU-hours. We also find no failure case exists in the441

three repeated experiments of alphaGAN(s) compared to that on CIFAR-10, which may be related to442

17



Table 6: Search on STL-10. We search alphaGAN(s) on STL-10 and re-train the searched structure
on STL-10 and CIFAR-10. In our repeated experiments, failure cases are prevented.

Name Search time
(GPU-hours)

Dataset of
re-training Params (M) FLOPs (G) IS FID

Repeat_1 ∼ 2
STL-10

4.552 5.55 9.22± 0.08 25.42
Repeat_2 ∼ 2 2.475 2.01 9.66± 0.10 29.28
Repeat_3 ∼ 2 4.013 3.67 9.47± 0.10 26.61

Repeat_1 ∼ 2
CIFAR-10

3.891 2.47 8.29± 0.17 13.94
Repeat_2 ∼ 2 1.815 0.90 8.20± 0.13 16.54
Repeat_3 ∼ 2 3.352 1.63 8.62± 0.11 12.64

multiple latent factors that datasets intrinsically possess (e.g., resolution, categories) and we leave as443

a future work.444

conv_1x1 conv_3x3 conv_5x5 sep_3x3 sep_5x5 sep_7x7
Normal opr

0%

5%

10%

15%

20%

25%

Pr
op

or
tio

n

Distributions of normal operations
failure
normal

(a) Distribution of normal operations

deconv nearest bilinear
Up opr

0%

10%

20%

30%

40%

50%

60%

70%

Pr
op

or
tio

n

Distributions of up operations
failure
normal

(b) Distribution of up operations

Figure 11: Distributions of operations in normal cases and failure cases of alphaGAN.

Table 7: Repeated search on CIFAR-10.

Name Description Params (M) FLOPs (G) IS FID

alphaGAN(s)
normal case 4.475 2.36 8.44± 0.13 13.62

2.953 1.32 8.72± 0.11 12.86

failure case 2.994 1.08 6.77± 0.07 45.88

alphaGAN(l)
normal case 8.207 2.41 8.55± 0.08 15.42

8.618 2.78 8.51± 0.06 11.38

failure case 4.666 2.36 7.48± 0.1 52.58

G.8 Failure cases445

As we pointed out in the main paper, the searching of alphaGAN will encounter failure cases, analo-446

gous to other NAS methods [39]. For better understanding the method, we present the comparison447

between normal cases and failure cases in Tab. 7 and the distributions of operations in Fig. 11. We448

find that deconvolution operations dominate in these failure cases. To validate this, we conduct the449

experiments on the variant by removing deconvolution operations from the search space under the450

configuration of alphaGAN(s). The results (with 6 runs) in Tab. 8 show that the failure cases can be451

prevented in this scenario.452

18



Table 8: Search w\o deconv on alphaGAN(s).

Name Params (M) FLOPs (G) IS FID

Repeat_1 4.594 2.20 8.29± 0.08 15.12
Repeat_2 2.035 0.51 8.34± 0.10 14.92
Repeat_3 1.586 0.55 8.24± 0.09 18.07
Repeat_4 1.631 0.58 8.32± 0.09 15.85
Repeat_5 1.631 0.60 8.43± 0.08 17.15
Repeat_6 2.064 1.03 8.26± 0.11 16.00

We also test on another setting by integrating conv_1x1 operation with the interpolation operations453

(i.e., nearest and bilinear) and making them learnable as deconvonvolution, denoted as ’learnable454

interpolation’. The results (with 6 runs) under the configuration of alphaGAN(s) are shown in Tab. 9,455

suggesting that the failure cases can also be alleviated by the strategy.456

Table 9: The effect of ’learnable interpolation’ on alphaGAN(s).

Method Name Params (M) FLOPs (G) IS FID

Learnable Interpolation

Repeat_1 2.775 0.99 8.43± 0.15 14.8
Repeat_2 2.243 0.545 8.49± 0.12 18.82
Repeat_3 3.500 0.99 8.35± 0.1 18.93
Repeat_4 3.195 1.53 8.59± 0.1 13.22
Repeat_5 2.968 0.82 8.22± 0.11 14.76
Repeat_6 2.712 0.77 8.41± 0.11 13.47

19


	Introduction
	GAN Architecture Search as Fully Differential Optimization
	Experiments
	Searching on CIFAR-10
	Transferability on STL-10
	Ablation Study

	Conclusion
	Preliminaries
	Algorithm and Optimization
	Experiment Details
	Searching on CIFAR-10
	Transferability

	The structures of the generator and the discriminator
	Relation between performance and structure
	Generated Samples
	Additional Results
	Robustness on Model Scaling
	Intermediate Architectures in Searching
	Gumbel-max Trick
	Warm-up protocols
	Effect of Step Sizes
	Effect of Channels in Searching
	Searching on STL-10
	Failure cases


