Multi-SWE-bench: A Multilingual Benchmark
for Issue Resolving

Daoguang Zan*' Zhirong Huang* Wei Liu* Hanwu Chen Shulin Xin
Linhao Zhang QiLiu AoyanLi Lu Chen Xiaojian Zhong Siyao Liu
Yongsheng Xiao Lianggiang Chen Yuyu Zhang Jing Su
Tianyu Liu Rui Long Ming Ding’ Liang Xiang
*Equal contribution. TCorresponding author.

ByteDance Seed
{zandaoguang, shen.kai}@bytedance.com

Abstract

The task of issue resolving aims to modify a codebase to generate a patch that
addresses a given issue. However, most existing benchmarks focus almost exclu-
sively on Python, making them insufficient for evaluating Large Language Models
(LLMs) across different programming languages. To bridge this gap, we introduce
a multilingual issue-resolving benchmark, called Multi-SWE-bench, covering 8
widely used programming languages: Python, Java, TypeScript, JavaScript, Go,
Rust, C, and C++. In particular, this benchmark includes a total of 2, 132 high-
quality instances, carefully curated by 68 expert annotators, ensuring a reliable
and accurate evaluation of LLMs on the issue-resolving task. Based on human-
annotated results, the issues are further classified into three difficulty levels. We
evaluate a series of state-of-the-art models on Multi-SWE-bench, utilizing both
procedural and agent-based frameworks for issue resolving. Experimental results
based on Multi-SWE-bench reveal three key findings: (1) Limited generalization
across languages: While existing LLMs perform well on Python issues, their ability
to generalize across other languages remains limited; (2) Performance aligned
with human-annotated difficulty: LLM-based agents’ performance closely aligns
with human-assigned difficulty, with resolved rates notably decreasing as issue
complexity rises; and (3) Performance drop on cross-file issues: The performance
of current methods significantly deteriorates when handling cross-file issues. These
findings highlight the limitations of current LLMs and underscore the need for
more robust models capable of handling a broader range of programming languages
and complex issue scenarios.

1 Introduction

Automating software engineering tasks with large language models (LLMs) has gained considerable
attention [45} 511 19} [18]] recently. Beyond code generation, the issue resolving task proposed by
SWE-bench [20] changes the role of LLMs from code assistants to fully autonomous Al programmers.
SWE-bench contains 2, 294 issues from 12 widely-used open-sourced Python libraries. LLMs are
tasked to generate a patch based on the issue description along with the buggy code repository.
SWE-bench Verified is a subset of 500 human-validated issues selected from SWE-bench, chosen for
appropriately scoped unit tests and well-specified issue descriptions. Within less than one year, the
resolving rate on SWE-bench Verified increased from 0.40% [20] (for RAG+GPT3.5) to 65.40% [6]]
(for Augment Agent v0).

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

Although existing works based on SWE-bench demonstrate significant progress in Python-based
issue resolving, the diversity of programming languages in real-world repositories presents additional
challenges that remain unexplored. In particular, repositories in different languages follow distinct
programming paradigms, idiomatic patterns, and runtime behaviors, which may impact the effec-
tiveness of current approaches. This raises the question of whether the impressive performance of
existing agents on Python issues can be generalized to other widely used languages, such as Java,
TypeScript, JavaScript, Go, Rust, C, and C++.

To answer this question, we introduce Multi-SWE-bench, a multilingual benchmark for issue re-
solving, consisting of 2,132 issues across 8 widely used programming languages: Python, Java,
TypeScript, JavaScript, Go, Rust, C, and C++. To construct a reliable benchmark for evaluating the
ability of agents to resolve real-world software issues, we employ a systematic five-phase pipeline.
First, we select high-quality repositories from GitHub based on star ratings and runnability counts
to ensure both popularity and practical usability. Second, we collect issue-related pull requests
(PRs) along with their corresponding metadata. Third, we build Dockerized environments for each
PR by extracting dependencies from CI/CD workflows and documentation to ensure reproducible
execution. Fourth, we validate PRs by analyzing test outcomes across patch configurations, retaining
only those with clear bug-fixing effects and no regressions. Fifth, we perform rigorous manual
verification through dual annotation and cross-review, ensuring high-quality ground truth aligned
with SWE-bench verified standards. By ensuring diversity, executability, and human-verified cor-
rectness, Multi-SWE-bench sets a high standard for evaluating LLMs on realistic and non-trivial
issue-resolving tasks.

With its wide coverage of languages and issue types, Multi-SWE-bench introduces realistic challenges
that push the boundaries of LLM-based software agents. Specifically, we use Multi-SWE-bench
to evaluate the generalizability of 3 representative methods (i.e., Agentless [39], SWE-agent [40],
and OpenHands +CodeAct v2.1 [37]) based on 12 top-performing models. Our evaluation provides
a comparative analysis of the overall effectiveness of these methods across eight programming
languages, offering insights into their cross-language capabilities. Furthermore, we conduct a fine-
grained analysis of the key factors influencing model performance and investigate failure cases for
each language to identify underlying challenges and limitations. Through comprehensive analysis and
comparison, we provide a good understanding of existing models and shed light on future directions
and further progress. For example, our findings show that models perform generally better when
issue descriptions are longer, indicating a strong reliance on rich contextual grounding; in contrast,
resolved rates drop sharply when fix patches exceed 600 tokens or touch more than one file, exposing
weaknesses in long-context retention and cross-file reasoning. These findings aim to delineate the
current boundary of LLM capabilities in software engineering and reveal the key challenges to
real-world deployment.

In summary, our main contributions are: (1) Multi-SWE-bench, a multilingual issue resolving
benchmark with 2,132 human-validated GitHub issues across 8 widely used programming languages;
(2) A large-scale evaluation of 12 state-of-the-art LLMs based on 3 representative methods (i.e.,
Agentless, SWE-agent, OpenHands) on Multi-SWE-bench, comparing performance across eight
programming languages and revealing biases across models and methods; (3) Fully open-sourcing
the benchmark, code, and Docker images to support community growth and advance research

2 Related Work

The remarkable performance of LLMs in code-related tasks has motivated substantial research to study
their role in automating software engineering. To evaluate the capabilities and limitations of existing
approaches, a wide range of benchmarks for code-related tasks has been developed. Early efforts in
this domain focused on primarily evaluating models in monolingual program-level evaluations [3. 31}
16, 9L [7,138]]. As LLMs advanced, benchmarks evolved in two key dimensions to better align with
real-world software engineering scenarios. First, benchmarks shift from monolingual to multilingual
tasks, with growing interest and practical needs in evaluating LLMs’ performance across multiple
programming languages. Examples include Multilingual-HumanEval [5] and HumanEval-X [50],
which extend the HumanEval [8]] benchmark to multiple languages, and MBXP [4]], which extends
MBPP to multilingual scenarios. Second, benchmarks shift from program-level to repository-level

! All open-source resources can be accessed through https://multi-swe-bench. github.io,

https://multi-swe-bench.github.io

Table 1: A comparison of Multi-SWE-bench to existing issue resolving benchmarks. Multi-SWE-
bench distinguishes itself by (1) covering a broad range of programming languages, (2) filtering out
problematic issues by human verification, and (3) offering a well-defined difficulty stratification (Diff.
Strat.), enabling a more realistic, reliable, and systematic evaluation of the capabilities of LLMs.

Benchmarks Published Date Programming Languages #Issues #Repos Verified Diff. Strat.
SWE-bench [20] 2023/10/10 Python 2294 12 X X
SWE-bench Verified [20] 2024/08/13 Python 500 12 v X
SWE-bench Multimodal [41] 2024/10/04 JavaScript 617 17 v X
Visual SWE-bench [48] 2024/12/23 Python 133 11 v X
SWE-Lancer [25] 2025/02/17 TypeScript, JavaScript 1488 1 v X
SWE-PolyBench [30] 2025/04/17 Python, Java, TypeScript, JavaScript 2110 21 X X
SWE-bench Multilingual® [I] 2025/05/06 éiv‘;jzlpzscgfijﬁﬁfcl{g’;y 300 42 X X
OmniGIRL [13] 2025/05/07 Python, Java, TypeScript, JavaScript 959 15 X X
Multi-SWE-bench (Ours) 2025/04/03 Python. Java, TypeScript, JavaSeript, 37 39 v v

Go, Rust, C, C++

Note: T indicates benchmarks released released soon after Multi-SWE-bench, representing concurrent work.

tasks, focusing on more complex scenarios such as library-oriented code generation [44]], repository-
level code completion [47} 23] [10, 24, 42]], and bug fix [26] 28} 32]. These evolving benchmarks aim
to provide a more comprehensive evaluation of LLMs in real-world scenarios.

In addition to existing benchmarks, SWE-bench [20] has gained significant attention since its release.
Instead of focusing on isolating code subtasks into separate datasets, SWE-bench addresses a broader
range of tasks through repository-level issue resolving. These issue resolving tasks, including bug
fixing, new feature requests, and optimization, which provide a more comprehensive evaluation of
LLMs’ ability to automating software development. However, some issues in SWE-bench have
underspecified descriptions or overly specific and irrelevant tests. To address this, SWE-bench
Verified [20] filters out these issues by a questionnaire-based human verification process, creating
a refined subset consisting of solvable and testable issues. While SWE-bench is limited to textual
context, SWE-bench Multimodal [41]] and Visual SWE-bench [48]] extend evaluation to systems fixing
bugs in visually-oriented and user-facing applications. SWE-Lancer [25]] focuses on JavaScript and
TypeScript, featuring over 1, 400 freelance tasks from Upwork, including technical and managerial
tasks. Despite these advancements, the performance of LLMs on other widely used programming
languages remains underexplored. Since the release of our Multi-SWE-bench, several multilingual
benchmarks have been introduced, including SWE-PolyBench [30], SWE-bench Multilingual [[1]],
and OmniGIRL [13]]. Multi-SWE-bench distinguishes itself by (1) covering 2, 132 GitHub issues
across 8 widely used languages, (2) ensuring high-quality issues through manual verification by 68
expert annotators, and (3) offering a well-defined difficulty stratification framework, thus ensuring a
more realistic, reliable, and systematic evaluation of LLMs’ capabilities.

3 Multi-SWE-bench Construction

To evaluate the generalizability of LLMs as issue resolvers, eight widely used programming languages
are selected to construct Multi-SWE-bench through five phases. As shown in Fig. [T} the first four
phases create a large pool of candidate data for each language, while the fifth phase finalizes the
Multi-SWE-bench through manual verification.

3.1 Phase 1: Repository Selection

We carefully curate a diverse set of high-quality GitHub repositories for each of the eight target
programming languages. The selection process is guided by the following criteria: (1) Popularity and
Maintenance: Repositories must have over 500 GitHub stars and demonstrate active maintenance
for at least six months. In addition, we prioritize repositories frequently recommended in Google
searches using keywords such as "high-quality", "well-maintained"”, and "popular". (2) CI/CD
Support: Selected repositories are required to include CI/CD configurations (e.g., workflows under
.github/workflows/) to ensure automated testing and reproducibility. (3) Build Viability: After
minimal manual setup, the latest commit must be buildable and testable in a clean environment,
ensuring compatibility with modern tooling and infrastructure.

Phase 1: Repository Selection Phase 3: Environment Determination Phase 4: PR Filtering

Repositories on GitHub = . . O .
O positori v % Environment configuration files git checkout base commit
Search by keywords. er by stars
arch by keywor ‘L“ r by star ‘l/"“"‘ o Run test suits V _Execute
High-quality repositories Vianualy analyze N
; - = gitapply test.patch
\1,‘ erify runnability Environment dependencies Run.log
S itori) Run test suits__ \y Execute
§6 Runnable repositories =) | Repo-common | | PRespecific | B
Test log gitapply fix.patch
Phase 2: PR Crawlin, \l, erate octify i fivable — ’ R its
14 er Rectify if fixable o Fixlog
1"l All pull requests (PRs) a Docker file Bul v \l, Extract test cases
\/ Filter \l/ Build successfully failed & Drop the PR Run.log Tesl.log o, Fixlog
i if not fixable
@ et dBRe o Docker i Testl Passed Failed Passed
Crawl data for each PR @ Docker image
= k\y = Test2 Passed Passed Failed
&% Raw data of the PR \l, S
otart N Vo
instance id base commit Launch the repo successfully v
oose’| [testparct | O @ Docker container — _ —> Retain the PR if qualified
GI‘ Log analysis K
i = = Drop the PR if not qualified

Phase 5: Manual Verification

Unverified %“ Questionnaire &
Multi-SWE-Bench Annotation system = i~ i
== ata 5 .
7 Annotation Quality Assessment ™ C Multi-SWE-Bench
" 20 Annotator

a759 Language stack N @ Annotator9 1 3

& determination hiring training

Figure 1: Construction of Multi-SWE-bench.

3.2 Phase 2: Pull Request Crawling

This phase aims to crawl issue-resolving pull requests (PRs) for each repository selected in phase 1.
All PRs from the repository are collected and then filtered based on the following criteria:

* Linked with at least one GitHub issue: The PR must be linked to at least one issue to ensure it
addresses a clearly defined bug report or feature request.

* Modified test files: The PR must include changes to test files, guaranteeing proper testing is in
place to verify the correctness of the fix patches.

* Merged into the main branch: The PR must be merged into the main branch, indicating it has been
accepted by the repository’s maintainers and fully integrated.

After filtering, detailed information is gathered for each PR, including attributes such as issue
description, base commit, fix.patch, and test.patch.

3.3 Phase 3: Environment Determination

To ensure a faithful execution and evaluation, each pull request (PR) must be reproducibly built and
run in an isolated environment. In this phase, we achieve this by creating a Docker-based runtime for
each PR by automatically identifying and provisioning its dependencies. The process begins with
a manual review of environment-related artifacts, such as CI/CD configuration files (e.g., GitHub
Actions), repository documentation (e.g., README files), and exploratory trial runs. From this
analysis, we categorize dependencies into two types: repo-common dependencies (shared across the
repository) and PR-specific dependencies (introduced or modified by the target PR).

Using the extracted dependency information, we generate a tailored Dockerfile and build the cor-
responding Docker image. If the build fails, we analyze error logs to identify issues like missing
dependencies or version conflicts and iteratively update the Dockerfile or supporting scripts. If the
errors are unresolvable, we discard the PR. Once the image builds successfully, we verify that the
repository launches correctly at the specified commit, ensuring all services and configurations are
functional. If the launch fails, corrective actions are taken; if successful, we obtain a validated, exe-
cutable container for downstream evaluation. This process ensures a reliable, functional environment
for testing and analysis.

Table 2: Statistics of the Multi-SWE-bench (excluding Python). #A2P2P, #A2F2P, and #A2N2P
represent the average counts of Any—PASSED&FAILED&NONE—PASSED unit tests.

Repository | Instance | Issue description | Fix patches | Unit tests
Org/Repo #Files #LoC | #Num | Avg. #Tokens | Avg. #Lines Avg. #Hunks Avg. #Files | #A2P2P #A2F2P #A2N2P
Java
alibaba/fastjson2 4244 443.8k 6 459.2 10.5 1.3 1.2 12435 0.8 1020.5
elastic/logstash 562 59.9k 38 1600.4 2123 10.0 4.6 554.7 1.9 256.2
mockito/mockito 986 84.0k 6 3152 92.5 10.3 4.7 97.2 1.0 3.8
apache/dubbo 3939 402.1k 3 774.0 9.3 3.0 1.3 2.0 57.0 0.0
fasterxml/)-core 366 105.7k 18 304.7 33.8 4.8 2.1 2.0 85.6 0.0
tasterxml/j-dbind 1230 217.5k 42 621.5 35.1 3.9 2.1 2.0 73.8 0.0
tasterxml/j-dtmt-xml 206 23.0k 5 1071.8 98.4 10.4 32 2.0 94.2 0.0
google/gson 261 48.0k 5 365.8 35.8 4.6 1.8 2.0 62.6 0.0
google-ct/jib 604 75.5k 5 1094.6 15.2 3.2 2.6 2.0 96.2 0.0
TypeScript
darkreader/darkreader 189 26.2k 2 749.5 13.0 2.0 1.5 41.0 3.5 0.0
mui/material-ui 27632 698.6k 174 508.6 331.2 20.2 12.0 5001.3 2.3 836.8
vuejs/core 509 128.2k 48 694.8 22.9 35 1.9 2920.4 3.0 0.0
B JavaScript
ag/gh-rdme-stats 69 11.8k 19 287.1 123 135 4.8 108.9 35 34
aX108/ax108 166 21.0k 4 490.8 179.5 7.8 4.0 68.5 1.2 0.0
€XPIEss]S/express 142 17.3k 4 177.5 7.2 2.2 1.5 808.2 1.5 65.2
1amKun/dayjs 324 17.1k 56 325.6 21.7 2.7 2.0 60.4 1.2 32
Kong/insomnia 526 182.0k 1 709.0 1.0 1.0 1.0 105.0 1.0 0.0
sveltejs/svelte 2800 105.9k 272 618.9 72.0 84 4.0 4904.2 5.5 0.0
Go
cli/cli 737 165.1k 397 347.6 103.8 9.0 3.9 1997.0 29 31.0
arpe/erpe-go 981 260.8k 16 276.1 81.8 7.7 2.8 230.4 0.6 6.6
ZEromiICro/go-zero 960 117.6k 15 205.2 524 49 2.7 1318.9 0.3 43.9
ust
BurntSushi/ripgrep 98 45.4k 14 553.7 1604.9 219 75 2332 1.1 8.1
clap-rs/clap 321 70.4k 132 987.0 147.1 15.7 4.7 489.5 3.1 378.8
nushell/nushell 1479 264.2k 14 795.6 155.0 10.6 4.3 798.6 2.6 336.6
rayon-rs/rayon 191 36.9k 2 153.5 637.5 5.5 2.0 113.5 0.5 171.0
serde-rs/serde 188 36.5k 2 171.5 72.5 3.0 3.0 0.0 0.0 294.5
sharkdp/bat 83 22.0k 10 638.2 239.5 14.1 5.9 152.7 1.7 33.6
sharkdp/td 24 6.7k 14 167.8 55.8 7.8 45 186.5 1.1 0.0
tokio-rs/bytes 33 11.9k 5 188.0 45.0 5.6 1.8 232 0.4 91.6
10K10-15/toK10 727 141.5k 25 590.0 139.8 10.6 35 26.6 0.0 287.4
tok1o-rs/tracing 241 60.9k 21 472.0 597.2 393 7.1 30.8 0.2 182.0
B ©
facebook/zstd 276 119.8k 29 496.6 67.6 10.9 3.0 0.8 0.5 5.6
1qlang/1q 80 43.0k 17 429.8 26.1 2.7 1.8 27.2 1.0 0.1
ponylang/ponyc 285 80.2k 82 480.2 205.4 15.6 5.7 997.6 1.9 388.8
C++
catchorg/Catch2 399 58.0k 12 3573 469.0 15.4 8.2 19.9 0.7 17.6
tmtlib/tmt 25 36.4k 41 397.7 36.8 3.0 1.1 9.3 0.0 9.3
nlohmann/json 477 1247k 55 905.5 405.8 27.9 6.5 26.5 0.0 429
simdjson/simdjson 455 229.7k 20 320.2 768.5 355 11.0 18.6 0.0 41.5
yhirose/cpp-httplib 33 50.9k 1 240.0 1.0 1.0 1.0 272.0 1.0 0.0

3.4 Phase 4: Pull Request Filtering

In this phase, we perform a semantic validation to ensure each PR obtained from previous phase
meets the requirements of issue resolving. This is done by analyzing test behaviors under controlled
patch configurations. For each PR, unlike SWE-bench which runs only relevant tests, we run the full
test suit under the following three settings: (1) Run.log: Tests are executed on the base commit; (2)
Test.log: The test.patch is applied to the base commit before execution; (3) Fix.log: Both the
test.patch and the fix.patch are applied to the base commit before execution.

Based on these logs, we extract the execution status of each test case. Each test case is sum-
marized by its status transition across the three settings. For instance, a test case with PASSED,
FATLED, and PASSED statuses in run.log, test.log, and fix.log, respectively, is represented as
PASSED—FAILED—PASSED. We apply the following filtering rules to determine eligible PRs:

* PRs with any ANY—PASSED—FAILED transitions are discarded to ensure that no potential regres-
sions are introduced by the fix.patch.

* PRs without at least one ANY—FAILED—PASSED transition are discarded, as they do not demon-
strate any effective bug fix.

* PRs exhibiting abnormal transitions such as PASSED—NONE/SKIPPED—FAILED are discarded to
eliminate ambiguous test behaviors.

After applying these criteria, we retain 2, 456 issue-resolving instances. For each instance, we extract
test cases exhibiting transitions of the form Any—FAILED/PASSED/SKIPPED/NONE—PASSED, and
include them in the dataset to enable fine-grained and reliable evaluation.

https://github.com/alibaba/fastjson2
https://github.com/elastic/logstash
https://github.com/mockito/mockito
https://github.com/apache/dubbo
https://github.com/fasterxml/jackson-core
https://github.com/fasterxml/jackson-databind
https://github.com/fasterxml/jackson-dataformat-xml
https://github.com/google/gson
https://github.com/googlecontainertools/jib
https://github.com/darkreader/darkreader
https://github.com/mui/material-ui
https://github.com/vuejs/core
https://github.com/anuraghazra/github-readme-stats
https://github.com/axios/axios
https://github.com/expressjs/express
https://github.com/iamkun/dayjs
https://github.com/Kong/insomnia
https://github.com/sveltejs/svelte
https://github.com/cli/cli
https://github.com/grpc/grpc-go
https://github.com/zeromicro/go-zero
https://github.com/BurntSushi/ripgrep
https://github.com/clap-rs/clap
https://github.com/nushell/nushell
https://github.com/rayon-rs/rayon
https://github.com/serde-rs/serde
https://github.com/sharkdp/bat
https://github.com/sharkdp/fd
https://github.com/tokio-rs/bytes
https://github.com/tokio-rs/tokio
https://github.com/tokio-rs/tracing
https://github.com/facebook/zstd
https://github.com/jqlang/jq
https://github.com/ponylang/ponyc
https://github.com/catchorg/Catch2
https://github.com/fmtlib/fmt
https://github.com/nlohmann/json
https://github.com/simdjson/simdjson
https://github.com/yhirose/cpp-httplib

3.5 Phase 5: Manual Verification

To ensure the reliability of Multi-SWE-bench, we conduct manual verification on the 2, 456 issue-
resolving instances. Our verification process follows the annotation guidelines of the recently released
SWE—bench—veriﬁecﬂ In detail, we recruit 68 annotators through outsourcing, and all annotators
have at least two years of experience in the target language and a relevant bachelor’s degree or higher.

Before annotation, each annotator undergoes training covering the task’s background, objectives,
procedures, deliverables, and quality standards. To ensure consistency and accuracy, we establish
real-time discussion channels to provide guidance and address edge cases collaboratively. Each
instance is independently labeled by two annotators. Afterward, the annotations are cross-reviewed to
reach a final, agreed-upon label. To maintain high quality, a dedicated internal team of 14 experienced
engineers assesses the annotations, producing reference answers and verifying that outsourced
annotations meet an 80% accuracy threshold. After thorough manual verification, 1,632 high-quality
instances covering 7 languages other than Python are retained as the final dataset, filtered according
to specific criteria outlined in the verification questionnaireﬂ Q2.1=0 & Q3.1€{2,3} & Q4.1€{2,3}.
The annotation details can be found in Appendix [Al All annotation results are publicly available to
ensure dataset transparency. Together with the 500 Python instances from SWE-bench Verified, our
final Multi-SWE-bench consists of 2,132 instances.

To further advance research on issue resolving, we also introduce two complementary resources: (1)
Multi-SWE-bench Mini (see Appendix [E.T)), a lightweight subset of Multi-SWE-bench designed to
enable faster and more cost-effective evaluation; (2) Multi-SWE-RL (see Appendix [B), an open-source
community aiming at creating large-scale reinforcement learning (RL) training datasets. Moreover,
we summarize the troubleshooting encountered during the dataset construction process in Appendix [C|

4 Characteristics of Multi-SWE-bench

Overall statistics of Multi-SWE-bench. Tab. [2| presents an overview of the key statistics of Multi-
SWE-bench. Specifically, it includes 2, 132 issue-resolving instances, spanning 8 popular languages:
Python, Java, TypeScript (TS), JavaScript (JS), Go, Rust, C, and C++. These repositories vary
significantly in size and complexity, with the number of files ranging from 24 to 27.6k, and lines of
code from 6.7k to 698.6k. Similarly, patch complexity also differs across repositories and languages.
Rust and C++ projects frequently require large-scale edits, with some instances modifying over 200
lines and 7 files per patch (e.g., BurntSushi/ripgrep and simdjson/simdjson). Conversely, TS
and JS patches tend to be more localized and atomic, often involving under 3 hunks and fewer than
2 files. Moreover, all repositories come with strong test coverage, providing reliable signals for
verifying patch correctness, as confirmed by the manual verification in Sec.

Difficulty stratification. In Multi-SWE-bench, we adopt a human-aligned, time-based difficulty
stratification approach to systematically evaluating the capabilities of LLMs. Specially, in the manual
verification phase, each issue is annotated by human that can be resolved into one of four time
intervals: <15 minutes, 15 minutes—1 hour, 1-4 hours, and >4 hours. Based on these time estimates,
we further define three levels of difficulty: easy (<15 minutes), medium (15 minutes—1 hour), and
hard (>1 hour). Tab. [3|summarizes the distribution of difficulty levels across different programming
languages. We observe clear trends across these categories: As difficulty increases, issues tend to
have longer descriptions, and the corresponding patches involve more lines, hunks, and files. Such
categorization provides a more accurate and human-aligned measure of problem difficulty.

S Experimental Setups

Methods. We evaluate three representative methods in our experiments, covering both procedural
and agent-based frameworks: Agentless [39]], SWE-agent [40], and OpenHands + CodeAct v2.1 [37].
These methods are initially designed for Python. We extended them to support the multilingual
environment of Multi-SWE-bench, forming MagentLess, MSWE-agent, and MopenHands, respec-

"https://openai.com/index/introducing- swe-bench-verified
*https://github.com/multi-swe-bench/multi-swe-bench/blob/main/docs/
manual-verification/questionnaire-demo.pdf

https://openai.com/index/introducing-swe-bench-verified
https://github.com/multi-swe-bench/multi-swe-bench/blob/main/docs/manual-verification/questionnaire-demo.pdf
https://github.com/multi-swe-bench/multi-swe-bench/blob/main/docs/manual-verification/questionnaire-demo.pdf

Table 3: Distribution of Multi-SWE-bench instances by difficulty and language.

Instance Issue description Fix patches Unit tests

Language Difficulty —gym Avg. #Tokens Avg. #Lines Avg. #Hunks Avg. #Files #AZPZP #AJFIP #AJNZP
Easy 194 417.9 5.0 1.4 1.0 1162 39 0
Python Medium 261 555.9 14.1 25 13 115.4 2.4 0
Hard 45 589.8 55.8 6.8 2.0 166.3 2.9 0
Easy 27 733.8 124 2.6 .8 126.8 580 76.1
Java Medium 65 843.3 36.2 4.6 2.1 182.3 58.6 136.9
Hard 36 1039.0 246.1 11.9 5.4 389.1 21.8 136.9
Easy 72 600.1 83 21 5 7806.8 2.0 0.0
TypeScript Medium 88 566.9 74.3 8.8 4.3 4854.6 2.8 214.3
Hard 64 472.8 806.6 432 26.5 3706.1 2.7 1980.4
Easy 10 2824 17 I8 6 616.8 12 351
JavaScript Medium 105 505.8 15.5 2.6 2.1 3161.0 3.6 0.8
Hard 241 578.7 92.2 10.1 4.5 4169.9 5.2 0.3
Easy 141 4117 26.6 7.0 27 2181.0 2.6 204
Go Medium 153 331.4 49.6 6.9 2.6 1832.5 22 257
Hard 134 274.0 238.6 16.0 6.6 1704.2 3.4 46.7
Easy 66 808.2 3187 7.0 33 4652 32 212.0
Rust Medium 126 814.7 113.6 10.6 3.7 343.0 1.8 300.5
Hard 47 599.4 629.0 45.2 10.3 2323 1.1 334.0
Easy 30 551.4 6.4 37 22 4248 0.8 2082
C Medium 54 449.9 36.7 5.5 2.5 715.5 1.0 2282
Hard 44 460.2 381.1 28.0 8.7 702.5 2.4 306.3
Easy 28 4945 2572 17 22 450 0.1 157
C++ Medium 59 4275 204.2 7.6 33 18.2 0.1 23.0
Hard 42 904.2 763.7 472 11.1 93 0.0 472

tively. We systematically adapted the aforementioned methods to the multilingual setting, with details
provided in Appendix

LLMs. Experiments use 12 representative LLMs: GPT-40 (gpt-40-2024-11-20), OpenAl-ol (ol-
2024-12-17), OpenAl-03-mini-high (03-mini-2025-01-31 high), Claude-3.5-Sonnet (claude-3-5-
sonnet-20241022), Claude-3.7-Sonnet (claude-3-7-sonnet-20250219), DeepSeek-V3, DeepSeek-
R1, Qwen2.5-72B-Instruct, Doubao-1.5-pro, Doubao-1.5-thinking, Gemini-2.5-Pro, and Llama-4-
Maverick.

Metrics. Following prior work [20, 49, 39], we report the following primary evaluation metrics for
end-to-end performance: (1) Resolved Rate (%): the percentage of issues resolved. (2) Avg. Cost
($): the average cost per issue. Additionally, we also provide an analysis of issue location accuracy
in Appendix and report % Success Location, which is defined as a patch that contains a correct
location if it modifies a superset of all locations in the ground truth fix patch.

6 Experimental Results

6.1 Performance on Multi-SWE-bench

Limited generalization beyond Python. From Tab.] it can be observed that existing methods
demonstrate strong performance in resolving Python issues but struggle to generalize effectively
across other languages. For example, LLMs such as OpenAl-ol achieve high resolved rates for
Python but significantly lower for other languages. This performance disparity can be attributed
to three main factors: (1) Benchmark difficulty: Multi-SWE-bench is inherently more challenging
than SWE-Bench Verified, with a higher proportion of medium and hard issues (77.1% for Multi-
SWE-bench compared to 61.2% for SWE-Bench Verified, as calculated from Tab. [3). (2) Method
optimization bias: The three methods are initially optimized for Python, resulting in a bias that limits
their effectiveness across other languages. (3) Language complexity: Languages like TS and JS have
asynchronous execution and varied runtimes, while C and C++ involve manual memory management
and complex type systems, increasing the difficulty for issue resolving.

High sensitivity to issue difficulty. As shown in Tab.[5] LLM-based agents exhibit a performance
that closely aligns with human-labeled difficulty, with resolved rates significantly decreasing as the
issue difficulty increases from easy to hard. Among the evaluated models, Gemini-2.5-Pro achieves
the highest resolved rates on both MagentLess and MopenHands across all difficulty levels, while
Claude-3.7-Sonnet demonstrates the best performance on MSWE-agent. These results highlight
the relative robustness of these models in handling issues of varying complexity compared to other
LLMs. For hard-level issues, existing LLMs and agents are mostly ineffective, with resolved rates
approaching zero. This phenomenon indicates the limitations of these LLMs and agents: they are
primarily capable of addressing issues that human developers can resolve in under 15 minutes and
are insufficient for handling more complex tasks.

Table 4: Resolved rate (%) of different models on Multi-SWE-bench.

Methods Models All Python Java TS JS Go Rust C C++
GPT-4o0 1140 3620 1172 223 140 280 586 156 698

OpenAl-ol 1623 4820 21.09 580 506 444 711 156 543
OpenAl-03-mini-high 13.65 46.40 547 045 281 397 795 391 155
Claude-3.5-Sonnet 13.56 4240 14.84 4091 197 514 502 156 3.88
Claude-3.7-Sonnet 1435 4460 1406 357 197 584 544 234 310

MagentLess DeepSeek-V3 1323 4100 703 670 337 537 502 313 155
& DeepSeek-R1 1440 4220 2266 625 449 374 669 078 3.10
Qwen2.5-72B-Instruct 8.26 26.80 1094 446 084 140 251 0.78 0.78
Doubao-1.5-pro 7.83 26.20 547 223 112 210 418 0.00 0.00
Doubao-1.5-thinking 1524 4480 1328 759 562 444 711 469 3.88

Gemini-2.5-Pro 18.01 49.00 21.88 11.61 871 6.07 544 938 233
Llama-4-Maverick 1356 3780 1484 938 506 350 628 391 543

GPT-40 6.29 18.80 1250 045 084 234 209 156 233

OpenAl-ol 11.07 2880 21.88 4.02 421 467 418 391 388
OpenAl-03-mini-high 1074 28.60 1641 491 421 397 502 234 543
Claude-3.5-Sonnet 1121 2480 2031 804 421 584 669 469 698
Claude-3.7-Sonnet 17.17 4580 2344 11.16 478 537 6.69 859 11.63

MSWE-agent DeepSeek-V3 4.55 4.20 1172 2.68 253 444 586 234 1775
= DeepSeek-R1 2.95 2.00 938 580 140 210 209 078 6.20
Qwen2.5-72B-Instruct ~ 2.49 8.60 234 000 056 047 042 156 0.00

Doubao-1.5-pro 4.88 12.40 7.03 1.79 140 210 1.67 234 620
Doubao-1.5-thinking 1046 3060 11.72 7.14 1.69 421 335 0.78 4.65

Gemini-2.5-Pro 1463 2780 2891 893 758 9.81 1004 938 853
Llama-4-Maverick 3.52 2.00 1563 446 225 280 251 0.00 6.98

GPT-40 8.21 2560 938 000 197 350 335 0.00 3.88

OpenAl-ol 6.10 16.00 391 045 365 374 251 313 3.88
OpenAl-03-mini-high ~ 7.55 2040 10.16 045 337 234 502 156 698
Claude-3.5-Sonnet 1524 39.00 14.84 11.61 197 678 1213 3.13 1240
Claude-3.7-Sonnet 1932 5220 21.88 223 506 748 1590 859 1473

MopenHands DeepSeek-V3 8.72 27.80 9.38 134 112 070 460 3.13 775
P DeepSeek-R1 8.02 26.00 859 045 253 000 460 234 4.65
Qwen2.5-72B-Instruct ~ 2.02 4.40 313 000 084 140 167 078 233

Doubao-1.5-pro 291 8.80 078 000 1.12 164 084 0.00 3.10
Doubao-1.5-thinking 1149 2780 1094 536 955 6.07 335 391 543

Gemini-2.5-Pro 21.62 4580 12,50 2232 1629 12.60 1464 547 9.30
Llama-4-Maverick 7.46 14.40 6.25 804 478 5.6l 502 313 310

Table 5: Resolved rate (%) of different models on Multi-SWE-bench with varied difficulties.

Models MagentLess MSWE-agent MopenHands
Easy Medium Hard Easy Medium Hard Easy Medium Hard
GPT-40 25.18 10.32 092 1215 6.7 0.61 17.96 724 1.07
OpenAl-ol 31.69 16.68 214 206 11.53 2.14 10.56 7.03 0.92
OpenAl-03-mini-high ~ 29.75 12.62 1.07 2254 9.55 2.14 16.55 6.26 1.53
Claude-3.5-Sonnet 29.4 12.4 1.38 2042 11.96 2.14 2835 16.14 2.6
Claude-3.7-Sonnet 30.46 13.5 1.53 3257 17.67 3.06 35.21 20.64 3.68
DeepSeek-V3 27.11 12.84 1.68 8.8 4.17 138 17.78 8.45 1.23
DeepSeek-R1 28.52 14.71 1.68 6.16 2.74 046 17.78 7.14 0.77
Qwen2.5-72B-Instruct 19.89 6.7 031 6.16 1.87 0.15 423 1.76 0.46
Doubao-1.5-pro 16.55 7.24 1.07 9.68 4.72 092 7.57 1.65 0.61
Doubao-1.5-thinking ~ 30.99 14.71 2.3 20.6 10.54 1.53 24.30 9.99 2.45
Gemini-2.5-Pro 34.51 18.11 352 27.11 15.59 245 39.08 22.28 5.51
Llama-4-Maverick 30.46 12.07 092 687 3.18 1.07 16.20 5.82 2.14

6.2 Influencing Factors of Performance

Table 6: Resolved rate(%) on Multi-SWE-bench across issue
ent issue types. Tab.[]lists the per- types (Claude-3.7-Sonnet). BG refers to bug fixes, NF to
formance of the three methods on NEW feature requests, and FO to feature optimizations.

Multi-SWE-bench across different is- MagentLess MSWE-agent MopenHands
sue types. Through a meticulous BF NF FO BF NF FO BF NF FO
Lanalvsis of th cati Java 1094 234 078 1797 391 156 1797 3.12 078
manual analysis ol the annotaionre- 15 268 045 045 938 134 045 179 000 045
sults in Sec. [3.5] we categorized all IS 197 000 000 421 056 000 365 112 028
inst in Multi-SWE-bench int Go 374 093 117 327 070 140 444 210 093
Instances in vulti- -bench mto gust 460 042 042 544 126 000 1297 293 0.00
three issue types: bug fix, new feature, C 625 000 000 781 078 000 7.8L 078 0.00
and feature optimization. We observe _Ctt_ 233 078 000 775 31 078 1085 3.0 078
a consistent performance hierarchy across all methods and languages: bug fix issues are resolved
with the highest success rates, followed by new features, with feature optimization being the most
challenging. For instance, MSWE-agent achieves 17.97% on Java bug fixes but drops to 3.91%
and 1.56% for new features and optimizations, respectively. MagentLess and MopenHands show a
similar trend in all languages. These results highlight a fundamental limitation of current agent-based
methods: they are more effective at localized, symptom-driven repairs, but struggle with semantically

demanding tasks such as implementing new functionality or refining existing behavior.

Varied resolved rate across differ-

Performance drops as fix patch length increases. As
shown in Fig. [2] the length of fix patches significantly
impacts the resolved rate, with shorter patches generally
leading to higher success rates. Specifically, in the major-
ity of cases, issues with descriptions >600 tokens exhibit
a resolved rate approximately 50% lower than that of is-
sues with descriptions <200 tokens. For all three methods,
the resolved rate for very long fix patches (>1000 tokens)
drops sharply for very long fix patches (over 1,000 tokens),
with a resolved rate approaching zero. This indicates that
long patches, requiring broader code modifications, pose
greater challenges, especially for methods not optimized
for complex tasks.

Cross-file fix patches lead to reduced effectiveness.
Fig. [3illustrates the relationship between the number of
files modified by fix patches and the resolved rate. Consis-
tent with the observation in Fig.[I2} resolved rate drops sig-
nificantly as the number of modified files increases across
all three methods. This trend highlights the potential chal-
lenge of understanding and resolving issues that require
changes across multiple files, which may demand more
intricate handling or coordination between different parts
of the repository. For issues resolved by modifications in
a single file, MagentLess outperforms MSWE-agent and

400 E MagentLess
g_c/ I MSWE-agent
%’ 30.0 MopenHands
-
B 200
2
2
3 10.
2 0.0 I

00 m o _

2006% oAt \000—\“0 A0

#Tokens of fix patches
Figure 2: Influence of fix patch length
on resolved rate (%) across methods.

I MagentLess

—
E\O/ZO.O I MSWE-agent
F_.; MopenHands
-
el
o]
Z 10.0
o
172}
[}
(=4
0.0 II — i
1 1-5 5-10 >10

. #Files modified
Figure 3: Influence of number of files

modified by fix patches across methods.

MopenHands, which suggests that MagentLess is more effective at resolving issues within the scope

of a single file.

Effect of Potential Data Leakage. Since
Multi-SWE-bench is constructed from histor-

Table 7: Resolved rate (%) before/after knowledge
cutoff on Claude-3.5-Sonnet.

ical GitHub issues, there exists a possibility that MagentLess MSWE-agent MopenHands
these issues are included within the pre-training Before After Before After Before After
" "Easy 832 794 1010 1587 11.09 1587

datgsets of.the LLMs we employ. Here, we ex Medium 246 374 410 S41 597 467
amine the impact of potential data leakage on Hard 1.09 051 153 255 175 153
All 379 273 515 6356 634 492

Claude-3.5-Sonnet, which has a clearly stated

knowledge cutoff date (i.e., 2024-04-01). Tab. [7] shows no significant difference in performance
before and after this cutoff. For MSWE-agent, the resolved rate after the knowledge cutoff is even
higher than before on easy tasks. Furthermore, the data leakage degree is identical for methods within
the same models. This uniformity ensures a fair basis for comparing different methods in Tab. 4]

We also conducted large-scale analysis experiments, with results provided in Appendix [E]

6.3 Cost

Tab. [8] presents the average cost Table 8: Average cost ($) per issue of different models and

methods on Multi-SWE-bench.

($) per issue on Multi-SWE-bench.

Notably, DeepSeek-V3, DeepSeek- Models MagentLess MSWE-agent MopenHands
R1, Llama-4-Maverick, and Qwen2.5- gg;ii‘}_ol (1)3(5)42&; ?-(1)3‘112 8-22‘3‘?
72B-Instruct achieve the lowest cost OpenAlLo3-mini-high ~ 0.1154 0.0738 0.0474
per resolved issue, staying below Claude-3.5-Sonnet 0.2588 0.1470 0.2142
: : Claude-3.7-Sonnet 0.2966 0.1760 0.2127
$0.03, benefiting from their cost- 5/l !y 0.0094 0.0080 0.0065
efficient pricing. In contrast, OpenAl- peepSeck-R1 0.0170 0.0071 0.0148
ol is the most expensive model, due to Qwen?2.5-72B-Instruct 0.0115 0.0105 0.0083
D - I Doubao-1.5-pro 0.0134 0.0049 0.0034
its high token price ($15 per million ;TP ™ STEEL 0.0557 0.0287 0.0247
input tokens). Overall, MagentLess Gemini-2.5-Pro 0.1538 0.0990 0.1689
tends to result in higher costs than Llama-4-Maverick 0.0214 0.0081 0.0085

MSWE-agent, as it follows a fixed

workflow regardless of task difficulty. In comparison, the workflows in MSWE-agent and Mopen-
Hands are dynamically controlled by LL.Ms, allowing more flexible interaction turns. For simpler
tasks, they typically require fewer interactions, resulting in lower overall costs.

7 Conclusions and Future Works

We introduce Multi-SWE-bench, a multilingual benchmark for issue resolving, consisting of 2, 132
human-validated GitHub instances on 8 widely used programming languages. Based on this bench-
mark, we evaluate 12 popular models using three representative methods and conduct a thorough
analysis of the results. Looking ahead, we plan to scale Multi-SWE-bench to more instances, lan-
guages, and modalities. Beyond issue resolving, we would like to incorporate a broader range
of software engineering tasks into our benchmark such as end-to-end project generation [46, 33|,
runtime environment setup [43. [15} [11]], bug reproduction [36} 35] and localization [14], and software
testing and maintenance [22, [29].

References

(1]
(2]

3

—

[4

—

(5]

[6
[7

— =

(8

—_—

(9]

(10]

(1]

(12]

(13]

Swe-bench multilingual. https://kabirk.com/multilingual, 2025.

Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. On the accuracy of spectrum-based fault
localization. In Testing: Academic and industrial conference practice and research techniques-MUTATION
(TAICPART-MUTATION 2007), pages 89-98. IEEE, 2007.

Miltiadis Allamanis and Charles Sutton. Mining source code repositories at massive scale using language
modeling. In 2013 10th working conference on mining software repositories (MSR), pages 207-216. IEEE,
2013.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shigi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of code generation models.
arXiv preprint arXiv:2210.14868, 2022.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan, Wasi Uddin
Ahmad, Shigi Wang, Qing Sun, Mingyue Shang, et al. Multi-lingual evaluation of code generation models.
In ICLR, 2023.

augment code. Augment swe-bench verified agent, 2025. 2025-03-31.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating large language models trained on code, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse and
multilingual benchmark for cross-file code completion. Advances in Neural Information Processing
Systems, 36, 2024.

Aleksandra Eliseeva, Alexander Kovrigin, Ilia Kholkin, Egor Bogomolov, and Yaroslav Zharov. Envbench:
A benchmark for automated environment setup, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Lianghong Guo, Wei Tao, Runhan Jiang, Yanlin Wang, Jiachi Chen, Xilin Liu, Yuchi Ma, Mingzhi Mao,
Hongyu Zhang, and Zibin Zheng. Omnigirl: A multilingual and multimodal benchmark for github issue
resolution. arXiv preprint arXiv:2505.04606, 2025.

10

https://kabirk.com/multilingual

(14]

[15]

(16]

(171

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

(31]

(32]

Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu, Hoan
Nguyen, and Omer Tripp. A deep dive into large language models for automated bug localization and
repair. Proceedings of the ACM on Software Engineering, 1(FSE):1471-1493, 2024.

Ruida Hu, Chao Peng, Xinchen Wang, and Cuiyun Gao. An llm-based agent for reliable docker environment
configuration. arXiv preprint arXiv:2502.13681, 2025.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Mapping language to code in
programmatic context. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 16431652, 2018.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Hamed Jelodar, Mohammad Meymani, and Roozbeh Razavi-Far. Large language models (Ilms) for source
code analysis: applications, models and datasets, 2025.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language models
for code generation, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

James A Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to assist fault
localization. In Proceedings of the 24th international conference on Software engineering, pages 467-4717,
2002.

Ludvig Lemner, Linnea Wahlgren, Gregory Gay, Nasser Mohammadiha, Jingxiong Liu, and Joakim
Wennerberg. Exploring the integration of large language models in industrial test maintenance processes.
arXiv preprint arXiv:2409.06416, 2024.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2024.

Wei Liu, Ailun Yu, Daoguang Zan, Bo Shen, Wei Zhang, Haiyan Zhao, Zhi Jin, and Qianxiang Wang.
GraphCoder: Enhancing Repository-Level Code Completion via Code Context Graph-based Retrieval and
Language Model, 2024.

Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer: Can frontier
Ilms earn $1 million from real-world freelance software engineering? arXiv preprint arXiv:2502.12115,
2025.

Niels Miindler, Mark Miiller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and validating real-
world bug-fixes with code agents. Advances in Neural Information Processing Systems, 37:81857-81887,
2024.

OpenAl. Openai 03-mini, 2025. Accessed: 2025-01-31.

Yicheng Ouyang, Jun Yang, and Lingming Zhang. Benchmarking automated program repair: An extensive
study on both real-world and artificial bugs. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 440-452, 2024.

Xin Peng, Chong Wang, Mingwei Liu, Yiling Lou, and Yijian Wu. Code digital twin: Empowering 1lms
with tacit knowledge for complex software maintenance. arXiv preprint arXiv:2503.07967, 2025.

Muhammad Shihab Rashid, Christian Bock, Yuan Zhuang, Alexander Buccholz, Tim Esler, Simon Valentin,
Luca Franceschi, Martin Wistuba, Prabhu Teja Sivaprasad, Woo Jung Kim, et al. Swe-polybench: A multi-
language benchmark for repository level evaluation of coding agents. arXiv preprint arXiv:2504.08703,
2025.

Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision trees. ACM
SIGPLAN Notices, 51(10):731-747, 2016.

Nuno Saavedra, André Silva, and Martin Monperrus. Gitbug-actions: Building reproducible bug-fix

benchmarks with github actions. In Proceedings of the 2024 IEEE/ACM 46th International Conference on
Software Engineering: Companion Proceedings, pages 1-5, 2024.

11

(33]

[34]
[35]

(36]

(371

(38]

(39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Chan Jun Shern, Leon Maksin, Rachel Dias,
Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Mia Glaese, Tejal Patwardhan, and
OpenAl. Paperbench: Evaluating ai’s ability to replicate ai research, 2025.

SWE-agent. Swe-agent remote execution framework, 2025.

Dingbang Wang, Zhaoxu Zhang, Sidong Feng, William GJ Halfond, and Tingting Yu. An empirical study
on leveraging images in automated bug report reproduction. arXiv preprint arXiv:2502.15099, 2025.

Xinchen Wang, Pengfei Gao, Xiangxin Meng, Chao Peng, Ruida Hu, Yun Lin, and Cuiyun Gao.
Aegis: An agent-based framework for general bug reproduction from issue descriptions. arXiv preprint
arXiv:2411.18015, 2024.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun
Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji,
and Graham Neubig. OpenHands: An Open Platform for Al Software Developers as Generalist Agents,
2024.

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for open-
domain code generation. In Findings of the Association for Computational Linguistics: EMNLP 2023,
pages 1271-1290, 2023.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-based
software engineering agents. arXiv preprint arXiv:2407.01489, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. SWE-agent: Agent-computer interfaces enable automated software engineering. arXiv preprint
arXiv:2405.15793, 2024.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press, Niklas
Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and Ofir Press. SWE-
bench multimodal: Do ai systems generalize to visual software domains? In The Thirteenth International
Conference on Learning Representations, 2025.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang
Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative pre-trained
models. In Proceedings of the 46th IEEE/ACM International Conference on Software Engineering, pages
1-12, 2024.

Abhay Zala, Jaemin Cho, Han Lin, Jaechong Yoon, and Mohit Bansal. Envgen: Generating and adapting
environments via llms for training embodied agents, 2024.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. CERT: continual pre-training on sketches for library-oriented code generation. In
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI 2022,
Vienna, Austria, 23-29 July 2022, pages 2369-2375, 2022.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Wang Yongji, and Jian-
Guang Lou. Large language models meet nl2code: A survey. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7443-7464, 2023.

Daoguang Zan, Ailun Yu, Wei Liu, Dong Chen, Bo Shen, Wei Li, Yafen Yao, Yongshun Gong, Xiaolin
Chen, Bei Guan, et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. arXiv
preprint arXiv:2403.16443, 2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and generation.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages
2471-2484, 2023.

Linhao Zhang, Daoguang Zan, Quanshun Yang, Zhirong Huang, Dong Chen, Bo Shen, Tianyu Liu,
Yongshun Gong, Pengjie Huang, Xudong Lu, Guangtai Liang, Lizhen Cui, and Qianxiang Wang. Codev:
Issue resolving with visual data, 2024.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. arXiv preprint arXiv:2404.05427, 2024.

12

[50]

[51]

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi
Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 5673-5684, 2023.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen. A

survey of large language models for code: Evolution, benchmarking, and future trends. arXiv preprint
arXiv:2311.10372, 2023.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the Abstract Section and Section [I|accurately reflect the paper’s
contributions and scope, providing a clear overview of the objectives and results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section [6] and Appendix [C] discuss the limitations of the work, including
assumptions made and factors affecting the results.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]

Justification: The paper is focused on dataset construction and does not include theoretical
results or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have rigorously provided all the code, results, leaderboard, and Docker
images to ensure the reproducibility of the main experimental results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides open access to the data and code with sufficient instructions
to faithfully reproduce the main experimental results. The resources are available at the
following links:

* Homepage: https://multi-swe-bench.github.io

e Code: https://github.com/multi-swe-bench/multi-swe-bench

* Data: https://hf.co/datasets/ByteDance-Seed/Multi-SWE-bench

* Docker images: https://hub.docker.com/u/mswebench

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify all the training and test details in Section[5]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper is a dataset-based work and does not involve experiment statistical
significance.

Guidelines:

* The answer NA means that the paper does not include experiments.

16

https://multi-swe-bench.github.io
https://github.com/multi-swe-bench/multi-swe-bench
https://hf.co/datasets/ByteDance-Seed/Multi-SWE-bench
https://hub.docker.com/u/mswebench
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources in Section D}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper fully conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper discusses both potential positive and negative societal impacts in
Appendix

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper is a dataset-based work and does not involve models or data with a
high risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have explicitly declared the licenses and terms of use for both the code and
data, ensuring proper credit to the original creators and respect for the licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

18

13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided detailed documentation for our dataset, ensuring that all
new assets are well-documented and accompanied by clear instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We have included details in the paper about the number of crowdsourcing
participants, their qualifications, and other relevant information.

Guidelines:

» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: We have disclosed the potential risks to participants in the crowdsourcing
process, as well as the qualifications of the participants. However, this paper does not include
detailed IRB approval information, as the crowdsourcing study was conducted following the
ethical guidelines of our institution.

19

paperswithcode.com/datasets

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: We have described the usage of LLMs in Section D}
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Manual Verification Results

In Tab. 9] and Fig.] we present the statistics B <15mine B 1Smins- 1h hoah mm an
from the manual verification results. As shown

in Tab. 0] the majority of instances show no sig- 400 |

nificant issues and receive high scores, which -

confirms the overall quality of the repositories
selected in Section [3.1] As part of the man- 200 - |
ual annotation process in Multi-SWE-bench, we
recorded the estimated time required to resolve wo |

each issue, categorized into four buckets: <15 I I

minutes, 15 minutes—1 hour, 1-4 hours, and >4 0

hours (Fig.[d). Unlike SWE-Bench, we use this Java
time-based annotation to define difficulty levels Figure 4: Distribution of estimated time consump-

across all languages: easy (<15 mins), medium fi £i in Multi-SWE-bench
(15 mins—1h), and hard (>1h). From FigureEL ton of Issues 1 AUt ench

we can see that JavaScript (JS) emerges as the most difficult language, as it generally requires more
time for developers to resolve the issues. In contrast, TypeScript (TS) and Rust appear to be easier,
with most issues being resolved by humans within an hour.

#lssues

—-— -_—
TS IS Go Rust C C++

Table 9: Scoring statistics for Multi-SWE-bench from the verification questionnaire.

I Q2.1 Serious Issue Flag Q3.1 Clarity of Issue Description Q4.1 Coverage of Unit Tests
b #Score 0 #Score 1 #Score 0 #Score 1 #Score 2 #Score 3 | #Score 0 #Score 1 #Score 2 #Score 3

Java 146 10 2 2 44 98 10 5 17 114
TypeScript 382 8 5 56 121 200 31 76 133 142
JavaScript 586 4 0 6 13 567 55 172 305 54
Go 579 26 5 10 276 288 44 100 151 284
Rust 328 11 4 20 165 139 23 50 74 181
C 200 6 2 4 115 79 13 55 83 49
C++ 162 7 0 6 96 60 7 21 45 89

B Multi-SWE-RL

Community Introduction. Multi-SWE-RL is an open-source community aimed at developing
high-quality RL training datasets for complex software engineering tasks. Its purpose is to serve
as the foundational infrastructure for training fully autonomous agents capable of addressing real-
world software engineering challenges, paving the way toward achieving AGI. The need for such
a community has become increasingly urgent as the potential of RL continues to expand. Notable
models such as DeepSeek-R1 [12]], OpenAl ol [17], and 03 [27] have demonstrated the power of RL,
even with simple, rule-based reward signals. In light of these advancements, we are firmly convinced
that “scaling RL in real-world environments is the path toward human-like intelligence”. However,
the creation of such interactive environments and data trajectories is extremely challenging. For
instance, the development of our Multi-SWE-bench took about one year to produce just high-quality
2,132 instances. Therefore, we launched the Multi-SWE-RL community to harness the power of
open-source collaborative contributions for building diverse RL environments.

Community Initialization. To bootstrap the Multi-SWE-RL community, we release an initial dataset
comprising 4, 723 issue-resolving instances spanning 76 widely-used open-source repositories and
7 programming languages: Java, TypeScript, JavaScript, Go, Rust, C, and C++. Each instance is
equipped with a fully containerized execution environment to ensure reproducibility and ease of
integration. This dataset was constructed using the same pipeline as Multi-SWE-bench, excluding
the manual verification process described in Sec. [3.5] Details about this release are available at
Hugging Face dataset and Multi-SWE-RL contribution board. We envision this initial release as
a spark—igniting broader community collaboration and fueling the construction of scalable, high-
quality RL environments for real-world software engineering.

Contribution Guidelines and Recognition. We welcome contributions from the community to
expand the Multi-SWE-bench and Multi-SWE-RL. To help new contributors get started, we provide
a detailed demo that walks through the process of creating an issue-resolving instance, available at
Contribution-demo.md. To recognize and incentivize community contributions, we maintain a rolling

21

https://huggingface.co/datasets/ByteDance-Seed/Multi-SWE-RL
https://docs.google.com/spreadsheets/d/1C90SiRmlac3FizmsJzxzrhSNsnCjyYewdrXzFbBV4x0/edit?gid=493937140#gid=493937140
https://github.com/multi-swe-bench/multi-swe-bench/blob/main/docs/contribution-demo.md

update schedule through periodic arXiv updates or follow-up technical reports, with new versions
released every three months. Each update may include:

* Newly added benchmarks for additional programming languages in Multi-SWE-bench, with new
authors and contributors;

* Newly contributed data to Multi-SWE-RL, with new authors and contributors;

* Newly reported performance results from RL trials on Multi-SWE-bench using Multi-SWE-RL
data, with new authors and contributors;

* Newly open-sourced RL models with significantly enhanced performance, with new authors and
contributors.

Our contribution incentive policy is detailed at Incentive-plan.md. We are committed to continuously
refining our contribution strategy to encourage sustained open-source engagement, and we warmly
invite the community to take part in shaping and scaling this collaborative effort.

C Troubleshooting

During the construction of Multi-SWE-bench and Multi-SWE-RL, we encountered a range of practical
and non-obvious challenges. We document the key issues below to facilitate reproducibility and
guide future community contributions:

* Test log inconsistency. The number of test cases differs between Test.log and Fix.log, as fix.patch
may optimize control flow, eliminate redundant coverage, or merge test paths, which is commonly
observed in repositories such as |preactjs/preact,

* Pre-fix build failures. Certain repositories fail to compile or execute tests before applying fix.patch,
due to newly introduced symbols (e.g., functions or variables) in test.patch that are undefined
without the fix.

* Binary artifacts in C&C++. Agent runs may generate compiled binaries (e.g., ". 0", ".bin") that
block "git apply". We currently strip these via hard-coded filtering, though more robust handling
is needed.

 Evaluation nondeterminism. Java and C tests occasionally exhibit unstable behavior due to
excessive thread concurrency, leading to inconsistent run.log outcomes. We mitigate this by
reducing parallelism during evaluation.

* Name casing mismatches. Some test names appear in lowercase in test.log but in uppercase in
fix.log. We normalize all test names to lowercase to ensure alignment.

» Unstable test identifiers. Some test names are dynamically generated with timestamps or random
suffixes, making them non-deterministic. Such instances are excluded.

* Log interleaving in Java. In some Java projects, test outputs from concurrent threads are interleaved
without delimiters, making rule-based log parsing infeasible. This is likely due to unsynchronized
multi-threaded logging.

D Implementations of Issue Resolving Methods

To support the multilingual environment of Multi-SWE-bench we adapt the issue resolving meth-
ods Agentless [39], SWE-agent [40], and OpenHands [37]]. The details of their adaptation and
implementation are outlined as follows:

. Agentlessﬂ—)MagentLesﬂ Agentless addresses the issue resolving task through a multi-stage
fixed workflow, including hierarchical fault localization, code repair, and candidate patch selection
via regression and reproduction tests. In MagentLess, we made the following key modifications to
support multilingual adaptation and improve scalability:

1. We revised all prompts to accommodate the newly added languages.

*https://github. com/OpenAutoCoder/Agentless
https://github.com/multi-swe-bench/MagentLess

22

https://github.com/multi-swe-bench/multi-swe-bench/blob/main/docs/contribution-incentive-plan.md
https://github.com/preactjs/preact
https://github.com/OpenAutoCoder/Agentless
https://github.com/multi-swe-bench/MagentLess

2. We replaced all file skeleton inputs with full file content, as extracting file skeletons is
challenging in some programming languages.

3. We implemented function and class extraction for all languages using Tree—sittelﬂ

4. We pruned the extracted repository structures by retaining only files and directories with
specific extensions, as repositories in certain languages (e.g., TypeScript) often contain an
excessive number of files that may exceed LLM context limits.

5. We removed the candidate patch selection stage and retained only fault localization and code
repair, as regression and reproduction testing is cumbersome to implement across languages
and falls outside the scope of this work.

. SWE-agentE]—»MSWE-agenlﬁ SWE-agent is an agent-based approach that solves issues through
multi-turn interactions via a predefined agent-computer interface (ACI). To support Multi-SWE-
bench, we developed MSWE-agent with the following modifications:

1. We revised all prompts to accommodate the newly added languages.

2. We truncated overly long environment observations to ensure stable agent execution.

non

3. We added ".gitignore" to exclude compiled artifacts (e.g., ". 0", ".bin") in languages like
C/C++, which could otherwise interfere with "git apply".

4. We fixed language-specific commands that caused crashes or non-terminating behavior during
execution to ensure stable agent execution.

. OpenHandsﬂ—)MopenHandﬂ OpenHands is a widely adopted platform for building software
development agents. In MopenHands, we made the following key modifications to support
multilingual adaptation:

1. We revised all prompts to support the newly added programming languages.
2. We added ".gitignore" to exclude compiled artifacts, as also done in MSWE-agent.

3. We fixed several implementation bugs, including an issue where "CmdRunAction" incorrectly
rendered tab characters (\t) as spaces in "git diff" outputs, making patches unapplicable.
To resolve this, we redirected the diff to a file and read it using "FileReadAction", which
proved especially important in languages like Go.

Despite our efforts to adapt these methods, there still remains substantial room for improvement,
particularly in language-specific adaptation and overall robustness. We welcome community collabo-
ration to further advance their capabilities.

For all LLM-based tasks in the issue resolving methods, we used a temperature setting of 0.8 and
employed top-k sampling to ensure a balance between creativity and consistency in the generated
outputs. These hyperparameters were kept consistent across all methods and languages to ensure
comparability with other models. This uniform setting allows for a fair evaluation of the performance
of different methods in the multilingual environment of Multi-SWE-bench.

E Additional Experimental Results

E.1 Multi-SWE-bench Mini

To facilitate faster and more cost-effective evaluations for both the research community and industry,
we have created a mini version of Multi-SWE-bench, called Multi-SWE-bench Mini. This smaller
subset contains 400 instances in total. For the construction of this mini version, we randomly
selected 50 instances restricted to the same difficulty distribution for each language from each of
the eight languages: Python, Java, TypeScript, JavaScript, Go, Rust, C, and C++, while ensuring
that the difficulty distribution remained consistent across all languages. The experimental results of
Multi-SWE-bench Mini is shown in Tab.

23

Table 10: Resolved rate (%) of different models on Multi-SWE-bench Mini.

Models MagentLess MSWE-agent MopenHands

All Easy Medium Hard All Easy Medium Hard All Easy Medium Hard
GPT-40 7.50 16.00 7.47 079 525 9.00 6.32 079 675 14.00 7.47 0.00
OpenAl-ol 10.75 16.00 14.37 1.59 725 14.00 8.05 079 475 17.00 6.90 0.00
OpenAl-03-mini-high ~ 9.00 19.00 9.77 0.00 7.50 16.00 7.47 079 575 12.00 5.75 0.79
Claude-3.5-Sonnet 8.25 18.00 7.47 1.59 925 16.00 11.49 079 1225 22.00 14.37 1.59
Claude-3.7-Sonnet 9.25 19.00 9.77 0.79 1525 28.00 18.39 0.79 1825 33.00 20.69 3.17
DeepSeek-V3 8.00 17.00 8.05 079 5.00 8.00 6.32 079 7.50 16.00 8.05 0.00
DeepSeek-R1 10.00 18.00 12.07 079 375 7.00 4.60 0.00 7.00 14.00 7.47 0.79
Qwen2.5-72B-Instruct ~ 6.00 16.00 4.60 0.00 1.00 1.00 1.72 0.00 2.25 3.00 2.87 0.79
Doubao-1.5-pro 4.50 9.00 4.60 079 375 5.00 5.17 0.79 200 2.00 3.45 0.00
Doubao-1.5-thinking 9.50 19.00 10.92 0.00 775 13.00 10.34 0.00 875 19.00 9.20 0.00
Gemini-2.5-Pro 12.25 25.00 12.64 1.59 975 15.00 13.79 0.00 18.00 27.00 21.84 5.56
Llama-4-Maverick 10.25 21.00 11.49 0.00 425 9.00 4.02 079 550 7.00 7.47 1.59

E.2 Performance across Various Methods

In this subsection, we evaluate the methods’ performance from two aspects: (1) their ability to locate
issues and generate fix patches, and (2) for agent-based methods, i.e., MSWE-agent and MopenHands,
their efficiency in terms of the number of interaction turns required to resolve the issues.

Prioritizing accurate locating over editing and reproducing. MagentLess, MSWE-agent, and
MopenHands generally resolve issues through two key steps: issue location and code editing to
resolve the issue. To provide a more detailed analysis of how existing LLMs and methods perform
across these steps, we present the issue flow in Fig.[5] An issue is considered successfully located if
the fix patches generated by the LLMs cover all the files of ground truth fix patches. As shown in
Fig.[5] all three methods generally fail to locate issues more often than they succeed. Accurate issue
localization is fundamental to the overall success of the resolution process, serving as a prerequisite
for effective code editing. Compared to MopenHands, MagentLess achieves more accurate issue
localization but struggles more with the code editing step, leading to a lower overall resolved rate.
This disparity is particularly evident on Claude-3.7-Sonnet. This underscores the need for a balanced
method that not only prioritizes precise issue identification but also enhances the model’s ability to
generate effective fixes.

Number of turns required by MSWE-agent and MopenHands. Both MSWE-agent and Mopen-
Hands resolve the issue by multi-turn interactions. Fig. []shows the distribution of turns for success-
fully resolved an issue. The absence of a corresponding box plot indicates cases where no issues
were successfully resolved, such as MSWE-agent with Qwen2.5-72B-Instruct on C++. The number
of interaction turns required by two methods differs across models and languages. Specifically,
MopenHands resolves issues in fewer turns than MSWE-agent when using GPT-4o for Java, whereas
MSWE-agent requires fewer turns when resolving Python issues. However, MopenHands exhibits
a rather higher degree of dispersion in the number of interaction turns compared to MSWE-agent,
which is particularly evident on OpenAl-03-mini-high. This suggests that MopenHands’ performance
is less stable across different issues, requiring a varying number of turns depending on the complexity
or nature of the issue.

E.3 Performance across Different Repositories

To understand how repository characteristics affect performance, we examine two factors: (1)
repository quality, which includes the number of stars, forks, PRs, and issues, and (2) repository
complexity, which includes the number of code lines and files, and the language entropy.

Performance across repositories of varying quality. To assess repository quality, we examine key
metrics including the number of stars, forks, PRs, and issues. Fig.[7]illustrates the average resolved
rate across LLMs for the three methods in relation to the number of stars and forks. Similarly, Fig. [§]
shows the average resolved rate in relation to the number of issues and PRs. Both Fig.[7]and Fig.]

Shttps://tree-sitter.github.io
"https://github.com/SWE-agent/SWE-agent
Shttps://github.com/multi-swe-bench/MSWE-agent
‘https://github.com/All-Hands-AI/OpenHands
""https://github.com/multi-swe-bench/MopenHands

24

https://tree-sitter.github.io
https://github.com/SWE-agent/SWE-agent
https://github.com/multi-swe-bench/MSWE-agent
https://github.com/All-Hands-AI/OpenHands
https://github.com/multi-swe-bench/MopenHands

MagentLess

(b) OpenAl-ol

(e) Claude-3.7-Sonnet
MagentLess

(i) Doubao-1.5-pro
MagentLess

(j) Doubao-1.5-thinking (k) Gemini-2.5-Pro () Llama-4-Maverick

Figure 5: Issue flow from locating to resolving.

25

[Python [Java TS EEIIS Go Rust C++
ol 7T-71 I 60 [[501 60 S p - 1
g4 I 401 { 40 i
. i [[I
£ 491 =]z [| IS [=0 30 .
= SR 5 H L =k =B] F: =
3t J T 2 dITT 1 204 B H | 20 nE
201 | - bl
101 I 10
0
MSWE-agent MopenHands MSWE-agent MopenHands MSWE-agent MopenHands
(a) GPT-40 (b) OpenAl-ol (c) OpenAl-03-mini-high
60 W 30 60 T TET 309 aly 60 T
40 [T Lo 40 I [=8 5 [40
2 40 =i = Tl a0 1 [g
g | :77[30 é [L; 40 7Jl il TR HE | (LBE [
5 = NEEE ETRLTT H-
o L AALEE AL I Lt et S e B TR
1 10 l 1 20 10 B 1 l
04 0
MSWE-agent MopenHands MSWE-agent MopenHands MSWE-agent MopenHands
(d) Claude-3.5-Sonnet (e) Claude-3.7-Sonnet (f) DeepSeek-V3
{ 60 g il 604 [1] [50 [
40 N -
» 201 I - 407 - 1|40
£ TlL g 40 J 401 1 o1
g T l= 1), E] | _ 301 - ‘ Q——llgzo n .
10 1| &7 | 20 201] _ i
! Al /Y | 20 [
0 -
MSWE-agent MopenHands MSWE-agent MopenHands MSWE-agent MopenHands
(g) DeepSeek-R1 (h) Qwen2.5-72B-Instruct (i) Doubao-1.5-pro
604 60 [T 1 T [604 1 50 [
. 40 w 404 w | 40 [{
g40, { [[40 [E 7[= 1S J 404 H B T 30 =1 1
& %] , 20 Ullg a0 B 7[1120— J 0 J?T7 5 iy =
| L= Llgs T tTo=H0 2 1 | H :
1 I l L =] l J J 20 1 - 10 l l
MSWE-agent MopenHands MSWE-agent MopenHands MSWE-agent MopenHands
(j) Doubao-1.5-thinking (k) Gemini-2.5-Pro (1) Llama-4-Maverick
Figure 6: Number of turns required across different programming languages.
o o° o .° ® .° 0.4
10* 10* ° 10* L4
00. o’ o’ 0.3 g
w . Do o P e 0 . 9 Ole . s
E LXIN'S g ‘®e o 5 CXINS g
& 4 & ¢ = PS ¢ 023
2 o
10° ® PY e ° 10 5 L0 ® 10* o e ® ,;:
o, o e, O e, © 0.1~
L]
102 10* 107 0
10° 10* 10° 10° 10* 10° 10° 10* 10°
#Stars #Stars #Stars

(a) MagentLess

(b) MSWE-agent

(c) MopenHands

Figure 7: Relationship between resolved rate and the number of stars and forks of a repository.

exhibit a general positive correlation between #Stars and #Forks, as well as #Issues and #PRs across
the majority of repositories. Furthermore, repositories with higher resolved rates tend to cluster in the
upper-right quadrant of both Fig.[7]and Fig. [8] suggesting that repositories with greater activity and
community engagement (i.e., higher counts of stars, forks, issues, and PRs) are typically associated
with a higher resolved rate. This trend is particularly evident for the MSWE-agent and MopenHands.
In contrast, MagentLess exhibits relatively low variation in resolved rates across both Fig. [7]and
Fig.[8] underscoring an important observation: while a greater number of stars, forks, issues, and PRs
tend to correlate with higher resolved rates, these metrics do not provide a guarantee of a repository’s

issue-resolving effectiveness.

Performance across repositories with different levels of complexity. To evaluate repository
complexity, we consider several key metrics: the number of lines of code (#LoC), the number of files

(#Files), and language entropy. Let L = {ly,1ls, - -

26

, 1 } represent the set of programming languages

o O] ° © >
)Y ® 3 3
[eo: % O ® e, s 4 ®

4 . : '. 4 () : \3'. 4
L, 10 L 10 L, 10
4 ° o e o 4
& ° o & *_ 0 &

.
10° 10 10°
([] ([] °
10° 10* 10° 10° 10* 10° 10° 10*
#lssues #lssues #lssues
(a) MagentLess (b) MSWE-agent (c) MopenHands

10°

0.4

0.3

(%) 9181 PAA[OSTY

o

=)

Figure 8: Relationship between resolved rate and the number of issues and PRs of a repository.

—6— MagentLess 70
—&— MSWE-agent L 6o
MopenHands
#LoC of repositories I 50 z
2 2
g o &
3 9 a
® ” k30 g
a
S
LS
o' \ 10
ro
"° \s*!f" %ﬂ& o ‘gw‘@@‘ °“<bz '\Qg@%e@ \\“@\ c\‘\%o\"& % ‘m‘ c‘%\‘ s s‘“ “‘é‘° 0“ “ Qe :309.“\};0\%0 w\'
v
—e— MagentLess 70
10° —&— MSWE-agent Lo
MopenHands
#Files of repositories F50 o
Z
ka0 =
50 " g
= .. 3
** F30 g
X ~
2 L3S
o3 / 10
/1Y
% QJ\ / m & /ﬂ §> \A
o
@ 6\‘ \\03:61@@ x%% @%@‘»’ s%‘ z@% N c\“ %50 q,s\o‘d“o\'&g@)\ %\6%350 590 go‘%\ S ra'g‘\ o\k@ 0\\ e‘o ‘%oy.ko\ g,e e‘0‘900‘{1’\"
¥ \\,
—e— MagentLess 70
U
10 —&— MSWE-agent L 6o
MopenHands
g Language entropy of repositories I 50 z
2 2
5 Lao &
% :
?ﬂ 10" 4 30 &
W (A 10
-2

%scgmg@@ Q@‘% 240 %\»%0«\%& @%‘0 %\1 2> %\o%\&f\z A w\ o“w " "‘& Q,g ”L\w e@‘ o‘%\‘ s"‘\ \%
&%
S

¢

Figure 9: Relation between resolved rate and the repository complexity on Multi-SWE-bench.

used in the repository, with corresponding proportions {p1,pz, - - - ,pn }. The language entropy of

27

the repository is then calculated as:
H(L) == pilog(p:)
i=1

where p; denotes the proportion of the repository written in language ;. The average resolved rate
across nine base LLMs with different repository complexity is presented in Fig.[9]

Fig.[9]shows a consistent trend in the resolved rate across varied repository complexity: All three
methods exhibit fluctuations in performance with changes in #LoC, #Files, and language entropy,
generally decreasing as the repository complexity increases. For the impact of #LoC, as #L.oC
increases, the resolved rate tends to decrease. However, Java-based repositories, such as gson, jib,
j-core, j-dbind, and|dubbol show higher resolved rates despite their larger size. This suggests that
factors beyond code size, such as lower language entropy, modularity, well-documented code, and
adherence to standardized practices, play a significant role in improving performance. For example,
the ;gson| repository demonstrates nearly-zero language entropy in Fig.[9] Similarly, the impact of
#Files follows a trend similar to #LoC. The impact of language entropy shows a clearer trend than
that of #LoC and #Files: repositories with lower entropy typically achieve higher resolved rates.
This indicates that code simplicity and consistency play a crucial role in improving issue-resolving
effectiveness on a repository.

E.4 Detailed Results across various difficulty levels

Tab. [T|presents detailed results across various difficulty levels for each of the eight programming
languages. From Tab. [TT] it can be seen that Java, C, and C++ emerge as the most challenging
languages, particularly at the hard difficulty level, where most models and methods fail to resolve
even a single issue. This highlights the increased complexity these languages present in comparison
to others. Furthermore, across all three difficulty levels, existing models and methods consistently
perform better on Python than on the other languages. This suggests that these models and methods
have an inherent bias towards Python. These findings underscore the importance of evaluation in a
multilingual environment to fully study the capabilities and limitations of current LLMs and methods.

E.5 Influence of Issue Description

In this subsection, we aim to examine the impact of issue description length on issue-resolving
performance. Fig. [I0]illustrates the distribution of issue lengths (in tokens) in Multi-SWE-bench,
which follows a power law, with the majority of issues being under 1,000 tokens. To explore the
effect of description length, the issues are categorized into 5 intervals: <100, 100-400, 400-700,
700-1000, and >1000 tokens, as shown in Fig.[TT} The absence of a corresponding bars indicates
cases where no issues are successfully resolved.

60 -

40 -

#lssues

20-

0- [TTTE PE
3 4

10' 10° 10 10
Description length (#tokens)

Figure 10: Histogram of issue description length (#tokens).

As shown in Fig. [T} there is no consistent relationship between issue description length and resolved
rate. For example, in Python, issues with longer descriptions tend to have lower resolved rates,
whereas in Go, longer descriptions are associated with higher rates. This discrepancy arises from two

28

https://github.com/google/gson
https://github.com/googlecontainertools/jib
https://github.com/fasterxml/jackson-core
https://github.com/fasterxml/jackson-databind
https://github.com/apache/dubbo
https://github.com/google/gson

Table 11: Resolved rate (%) of different models on Multi-SWE-bench across various difficulty levels.

Models _ Easy Medium 7 Hard
| An Java TS JS Go Rust C C++ | Al Python Java T J Go Rust C C++ | Al Python Java TS Go Rust C C++
MagentLess
GPT-40 25.18 5515 2222 417 2000 638 13.64 333 17.86 | 1032 2797 1385 114 190 196 1.59 185 678 | 092 222 000 156 041 000 638 0.00 0.00
OpenAl-ol 3169 68.04 4074 11.11 20.00 638 1667 333 1429 | 1668 4023 2462 455 952 58 317 185 508 | 214 889 000 156 249 075 426 0.00 0.00
OpenAl-o3-mini-high | 29.75 67.01 14.81 139 30.00 993 2273 6.67 3.57 | 12.62 3831 462 000 476 131 238 185 1.69 | 1.07 444 000 000 083 075 213 455 0.00
Claude-3.5-Sonnet 2940 61.86 37.04 11.11 30.00 1135 9.09 333 1071 | 1240 3410 1385 227 190 327 317 185 339 | 138 667 000 156 083 075 426 000 0.00
Claude-3.7-Sonnet 3046 6443 3333 556 20.00 1348 10.61 333 7.4 | 1350 3563 13.85 341 381 392 317 185 339 | 153 1111 000 156 041 000 426 227 0.00
DeepSeek-V3 27.11 5773 1852 1111 30.00 993 1515 667 000 | 12.84 3487 615 682 476 458 079 185 339 | 1.68 444 000 156 1.66 149 213 227 0.00
DeepSeek-R1 2852 5876 51.85 11.11 30.00 7.80 1515 000 3.57 | 1471 3602 2308 68 7.62 196 397 185 508 | 1.68 667 000 000 207 149 213 0.00 0.00
Qwen2.5-72B-Instruct | 19.89 44.33 3333 694 20.00 355 606 000 357 | 670 1839 7.69 455 000 065 159 18 000 | 031 000 000 156 041 000 000 000 0.00
Doubao-1.5-pro 1655 39.18 14.81 139 10.00 3.55 1061 000 000 | 7.24 2031 462 341 000 261 159 000 000 | 1.07 444 000 156 124 000 213 0.00 0.00
Doubao-1.5-thinking | 30.99 62.37 33.33 1667 30.00 922 1970 1000 7.14 | 1471 3793 1231 341 952 327 317 370 508 |230 88 000 3.3 290 075 000 227 0.00
Gemini-2.5-Pro 3451 67.01 51.85 18.06 30.00 14.18 1212 2000 7.14 | 18.11 4215 21.54 13.64 1429 327 317 741 169 |352 1111 000 156 539 075 213 455 0.00
Llama-4-Maverick 3046 61.34 4074 19.44 30.00 7.80 1212 1000 1429 | 12.07 2644 1231 795 1048 261 476 370 508 | 092 222 0.00 000 1.66 000 213 0.00 0.00
MSWE-agent
GPT-40 1215 2577 2222 000 000 567 152 667 7.4 | 670 1609 1538 1.4 095 131 317 000 169 | 061 444 000 000 083 000 000 000 0.00
OpenAl-ol 20.60 4072 48.15 417 10.00 851 6.06 1000 7.14 | 11.53 2414 2308 455 667 392 397 370 508 | 214 444 000 3.3 290 149 213 0.00 0.00
OpenAl-o3-mini-high | 22.54 4278 33.33 11.11 20.00 922 1212 333 1429 | 955 2146 1846 341 381 261 238 370 508 |214 889 000 000 373 000 213 000 0.00
Claude-3.5-Sonnet 2042 2835 48.15 1528 0.00 1348 13.64 1333 17.86 | 11.96 2567 2000 568 7.62 261 476 370 678 | 214 444 000 3.3 290 149 213 0.00 0.00
Claude-3.7-Sonnet 3257 61.86 4444 2083 0.00 1064 13.64 2000 2857 | 17.67 40.61 27.69 9.09 7.62 458 238 741 11.86|3.06 667 000 3.13 373 075 851 227 0.0
DeepSeek-V3 8.80 722 3333 556 000 922 1061 000 1071 | 417 268 923 227 381 327 476 370 1017 | 138 0.00 000 000 207 075 213 000 238
DeepSeek-R1 6.16 258 1481 972 1000 638 455 333 1786 | 274 192 1231 682 1.90 000 079 000 508 | 046 000 0.00 000 083 000 213 0.00 0.00
Qwen2.5-72B-Instruct | 6.16 1546 741 000 000 142 152 000 000 | 1.87 4.98 154 000 095 000 000 370 000 |0.15 000 000 000 041 000 000 000 0.00
Doubao-1.5-pro 9.68 1753 1L11 278 1000 567 152 333 1786 | 472 1073 769 227 190 065 079 370 339 | 092 000 278 000 083 000 426 000 2.38
Doubao-1.5-thinking | 20.60 41.24 2222 11.11 000 993 7.58 333 1071 | 10.54 2682 1385 6.82 190 261 159 000 508 | 153 667 000 3.3 166 000 213 000 0.00
Gemini-2.5-Pro 27.11 3866 59.26 19.44 20.00 19.15 1515 1333 2143 | 1559 2375 3231 568 1619 850 873 1481 847 | 245 444 000 156 332 149 638 0.00 0.00
Llama-4-Maverick 6.87 3.09 29.63 833 2000 567 455 000 2143 3.18 153 1846 455 095 131 238 000 508 | 1.07 000 000 000 207 149 000 000 0.00
MopenHands
GPT-4o 1796 3866 29.63 000 000 851 606 000 1071] 724 1954 615 000 28 196 238 000 339 | 1.07 444 000 000 1.66 000 213 000 0.00
OpenAl-ol 1056 1856 7.41 139 3000 851 303 667 7.4 | 703 1648 462 000 667 196 238 370 508 [092 222 000 000 124 075 213 000 0.00
OpenAl-o3-mini-high | 16.55 3144 2222 139 40.00 496 13.64 6.67 1429 | 626 1456 1077 000 381 196 079 000 678 | 153 667 000 000 1.66 000 426 000 2.38
Claude-3.5-Sonnet 2835 4897 2593 18.06 10.00 1277 2424 667 3214|1614 3602 1846 13.64 381 523 7.4 370 10.17 | 260 1333 0.00 156 083 224 851 000 2.38
Claude-3.7-Sonnet 3521 7165 48.15 278 30.00 1135 2121 1333 3214 | 20.64 44.83 2308 227 7.62 9.5 1349 1111 1525|368 1111 000 156 290 149 1489 227 238
DeepSeek-V3 1778 4124 1852 278 000 213 606 6.67 17.86| 845 2146 1077 000 190 000 397 370 847 | 123 667 000 156 083 000 426 000 0.00
DeepSeek-R1 1778 4124 1481 139 1000 000 13.64 6.67 1429 | 7.14 19.16 1077 000 286 000 159 185 339 | 077 000 000 000 207 000 000 000 0.00
Qwen2.5-72B-Instruct | 4.23 670 741 000 20.00 213 152 000 1071 | 176 345 308 000 095 131 079 18 000 | 046 000 000 000 000 075 426 000 0.00
Doubao-1.5-pro 757 1546 0.00 000 10.00 496 152 000 1429 | 1.65 4.98 154 000 095 000 000 000 000|061 222 000 000 083 000 213 000 0.00
Doubao-1.5-thinking | 24.30 42.78 33.33 11.11 20.00 1489 7.58 1333 2143 | 999 2107 7.69 455 1810 261 159 185 1.69 |245 222 000 000 539 075 213 000 0.00
Gemini-2.5-Pro 39.08 63.92 2222 3333 40.00 2553 31.82 1000 1429 | 2228 3946 1538 2273 3333 9.5 794 741 11.86 | 551 444 000 938 7.88 299 851 000 2.38
Llama-4-Maverick 1620 2371 1852 1528 30.00 12.06 758 10.00 7.14 | 582 920 462 682 667 392 317 185 339 | 214 444 000 156 290 075 638 0.00 0.00

29

Bl MagentLess Bl MSWE-agent MopenHands

%3
4
o

6.0
20.0
12.5

15.0 10.0 4.0

10.0 73
. 5.0 2.0

5.0
| | . I | | |
0.0 0.0 0.0

0.0

Resolve rate (%)
[w E
S S o
s = o

)
=)

o A0 o0 10° o 0001000 AW oo 200 o0 100 RS 00000 AN R 400 o0 100 RS Q00100 AN o 200 oo 100 RS 0001000
#Tokens of issue description #Tokens of issue description #Tokens of issue description #Tokens of issue description
(a) Python (b) Java () TS (d)JS
10.0 10.0 125
- 5.0
Q
> 8.0 8.0 40 10.0
&
g 6.0 6.0 715
§ 3.0
Z 4 4.0
s 40 20 5.0
o]
&~ 20 I | 1.0 25 I
00] \J \] \J 00 I \} \] \! 00 \\J \] \\J 00 \! \J \]
AN oV A0 00 10! oo A000_ (o0 20 o 400 00 S\ 00 RUE A0 RO 200 00 10 o0 000100 4\0 oV 400 00 10! PR 00 \00
#Tokens of issue descnptlon #Tokens of issue descrlptlon #Tokens of issue deicnpuon #Tokens of issue descnpuon
(e) Go (f) Rust (g C (h) C++

Figure 11: Influence of issue description length on resolved rate.

potential types of long issue descriptions: (1) detailed issues with precise issue position indications
and resolving steps, and (2) complex issues that require extended descriptions to explain. These two
possibilities have distinct impacts on the difficulty of resolving an issue, influencing the resolved rate
in different ways.

E.6 Influence of Fix Patch

In this subsection, we investigate the impact of the ground-truth fix patches on the resolved rate,
focusing on two key factors: (1) Fix patch length: We analyze how the length of fix patches affects
performance, noticing that longer patches require more complex reasoning capabilities from LLMs.
The fix patches are categorized into five intervals based on the length distribution shown in Fig. ??2:
<200, 200-600, 600-1000, 1000-1400, and >1400 tokens. (2) Number of files modified by fix patches:
We examine how the cross-file nature of the fix patches influences performance, with more files
requiring enhanced cross-file handling capabilities. The number of modified files is divided into
four categories: 1, 1-5, 5-10, and >10, with the distribution shown in Fig.??. The detailed results
across various programming languages are shown in Fig.[T2)and Fig.[T3] respectively. The absence
of corresponding bars indicates cases where no issues are successfully resolved.

E.7 Case Study

In this subsection, we analyze representative cases that highlight the strengths of agents, common
failure patterns, and language-specific challenges, providing insights for future directions.

E.7.1 Language-General Case

* MSWE-agent and MopenHands often failed by exhausting the 50-round interaction limit, some-
times without even triggering the submit action, as seen in cases like jaxios__axi10s-5919.traj,
clap-rs__clap-5520.traj, and |cli__cli-513.traj. Future work may explore strategies that enable
agents to solve more complex tasks within a limited number of interaction rounds.

* A significant number of failures across all three agent methods were due to incorrect fault localiza-
tion, which led to an inability to identify and modify the relevant code, as seen in cases such as
elastic__logstash-14898.traj, alibaba__fastjson2-2285.traj, fasterxml__jackson-databind-3560.traj,
and apache__dubbo-7041.traj. This highlights the centrality of accurate fault localization and

points to the potential of integrating software engineering techniques like SBFL [2] 2T]] into future
agent designs.

30

https://github.com/multi-swe-bench/experiments/blob/main/evaluation/javascript/verified/20250329_MSWE-agent_DeepSeek-V3/trajs/axios__axios-5919.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/rust/verified/20250329_MSWE-agent_DeepSeek-V3/trajs/clap-rs__clap-5520.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/go/verified/20250329_MopenHands_DeepSeek-R1/trajs/cli__cli-513/DeepSeek-R1-1743467902.7243466.json
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/java/verified/20250329_MSWE-agent_DeepSeek-V3/trajs/elastic__logstash-14898.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/java/verified/20250329_MSWE-agent_DeepSeek-V3/trajs/alibaba__fastjson2-2285.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/java/verified/20250329_MagentLess_DeepSeek-V3/trajs/fasterxml__jackson-databind-3560.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/java/verified/20250329_MopenHands_Claude-3.7-Sonnet/trajs/apache__dubbo-7041/Claude-3.7-Sonnet-1743283670.1144483.json

Resolved rate (%)
%]) & W
(=] =] =3 =]
S 5 = o

o
o

a0 o6 o \000 o 200 1400

o
o

#Tokens of ﬁx patches

(a) Python
,;]2.5
e
< 100
g
- 15
5]
2
= 50
2
23
&~ 25
00 = ol .

a® 7.00‘60(2300"“0\%00—\A°°7\A“°

#Tokens of fix patches
(e) Go

30.0

Bl MagentLess Bl MSWE-agent

“ I |
. - 0.0

a0 7-00'60960“‘\QQ\BQQQ’\A“07\A®

MopenHands

“IH

A0 2 60 o \000 s 200, \AOQ

10.0

#Tokens of fix patches #Tokens of ﬁx patches
(b) Java () TS
10.0
8.0
6.0
4.0
ol oW,
\} \J \J \] \! \J \! \\] \\J
20 1@.60 600_\00\0“0_\@ D (80 Pl A0 60 “Q,\BQ o0 A0 \AB
#Tokens of fix patches #Tokens of fix patches
(f) Rust (g)C

20.0

15.0

10.0

15.0

10.0

5.0

0.0

Figure 12: Influence of fix patch length on resolved rate.

N
o
o

3
s

£ 30.0

E
3
£ 20.0

S

5
£ 100 I

00 1 1-5 5-10 >10
#Files modified
(a) Python

~ 6.0

S

L

£ 4.0

=

o

=

220

~

]
00 1 1-5 5-10 >10
#Files modified
(e) Go

15.0

10.0

0.0

125

10.0

7.5

5.0

2.5

0.0

B MagentLess W MSWE-agent MopenHands
6.0
4.0
1 1-5 5-10 >10 00 1 1-5 5-10 >
#Files modified #Files modified
(b) Java () TS
8.0
6.0
4.0
2.0
N . N
1 1-5 5-10 >10) 1 1-5 5-10 >10
#Files modified #Files modified
(f) Rust (g C

12.5

10.0

12.5
10.0
7.5
5.0
2.5

0.0

II . | [| -

a0 1\30-60100.\00\%09«\”«@7\A«°°

#Tokens of fix patches
(d)JS

|‘i.|,

AN Qq«f)“ oo \QQQ Q_\AQQ |40

#Tokens of ﬁx patches
(h) C++

1 1-5 5-10
#Files modified
(d)JS

>10

- |
1 1-5 5-10 >10
#Files modified

(h) C++

Figure 13: Influence of the number of files modified by fix patches on resolved rate.

In cases such as astropy__astropy-12907.traj|and django__django-11299.traj, the model generated
multiple valid actions in a single turn, but the hardcoded agent framework executed only the
last, resulting in premature submission. This reveals a structural bottleneck in current agent
design, where rigid control logic overrides model intent. It calls for a shift toward lightweight,
model-centric agents with full decision autonomy delegated to the LLM.

Bug reproduction plays a critical role in successful repair. In cases such as nlohmann__json-
4537 .traj, fmtlib__fmt-3248.traj, fasterxml__jackson-core-1142.traj, and |google__gson-1093.traj,
the model successfully reproduced the issue before producing an effective fix. In contrast, failure
to reproduce often resulted in unresolved cases, as seen in catchorg__Catch2-1609.traj. However,
reproduction is not always a prerequisite for success. Claude-3.5-Sonnet and Claude-3.7-Sonnet
occasionally bypass reproduction and edit the code directly—yet still resolve the issue successfully,
as in nlohmann__json-3601.traj, fmtlib__fmt-3729.traj, and |googlecontainertools__jib-4035.traj.
These cases suggest that agents should selectively invoke reproduction based on factors such as
error traceability, edit confidence, and execution cost.

31

https://github.com/multi-swe-bench/experiments/blob/main/evaluation/python/verified/20250329_SWE-agent_DeepSeek-V3/trajs/astropy__astropy-12907.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/python/verified/20250329_SWE-agent_DeepSeek-V3/trajs/django__django-11299.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/c++/verified/20250329_MSWE-agent_Claude-3.5-Sonnet(Oct)/trajs/nlohmann__json-4537.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/c++/verified/20250329_MSWE-agent_Claude-3.5-Sonnet(Oct)/trajs/nlohmann__json-4537.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/c++/verified/20250329_MSWE-agent_Claude-3.5-Sonnet(Oct)/trajs/fmtlib__fmt-3248.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/java/verified/20250329_MopenHands_Claude-3.5-Sonnet(Oct)/trajs/fasterxml__jackson-core-1142/Claude-3.5-Sonnet(Oct)-1740475152.28328.json
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/java/verified/20250329_MopenHands_Claude-3.5-Sonnet(Oct)/trajs/google__gson-1093/Claude-3.5-Sonnet(Oct)-1740478999.7829874.json
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/c++/verified/20250329_MSWE-agent_Claude-3.5-Sonnet(Oct)/trajs/catchorg__Catch2-1609.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/c++/verified/20250329_MSWE-agent_Claude-3.5-Sonnet(Oct)/trajs/nlohmann__json-3601.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/c++/verified/20250329_MSWE-agent_Claude-3.5-Sonnet(Oct)/trajs/fmtlib__fmt-3729.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/java/verified/20250329_MopenHands_Claude-3.5-Sonnet(Oct)/trajs/googlecontainertools__jib-4035/Claude-3.5-Sonnet(Oct)-1740482730.20658.json

E.7.2 Language-Specific Case

* For certain TypeScript projects, the length of the extracted repository structure often exceeds
the model’s maximum context length, preventing MagentLess from performing fault localization
(e.g., /mui__material-ui-25852.traj and mui__material-ui-37850.traj). This reveals the limited
generalizability of fixed workflows like MagentLess when confronted with structurally irregular
and language-specific scenarios, indicating significant room for improvement in both robustness
and adaptability.

* Tree-sitter fails to reliably extract code structures in JavaScript repositories that use loosely bound
syntax such as arrow functions, preventing MagentLess from constructing contextual windows
around candidate edits (e.g., iamkun__dayjs-2532.traj|and iamkun__dayjs-2399.traj). This exposes
a structural brittleness in syntax-driven workflows when applied to syntactically permissive lan-
guages, motivating future extensions of MagentLess toward greater tolerance to parsing failure and
language-specific irregularities.

* In some JavaScript projects, agents sometimes invoke pnpm to launch development servers as
part of the repair routine. However, current agent frameworks lack support for managing long-
lived, interactive processes, often resulting in premature termination or container crashes (e.g.,
sveltejs__svelte-12460.traj and sveltejs__svelte-10077.traj). Future agents should support persistent
shell sessions and interactive service control, as enabled by frameworks like SWE-ReX [34].

E.8 Token Consumption

Table 12: Average cost ($) per issue of different models and methods on Multi-SWE-bench.

Methods Models Python Java TS JS Go Rust C C++
GPT-40 0.1324 0.1576 0.6230 0.0990 0.0900 0.1476 0.1520 0.2153

OpenAl-ol 0.7417 0.8680 3.6795 0.6233 0.4698 0.9682 0.8153 1.8734
OpenAl-03-mini-high ~ 0.0543 0.0978 0.2767 0.0489 0.0421 0.0847 0.0896 0.2287
Claude-3.5-Sonnet 0.1981 0.1853 0.7478 0.1213 0.1102 0.1937 0.1856 0.3280
Claude-3.7-Sonnet 0.1821 0.2393 0.7763 0.1275 0.1229 0.2933 0.1994 0.4317

MagentLess DeepSeek-V3 0.0075 0.0059 0.0192 0.0046 0.0045 0.0085 0.0091 0.0156
DeepSeek-R1 0.0105 0.0137 0.0373 0.0068 0.0070 0.0158 0.0172 0.0280
Qwen2.5-72B-Instruct ~ 0.0051 0.0092 0.0324 0.0042 0.0046 0.0077 0.0084 0.0204
Doubao-1.5-pro 0.0055 0.0132 0.0279 0.0046 0.0041 0.0142 0.0138 0.0240
Doubao-1.5-thinking 0.0251 0.0381 0.1412 0.0198 0.0188 0.0399 0.0438 0.1185

Gemini-2.5-Pro 0.1511 0.1130 0.3371 0.0735 0.1012 0.1092 0.1018 0.2431
Llama-4-Maverick 0.0140 0.0152 0.0534 0.0109 0.0110 0.0196 0.0158 0.0311

GPT-40 0.4480 0.1731 0.1623 0.1236 0.1390 0.1565 0.1444 0.1883

OpenAl-ol 37499 0.6797 0.6644 0.5772 0.7749 0.8151 0.7010 0.6353
OpenAl-03-mini-high ~ 0.2722 0.0450 0.0350 0.0410 0.0441 0.0538 0.0422 0.0572
Claude-3.5-Sonnet 0.1831 0.1546 0.1110 0.1266 0.1091 0.1669 0.1451 0.1794
Claude-3.7-Sonnet 0.1626 0.1887 0.1700 0.1654 0.1698 0.1901 0.1803 0.1810
MSWE-agent DeepSeek-V3 0.0260 0.0070 0.0035 0.0049 0.0037 0.0084 0.0034 0.0068
DeepSeek-R1 0.0075 0.0083 0.0050 0.0066 0.0055 0.0082 0.0069 0.0088
Qwen2.5-72B-Instruct ~ 0.0241 0.0106 0.0083 0.0072 0.0063 0.0079 0.0061 0.0134
Doubao-1.5-pro 0.0083 0.0052 0.0028 0.0046 0.0039 0.0053 0.0042 0.0046
Doubao-1.5-thinking 0.0329 0.0334 0.0194 0.0217 0.0187 0.0353 0.0284 0.0400
Gemini-2.5-Pro 0.1215 0.0862 0.0783 0.0971 0.0794 0.1208 0.1044 0.1046
Llama-4-Maverick 0.0088 0.0094 0.0077 0.0076 0.0066 0.0092 0.0066 0.0090

GPT-40 0.0758 0.0682 0.1054 0.1038 0.0751 0.1155 0.1078 0.1031

OpenAl-ol 0.3608 0.3564 0.5374 0.5885 0.4099 0.5262 0.5081 0.4171
OpenAl-o3-mini-high ~ 0.0465 0.0422 0.0528 0.0581 0.0462 0.0476 0.0407 0.0449
Claude-3.5-Sonnet 02124 0.1761 0.2041 0.2089 0.1908 0.2601 0.2523 0.2086
Claude-3.7-Sonnet 0.1957 0.2032 0.2028 0.2261 0.2080 0.2500 0.2002 0.2158

MopenHands DeepSeek-V3 0.0070 0.0059 0.0059 0.0069 0.0047 0.0079 0.0054 0.0080
° DeepSeek-R1 0.0128 0.0134 0.0113 0.0141 0.0130 0.0177 0.0168 0.0191
Qwen2.5-72B-Instruct ~ 0.0077 0.0090 0.0084 0.0074 0.0073 0.0092 0.0084 0.0089
Doubao-1.5-pro 0.0037 0.0036 0.0025 0.0034 0.0031 0.0036 0.0037 0.0038
Doubao-1.5-thinking 0.0245 0.0198 0.0254 0.0259 0.0213 0.0268 0.0252 0.0286
Gemini-2.5-Pro 0.1896 0.0848 0.1839 0.1891 0.1497 0.1705 0.2100 0.1732
Llama-4-Maverick 0.0078 0.0080 0.0076 0.0079 0.0079 0.0100 0.0095 0.0094

Tab. [13|compares the average token consumption for various languages using the GPT-4o tokenizer.
Overall, token consumption varies between methods and languages. Among languages, TS exhibits
the highest token consumption in MagentLess, whereas Python is the most token-intensive language
in MSWE-agent. Notably, Go demonstrates relatively low token consumption in both input and

32

https://github.com/multi-swe-bench/experiments/blob/main/evaluation/typescript/verified/20250329_MagentLess_Doubao-1.5-pro/trajs/mui__material-ui-25852.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/typescript/verified/20250329_MagentLess_Doubao-1.5-pro/trajs/mui__material-ui-37850.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/javascript/verified/20250329_MagentLess_Claude-3.7-Sonnet/trajs/iamkun__dayjs-2532.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/javascript/verified/20250329_MagentLess_Claude-3.7-Sonnet/trajs/iamkun__dayjs-2399.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/javascript/verified/20250329_MSWE-agent_OpenAI-o1/trajs/sveltejs__svelte-12460.traj
https://github.com/multi-swe-bench/experiments/blob/main/evaluation/javascript/verified/20250329_MSWE-agent_OpenAI-o1/trajs/sveltejs__svelte-10077.traj

Table 13: Average token consumption on Multi-SWE-bench. In. represents the average number of
input tokens (in thousands), and Out. is the average number of output tokens (in thousands).

Models | Python | Java | TS | JS | Go | Rust | C | C++
| In. Out. | In. Out. | In. Out. | In. Out. | In. Out | In Out. | In. Out. | In. Out.
MagentLess
GPT-40 36.15 4.20 5210 274 | 241.18 2.01 | 2948 253 | 25.14 272 | 4823 271 50.26 2.64 | 7638 244
OpenAl-ol 3443 3.76 50.18 1.92 | 24047 121 | 36.53 1.26 | 2451 1.70 58.59 1.49 | 48.08 1.57 | 119.64 1.31
OpenAl-03-mini-high | 31.38 4.50 79.48 236 | 24539 1.54 | 3828 1.55 | 31.58 1.67 68.80 2.05 73.48 1.99 | 20029 1.91
Claude-3.5-Sonnet 39.13 538 | 4842 267 | 23993 186 | 2846 239 | 2280 2.79 51.25 2.66 | 49.13 2.55 96.85 2.49
Claude-3.7-Sonnet 2799 6.54 63.97 3.16 | 24836 208 | 26.66 3.17 | 2279 3.63 81.15 333 50.52 3.19 | 12934 291
DeepSeek-V3 39.97 426 | 42.35 2.70 | 24432 192 | 2644 251 | 2278 2.65 83.04 247 92.53 2.38 | 189.08 2.11
DeepSeek-R1 31.35 2.80 70.35 176 | 249.02 1.10 | 2823 130 | 21.69 1.79 88.73 1.52 | 100.99 139 | 177.66 1.41
Qwen2.5-72B-Instruct | 28.60 3.46 62.95 2.52 | 24398 1.65 | 26.11 214 | 2467 3.36 50.63 289 55.93 2.78 | 150.44 219
Doubao-1.5-pro 42.75 291 116.09 1.36 | 249.51 155 | 3637 207 | 2938 3.15 | 12467 1.62 | 121.94 152 | 21621 0.76
Doubao-1.5-thinking 31.76 331 61.34 172 | 24836 0.96 | 29.62 147 | 2470 224 64.31 1.76 71.87 1.61 | 20695 1.17
Gemini-2.5-Pro 39.05 10.22 | 51.63 4.84 | 24251 340 | 30.18 3.58 | 2832 6.58 55.77 3.95 49.51 3.99 | 16989 3.07
Llama-4-Maverick 35.54 8.07 | 4849 646 | 24305 5.61 | 3095 553 | 2625 6.79 7147 628 54.09 590 | 12845 6.35
MSWE-agent
GPT-40 16691 3.08 51.05 454 | 4639 463 | 3201 436 | 3673 471 4379 471 39.47 457 5549 496
OpenAl-ol 24344 1.64 3336 299 30.05 3.56 | 2570 3.19 | 37.71 349 39.51 3.71 34.05 3.17 29.24 328
OpenAl-03-mini-high | 240.23 1.82 26.37 3.64 18.27 339 | 21.33 399 | 2646 341 32.84 4.03 2324 378 3239 490
Claude-3.5-Sonnet 3330 555 32.09 3.89 21.51 3.10 | 2394 3.66 | 21.06 3.06 3547 4.03 31.16 344 3822 432
Claude-3.7-Sonnet 31.86 446 38.96 479 3208 492 | 3216 4.60 | 3379 4.56 | 4059 456 38.41 4.34 3696 4.67
DeepSeck-V3 12.63 2283 | 3508 4.14 15.73 2.15 | 1978 323 | 1534 243 3398 547 1626 2.07 3128 418
DeepSeck-R1 11.76 ~ 2.65 17.51 2.69 9.91 1.66 | 936 243 | 1047 1.85 13.98 2.86 11.34 244 14.64 3.06
Qwen2.5-72B-Instruct | 164.42 6.69 5343 926 39.58 7.82 | 3521 645 | 2253 838 3649 7.93 28.90 576 | 6729 11.69
Doubao-1.5-pro 72.58 1.30 37.75 3.73 19.18 246 | 3290 3.68 | 2539 391 38.09 4.04 29.03 3.65 3267 359
Doubao-1.5-thinking 47.57 2.86 3532 6.19 21.06 347 | 2191 427 | 19.06 3.65 3747 653 3049 5.14 | 43.63 7.09
Gemini-2.5-Pro 25.81 8.92 30.79 478 2576 4.61 | 3257 5.64 | 2522 479 | 4526 643 39.10 555 3699 5.84
Llama-4-Maverick 2132 531 | 3241 341 | 2568 3.07 | 2455 3.4 | 20.66 290 | 32.13 331 | 21.96 262 | 3190 3.11
MopenHands
GPT-40 25.35 1.24 22.01 1.32 35.76 1.60 | 3551 1.50 | 2396 1.52 | 40.40 1.45 3480 208 34.61 1.66
OpenAl-ol 19.27 1.20 18.69 1.27 27.28 2.14 | 3096 2.07 | 21.09 1.56 28.90 1.55 27.18 1.67 21.55 1.57
OpenAl-03-mini-high | 21.52 5.18 22.82 3.88 30.70 432 | 36.57 4.06 | 2544 414 30.64 3.15 23.98 326 | 2376 4.26
Claude-3.5-Sonnet 3235 7.69 31.97 535 35.88 6.43 | 3891 6.14 | 2731 726 5551 6.23 5579 5.66 35.85 6.74
Claude-3.7-Sonnet 26.04 7.84 2843 7.86 31.06 7.31 | 38.06 7.46 | 30.05 786 | 4830 7.00 35.25 6.30 33.14 776
DeepSeek-V3 18.97 5.16 26.35 3.65 2660 3.69 | 29.08 443 | 1542 331 3290 5.05 21.77 3.53 30.67 5.36
DeepSeek-R1 11.25 5.13 17.15 5.04 12.71 433 | 17.85 529 | 12,65 5.14 17.58 6.95 24.16 6.11 17.38 7.62
Qwen2.5-72B-Instruct | 27.28 10.38 | 33.26 11.80 | 36.86 9.12 | 28.84 9.07 | 21.17 1135 | 37.14 1099 | 3502 9.69 | 3534 10.88
Doubao-1.5-pro 2316 395 | 2415 335 | 1834 1.66 | 2375 276 | 1821 378 | 2740 207 | 2654 282 | 2607 344
Doubao-1.5-thinking 1771 6.63 | 1858 425 | 2650 479 | 2379 572 | 1589 564 | 2420 601 | 2453 521 | 23.62 7.00
Gemini-2.5-Pro 27.38 1554 | 2039 593 | 36.15 13.87 | 36.26 14.38 | 30.59 11.15 | 4345 11.61 | 4597 1525 | 3581 12.84
Llama-4-Maverick 2212 396 | 2193 424 | 2115 391 | 2227 400 |21.85 415 | 31.64 436 | 31.34 386 | 29.01 427

output, likely due to its minimalistic syntax and clear conventions, which contribute to its compact
representation and reduced token overhead. Additionally, in MSWE-agent for Python, we observe
increased token usage on LLMs, including GPT-40, OpenAl-o1, OpenAl-o03-mini-high, and Qwen2.5-
72B-Instruct. This is because we maintain the original SWE-agent implementation for Python, which
does not incorporate the over-length truncation mechanism applied to other languages.

F Potential Societal Impacts

Multi-SWE-bench can positively impact software engineering by improving automated issue resolu-
tion across multiple programming languages, leading to faster and more reliable software development.
However, it may also lead to job displacement in certain areas of software maintenance and introduce
risks if models generate errors or are misused for malicious purposes. To mitigate these risks, we
advocate for responsible use, transparency, and continuous monitoring.

33

	Introduction
	Related Work
	Multi-SWE-bench Construction
	Phase 1: Repository Selection
	Phase 2: Pull Request Crawling
	Phase 3: Environment Determination
	Phase 4: Pull Request Filtering
	Phase 5: Manual Verification

	Characteristics of Multi-SWE-bench
	Experimental Setups
	Experimental Results
	Performance on Multi-SWE-bench
	Influencing Factors of Performance
	Cost

	Conclusions and Future Works
	Manual Verification Results
	Multi-SWE-RL
	Troubleshooting
	Implementations of Issue Resolving Methods
	Additional Experimental Results
	Multi-SWE-bench Mini
	Performance across Various Methods
	Performance across Different Repositories
	Detailed Results across various difficulty levels
	Influence of Issue Description
	Influence of Fix Patch
	Case Study
	Language-General Case
	Language-Specific Case

	Token Consumption

	Potential Societal Impacts

