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Abstract

We present a systematic evaluation of large lan-001
guage models’ sensitivity to argument roles,002
i.e., who did what to whom, by replicating psy-003
cholinguistic studies on human argument role004
processing. In three experiments, we find that005
language models are able to distinguish verbs006
that appear in plausible and implausible con-007
texts, where plausibility is determined through008
the relation between the verb and its preced-009
ing arguments. However, none of the models010
capture the same selective patterns that human011
comprehenders exhibit during real-time verb012
prediction. This indicates that language mod-013
els’ capacity to detect verb plausibility does not014
arise from the same mechanism that underlies015
human real-time sentence processing.016

1 Introduction017

Humans rapidly make predictions when compre-018

hending language. However, certain types of infor-019

mation do not immediately impact predictions, and020

a well-studied case of this in the sentence process-021

ing literature involves argument roles.022

Argument roles refer to the roles of participants023

that take part in the event described by a sentence,024

such as who is the agent (do-er of the action) and025

who is the patient (undergo-er of the action). One026

hallmark of language understanding is the capacity027

to compute the meanings of arguments and their028

roles in relation to the verb given in a sentence.029

Studies with human participants have shown that in030

contrast to the lexical meanings of arguments, the031

roles assigned to the arguments by the structure are032

not immediately used to predict an upcoming verb.033

For example, given the context (1a), a verb like034

served is a highly expected continuation, whereas035

swapping the arguments (1b) makes the same verb036

served no longer appropriate. However, despite the037

difference in how likely the verb is given the preced-038

ing argument role context, human comprehenders039

show the same initial response to a verb when it040

appears in a role-appropriate and role-reversed con- 041

text (Kim and Osterhout, 2005; Chow et al., 2016). 042

This has been taken to indicate that argument roles 043

have a delayed impact on verb prediction in human 044

sentence processing. 045

1. a. The customer that the waitress... 046

b. The waitress that the customer... 047

Recent work has used paradigms from experi- 048

mental psycholinguistics to evaluate language mod- 049

els’ representation of syntactic and semantic knowl- 050

edge, and language models trained on next-word 051

prediction alone have shown strong levels of corre- 052

spondence with human behavioral and neural data. 053

However, despite extensive work on the linguistic 054

patterns they are able to learn, the extent to which 055

they accurately encode argument role information 056

and utilize it in distinguishing plausible and implau- 057

sible sentences remains an open question. Previous 058

work has mostly focused on analyzing whether 059

models can distinguish plausible or implausible 060

sentences that involve argument role manipulations 061

(Ettinger, 2020; Papadimitriou et al., 2022; Wilson 062

et al., 2023a; Kauf et al., 2023), where factors such 063

as animacy are confounded, making it difficult to 064

precisely observe models’ sensitivity to argument 065

role information. 066

In this paper, we take a new approach in evalu- 067

ating role-sensitivity in large language models by 068

focusing on models’ representations of verbs that 069

appear in either plausible or implausible sentences, 070

where plausibility is determined based on the verb’s 071

relation with the preceding argument-role bindings 072

enforced by the context. 073

We adapt materials used in psycholinguistic 074

studies evaluating humans’ sensitivity to argument 075

roles, which allows us to use carefully constructed 076

minimal pairs of sentences which only differ with 077

respect to argument roles, while controlling for 078

other factors like animacy. This serves as a rig- 079

orous test in examining models’ ability to extract 080
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argument-role bindings based on sentence structure,081

as it requires models to go beyond simply learning082

relations between various arguments and verbs, i.e.,083

between real-world events and participants that are084

likely to be involved in those events. We compare085

model performance on two different types of argu-086

ment role manipulations, in addition to a baseline087

condition which has shown to elicit immediate sen-088

sitivity in humans, as a way to more systematically089

compare human and model behavior.090

Through three experiments, we find that i) lan-091

guage models show weak sensitivity to argument092

role information relative to role-independent argu-093

ment meanings, similar to human initial predic-094

tions, ii) models do not show the same consistency095

across different types of argument role manipula-096

tions as humans do, indicating a difference in the097

way argument roles are processed in models and098

humans, and iii) weak performance does not neces-099

sarily arise from a misrepresentations of arguments.100

These results overall indicate that even if models101

are able to distinguish plausible and implausible102

verbs to varying degrees of success, this lack of103

generalization across the conditions that share a104

structural relation suggests that the models do not105

use the same mechanism as humans to compute106

argument-verb relations.107

2 Related Work108

To evaluate language models’ representations of109

argument roles, reversing the order of the verb’s110

arguments is a common design, paralleling the111

stimuli in human experiments. Researchers then112

compare differences in the reversed and felicitous113

conditions, using various metrics from the mod-114

els. There are two major issues with existing work115

that we address. First, existing work often relies116

on the animacy of the verbs’ arguments. Second,117

work using different metrics often offer conflicting118

conclusions.119

Papadimitriou et al. (2022) claim language mod-120

els are able to effectively make use of word order-121

related information when arguments are switched122

for verbs with transitive subjects and objects, re-123

flecting these distinctions imposed by selectional124

constraints on the verb in their representations. For125

instance, the models they evaluated would repre-126

sent The chef chopped the onion differently from127

The onion chopped the chef. For this evaluation,128

they automatically switch the order of arguments in129

naturalistic corpora. Thus, it is unclear if these pos-130

itive results are based on properties of the lexical 131

items (i.e. frequency, animacy) that are learned 132

more easily from distributional information, or 133

more abstract representations of argument roles.1 134

A more reliable way to measure the linguistic ca- 135

pacity of language models is to effectively treat 136

them as psycholinguistic subjects (Futrell et al., 137

2019; Ettinger, 2020, among others) across a range 138

of configurations (see reviews by Linzen and Ba- 139

roni (2021); Pavlick (2022) and Mahowald et al. 140

(2024)). Work in this vein presents models with 141

minimal pairs of sentences and analyzes differences 142

in language models’ responses to each sentence. 143

Language models’ sensitivity to a variety of phe- 144

nomena been evaluated with this paradigm (Linzen 145

et al., 2016; Warstadt et al., 2020; Wilcox et al., 146

2023b). Looking at argument roles specifically, 147

Kauf et al. (2023) find they are able to distinguish 148

plausible events from implausible ones, assigning 149

higher probabilities to sentences like The teacher 150

bought the laptop. as opposed to The laptop bought 151

the teacher., but only when one participant is ani- 152

mate and the other is inanimate. Given the ability 153

of language models to handle animacy even in atyp- 154

ical settings (Hanna et al., 2023), it is possible that 155

the results of both Kauf et al. (2023) and Papadim- 156

itriou et al. (2022) may be tapping into this ability 157

rather than a generalized representation of argu- 158

ment roles. 159

Ettinger (2020) presented a suite of psycholin- 160

guistically motivated diagnostics for BERT; one of 161

these tests was on argument role reversals, which 162

was similar in spirit to some of Kauf et al. (2023)’s 163

stimuli but only tested animate participants. This 164

study had different conclusions, finding that BERT 165

was indeed sensitive to these role-related contrasts, 166

generating role reversals in appropriate contexts, 167

but not on par with humans. Working with this 168

dataset, Li et al. (2021) evaluate the probabilities 169

the models assign to the sentence at individual lay- 170

ers and finds that they are not sensitive to the role 171

reversal sentences. These studies all use different 172

methods of evaluation. Ettinger (2020) queried 173

sentence completions made by BERT, while Kauf 174

et al. (2023) determined whether the language mod- 175

els assigned lower probabilities to the implausible 176

sentence of the pair. 177

We take a different approach to examine lan- 178

guage models’ sensitivity to argument roles by 179

1If such generalizations exist, they are largely tied to the
presence of surface forms in the training data (Wilson et al.,
2023b).
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replicating psycholinguistic experiments with mul-180

tiple conditions designed to isolate humans’ repre-181

sentations of argument roles. These experiments182

track human processing in real time and specifically183

examine participants’ responses to verbs, which184

reflect how the representation of the sentence is185

built up. To tighten the link to whether models186

are making human-like judgments, we also exam-187

ine the models’ responses to the verbs rather than188

sentence-level metrics through behavioral and rep-189

resentational methods in Experiments 1 and 2.190

Furthermore, one reason why Transformers are191

hypothesized to capture many empirical patterns in192

human sentence processing is that their attention193

mechanisms are able to efficiently keep track of194

long distance dependencies (Ryu and Lewis, 2021).195

Despite findings localizing handling certain syn-196

tactic dependencies to individual attention heads197

(Clark et al., 2019; Vig and Belinkov, 2019; Jian198

and Reddy, 2023), little work has been done on199

connecting these measures to psycholinguistic find-200

ings. Ryu and Lewis (2021) specifically found an201

attention head that handled subject-verb agreement202

in GPT2, which corresponded with human process-203

ing of these dependencies. This approach has not204

been tried for argument roles in a more generalized205

setting.2 We do so in Experiment 3.206

3 Psycholinguistic Data207

We use materials from previous psycholinguistic208

experiments which were carefully constructed to209

evaluate human comprehenders’ sensitivity to argu-210

ment roles in real-time sentence processing. These211

stimuli sets were designed to compare electrophys-212

iological responses to verbs that appeared in dif-213

ferent sentence contexts, and the different condi-214

tions have shown to elicit distinct N400 amplitudes,215

a neural response taken to reflect how strongly a216

target word was predicted based on the previous217

context (Kutas and Hillyard, 1980).218

We use the materials from Chow et al. (2016)219

and Kim and Osterhout (2005), and label the con-220

ditions as swap-arguments, change-verb,221

and replace-argument (Table 1). Both stud-222

ies were conducted in English on native speakers.223

Both the swap-arguments and change-224

verb conditions include manipulations of argu-225

ment roles and verb plausibility. In the swap-226

2However, see improvements from Timkey and Linzen
(2023) modeling this specific case and Oh and Schuler (2023a)
which shows the success of attention in modeling broad-
coverage sentence processing.

arguments condition, the two arguments pre- 227

ceding the verb in the plausible sentence are 228

swapped to create the implausible sentence. In 229

the change-verb condition, the verb form is 230

changed to create the plausible and implausible 231

sentences. Although the two conditions involve 232

different changes, both have the same consequence: 233

verb plausibility changes because of the way the 234

argument(s) are assigned different roles, while the 235

argument(s) that appear in the context remain the 236

the same (e.g., waitress-customer, meal). In ad- 237

dition to the two role-related conditions, we also 238

include a replace-argument condition (taken 239

from Chow et al. (2016)), which involves replac- 240

ing one of the arguments with an entirely different 241

noun. This results in changing the argument mean- 242

ing rather than argument roles, and this has shown 243

to yield immediate predictability effects in human 244

verb predictions, as opposed to the previous two 245

conditions which both fail to elicit rapid sensitivity. 246

The key human empirical pattern to which we 247

compare language models’ behavior is the rela- 248

tively weak sensitivity to argument roles (swap- 249

arguments & change-verb) compared to ar- 250

gument meanings (replace-argument). 251

4 Models & Experiments 252

We use the following pre-trained language models 253

for our analyses: GPT2 (small, medium, and large) 254

(Radford et al., 2019), BERT (base-uncased, large- 255

uncased) (Devlin et al., 2019), and RoBERTa (base, 256

large) (Liu et al., 2019). Details of the model prop- 257

erties are included in Appendix A. All models were 258

accessed through the transformers (Wolf et al., 259

2020) or minicons library (Misra, 2022), built to 260

work with the Huggingface API. Code and data 261

will be made publicly available upon acceptance. 262

We carry out three experiments, evaluating lan- 263

guage models’ ability to differentiate plausible and 264

implausible verbs given the sentence. We specifi- 265

cally focus on addressing the following questions: 266

(i) Do the models show a human-like pattern across 267

the different conditions? (ii) Are these contrasts 268

reflected in the models’ representations across the 269

intermediate layers? (iii) Do patterns in the models’ 270

attention weights reflect argument role sensitivity? 271

5 Experiment 1: Surprisal Effects 272

One of the most well-established measures linking 273

language models to cognitive hypotheses is sur- 274

prisal, or the negative log probability of a word 275
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Condition Items Plausible Implausible
swap-arguments 120 The restaurant owner forgot

which customer the waitress
served during dinner yesterday.

The restaurant owner forgot
which waitress the customer
served during dinner yesterday.

change-verb 96 The hearty meal was devoured
with gusto.

The hearty meal was devouring
by the kids.

replace-argument 120 The secretary confirmed which
illustrator the author had hired
for the new book.

The secretary confirmed which
readers the author had hired for
the new book.

Table 1: Example sentences (1 pair = 1 item) in each condition. The swap-arguments and change-verb
conditions involve argument role manipulations, while replace-argument serve as a control. Humans show
greater sensitivity in the replace-argument than in the swap-arguments and change-verb conditions.

given context. Surprisal theory (Hale, 2001; Levy,276

2008) states that the difficulty associated with pro-277

cessing linguistic information can be operational-278

ized with this measure. Language model surprisal279

has shown to strongly correlate with both human280

reading times (Smith and Levy, 2013; Shain et al.,281

2024) as well as the N400 EEG response (Frank282

et al., 2013; Michaelov et al., 2024). Current Trans-283

former models perform more effectively than other284

methods of language modeling (Merkx and Frank,285

2021), and this relationship with reading times has286

been established cross-linguistically (Wilcox et al.,287

2023a).3288

5.1 Methods289

For each item, we compute the surprisal effect at290

the verb. Even if we might expect models to assign291

lower probability, and thus higher surprisal, to im-292

plausible continuations, it is important to determine293

the surprisal effect on individual items, following294

work on the targeted syntactic evaluation of lan-295

guage models (Marvin and Linzen, 2018; Wilcox296

et al., 2023b). This allows us to quantify not just297

whether the model is successfully capturing dis-298

tinctions between sentences, but to what extent it299

is able to do so. We operationalize this effect in300

Equation 1, such that contexti and contextp are301

implausible and plausible versions of the same con-302

text, respectively, and SLM is the language model’s303

surprisal in Equation 2.304

SLM (verb, contexti)− SLM (verb, contextp)
(1)305306

SLM (w, c) = − log2 PLM (w|c) (2)307

Verb surprisal estimates were obtained with308

Equation 1, and the surprisal effect for each item309

3Correlations do not necessarily increase with language
model scale (Steuer et al., 2023; Oh and Schuler, 2023b).

was obtained by subtracting the surprisal of the 310

verb in the implausible context from the plausible 311

context in all experimental conditions. Therefore, 312

a positive value indicates that the model correctly 313

assigned lower surprisal to the target verb in the 314

plausible context relative to the implausible con- 315

text, i.e., role-sensitivity, while a value close to zero 316

or negative indicates that the model incorrectly as- 317

signed similar or greater surprisal to the verb in the 318

plausible context than the implausible context. 319

5.2 Results 320

We report the surprisal effect in all the models in 321

Figure 1. In line with our expectations, the surprisal 322

effect is larger for the replace-argument 323

items than the swap-arguments items, show- 324

ing that models are less sensitive to role rever- 325

sals compared to replace-arguments. GPT2- 326

small in particular did not exhibit any sensitiv- 327

ity to the role-reversed sentences, while showing 328

considerably more sensitivity to the replace- 329

argument sentences, consistent with Chow et al. 330

(2016). However, one key difference between the 331

model and human responses is that all the mod- 332

els’ effects for change-verb were far higher 333

than both the swap-arguments and the baseline 334

replace-argument case. Instead of showing 335

a smaller effect, like for swap-arguments, the 336

surprisal effect for these sentences is far higher. 337

The performance of GPT2-small for the swap- 338

arguments condition mirrors the early stages 339

of human processing more closely, as these role- 340

reversed sentences do not elicit an N400 poten- 341

tial. However, humans are also not sensitive to 342

the manipulation in the change-verb stimuli 343

since they use an abstract, generalized representa- 344

tion of argument roles, which is a major contrast 345

with the models’ surprisal. Based on the compa- 346
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Figure 1: Surprisal effects plotted by condition and model.

rably better performance on the change-verb347

and replace-argument conditions relative to348

swap-arguments, it is likely that the models349

are making use of specific lexical cues to make350

their inferences rather than the structural relations351

humans are using. This is because the two con-352

ditions the model does better on introduce lexical353

variation in the stimuli, which is not the case for354

swap-arguments.355

6 Experiment 2: Probing356

6.1 Methods357

While the surprisal estimates in Experiment 1 are358

computed based on the final layer of the models, in359

Experiment 2, we investigate which layers encode360

argument role information in verb representations361

by conducting a probing analysis. To show role-362

sensitivity at the verb, the model must correctly363

analyze the position of the arguments, represent the364

arguments with a role-specific meaning, and use365

that information to determine the plausibility of the366

verb that appears following the arguments. As these367

computations involve both syntactic and semantic368

processing, it is possible that such knowledge is369

encoded in earlier layers of the models which are370

not detectable in surprisal estimates based on final371

layer representations (Tenney et al., 2019; Jawahar372

et al., 2019). We investigate this by implementing373

layer-wise probing classifiers (Belinkov, 2022), on374

GPT2-small, which showed the most human-like375

pattern in the surprisal analysis, as well as GPT2-376

medium, BERT-large, and RoBERTa-large, which377

have the same number of layers and show better378

performance with the swap-arguments condi-379

tion than GPT2-small.380

For each condition, and for each layer, we train a381

logistic regression classifier on the models’ rep- 382

resentations of the target verbs, which predicts 383

whether the verb is contextually appropriate or in- 384

appropriate. We choose to use a linear classifier 385

because evidence points to conceptually relevant 386

information being linearly separable in embedding 387

space (Nanda et al., 2023). Target verbs in the plau- 388

sible sentence were coded as 0 and the same target 389

verbs in the implausible sentence were coded as 1. 390

Verb representations from each layer of each 391

model were extracted using the minicons library. 392

We report accuracies of each probe using 10-fold 393

cross-validation with the scikit-learn imple- 394

mentation (Pedregosa et al., 2011). During training, 395

we used a controlled method of splitting the train 396

and test data sets, where the plausible and implau- 397

sible verb pairs were always included in the same 398

data set. This was to prevent the model from simply 399

matching a verb in one context to the same verb in 400

the counterpart context. 401

A high classification accuracy indicates that 402

the verb representations extracted from the model 403

contains information about the plausibility of the 404

verb given the sentence it appears in - the model 405

is able to distinguish contextually appropriate and 406

inappropriate verbs. 407

6.2 Results 408

The probes trained on the verb representations in 409

the change-verb condition performed at ceil- 410

ing for all models (Figure 2). This suggests that 411

in all models, the systematic change in verb form 412

(-ed vs. -ing) is robustly encoded in verb represen- 413

tations. This pattern corroborates the surprisal re- 414

sults, where the change-verb condition showed 415

significantly large surprisal effects in all models, 416

suggesting that the models can effectively distin- 417
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Figure 2: Classification accuracies for probes trained to distinguish plausible and implausible verbs under different
conditions. Highlighted areas indicate standard errors of the mean across the 10 cross-validation folds. Dotted lines
indicate at-chance accuracy.

guish verbs in the plausible and implausible con-418

texts when the verb form differs between the two419

contexts.420

Classification accuracy was generally lower421

for the conditions where the verb was kept the422

same and plausibility was determined by changing423

properties of the preceding context, i.e., swap-424

arguments & replace-argument, rather425

than verb form. GPT2-small did not improve426

greatly from chance-level performance. The larger427

models reached higher classification accuracy, with428

GPT2-medium and BERT-large reaching 70% ac-429

curacy, while RoBERTa showed the highest per-430

formance, reaching near 80-90% accuracy. For431

these larger models, decoding accuracy gradually432

increased throughout the layers and the particular433

increase in the middle layers suggests that verb434

plausibility information is more effectively repre-435

sented from the middle layers.436

While the accuracies between the swap-437

arguments and replace-argument condi-438

tions were overall comparable, the replace-439

argument condition showed slightly higher ac-440

curacy than the swap-arguments condition in441

earlier layers of BERT and RoBERTa, while the442

same contrast appeared in later layers of GPT2443

(small and medium). This suggests that role-444

dependent verb plausibility information may be445

encoded at different stages of processing in uni-446

and bi-directional models. Finally, there was a447

tendency for the accuracies to fluctuate more and448

even decrease at the final layers, particularly for449

the swap-arguments condition in RoBERTa,450

which drops from 90% to 70% accuracy. This sug-451

gests that role-dependent plausibility information452

may become partially lost in models’ representa-453

tions.454

7 Experiment 3: Attention 455

7.1 Methods 456

One question based on the previous experiment 457

findings is what gives rise to models’ relatively 458

weak performance on determining verb plausibil- 459

ity based on argument role information, particu- 460

larly when the argument role is manipulated by 461

swapping the position of the arguments (swap- 462

arguments condition). One possibility is that 463

for these items, the models often incorrectly parse 464

the argument roles indicated by the structure. It is 465

possible that the models get confused about which 466

noun is in which position and takes on which argu- 467

ment role. This could also offer a reason for why 468

models perform better with the change-verb 469

items, where argument position is fixed and held 470

constant between the plausible and implausible con- 471

ditions. In Experiment 3, we examine how models 472

treat the preceding arguments by conducting an at- 473

tention analysis that focuses on whether the models 474

correctly allocate attention to the target subject at 475

the verb position. 476

We adapt a similar method to that used in previ- 477

ous work. Ryu and Lewis (2021) inspected the at- 478

tention patterns of GPT2 in order to probe whether 479

the presence of a partially-matching distractor word 480

interferes with the model’s processing of a subject- 481

verb dependency. The authors found an attention 482

head that was specialized in finding the subject 483

and examined whether the attention to the target 484

subject differed between the intervening and non- 485

intervening conditions. 486

We compare the attention profiles of GPT2-small 487

and RoBERTa-large, the models that performed 488

the worst and best, respectively, in the previous 489

experiments. For each model, we first define an 490
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attention head that allocates the greatest attention491

weight from the verb to the subject in the sentence.492

For example, given the sentence, The restaurant493

owner forgot which customer the waitress served494

during dinner yesterday, we calculated the atten-495

tion weight from the verb served to the subject496

waitress for each layer and head. We define the at-497

tention head that had the greatest attention weight498

to the subject as the subject attention head. The499

selected subject attention head was then used to500

calculate the attention from the verb to the subject501

and object, respectively. A high attention weight502

to the subject and a low attention weight to the ob-503

ject indicate that the model correctly distinguishes504

subjects from objects.505

7.2 Results506

For GPT2-small, we identified layer 3 head 10507

(head indices: 2, 9) as the subject attention head,508

and for RoBERTa-large, we identified layer 13 head509

16 (head indicies: 12, 15) as the subject attention510

head. The attention weight to the subject averaged511

across all items was .52 for GPT2-small and .68512

for RoBERTa, indicating that these attention heads513

allocated most of the attention from the verb to the514

subject across the experiment items.515

The results are shown in Table 2. We found516

similar attention patterns between the swap-517

arguments and replace-argument condi-518

tions. For both GPT2 and RoBERTa, the subject519

attention head correctly allocates most of its atten-520

tion to the subject rather than the object. However,521

RoBERTa gives less attention overall to the object522

than GPT2 does, with the attention weight to the523

object remaining below 10%.524

The results show that even GPT2-small, which525

did not show clear sensitivity to argument roles in526

the surprisal and probing analyses, correctly allo-527

cates attention to subjects with the subject head,528

though its attention is also distributed to the object529

more than the better performing RoBERTa-large.530

The attention analysis, therefore, suggests that it531

is unlikely that weak role-sensitivity at the verb532

arises from being confused about which argument533

is in which position or which argument is assigned534

which role. Rather, the weak performance could535

be due to how the models encode the preceding536

argument role information into the representations537

of the verb. Models may be able to correctly dis-538

tinguish argument roles but less capable of using539

this information to represent role-compatible and540

role-inappropriate verbs in different ways.541

8 Discussion 542

While previous studies have examined language 543

models’ knowledge of argument roles by testing 544

their capacity to distinguish plausible and implau- 545

sible sentences, we take a new approach by exam- 546

ining whether models’ representations of verbs in 547

sentences encode plausibility based on preceding 548

argument role information. This method, in com- 549

bination with the controlled sets of materials used 550

in psycholinguistic studies that examine human 551

comprehenders’ role-sensitivity, offers a rigorous 552

and systematic test of language models’ sensitivity 553

to argument roles and a way to directly compare 554

human and model behavior. In the surprisal and 555

probing analyses, we find that language models 556

generally exhibit greater sensitivity to changes in 557

argument meanings than to changes in argument 558

roles, similar to humans’ initial predictions. How- 559

ever, unlike humans, they fail to show the same 560

pattern across different types of argument role ma- 561

nipulations. Whether the argument role and verb 562

compatibility is manipulated by swapping the ar- 563

gument positions or by changing the verb form, 564

humans show the same processing pattern, whereas 565

language models treat the two cases differently. 566

The relatively weak sensitivity to verb plausi- 567

bility when the preceding arguments are swapped, 568

which we observed in Experiments 1 and 2, is un- 569

likely due to a misrepresentation of the context, as 570

the models’ attention patterns in Experiment 3 sug- 571

gest that roles are accurately represented. Rather, 572

we suggest it arises from the difficulty in evaluat- 573

ing whether a verb is plausible given the particu- 574

lar argument-role bindings enforced by the preced- 575

ing context. This involves a more complex anal- 576

ysis than simply computing context-independent 577

argument and verb co-occurrences, which is poten- 578

tially why humans’ predictions fail to make use of 579

such information rapidly during real-time predic- 580

tion (Chow et al., 2016). 581

A key divergence between the model and hu- 582

man behaviors was with regard to which condi- 583

tions caused more difficulty than others. Human 584

comprehenders show the same pattern in the swap- 585

arguments and change-verb conditions (i.e., 586

no immediate N400 role-sensitivity), both of which 587

involve the computation of argument-verb relations 588

with respect to argument roles. In all the mod- 589

els we tested, we observed greater performance 590

in the change-verb condition than the swap- 591

arguments condition. This suggests that lan- 592
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Model Condition Attention to Subject Attention to Object
Plausible Implausible Plausible Implausible

GPT2-small swap-arguments .53 (.15) .53 (.17) .18 (.10) .19 (.06)
GPT2-small replace-argument .51 (.12) .50 (.13) .19 (.09) .21 (.08)

RoBERTa-large swap-arguments .68 (.18) .70 (.20) .06 (.10) .05 (.09)
RoBERTa-large replace-argument .65 (.16) .68 (.16) .06 (.08) .04 (.02)

Table 2: Results of the attention analysis. The values represent the subject attention head’s average attention from
the verb to the subject and its attention from the verb to the object under each condition. Standard deviations are in
parentheses.

guage models treat the two cases differently, indi-593

cating an absence of a shared underlying process of594

computing argument-verb relations. This kind of595

contrast between model and human behavior with596

respect to the variability across different construc-597

tions, has also been observed with human read-598

ing time data (Arehalli et al., 2022; Huang et al.,599

2024), and offers another way of evaluating models600

against human processing mechanisms.601

One notable observation was that GPT2-small602

showed stronger correspondence with the human603

N400 data patterns, while larger models showed604

the higher performance in all experiments, which605

outperformed humans’ initial predictive process-606

ing capacities. GPT2 and variants have shown to607

be more effective at predicting human behavior608

compared to larger autoregressive models (Oh and609

Schuler, 2023c; Kuribayashi et al., 2023). Steuer610

et al. (2023) find a similar pattern, where smaller611

models predict human reading times better than612

larger ones that do better on syntactic and semantic613

judgments. Our results suggest that smaller models614

capture more immediate, online processing profiles615

of humans, and resemble human N400 patterns616

which reflect initial stages of predictive process-617

ing. Conversely, the measures derived from larger618

models more closely pattern with offline, final in-619

terpretations of humans. Nevertheless, no models620

capture the consistency between the two argument621

role manipulations which has been found with hu-622

mans. These results offer insights into drawing623

connections with human empirical findings, espe-624

cially for psycholinguists aiming to use language625

models, with regard to determining which models626

to use when simulating experiments. Additionally,627

the improved performance of larger models raises628

the question of whether scale is sufficient to learn629

these complex role-specific relationships; evalu-630

ating the argument role-reversal and replace-631

argument contrast for larger models like LLaMa632

(Touvron et al., 2023), as well as tracing the ability 633

based on the number of parameters of a language 634

model, e.g., the Pythia family of models (Biderman 635

et al., 2023), can facilitate these types of investiga- 636

tions. 637

Our work provides a critical perspective to lan- 638

guage models’ representations of argument roles 639

from a psycholinguistic perspective. Future direc- 640

tions could involve applying causal interpretability 641

methods (Meng et al., 2022; Arora et al., 2024) 642

to these sets of sentences. It may be the case 643

that larger-scale models that assign correct plau- 644

sibility ratings are implementing the similar com- 645

putations for replace-argument and reversal 646

items, which will take us further towards deter- 647

mining whether linguistic knowledge in language 648

models is as robust as it seems. 649

Limitations 650

Cross-Linguistic Coverage 651

Our investigation was focused on English, but the 652

role reversal effect has also been shown in lan- 653

guages like Mandarin (Chow et al., 2018) and Ger- 654

man (Stone and Rabovsky, 2024). Although it 655

is linguistically robust across humans, Xu et al. 656

(2023) found that language model surprisal exhibits 657

different trends in each of these three languages. 658

Testing whether similar effects appear in other lan- 659

guage models as well as monolingual or multilin- 660

gual language models could be a way to establish 661

whether the models’ inferences are are based on 662

language-specific factors or whether generalized 663

representation of argument roles is an emergent 664

phenomenon. 665

Interpretability 666

We identified attention heads that tracked depen- 667

dencies using a purely correlational mechanism, 668

based on the weights between the verb and its 669

arguments. Although this measure is easily un- 670
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derstandable, it is likely that the attention heads671

do not just track subject-verb and object-verb de-672

pendencies. A key future direction is to build on673

work in interpretability (Lakretz et al., 2021; Meng674

et al., 2022) which identifies causal mechanisms675

in language models responsible for specific com-676

putations. Arora et al. (2024) apply some of these677

measures to pairs of grammatical and ungrammati-678

cal sentences handling various syntactic phenom-679

ena. In future work, we hope to not just extend680

their methods, but derive measures of cognitive ef-681

fort based on how the language models causally682

compute argument roles.683

Ethical Considerations684

All data and language models we used were pub-685

licly available, and our experiments do not rely on686

any specialized computing hardware.687
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Model Parameters #L #U #H
GPT2 S 124M 12 768 12
GPT2 M 355M 24 1024 16
GPT2 L 774M 36 1280 20
BERT B 110M 12 768 12
BERT L 340M 24 1024 16

RoBERTa B 125M 12 768 12
RoBERTa L 355M 24 1024 16

Table 3: Summary of Model Architectures. L, U, H
refers to number of layers, hidden units, and attention
heads.

elicit immediate neural responses in human com-996

prehenders, indicating sensitivity to the likelihood997

of a target word appearing in a plausible context.998

Experiment High Cloze Low Cloze
Chow et al.
(2016)

Abby
brushed
her teeth
after every
meal and
every snack.

Abby
brushed
her teeth
after every
game and
every snack.

Kim and
Osterhout
(2005)

The hungry
boys were
devouring
the plate
of cookies
when Jack
arrived.

The dusty
tabletops
were devour-
ing with
gusto.

Table 4: Examples of control items.

We computed the surprisal effect for plausible999

and implausible variants of the same item for both1000

studies, finding a much higher surprisal effect for1001

both sets of control items relative to the experimen-1002

tal conditions.1003

Figure 3: Compare swap-arguments and
replace-argument to Chow et al, change-
verb to Kim and Osterhout
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