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ABSTRACT

Large language models (LLMs) have achieved remarkable success in generating
coherent and contextually relevant text. However, their large parameters and
high memory requirements limit their efficiency and adoption in industry and
academia. Recent studies have shown that dynamically adjusting inference op-
erations can improve model performance without significantly increasing size. In
this paper, we introduce the stutter mechanism, a novel method that enhances
transformer models by selectively applying additional layers to more challenging
tokens. This approach mimics a human speaker’s stutter, allocating more compu-
tational effort where needed, thus improving language capabilities without gener-
ating excessive tokens. Our experiments with various Pythia models demonstrate
that the stutter mechanism consistently enhances performance across benchmark
datasets. Specifically, the Pythia-410M model, enhanced by our method, outper-
forms the larger Pythia-1B model on WinoGrande and WSC. Additionally, our
method is data-efficient, requiring only less than 1% of the pretraining data for
the additional training. These results highlight the stutter mechanism’s potential
to enhance LLMs’ efficiency and performance in real-world applications.

1 INTRODUCTION

Decoder-only transformers Radford et al. (2019); Brown et al. (2020) have become the standard
for large language models. These models, such as GPT-3 and its successors, have demonstrated
remarkable capabilities in generating coherent and contextually relevant text across a wide range of
applications, from natural language understanding to creative writing. The architecture’s simplicity,
combined with its ability to scale effectively with increased data and computational resources, has
made it the go-to choice for developing state-of-the-art language models. However, despite their
success, there remains significant room for improvement, particularly in efficiency and adaptability
to varying input complexities.

Typically, a transformer processes all inputs with the same procedure. This uniform approach, while
straightforward, does not account for the varying difficulty levels of different inputs or the specific
quality requirements of the output. There have been a number of attempts aiming to dynamically
adapt the operation flow of a transformer to the difficulty level of the input or the requirements on the
quality of the output Snell et al. (2024). These methods include techniques such as adaptive com-
putation time, where the model decides how many layers to apply based on the input’s complexity,
and dynamic layer skipping, which allows the model to bypass certain layers when they are deemed
unnecessary. Such approaches aim to make the model more efficient by allocating computational
resources more judiciously, thereby improving both speed and performance.

Inspired by recent upscaling studies Kim et al. (2024); Chowdhery et al. (2023), which have shown
that larger models tend to perform better across a variety of tasks, we sought to explore ways to
enhance the language capabilities of existing transformer models without significantly increasing
their size. Upscaling studies have demonstrated that increasing the number of parameters and layers
in a model can lead to substantial improvements in performance. However, this comes at the cost
of increased memory requirements and training time. Our goal was to find a method that could
leverage the benefits of upscaling while mitigating its drawbacks, particularly in terms of efficiency
and memory consumption.
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In this paper, we propose the stutter mechanism, a minimally intrusive method to dynamically raise
the language ability of an existing transformer when needed. Our approach is based on the hypoth-
esis that not all tokens are equally easy to generate; for at least some of them, a transformer can
do better by ”giving more thought” to an in-flight token by ”transforming” it with more operations.
It works as if a human speaker stutters when encountering a key diverging point in a speech. This
analogy captures the essence of our method: by selectively applying additional layers to more chal-
lenging tokens, the model can allocate more computational effort where it is most needed, thereby
improving overall performance without a significant increase in resource usage.

This paper is about, once identified, how to apply more layers. It is compatible with any methods that
determine the tokens that deserve to be given more thoughts. This method is minimally intrusive,
requiring only minor modifications to the existing transformer architecture, and is highly effective
in enhancing the model’s language capabilities.

We implemented our method on Pythia-160M, Pythia-410M, and Pythia-1B. Our experiment results
show that the proposed methods effectively raised the accuracies of the Pythia models on the LAM-
BADA (OpenAI), PIQA, WinoGrande, WSC, ARC-e, ARC-c, SciQ and LogiQA benchmarks. With
the help of the stutter mechanism, a smaller model can even outperform a much larger model.

Our contributions are threefold:

• Innovative Mechanism for Enhanced Language Capability: We introduce the stutter
mechanism, a novel and minimally intrusive method that dynamically allocates additional
computational resources to more challenging tokens. By leveraging specific transformer
layers to serve as a silent thinking process, our approach improves the model’s language
capabilities without significantly increasing resource usage. This mechanism is compatible
with existing methods for identifying tokens that require more computational effort, making
it a versatile addition to current transformer architectures.

• Performance Improvements on Various Benchmarks: We demonstrate that the stut-
ter mechanism significantly enhances the performance of transformer models on various
benchmarks. Specifically, our experiments show that the Pythia-410M model, enhanced by
the stutter mechanism, outperforms the larger Pythia-1B model on WinoGrande and WSC.
These results highlight the practical effectiveness of our approach in real-world applica-
tions.

• Data and Computational Efficiency: We show that only one billion tokens (less than 1%
of the pretraining data) are sufficient to train the stutter mechanism, reducing the computa-
tion time and cost by a significant amount. Therefore, our method is not only effective but
also practical for large-scale deployment.

2 BACKGROUNDS

In this section, an overview of key concepts and techniques relevant to the development of trans-
former models is provided. We discuss the architecture and scaling trends of decoder-only trans-
formers, methods for upscaling and pruning, and approaches to improve computational efficiency.
Additionally, we explore the loss functions used in training and the confidence levels of transformers
in token prediction.

2.1 DECODER-ONLY TRANSFORMERS

The Generative Pre-trained Transformer (GPT) series by OpenAI showcases the power of decoder-
only transformer architectures Radford et al. (2019); Brown et al. (2020). GPT-2, released in 2019
with 1.5 billion parameters, demonstrated impressive text generation capabilities. GPT-3, introduced
in 2020, expanded to 175 billion parameters, significantly enhancing performance and enabling more
complex and accurate text generation. This progression highlights the trend that increasing model
parameters leads to substantial performance improvements Hoffmann et al. (2022).

As the number of parameters increases, the depth of the model also tends to increase. For example,
GPT-2 has 48 layers, while GPT-3 scales up to 96 layers. This trend is also observed in various large
language models where more layers are added to accommodate the growing number of parameters,
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thereby enhancing the model’s capacity to learn complex patterns and dependencies in the data Zhao
et al. (2023). This scaling law is further supported by studies showing that larger models continue
to improve performance with increased size Kaplan et al. (2020).

2.2 UPSCALING

While increasing the number of parameters and layers can enhance model performance, it also in-
troduces significant computational challenges. To address these challenges, upscaling methods are
employed to increase the parameter count and the depth of a transformer. These methods can be
broadly categorized into training-free attempts and upscale-and-train attempts. Training-free up-
scaling involves techniques such as parameter sharing and repeating layers without additional train-
ing. Recently, merged LLMs have shown success in improving performance without re-training. An
evolutionary algorithm is proposed in Akiba et al. (2024) to search for a better merge combination
which is costly and limits the number of repetitions.

On the other hand, upscale-and-train methods involve increasing the model size and then training it
on large datasets to achieve better performance. For instance, the SOLAR 10.7B model demonstrates
effective depth upscaling techniques that significantly enhance model performance Kim et al. (2024).
Additionally, the authors in Chowdhery et al. (2023) discuss how scaling pathways can be used to
efficiently upscale models.

2.3 LAYERS SKIPPING AND PRUNING

Despite the benefits of upscaling, the increased model size can lead to inefficiencies during infer-
ence. To decrease the runtime computational requirements of a transformer, various methods such
as layer skipping and pruning are employed. Layer skipping involves dynamically skipping certain
layers during inference based on the input data, thereby reducing the computational load. Pruning,
on the other hand, involves removing less important weights or neurons from the model, which can
significantly reduce the model size and inference time while conceding some performance. The au-
thors in Fan et al. (2024) explore these techniques in detail, showing how selective layer usage can
maintain performance while reducing computational costs. Another approach proposed in Liu et al.
(2023); Li et al. (2022) demonstrates that layer sparsity can be contextualized, suggesting that not
all layers are necessary for processing simpler input tokens. In addition, observations from Halawi
et al. (2023) show that early-exiting in critical layers (around layer 28 in GPT2-XL) improves the
model performance.

2.4 HOW CONFIDENT IS A TRANSFORMER ON A GIVEN TOKEN

Understanding the training and inference processes is essential Lieberum et al. (2024), but it is
equally important to evaluate the model’s confidence in its predictions. The confidence of a trans-
former on a given token can be measured by the probability distribution it outputs for the next token
prediction. Studies have shown that transformers can generate high-confidence predictions for cer-
tain tokens, which can be used to gauge the model’s certainty in its predictions. While there are
extensive studies on the overall performance of transformers in generating sequences, there is on-
going research to understand the confidence levels at the token level. For example, authors in Sun
et al. (2024); Lad et al. (2024) discuss the confidence and interpretability of transformer layers in
generating specific tokens. Additionally, the study delves into how models process and generate
tokens with varying levels of confidence Halawi et al. (2023).

3 METHODS

3.1 ARCHITECTURE

In a prototypical transformer with L layers and a sequence of tokens X = {x1, ..., xN}, we de-
note the input representation of layer l and token n as hn

l . The input token n to the first layer is
represented as hn

0 , corresponding to the embedding of the previous output token. As the token pro-
gresses through the layers of the transformer, the transformation applied by layer l is described by
the equation hn

l+1 = FF(Attn(h0:n−1
l , hn

l )). Here, FF represents the feed-forward network, Attn

3
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Figure 1: Overview of the proposed model architecture and stutter mechanism. (A) Model Ar-
chitecture. Each purple column represents an inference step. Starting from the bottom, tokens
are embedded as hn

0 and propagated through the transformer. When thinking upon the token (e.g.,
”cute”) , the same token is fed into the model again for the second pass. During this second pass, the
stutter mechanism is applied, collecting information stored in the hidden states of the chosen layer
(highlighted). (B) Stutter block. In the second pass, each layer includes a stutter block. Our pro-
posed token-retrospect map is applied after the pretrained feed-forward and attention mechanisms,
along with a residual connection. (C) Skipped attention. As illustrated, during the second pass, the
attention mechanism skips the hidden state from the first pass while still attending to the previous
tokens as usual.

denotes the attention mechanism, and h0:n−1
l represents the representation of all previous tokens in

the corresponding layer 1. By the end of L layers, the output of the last layer hn
L+1 is converted into

the logits of tokens by language head yn = Head(hn
L+1).

3.1.1 STUTTER MECHANISM

The stutter mechanism is designed to enhance the model’s ability to process and understand a spe-
cific token n by performing the inference for that token twice. This approach allows the model to
”think again” about the token, leveraging additional semantic information gathered during the first
pass.

In the first pass, the model processes the token n and stores the hidden state hn
l∗ , which captures

the semantic information of the token. Research indicates that the last layer of a transformer model
behaves differently from other layers Lad et al. (2024); Liu et al. (2023), often filtering out a lot of
information and focusing primarily on the current output. Therefore, the hidden state before the last
layer hn

l∗ = hn
L is chosen as the semantic information from the first pass.

In the second pass, the stutter mechanism is applied, and each layer includes a stutter block. This
block consists of the original pretrained attention Attn and feed-forward FF components, along with
the newly introduced token-retrospect map. The token-retrospect map utilizes the information stored
in hn

l∗ from the first pass. The intermediate representation of layer l in the second pass is denoted as
rnl . The input to the first layer in the second pass rn0 = hn

0 is the same as in the first pass.

As illustrated in Figure 1, during the ”think again” phase (i.e., the second pass), the input rnl of the
layer l first goes through the original architecture, producing an output onl+1:

onl+1 = FF(Attn(h0:n−1
l , rnl ))

1For simplicity, we have omitted the notation for positional embedding, normalization layers, and residual
connections, although they are typically present in transformer architectures

4
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The result onl+1 is then integrated with the hidden states from the first pass hn
l∗ using the token-

retrospect map. For layers l not higher than the chosen layer l∗, the transformation is described
by:

rnl+1 = token-retrospect(onl+1, h
n
l∗) + onl+1

Here, onl+1 represents the residual connection. The details of the proposed token-retrospect map are
given in the subsection below.

3.1.2 TOKEN-RETROSPECT MAP

The token-retrospect map is the key component of the stutter mechanism. It is defined as:

token-retrospect(onl+1, h
n
l∗) =

(
qTonl+1

khn
l∗√

dk

)
vhn

l∗
∀l ≤ l∗,

where qonl+1
= W q

l o
n
l+1, khn

l∗
= W k

l h
n
l∗ , vhn

l∗
= W v

l h
n
l∗ and W q

l , W k
l and W v

l are additional
attention parameters for training. This map uses the attention mechanism to integrate the output of
the original architecture with the semantic information from the first pass, enhancing the model’s
ability to ”think again” and refine its understanding of the token.

3.2 INFORM A SELF-INSIGHT TO A TRANSFORMER

To focus on the key concept of a transformer generating a token with the help of its own insights,
we adhere closely to the self-attention mechanism of the underlying transformer. In our approach,
we apply attention to two hidden states linearly, without using the Softmax function. This allows
the model to directly leverage the stored hidden states from a previous layer, providing additional
context and insight during the token generation process. The proposed stutter mechanism integrates
the result of the original model with the hidden states from the chosen layer, thereby enhancing the
model’s ability to generate tokens with greater context and insight.

3.3 TRAINING

To train the proposed architecture, we start with an existing transformer and freeze all its weights
except those in the token-retrospect map. Our primary objective is to demonstrate the effectiveness
of the stutter mechanism, so the selection of specific tokens to stutter is beyond the scope of this
paper. Therefore, during training, we stutter every token exactly once.

For the training set preparation, we perform a pass of the training sequence X through the inherited
transformer to capture h0:N

l∗ . Following this, we train the stutter transformer by stuttering at every
token. In the new training model, each layer is augmented by attending to the additional input.
Specifically, additional parameters in the token-retrospect map are introduced for this purpose. Dur-
ing the training process, only the additional attention parameters are trained, while the rest of the
network remains frozen.

The number of additional parameters is the same as the pretrained self-attention parameters, which
constitute only 10% of the entire model. Since the number of parameters does not increase sig-
nificantly, it doesn’t require a large amount of data for training. In our experiment, performance
saturation was achieved with only 1 billion tokens, which is less than 1% of the pretraining data,
showing competitive data efficiency.

3.4 LOSS

We use the next token prediction loss as our primary loss term. This loss function is essential
for language modeling tasks because it evaluates the model’s ability to predict the next token in a
sequence given the previous tokens. The next token prediction loss is especially useful when there
is no larger model with the same tokenization available.
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Table 1: Performance of Pythia-160M and Pythia-160M-Stutter on Various Benchmarks

Benchmark Metric (Acc) Pythia-160M Pythia-160M-Stutter

LAMBADA (OpenAI) 5-shot / 0-shot 0.271 / 0.353 0.295 / 0.383
PIQA 5-shot / 0-shot 0.625 / 0.623 0.631 / 0.625
WinoGrande 5-shot / 0-shot 0.513 / 0.513 0.519 / 0.519
WSC 5-shot / 0-shot 0.575 / 0.575 0.615 / 0.615
ARC-e 5-shot / 0-shot 0.442 / 0.436 0.456 / 0.449
ARC-c 5-shot / 0-shot 0.180 / 0.194 0.185 / 0.180
SciQ 5-shot / 0-shot 0.780 / 0.754 0.789 / 0.776
LogiQA 5-shot / 0-shot 0.235 / 0.196 0.225 / 0.201

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We utilized ”The Pile” as our training dataset, a large-scale and diverse text corpus originally seg-
mented into 30 compressed files, each containing approximately 7 million samples. Note that all
existing weights of the transformers are frozen, and only weights of the newly introduced token-
retrospect map are trainable. Since the token-retrospect map has significantly fewer parameters than
the original model, we used a subset of ”The Pile” for training. Specifically, we used 1 billion
tokens to train our token-retrospect map. Following the Pythia model’s approach, we employed a
parallel training setting where hidden states, MLP outputs, and attention outputs are combined. In
line with this setting, we also integrated our token-retrospect outputs to further enhance the model’s
performance.

In the initial pass of the model with L layers, we store the hidden states of the (L − 1)-th layer for
each token. The token-retrospect map was initialized using Gaussian initialization with a mean of 0
and a standard deviation of 1e-5 before the stuttering process. We store our checkpoint models every
5000 steps and evaluate them on the LAMBADA (OpenAI) dataset as the in-training evaluation.
Stuttering is enabled for all tokens during inference and each token is only allowed to repeat once.

4.2 EVALUATION

4.2.1 PERFORMANCE ON VARIOUS BENCHMARK DATASETS

• Pythia Model: We use Pythia 160M, 410M, and 1B as our base models, showing that the
proposed stutter mechanism is effective for various model scales.

• Benchmarks: We evaluate models on the LAMBADA (OpenAI), PIQA, WinoGrande,
WSC, ARC-e, ARC-c, SciQ and LogiQA datasets. These datasets are designed to test
various aspects of language understanding and reasoning, providing a comprehensive eval-
uation of the model’s capabilities.

4.3 RESULTS

The results of our experiments demonstrate the effectiveness of the proposed architecture, particu-
larly the stutter mechanism, which enhances the performance of the Pythia models by incorporating
additional hidden states during the first pass and reprocessing the tokens. This section presents a
detailed comparison of the vanilla Pythia models and the stutter Pythia models trained on 1B tokens.

4.3.1 PERFORMANCE ANALYSIS OF PYTHIA MODELS

This subsection compares the performance of Pythia-160M, Pythia-410M, and Pythia-1B on various
benchmarks, evaluating both vanilla and ”with stutter” models. As shown in Table 1, Pythia-160M-
Stutter generally improves performance overall benchmarks compared to Pythia-160M, notably in-
creasing LAMBADA (OpenAI) 5-shot accuracy from 0.271 to 0.295 and 0-shot accuracy from 0.353
to 0.383. For the WSC benchmark, both 5-shot and 0-shot accuracies increase from 0.575 to 0.615.
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Table 2: Performance of Pythia-410M and Pythia-410M-Stutter on Various Benchmarks

Benchmark Metric (Acc) Pythia-410M Pythia-410M-Stutter

LAMBADA (OpenAI) 5-shot / 0-shot 0.442 / 0.516 0.449 / 0.524
PIQA 5-shot / 0-shot 0.680 / 0.667 0.688 / 0.682
WinoGrande 5-shot / 0-shot 0.533 / 0.532 0.538 / 0.538
WSC 5-shot / 0-shot 0.659 / 0.659 0.670 / 0.670
ARC-e 5-shot / 0-shot 0.545 / 0.518 0.553 / 0.519
ARC-c 5-shot / 0-shot 0.218 / 0.214 0.219 / 0.219
SciQ 5-shot / 0-shot 0.892 / 0.815 0.894 / 0.829
LogiQA 5-shot / 0-shot 0.230 / 0.216 0.215 / 0.213

Table 3: Performance of Pythia-1B and Pythia-1B-Stutter on Various Benchmarks

Benchmark Metric (Acc) Pythia-1B Pythia-1B-Stutter

LAMBADA (OpenAI) 5-shot / 0-shot 0.485 / 0.562 0.509 / 0.578
PIQA 5-shot / 0-shot 0.714 / 0.707 0.716 / 0.700
WinoGrande 5-shot / 0-shot 0.534 / 0.534 0.542 / 0.542
WSC 5-shot / 0-shot 0.666 / 0.667 0.681 / 0.681
ARC-e 5-shot / 0-shot 0.586 / 0.569 0.596 / 0.572
ARC-c 5-shot / 0-shot 0.256 / 0.244 0.257 / 0.240
SciQ 5-shot / 0-shot 0.917 / 0.839 0.927 / 0.853
LogiQA 5-shot / 0-shot 0.238 / 0.225 0.216 / 0.224

Similar results can be found in Tables 2 and 3, where Pythia-410M and Pythia-1B also benefit from
the stutter mechanism. Notably, Pythia-410M-Stutter achieves performance close to Pythia-1B,
and in some cases, even outperforms it. In the WSC benchmark, Pythia-410M-Stutter achieved an
accuracy of 0.670 compared to Pythia-1B’s 0.666 in both 5-shot and 0-shot settings. Similarly, on
the WinoGrande dataset, Pythia-410M-Stutter outperformed Pythia-1B, achieving an accuracy of
0.538 versus 0.534 in both 5-shot and 0-shot settings.

Overall, the introduction of the stutter mechanism generally enhances performance on various
benchmarks. It enhances the capabilities of smaller models, making them competitive with larger
models without significant computational costs.

4.3.2 CORRECTNESS TRANSITION

In order to dig into the effectiveness of the stutter mechanism, we make the statistics of the number of
tokens that are improved from incorrect to correct and vice versa. In table 4, we can see that while the
stutter mechanism does enable some tokens to be corrected (from wrong to right), it also introduces
errors (from right to wrong). The net effect across all three models (Pythia-160M, Pythia-410M,
and Pythia-1B) shows a greater number of tokens transitioning from correct to incorrect, indicating
that the mechanism has an overall positive impact on the performance of the Pythia models across
different sizes. Also, the proportion of the improving tokens is roughly 3-5%, decreasing as the
baseline model performs better.

4.3.3 KL DIVERGENCE ANALYSIS

To verify if the improved small model is more aligned with the model with larger sizes, we evaluate
the KL divergence of Pythia-160M and Pythia-160M-Stutter with a larger model. Taking Pythia-
1B as the target distribution, the figure shows the averaged token-wise KL divergence between
Pythia-160M-Stutter and Pythia-1B is smaller than that between Pythia-160M and Pythia-1B. This
indicates that the stutter mechanism effectively aligns the output distribution of the smaller Pythia-
160M model closer to that of the larger Pythia-1B model. Notably, there are a few exceptions
(e.g., WinoGrande and WSC) where the KL divergence slightly increases. As we discussed in

7
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Table 4: Correctness Transition Matrix on Lambada (OpenAI)
Pythia-160M Pythia-410M Pythia-1B

# token To Right To Wrong To Right To Wrong To Right To Wrong
From Right 1681 135 2517 143 2766 131

From Wrong 297 3040 188 2305 214 2042

LAMBADA PIQA WinoGrande WSC ARC-e ARC-c SciQ LogiQA

0.3

0.4

0.5

0.6

0.7

K
L

D
iv

er
ge

nc
e

Pythia-160M
Pythia-160M-Stutter

Figure 2: KL Divergence evaluation over 8 benchmarks.

Section 4.3.1, the performance is also improved over these two datasets. That means our mechanism
improves the performance in the way orthogonal to upscaling model sizes. Since both datasets focus
the pronoun resolution and common sense reasoning, in other words, the stutter mechanism might
exhibit a deep contextual understanding ability that could not be derived from increasing the number
of parameters.

4.4 ABLATION STUDY

We conducted an ablation study to evaluate the performance of our stutter transformer under dif-
ferent settings. The study focused on different stutter times and the effectiveness of the chosen
layer.

4.4.1 DIFFERENT STUTTER TIMES

In Table 5 we compare the performance of Pythia-160M, Pythia-410M, and Pythia-1B models on the
LAMBADA (OpenAI) benchmark, evaluating the effects of stuttering once versus stuttering twice.

For Pythia-160M, stuttering twice slightly improves perplexity from 26.927 to 26.636 and accuracy
from 0.383 to 0.387. For Pythia-410M, stuttering twice also reduces perplexity and increases accu-
racy. For Pythia-1B, stuttering twice slightly reduces perplexity from 7.439 to 7.403 but results in a
marginal decrease in accuracy from 0.578 to 0.576.

While stuttering twice generally enhances performance, the improvements are often marginal. For
instance, Pythia-410M with stutter once achieves an accuracy of 0.524, which is very close to the
0.527 accuracy with stutter twice, making the former a more cost-effective option. Therefore, given
the additional computational cost, stuttering once is generally a more efficient strategy for optimizing
model performance.

4.4.2 EFFECTIVENESS OF hl∗

To assess the effectiveness of the chosen layer, we experimented with employing the stutter mecha-
nism at different layers of the Pythia-160M model:

8
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Table 5: Pythia models with different stutter times on LAMBADA (OpenAI)

Models Metric stutter once stutter twice

Pythia-160M perplexity/acc 26.927/0.383 26.636/0.387
Pythia-410M perplexity/acc 10.387/0.524 10.272/0.527
Pythia-1B perplexity/acc 7.439/0.578 7.403/0.576

LAMBADA PIQA WinoGrande WSC ARC-e ARC-c SciQ LogiQA
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Figure 3: Pythia-160M-Stutter with Different Chosen Layers (0-shot) - Baseline Subtracted

• Layer 10: The stutter mechanism attends to the output hidden states of the L− 2th layer.

• Layer 11: The stutter mechanism attends to the output hidden states of the L− 1th layer.

• Layer 12: The stutter mechanism attends to the output hidden states of the last layer.

These experiments were designed to determine the optimal layer for capturing the intermediate
insights of the transformer and to evaluate the impact of different layers on the model’s performance.

As shown by our results in Figure 3, our findings suggest that attending at specific intermediate
positions can indeed boost performance. While attending to layer 10 and layer 11 yields similar
performance, layer 12 generally results in lower improvements across tasks except for LogiQA. As
indicated by previous work Lad et al. (2024), the last layer filters out some semantic information
and might only contain the necessary information for the next token. That explains why layer 12
is generally not a good layer to attend to. Surprisingly, LogiQA, the most difficult dataset among
benchmarks, is improved significantly by attending the last layer. One explanation is domain knowl-
edge is stored in a specific layer. Another explanation is excluding some of the information is helpful
in tasks like LogiQA, where all the options are quite similar and confusing. Notably, We observe
consistent declines in performance in the ARC-C benchmark regardless of the attended layer. That
is because this dataset contains many lengthy options. While the stutter mechanism performs well
in providing short answers, the additional stutter mechanism might weaken the logits contributed by
the attention mechanism, resulting in inferior performance for long-context benchmarks.

5 CONCLUSION AND FUTURE WORK

We propose the stutter mechanism that effectively enhances the performance of LLMs by facilitating
an extended thinking process. This approach not only addresses the limitations of increasing model
sizes but also optimizes computational efficiency by tailoring the processing requirements to the
complexities of different tasks. Our extensive experiments with various Pythia models demonstrate
that the stutter mechanism consistently improves performance across benchmark datasets. With the
help of the stutter mechanism, a smaller model can even outperform a much larger model. While our
proposed method has shown promising results in enhancing the language capabilities of transformer
models, there are several avenues for future research and development that could further improve
and extend our approach. Here, we outline some potential directions for future work:
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• Efficient Repeating Mechanism: Future work could optimize the repeating mechanism by
dynamically determining the exact number of layers each token needs, rather than applying
the entire network. This real-time assessment would minimize unnecessary computations,
enhancing efficiency and performance by adapting more precisely to input complexities.

• Different Ways of Heuristic: Refining heuristics for the ”stuttering” mechanism is another
key area. Using fine-tuning or Reinforcement Learning from Human Feedback (RLHF),
we can develop smarter heuristics to decide when to stutter, how many times, and when to
stop, making the model more adaptive and effective in handling reasoning tasks.

• Interpreting Reasoning Mechanism: Understanding how LLMs reason is crucial for
building trust and transparency in AI systems. By analyzing attention distributions, we can
identify which attention heads contribute most to reasoning ability. This insight can help us
understand the internal mechanisms of LLMs and how they process information to arrive
at conclusions. Future work could focus on developing methods to visualize and interpret
these attention patterns, potentially guiding further improvements in model design.
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