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Abstract

The integration of Artificial Intelligence (AI) into Earth science, including areas
such as geology, ecology, and hydrology, brings potential for significant advance-
ments. Despite this potential, applying deep learning techniques to spatial data in
this field is often hindered by the lack of domain knowledge. This paper studies the
integration of spatial domain knowledge and deep learning for Earth science. The
problem is challenging due to the sparse and noisy input labels, spatial uncertainty,
and high computational costs associated with a large number of sample locations.
Existing works on neuro-symbolic models focus on integrating symbolic logic into
neural networks (e.g., loss function, model architecture, and training label augmen-
tation), but these methods do not fully address the specific spatial data challenges.
To bridge this gap, we propose a Spatial Knowledge-Infused Hierarchical Learning
(SKI-HL) framework1, which iteratively infers labels within a multi-resolution
hierarchy, and trains the deep learning model with uncertainty-aware multi-instance
learning. The evaluation of real-world hydrological datasets demonstrates the en-
hanced performance of the SKI-HL framework over several baseline methods. The
code is available at https://github.com/ZelinXu2000/SKI-HL.

1 Introduction

In recent years, the potential of Artificial Intelligence (AI) to revolutionize a variety of scientific
domains has been widely recognized [25]. Earth science, including disciplines such as geology
[13], ecology [7], and hydrology [23, 10], stands as a prominent field where AI brought about
transformative change. However, one major bottleneck is the lack of spatial domain knowledge
in deep learning models, which is a crucial element in Earth science research. This paper studies
the integration of spatial domain knowledge and deep learning for Earth science, focusing on flood
mapping as a representative hydrological application.

Given Earth imagery, normally sparse training labels, a base deep neural network model, and a spatial
knowledge base with label constraints, our problem is to infer the full labels while training the neural
network. For the example of flood mapping on Earth imagery, data samples are Earth imagery pixels

1This work has been accepted to ACM SIGSPATIAL 2023.

NeurIPS 2023 AI for Science Workshop.
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in a raster grid, and explanatory feature layers are spectral bands. Initial noisy labels can be from
volunteered geographical information (e.g., geo-tagged tweets). These labels are sparse and limited,
as collecting complete high-quality labels through manual annotation is impractical (e.g., high time
costs, obscured view due to tree canopies near flood boundary). On the other hand, there exists spatial
domain knowledge related to topographical constraints on floodwater distribution, e.g., if location A
is flooded and location B is at a nearby lower location, then B is flooded. Similar examples exist in
crop type classification [22], tree crown delineation in forest ecology [7]‘, and land use classification
[13].

However, the problem poses unique challenges. First, the input labels are always spatially sparse and
noisy, making it difficult to train a neural network on Earth imagery directly. For example, in flood
mapping, in-situ water sensors are often located at a few locations. Second, spatial uncertainty is
inherent in the knowledge-guided label inference process, which comes from the noise and sparsity
of input labels, imperfect knowledge and rules, and grounding spatial rules on a coarse grid. Third,
there are high computational costs associated with spatial logic inference on a large number of raster
pixels and a trade-off has to be made between computational efficiency and spatial granularity.

The most closely related works are neural-symbolic systems, which integrate symbolic logical
reasoning with deep neural networks [6]. Existing methods focus on replacing the search process
of symbolic reasoning to neural network [20, 32, 19], convert unstructured data, e.g., images into
symbols for relational learning [31], representing symbolic knowledge as a loss regularization term
[11, 4, 5, 29, 28, 33, 2], or the combination of logic inference of pseudo-labels and neural network
training iteratively [18, 26, 3, 12, 17, 24]. However, these methods do not fully address the inherent
challenges of spatial data, such as spatial uncertainty and the substantial computational burdens
associated with logical inference over a massive number of samples (pixels).

To address the limitations of existing works, we propose Spatial Knowledge-Infused Hierarchical
Learning (SKI-HL) [30] that integrates deep learning techniques with spatial knowledge-infused
label inference [15, 1]. SKI-HL consists of two main modules: the uncertainty-guided hierarchical
label inference module and the uncertainty-aware deep learning module. The uncertainty-guided
hierarchical label inference module captures spatial relationships and dependencies based on a spatial
knowledge base and infers labels with quantified uncertainty. To handle the continuous space issue,
we design a multi-resolution hierarchy to iteratively refine labels with a trade-off between granularity
and computational efficiency. The uncertainty-aware deep learning module leverages complete but
uncertain labels from the label inference module, capturing information from the data features that
cannot be obtained through logical reasoning alone. Both modules are trained iteratively to refine
inferred labels, reduce uncertainty, and improve deep learning model performance. In summary, the
contributions of this paper are as follows:

• We propose SKI-HL, a spatial knowledge-infused framework that integrates deep learning
and logical reasoning to leverage both explanatory features and spatial knowledge derived
from domain logic rules.

• Our approach is designed to handle uncertainty in both the original labels and the label
inference process, making it more robust and reliable.

• We propose a strategy to balance the trade-off between spatial accuracy and computational
efficiency when discretizing continuous spatial spaces for constructing logic rules and
training deep learning models.

• Taking the flood mapping problem as an example, extensive experiments on real-world
datasets demonstrate the superior performance of our model compared to baseline methods.

2 Problem statement

2.1 Preliminaries

Spatial Raster Framework: A spatial raster framework is a tessellation of a two-dimensional plane
into a regular grid of N cells. The framework can consist of m non-spatial explanatory feature
layers and one class layer. We denote the explanatory feature layers by X = {x1,x2, · · · ,xN} and
the class layer by Y = {y1, y2, · · · , yN}, where xi ∈ Rm×1 and yi are the explanatory features,
and class at cell i respectively. Each cell in a raster framework is a spatial data sample, note as
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Table 1: An example of a spatial knowledge base in flood mapping.
Spatial Rules

∀si, sj (Flood(si) ∧Adjacent(si, sj)) → Flood(sj)
∀si, sj (River(si) ∧Distance(si, sj) ≤ d) → Flood(sj)

∀si, sj (Flood(si) ∧River(si) ∧Downstream(si, sj)) → Flood(sj)
∀si (LandCover(si,Wetlands) ∧HeavyRain(si)) → Flood(si)

∀si (Slope(si) > s) → ¬Flood(si)
∀si (Elevation(si) > e) → ¬Flood(si)

si = (xi, yi), where i ∈ N, 1 ≤ i ≤ N . For example, in the flood mapping problem, the explanatory
features are the spectral bands from remote sensing imagery, the target classes are flood and dry
categories, and each pixel in the image is a spatial sample.

Spatial Knowledge Base: A spatial knowledge base KB is a set of logic rules: KB =
{r1, r2, · · · , r|KB|}. Here, each ri is a rule that represents a spatial relationship, dependency, or
constraint between entities in the set of spatial samples S. The quantity |KB| represents the number
of rules in the spatial knowledge base KB.

Table 1 provides an example of a spatial knowledge base used for a flood mapping on Earth imagery
problem. Here the variable si, sj stands for a location in the study area or a pixel of Earth imagery. It
is important to clarify that these rules are probabilistic in nature, reflecting the likelihood of a flood
occurrence under certain conditions, rather than providing an absolute certainty. Please see Appendix
A for more preliminaries about the logic rule.

2.2 Problem definition

Formally, we define our problem as follows: given a large-scale spatial raster framework with spatial
samples S = {s1, s2, · · · , sN}, a set of explanatory feature layers X in S, a limited set of labels
Yl = {y1, y2, · · · , yl}, usually l ≪ N , each label associated with a sample in S, a spatial knowledge
base KB, and a base neural network model (e.g., U-Net [21]), the output will be 1) Inferred labels
Ŷ with quantified uncertainty U, and 2) A deep learning model DL : X → Y. Our objective is to
maximize the consistency between inferred labels Ŷ and KB and maximize the prediction accuracy
of the deep learning model.

Specifically, we assume the raster framework S contains a large number of pixel samples but only
with a limited set of labels Yl. The main objective is to predict the class layer Y for all spatial
samples. To illustrate, consider the case of flood mapping on Earth imagery. In this scenario, the
set of spatial samples S corresponds to Earth imagery pixels. The explanatory feature layers X
are the spectral bands. The label set Y corresponds to the flood status of each pixel (i.e., flooded
or not). The spatial knowledge contains domain constraints on flood locations (e.g., terrains and
topography), which is used to infer flood labels Ŷ. Considering the errors in the inference process
and the imperfect logic rules, uncertainty U naturally exists in the inferred label.

3 The proposed approach

3.1 Overview

Our task is to train the deep learning model and infer sample labels based on the spatial knowledge
base. The task is non-trivial for several reasons. First, spatial knowledge inference on labels is compu-
tationally expensive due to the immense volume of spatial samples and complex spatial dependencies
and interactions. Therefore, scalable grounding strategies are required that can effectively handle
these issues by balancing computational efficiency and grounding granularity. In addition, the label
inference is complicated due to incomplete and sparse initial labels compared with the large study
area. Such a low proportion of known data makes logic inference difficult. Furthermore, the labels
inferred come with uncertainty at different granularity levels, which is non-trivial for the training of a
deep learning model.
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To address these challenges, we propose a Spatial Knowledge-Infused Hierarchical Learning (SKI-
HL) framework. Our SKI-HL framework, illustrated in Figure 1, consists of two interdependent
modules. The hierarchical label inference module infers sample labels in the raster framework with
a trade-off between computational efficiency and spatial granularity. We formulate the inference
process as an optimization problem with an objective based on the distance loss from Probabilistic
Soft Logic (PSL) [15, 1], and the spatial grounding configuration in a multi-resolution hierarchical
grid structure. We design a greedy heuristic to iteratively refine the inferred labels based on inferred
spatial uncertainty. The uncertainty-aware deep learning module trains neural network parameters
from uncertain labels in multiple resolutions by an uncertainty-aware loss function and multi-instance
learning. The two modules run in iterations: the outputs of the deep learning model will serve as the
initialization of the hierarchical label inference module in the next iteration.

Feature 𝑿

Uncertainty-guided Hierarchical 

Label Inference Module
Uncertainty-aware 

Deep Learning Module

Aggregate for 
multi-instance 

learning

𝒌 = 𝑲
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Ground Knowledge Base 
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Figure 1: Framework of SKI-HL.

3.2 Hierarchical label inference with spatial knowledge

The hierarchical label inference module utilizes spatial knowledge to enhance the label inference
process within a raster framework. The module seeks spatial grounding within the framework to
optimize sample class probabilities, considering the balance between granularity, computational
efficiency, and inference accuracy in handling large-scale spatial data. This approach avoids excessive
computational costs associated with high-resolution pixels and the coarseness of low-resolution pixel
blocks. The challenge is framed as an optimization problem, focusing on generating accurate sample
labels and ensuring a balance in the spatial grounding process.

3.2.1 Optimization objective

We now formulate the spatial logic inference of sample labels in a raster framework as an optimization
problem. First, we need to define the candidate feasible solution of spatial grounding. The process
of spatial grounding refers to substituting the variables in the knowledge base rules with specific,
concrete instances, which in our case are spatial samples such as pixels in Earth imagery. Given a set
of spatial samples and rules from a spatial knowledge base, we substitute each possible sample into
the rules to generate candidate feasible solutions for spatial grounding.

Spatial hierarchical structure: We exploit a hierarchical framework to address the hierarchical and
fractal pattern of spatial relationships. A large-scale spatial raster framework of pixels is represented
at multiple resolutions. At the coarse level, we can treat each cell as a condensed representation
of many pixels. In the hierarchical structure of the spatial raster, each cell condenses many pixels,
simplifying the initial logic inference stage by reducing the ratio of unlabeled data, making inference
more feasible. Please see Appendix B for more details.

Second, we need to define the loss function based on the spatial grounding and inferred label
probabilities. To make inferences that are consistent with spatial knowledge, we adopt t-norm fuzzy
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logic (see Appendix A) to define the extent of a rule as satisfied, which relaxes binary truth values
to a continuous value between [0, 1]. Then, following the structure of Probabilistic Soft Logic
(PSL), we can induce the distance dr(I) = max{0, I(rbody) − I(rhead)} to satisfaction for a rule
r : rbody → rhead, where I is the soft truth value function that can map an atom a or a rule r to
an interval between [0, 1], indicating the probability that the atoms or rule holds. PSL determines
a rule r as satisfied when the truth value of I(rbody) − I(rhead) ≥ 0. To this end, we can convert
logical sentences into convex combinations of individual differentiable loss functions, which not only
improves the training robustness but also ensures monotonicity with respect to logical entailment, i.e.,
the smaller the loss, the higher the satisfaction. Therefore, given a set of ground rules in the ground
knowledge base KB, we can obtain the truth value for all ground atoms, which can serve as inferred
labels for the spatial samples.

Ŷ = argmin
I

∑
r∈KB

ωrdr(I) (1)

where ωr is the weight of rule r. It is noted that here the inferred labels Ŷ are not binary values but
soft truth values between [0, 1].

Therefore, in our hierarchical framework, our optimization problem can be summarized as searching
for an optimal grounding strategy and minimizing the overall distance to satisfaction for the ground
atoms. we formally define the objective to minimize in the hierarchical label inference module as:

Llogic =

K∑
k=1

( ∑
r∈KBk

ωrdr(Ik) + λ|KBk|)

)
(2)

where KBk stands for the ground knowledge base in the k-th layer, λ is a balancing coefficient. The
summation over k stands for the overall objective of all layers in the hierarchical structure. The first
term is the loss defined by PSL distance, which can drive accurate inference. The second term is used
to decrease the ground atoms in each layer.

3.2.2 A greedy algorithm

To make a balance between inference accuracy, efficiency, and granularity, we proposed a greedy
heuristic grounding strategy. Intuitively, uncertain atom inference always causes a higher distance to
the satisfaction of a rule, so here we choose uncertain cells in a coarse layer to refine. The quantified
uncertainty uk,i for each cell i at the k-th resolution level can be calculated using the entropy of the
inferred label ŷk,i as follows:

uk,i = −ŷk,i log ŷk,i − (1− ŷk,i) log(1− ŷk,i) (3)

We select a subset of cells with the highest uncertainty at each resolution level to refine the spatial
partitioning. Let Tk be a threshold for selecting high-uncertainty cells at the k-th resolution level. We
define a set of cells {sk,i | uk,i ≥ Tk} that will be refined to the next finer resolution level (k − 1).

For the selected cells in Sk, we construct a new spatial partitioning with smaller cell size and update
the grounding atoms set accordingly. We then perform PSL inference using the hierarchical label
inference module at the (k − 1)-th resolution level with only the leaf node in the hierarchy. Since the
distance-based loss is convex, we can use gradient descent to optimize it. To initialize I at different
resolutions, in the first iteration, i.e., we pre-train the deep learning model with limited labels and use
the output probabilities as the initialization. In the following iterations, the predicted probabilities of
the corresponding deep learning model are regarded as the initial soft truth value of the ground atom
in each r. Starting from the coarsest resolution (k = K), the process continues iteratively until the
finest resolution (k = 0) is reached.

3.3 Uncertainty-aware deep learning

The uncertainty-aware deep learning module is capable of capturing information from the explanatory
features and plays a significant role in handling the uncertainty of inferred labels and variations in
resolution. In traditional deep learning models, the model makes a prediction for each sample, but it
doesn’t utilize any information about how confident the model is about that prediction [8]. This could
lead to overconfident predictions in regions with scarce or noisy labels.

The module employs a modified version of the Binary Cross Entropy (BCE) loss to manage the
uncertainty from the spatial knowledge and inferred label. In this module, all the deep learning
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predictions are at the finest resolution. We replace the binary ground truth labels in the BCE loss
function with the inferred uncertain labels. The adjusted cross entropy quantifies the difference
between the predicted and inferred label probability distributions, effectively incorporating uncer-
tainty into the training process and enhancing performance in ambiguous scenarios. The module
addresses multi-instance learning scenarios encountered in partitioned spatial domains by computing
an aggregate probability output for each pixel at various resolution levels, capturing the overall event
likelihood within corresponding coarser cells. The loss function thus becomes:

LDL = −
Nk∑
i=1

ŷk,i logPk,i + (1− ŷk,i) log(1− Pk,i) (4)

The probability output Pk,i for each cell sample sk,i is computed as:

Pk,i =
1

|sk,i|
∑

s0,j∈sk,i

pj (5)

where ŷi ∈ Ŷ is the inferred uncertain label, Pk,i is the average of the predicted probabilities pj for
all the samples sj within the coarse cell sk,i. |sk,i| represents the number of finest resolution pixels
in the cell.

This modification effectively incorporates uncertainty information into the training process and can
improve the model’s performance when dealing with ambiguous cases. What’s more, it allows the
model to handle different levels of granularity in the spatial domain, making it flexible and adaptable
to various spatial scales.

4 Evaluation

4.1 Experiment setup

For the experiments, we use two real-world flood mapping datasets collected from North Carolina
during Hurricane Matthew in 2016. We compare our proposed SKI-HL model with a variety of
baselines that represent different approaches to handling spatial data and infusing knowledge into deep
learning: Pretrain, Self-training, DeepProbLog [18], Abductive Learning (ABL) [3], andSKI-HL-
Base. We used precision, recall, and F1 score on the flood mapping class to evaluate the pixel-level
classification performance, and used AvUA, AvUI , and AvU [16, 9] to evaluate the uncertainty
quantification performance. The spatial knowledge base for the flood mapping task is based on
distance and topology relationships [27, 14]. Please see Appendix C for more experiment details.

4.2 Comparison on classification performance

Table 2: Comparison on classification and uncertainty quantification for Dataset 1.

Method Acc Uncertainty
Class P R F1 Avg. F1 Acc Accuracy AvUA/AvUI AvU

Pretrain Dry 0.79 0.62 0.70 0.74 0.75 Accurate 0.81 0.45Flood 0.73 0.86 0.79 Inaccurate 0.32

Self-training Dry 0.60 0.83 0.70 0.78 0.81 Accurate 0.85 0.65Flood 0.93 0.81 0.86 Inaccurate 0.53

DeepProbLog Dry 0.73 0.78 0.75 0.81 0.83 Accurate 0.90 0.40Flood 0.88 0.85 0.87 Inaccurate 0.26

ABL Dry 0.66 0.78 0.72 0.79 0.81 Accurate 0.85 0.44Flood 0.90 0.83 0.86 Inaccurate 0.29

SKI-HL-Base Dry 0.95 0.93 0.94 0.95 0.95 Accurate 0.82 0.69Flood 0.96 0.97 0.96 Inaccurate 0.59

SKI-HL Dry 0.96 0.92 0.94 0.95 0.95 Accurate 0.80 0.74Flood 0.95 0.98 0.96 Inaccurate 0.68

We evaluated each model using 4 labeled pixels, with results in Table 2 highlighting SKI-HL’s
superiority over baselines. See Appendix D for the results on dataset 2. The Pretrain model struggles
the most, likely due to surface obstacles disrupting classifier generalization. While Self-training
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surpasses Pretrain, its predictions, though high confidence, can be erroneous, and its lack of spatial
knowledge integration curtails performance. Both DeepProbLog and ABL underscore the value of
integrating spatial knowledge. ABL, relying on first-order logic as rigid constraints for label revisions,
falters with intricate spatial rules possessing inherent uncertainties. DeepProbLog, while promising,
requires patch-level inference given its design constraints, impacting its efficacy. SKI-HL consistently
tops the baseline models across datasets. Even without grounding every pixel, it matches its base
model on Dataset 1, credited to its uncertainty-driven hierarchical label inference. This structure
negates the need for full dense labeling, a hurdle for other models. Overall, SKI-HL epitomizes the
merits of merging spatial domain knowledge with deep learning, particularly for expansive spatial
tasks with scant training labels.

4.3 The effect of the number of initial labeled samples

Figure 2: Accuracy comparison on different numbers of initial labels.

To rigorously assess our SKI-HL method, we tested Dataset 1 with initial labeled data ranging from 4
to 256, doubling at each step. We used the classification accuracy over 5 runs as the metric, presented
in Figure 2. All baseline models improve with more labels. However, the gains in Pretrain and
Self-training are modest due to their reliance on labeled pixels to represent entire patches. ABL,
despite improvements, faces a performance ceiling because of its rigid logic for label revisions.
DeepProbLog, using a logic-based framework for gradients, shows steady improvement with minimal
variance. Distinctly, SKI-HL’s accuracy remains consistent at around 0.95, regardless of the initial
label count. This can be attributed to its unique label inference, which starts coarsely and refines
iteratively. Minor result variations arise from training dynamics and initialization.

4.4 Comparison on uncertainty quantification performance

In Table 2, we notice a clear distinction in uncertainty estimation between our proposed SKI-HL model
and the baselines. While Pretrain and Self-training models manifest a larger gap between AvUA

and AvUI , this discrepancy is mitigated in DeepProbLog and ABL, which effectively incorporate
spatial knowledge into learning. However, they still struggle to achieve a balanced AvUA and AvUI ,
particularly in situations of sparse and noisy labels. In stark contrast, our proposed SKI-HL model
exhibits a superior performance on both datasets, signifying its robust ability to model complex spatial
dependencies and adjust to areas of uncertainty dynamically. The integration of uncertainty-guided
hierarchical label inference further mitigates the impact of sparse labeling, a bottleneck for other
models. This finding emphasizes the pivotal role of efficiently integrating spatial domain knowledge
with deep learning, especially under the constraints of limited training labels, in achieving reliable
uncertainty estimation for large-scale spatial applications.

4.5 Case study

In our case study, we visually analyze the effectiveness of our model across varying resolution levels.
As depicted in Figure 3a, we present the aerial Earth imagery, ground truth label, and digital elevation
map from Dataset 1. It is noted that we don’t use the ground truth to train our label, instead, it was
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Figure 3: Performance with different resolution in Dataset 1.

only used for testing. Figures 3b and 3c illustrate the evolution of inferred labels and deep learning
predictions at different resolution levels. The resolution of the inferred labels refines progressively
from a coarse resolution of 25 by 18 to the finest resolution of 2500 by 1800. This process allows
for the accurate detection and refinement of uncertain areas, which often represent flood boundaries.
Simultaneously, the granularity increase of the training labels results in an improved output from
the deep learning model. A clear reduction in misclassified pixels can be observed, appearing as
noise within each class of the area. This improvement can be attributed to the fact that multi-instance
learning, used with coarse resolution labels, cannot provide supervision to every pixel. Hence, as
our approach refines the label resolution, the deep learning model is able to generate more accurate
predictions.

5 Conclusion and future works

In this paper, we proposed a novel Spatial Knowledge-Infused Hierarchical Learning (SKI-HL)
framework that successfully addresses the limitations of existing deep learning models for Earth
science through a system of iteratively inferring labels within a multi-resolution hierarchy. Our model
outperformed several baseline methods on real-world flood mapping datasets.

In the future, the model can incorporate temporal dynamics features and capture changes in Earth
imagery over time, which is critical for many applications such as deforestation tracking. Second, we
can expand to other Earth science applications to further validate the generalizability and adaptability
of the proposed SKI-HL framework.
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A Preliminaries of symbolic logic

Definition 1 A predicate is a relation among objects in the domain or attributes of objects (e.g.,
Adjacent), and an atom is a predicate symbol applied to a tuple of terms (e.g., Adjacent(si, sj)).

Definition 2 A rule in logic is a clause recursively constructed from atoms using logical connectives
and quantifiers. An example would be: Flood(si) ∧Adjacent(si, sj) → Flood(sj).

Definition 3 A ground atom a and a ground rule r are specific variable instantiations of an atom
and rule, respectively. A grounding of an atom or rule is a replacement of all of its arguments by
constants.

Definition 4 The t-norm fuzzy logic can be used to relax binary truth value to continuous value
between [0, 1]. The logical conjunction (∧), disjunction (∨) and negation (¬) are as follows:

I(a1 ∧ a2) = max{I(a1) + I(a2)− 1, 0}
I(a1 ∨ a2) = min{I(a1) + I(a2), 1}

I(¬a1) = 1− I(a1)

(6)

B Spatial hierarchical structure
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(b) Tree structure of the 3-layer hierarchy.

Figure 4: Illustration of hierarchical structure.

Given a large-scale spatial raster framework composed of pixels, we can represent the raster at
multiple resolutions. At the coarse level, we can treat each cell as a condensed representation of many
pixels. For example, in Figure 4a, if the original raster is 8× 8 pixels (the rightmost grid), a coarser
level representation (the leftmost grid) could be a 2× 2 cell grid, where each cell represents a 2× 2
pixel area of the original raster.

In the hierarchical structure of the spatial raster, the coarsest level grid represents the root of the
hierarchy, and each subsequent refinement to a finer resolution represents a branching in the hierarchy.
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As shown in Figure 4b, in this tree-like structure, each node represents a region with different sizes
of the original spatial raster at the finest resolution. With the hierarchical structure, we can start the
logic inference from coarse resolution, which decreases the proportion of unlabeled data and makes
the inference practical. In the following, we provide a more formal description of the architecture.

Let S0 be an original large-scale spatial raster framework at the finest resolution. We define a
constant η where η ∈ N and η > 1, then we can get a set of resolutions {1, η, η2 . . . , ηK} which
denotes the grid sizes at K + 1 levels. We use the power number to represent the indexes of the
layers k in the hierarchical structure, ı.e., k = 0, 1, 2, . . . ,K. The set of samples in each layer
Sk, for k ∈ {1, · · · ,K}, represents the spatial raster at a specific resolution. The highest layer K
corresponds to the coarsest resolution and the lowest layer 0 corresponds to the finest resolution,
usually the original resolution. Each spatial sample sk,i at layer k corresponds to a group of cells
at the next finer layer k − 1. To exemplify the hierarchy, consider Figure 4 representing 3 varying
resolution levels. In this example, the grid size constant η = 2 and we have 3 layers in the hierarchy,
i.e., k = 0, 1, 2. We select a subset of cells from layer 2 to "zoom in" further into smaller cells.
This partitioning process results in layer 1, which contains both the original cells and the divided
ones. The process is then repeated on the second grid, creating layer 0, which symbolizes the
finest resolution layer. Through this hierarchical approach, each cell sk,i in layer k corresponds to
a group of cells in the next finer layer k − 1, e.g., cell s2,2 corresponds to cell s1,2, s1,3, s1,4, and
s1,5 in Figure 4. At a certain level, we only need to ground the "leaf node", as shown in Figure
4b, which significantly decreases the number of ground atoms. Each layer in the hierarchy form a
ground knowledge base KBk = {rk,1, rk,2, · · · , rk,|KBk|} and then generates a set of inferred labels
Ŷk = {ŷk,1, ŷk,2, · · · , ŷk,Nk

} and their corresponding uncertainties Uk = {uk,1, uk,2, · · · , uk,Nk
},

where Nk is the number of samples, i.e., grid cells at the k-th resolution level.

To select the uncertainty area, taking layer 2 in Figure 4 as an example, each cell in this grid is
color-coded to denote the probability of dry (dark) and water (light). We view the cell with the
leftmost and rightmost color (certain Dry and Flood) in the color bar as certain cells, and others as
uncertain cells, i.e., only the s2,1 can be view as a certain cell in layer 2. For the selected cells in
Sk, we construct a new spatial partitioning with smaller cell size and update the grounding atoms
set accordingly. As shown in Figure 4, the uncertain coarser cells in layer 2 are split into 2× 2 finer
cells, respectively.

C Experiment setup details

Dataset Description: We use two real-world flood mapping datasets collected from North Carolina
during Hurricane Matthew in 2016. The explanatory features comprise the red, green, and blue bands
within the aerial imagery obtained from the National Oceanic and Atmospheric Administration’s
National Geodetic Survey2. In addition, digital elevation imagery was sourced from the University of
North Carolina Libraries3. Each piece of data was subsequently resampled to a 2-meter by 2-meter
resolution to standardize the information. For Dataset 1, the image has a shape of 2500× 1800 with
4.5 million pixels. For Dataset 2, the image has a shape of 3400× 8400 with 28.56 million pixels. In
alignment with the principles of transductive learning, the experiment leverages both explanatory
features and spatial information across the entire area throughout the learning process. A sparse set of
labeled pixels forms the training set while the test set includes the whole area, excluding the labeled
pixels.

Candidate Methods: In our experiments, we compare our proposed SKI-HL model with a variety of
baselines that represent different approaches to handling spatial data and infusing knowledge into
deep learning.

• Pretrain: In this method, the deep learning model is trained with the initially labeled pixels
for each dataset.

• Self-training: The model adds patches with high confidence from Pretrain to the training
dataset and re-trains the model.

2https://www.ngs.noaa.gov/
3https://www.lib.ncsu.edu/gis/elevation
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• DeepProbLog [18]: This is a programming language that integrates deep learning with
probabilistic logic programming. It allows for the incorporation of neural networks within a
logic program, and these neural networks can be used to define probabilistic facts.

• Abductive Learning (ABL) [3]: This is a learning framework that combines both reasoning
and learning. It works by training a model to make predictions and then using a logic
reasoner to validate these predictions against a set of given logic rules. If the prediction
contradicts the rules, the learning algorithm will revise its model based on the abductive
explanation

• SKI-HL-Base: This is a simplified version of our model as a candidate method that doesn’t
implement the selection of uncertain areas in the grounding process. Instead, it ground all
atoms for each layer in the hierarchy.

Table 3: Accuracy versus Uncertainty (AvU).
Uncertainty

Certain Uncertain

Accuracy Accurate Accurate Certain (AC) Accurate Uncertain (AU)
Inaccurate Inaccurate Certain (IC) Inaccurate Uncertain (IU)

Classification evaluation metrics: We used precision, recall, and F1 score on the flood mapping
class to evaluate the pixel-level classification performance.

Uncertainty quantification evaluation metrics: The performance of uncertainty estimations in
our model is quantitatively evaluated using the Accuracy versus Uncertainty (AvU ) measure, as
shown in previous work [16, 9]. We set an uncertainty threshold, denoted by Tu, to group uncertainty
estimations into ’certain’ and ’uncertain’ categories. Predictions based on these estimations are then
grouped into four categories: Accurate-Certain (AC), Accurate-Uncertain (AU), Inaccurate-Certain
(IC), and Inaccurate-Uncertain (IU). Let nAC, nAU, nIC, nIU represent the number of samples in the
respective categories. The AvU measure evaluates the proportion of AC and IU samples, with the
idea being that accurate predictions should ideally be accompanied by certainty, and inaccurate
predictions should correspondingly indicate uncertainty. This measure lies in the range [0, 1], with
higher values indicating more reliable model performance. Specifically, we compute AvUA for
accurate predictions and AvUI for inaccurate predictions as follows:

AvUA =
nAC

nAC + nAU
, AvUI =

nIU

nIC + nIU
(7)

In our evaluation, we compute the harmonic average of AvUA and AvUI to penalize extreme cases:

AvU =
2 ∗AvUA ∗AvUI

AvUA +AvUI
(8)

This evaluation approach thus offers a comprehensive measure of the reliability of our model’s
uncertainty estimations.

Model configuration: When implementing our method and baselines, we considered U-Net, a
powerful deep learning model for image segmentation, as the base model. We set the same set of
architecture for the U-Net model in all baselines with 5 downsample operations and 5 upsample
operations. There is a batch normalization within each convolutional layer and the dropout rate is 0.2.

For Pretrain, images are divided into 100 by 100 patches, using patches containing a labeled pixel
for training. All pixels in these patches are assigned the label of the initially labeled pixel for
pre-training. Self-training uses Pretrain predictions to enhance the training dataset, iteratively adding
high-confidence patches based on average predicted class probabilities. The same pretrained U-Net
initializes the deep learning models in DeepProbLog, ABL, and our proposed SKI-HL frameworks.
For DeepProbLog, the time cost of pixel-level inference is intractable, so we can only conduct
patch-level inference.

For the hierarchical structure of SKI-HL, we set the grid size constant η = 10 and K = 2 which
means there are 3 layers with grid size 100, 10, and 1 respectively in this hierarchy. We construct the
spatial knowledge base for the flood mapping task based on distance and topology relationships. For
the distance relationship, we directly use the neighborhood pair to model. For the elevation, we adopt
a Hidden Markov Tree model [27, 14] which can model the topological relationship of each location
based on the elevation.
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D Comparisons on dataset 2

Table 4: Comparison on classification and uncertainty quantification for Dataset 2.

Method Acc Uncertainty
Class P R F1 Avg. F1 Acc Accuracy AvUA/AvUI AvU

Pretrain Dry 0.88 0.76 0.81 0.74 0.76 Accurate 0.97 0.20Flood 0.59 0.77 0.67 Inaccurate 0.11

Self-training Dry 0.89 0.77 0.83 0.76 0.78 Accurate 0.92 0.37Flood 0.61 0.80 0.69 Inaccurate 0.23

DeepProbLog Dry 0.83 0.87 0.85 0.82 0.82 Accurate 0.79 0.61Flood 0.82 0.77 0.79 Inaccurate 0.50

ABL Dry 0.76 0.86 0.81 0.79 0.79 Accurate 0.91 0.43Flood 0.82 0.71 0.76 Inaccurate 0.28

SKI-HL-Base Dry 0.92 0.94 0.93 0.91 0.91 Accurate 0.51 0.64Flood 0.91 0.88 0.90 Inaccurate 0.86

SKI-HL Dry 0.91 0.97 0.94 0.92 0.93 Accurate 0.80 0.84Flood 0.95 0.88 0.91 Inaccurate 0.88

E Analysis of time costs with hierarchical label inference
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Figure 5: Comparison on time cost.

In order to demonstrate the computational efficiency of our proposed approach, we conducted a set of
experiments evaluating the time costs of SKI-HL and its base model across different resolution levels.
These experiments were executed on an AMD EPYC 7742 64-Core Processor CPU and an NVIDIA
A100 GPU equipped with 80 GB of memory.

Figure 5 presents the time costs associated with the uncertainty-aware deep learning model training
(blue bar) and the hierarchical label inference module training (orange bar) at each resolution level.
Notably, the training time costs of the deep learning model remain relatively stable across different
iterations, whereas the label inference process exhibits a strong dependency on the number of ground
atoms. In particular, the label inference module requires the most significant computational resources
when the number of ground atoms is large.

To illustrate, in dataset 2, the label inference at the finest resolution consumed approximately 12.5
hours without implementing a selective grounding process. However, when adopting the uncertainty-
guided grounding strategy, the model achieved a considerable time-saving factor of 6.3 and 5.0
times compared to grounding all atoms for datasets 1 and 2, respectively. This stark difference in
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computational time underlines the necessity and effectiveness of our proposed uncertainty-guided
hierarchical label inference in the context of large-scale spatial data.
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