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Abstract

Hysteresis modelling is crucial for many industrial applications ranging from mate-
rial science to power and electrical energy systems. A frequently used approach
in the magnetic materials and employed in the power and energy sector is the
Jiles-Atherton (JA) model, which approximates the hysteresis curve through a
partial differential equation (PDE). However, the parameter-estimation for the
PDE is challenging. The present study evaluates the JA parameter estimation
through the integration of probability-box (p-box) parameter initialization with
metaheuristic search algorithms. The proposed p-box informed parameter ini-
tialization is tested for two different iron core materials integrated with three
different metaheuristic-search algorithms, including Genetic Algorithms (GA),
Particle Swarm Optimization (PSO) and Differential Evolution (DE). Then, the
p-box approach is compared against the classical uniform and normal distribution
based parameter initialization strategies. The results show that p-box parameter
initialization can be used to estimate JA parameters accurately when there is little
knowledge about the magnetic material and the transformer.

1 Introduction

Magnetic hysteresis occurs when a magnetic field is applied to a ferromagnetic material such as
iron. Even if the field is removed, the material remains magnetized because of the alignment of
its magnetic domains [1]. This makes it difficult to determine the exact magnetization state of the
materials. Therefore, when an external field is applied, high magnetizing currents known as inrush
currents can be generated. These currents appear due to the magnetic saturation of the iron core
described by the BH or hysteresis curve. An example of a hysteresis curve is shown in Figure 1,
which corresponds to the H75-23 magnetic material used in medium-voltage power transformers.

An accurate model of the core is essential to reproduce the transient phenomena accurately. In this
context, Jiles-Atherton (JA) is a widely used method for hysteresis modelling and inrush current
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minimization studies [2]. The JA model solves a partial differential equation (PDE) through an
equivalent method. This model requires five parameters, whose accurate estimation is challenging.
The simplest technique to estimate the JA parameters is a trial-and-error brute force process [3].
However, alternative search techniques, such as metaheuristic-based algorithms, are preferred due to
their shorter computational time and efficient search for the global minimum error. In this context, the
most used metaheuristic-based search techniques are Genetic Algorithm (GA) [4], Particle Swarm
Optimization (PSO) [5], and Differential Evolution (DE) [6].

Figure 1: BH curve for the H75-23 magnetic core material.

The selection of appropriate initial values and search limits for JA parameter estimation with
metaheuristic-based algorithms is crucial, as it can avoid issues such as convergence to a local
minimum, non-convergence, or high computational time. However, most of the presented studies in
hysteresis modelling disregard the initialization stage and use a random JA parameter initialization
strategy with default settings [7]. Moreover, probability density function (PDF) based parameter
initialization strategies can improve the accuracy of metaheuristic-based algorithms [8]. Previous
studies incorporating PDFs into the initialization of the JA parameter show enhanced accuracy and
computational efficiency over random initialization strategies [9].

The JA parameters are related to the physical properties of the core material. The value of these
parameters can be approximated using previous data and based on expert knowledge. However, this
approximation can be subject to different levels of uncertainty depending on the reliability of the
information and the experience and confidence of the expert. Furthermore, for diverse initialization
strategies, e.g. various experts with different confidence and field knowledge, the approximations
could be different. Therefore, to obtain a good approximation of the parameters considering all the
available knowledge altogether, the different perspectives and the associated uncertainty levels should
be considered. In this context, p-boxes present an interesting alternative to fuse different information
criteria (modelling different initialization strategies) through imprecise probability concepts [10].
The uncertainty present in the JA parameter initialization can be classified into epistemic (e.g. the
level of confidence of the expert at the parameter initialization stage), and aleatoric (e.g. uncertainty
in the available magnetic material data) uncertainty [11]. In this regard, p-boxes are based on the
combination of different cumulative distribution functions (CDFs) to quantify aleatoric and epistemic
uncertainties. P-boxes can help with uncertain decision-making scenarios when different sources of
information are available. Namely, different CDFs represent different pieces of knowledge of the
process under consideration.

Contribution. This research work presents an original uncertainty-aware parameter initialization
strategy for metaheuristic-search algorithms based on p-boxes. The proposed approach is evaluated
through a detailed performance assessment framework used to estimate JA parameters for hysteresis
modelling. Available data and expert knowledge are modelled and fused as p-boxes to improve
parameter initialization and propagation. Obtained results are compared with the classical random
uniform and normal PDF parameter initialization approaches for two different iron core materials.
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2 Fundamental Theory

2.1 Basics of Jiles-Atherton

The Jiles-Atherton hysteresis approach models the total magnetization of a material by calculating
and adding the reversible and the irreversible magnetization contributions defined as follows:

M = Mrev +Mirr (1)

where Mrev and Mirr are, respectively, the reversible and irreversible terms in [A/m]. The irreversible
magnetization is obtained as:

Mirr = Man − kδ
dMirr

dHe
(2)

where Man is the anhysteretic magnetization curve in [A/m], k is the pinning parameter in [A/m], δ
is an indicator function that takes the value of +1 if dH/dt > 0 and -1 if dH/dt < 0, and He is the
effective field in [A/m] obtained from:

He = H + αM (3)

where α is unitless and refers to the interdomain coupling. The reversible magnetization is given as
proportional to the difference between anhysteretic and hysteresis magnetization defined as follows:

Mrev = c(Man −Mirr) (4)

where c is unitless and corresponds to the coefficient of proportionality. The anhysteretic magnetiza-
tion curve can be expressed as:

Man = Ms

[
coth

(
He

a

)
− a

He

]
(5)

where Ms is the saturation magnetization in [A/m] and a corresponds to the density of the wall in
[A/m]. By combining all the previous equations, the JA model can be solved by applying the next
PDE that corresponds to the magnetization susceptibility [12]:

dM
dH

=
(1− c) dMirr

dHe
+ c dMan

dHe

1− αc dMan
dHe

− α(1− c) dMirr
dHe

(6)

where dMirr
dHe

is expressed as follows:

dMirr

dHe
=

(Man −Mirr)

kδ
(7)

Additionally, dMan
dHe

is obtained by deriving Man with respect to He and is given as:

dMan

dHe
=

Ms

a

[
1− coth2

(
He

a

)
−
(

a

He

)2
]

(8)

The MH curve is solved by calculating the magnetization value in each time step ∆t of H:

M(t+∆t) = M(t) +
dM
dH

∆H (9)

where t is the time step, ∆t is a discrete increase of t, M(t+∆t) is the magnetization value at the
instant t + ∆t in [A/m], M(t) is the magnetization at t in [A/m] and ∆H is the difference in the
discrete increase of the field strength in [A/m].

From a practical point of view, it is preferable to give the results of the JA method in BH instead
of MH . The relation between M and B is established following the Sommerfeld convention. This
equation is expressed as [1]:B = µ0(H +M), where µ0 is the permeability of the vacuum with a
value of 4π10−7 [H/m]. The flux density in each time step is obtained as follows:

B(t+∆t) = µ0 [H(t+∆t) +M(t+∆t)] (10)

where B(t+∆t) is the magnetic flux density in [T] at the time step t+∆t and H(t+∆t) is the
field strength at the next time step in [A/m].
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2.2 Metaheuristic-Search Algorithms

In this study, the selected metaheuristic algorithms are GA, PSO, and DE. The parameters that these
algorithms need to approximate are the JA parameters: Ms, a, α, c and k. At the beginning of the
execution, depending on the initialization strategy, each algorithm creates a population of possible
solutions. The following steps are individual for each algorithm, briefly explained as follows:

• GA: selects two candidate solutions (parents) from the population. These candidates undergo
crossover and mutation to create a new chromosome (child). As the process is repeated, the
algorithm produces better results [7].

• PSO: population consists of particles, each characterized by its position and velocity that
evolves every iteration. Each particle remembers its best individual position and the best
global solution (leader’s position) over all iterations. The algorithm reaches convergence by
sharing the information of each particle with the rest of the group (swarm) [13].

• DE: is based on generating a mutant for each individual, by combining three randomly
selected individuals from the population. Each individual and its mutant are combined
through a crossover operation to create a trial. If the trial solution outperforms the original
individual, the trial solution takes the original position of the individual [14].

2.3 Parameter Initialization Analysis

Different strategies can be used to perform the initialization of the JA parameters The simplest
technique is trial-and-error. However, depending on the search space and resolution, this algorithm
can be imprecise and computationally inefficient. Most of the literature studies using metaheuristic
algorithms for magnetic materials ignore the initialization phase and employ a random initializa-
tion strategy with default settings [15, 16]. Alternative solutions such as normal PDF parameter
initializations have been shown to improve convergence and computational time by considering
expert knowledge and transformer data [9]. However, the most limiting factor of the latest strategy
is confidence in expert knowledge, which can be subjective and vary between experts. Moreover,
the reliability of the employed data can also be a limiting factor. In order to model these concerns,
this research work presents a framework to combine different perspectives and their uncertainties by
using p-boxes. The parameter initialization methods mentioned above are explained as follows.

2.3.1 Uniform Probability Density Function

The uniform PDF parameter initialization is carried out by setting limits for each parameter and then
randomly choosing a value inside these boundaries. Therefore, the probability of selecting any value
is the same. The uniform parameter initialization is defined as:

f(x) =

{
1

u−l for l ≤ x ≤ u,

0 for x < l or x > u.
(11)

where l and u are lower and upper boundaries of each parameter, respectively.

2.3.2 Normal Probability Density Function

Depending on the available data and the level of expert knowledge, the normal PDF parameter initial-
ization is configured with different mean and variance or uncertainty. In this case, the initialization
should be modelled as follows:

f(x) =
1

σ
√
2π

e

(
− (x−µ)2

2σ2

)
(12)

where µ is the mean value and σ is the standard deviation.

2.3.3 Probability Boxes

P-boxes are structures created by combining probability theory and interval arithmetic. These
structures allow for the propagation of aleatoric and epistemic uncertainty [10]. Probability boxes are
defined by left and right bounds on the distribution function of a quantity and additional information
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constraining (i) the mean and variance to specified intervals and (ii) the distributional shape. A p-box
is a set of distribution functions F satisfying the following constraints, for specified distribution
functions F , F and specified bounds m1 < m2 on the expected value of the distribution and specified
bounds v1 ≤ v2 on the variance of the distribution [10]:

F (x) ≤ F (x) ≤ F (x)

m1 ≤
∫ ∞

−∞
x dF (x) ≤ m2

v1 ≤
∫ ∞

−∞
x2 dF (x)−

(∫ ∞

−∞
x2 dF (x)

)2

≤ v2

(13)

P-boxes serve the same role for random variables that upper and lower probabilities serve for events.
They can model uncertain decision-making scenarios when different sources of information are
available or the confidence in the available information is unknown. Namely, different CDFs represent
different pieces of knowledge of the process under consideration, with different uncertainties. Each
CDF has a mean and a variance, just like a normal PDF. The construction of a p-box can be done by
combining all the available information, modelled as normal PDFs. A simple example of this process
can be seen in Figure 2, where in Figure 2a two different normal PDFs are illustrated and in Figure
2b, their combination into a p-box as CDFs is presented [17].

(a) Two normal distribution functions. (b) P-box constructed with the distributions.

Figure 2: P-box construction example.

3 Proposed Approach

The proposed approach to estimate the JA parameters is shown in Figure 3.

B-H Curve

Data

Jiles-Atherton

Model PDE

Uncertainty 
Specifications

with PDF

Metaheuristic

Search

Parameter

Selection

Post-Processed

Results: Error &

Computational Time

JA Model

Figure 3: Overall block diagram of the framework based on [9].

First, in order to obtain the JA model, the BH hysteresis loop data of the analysed material is
needed. In this case, two different BH curves are analyzed. Material A is a H75-23 core used in
medium voltage transformers, see Figure 1, and material B has been obtained from an open-source
database of BH curves [18], see Figure 4.

The BH curve data is used to obtain the JA model PDE (cf. Eq. (8)). The three stages covered by a
dashed box in Figure 3 are part of the computational part. The execution starts with JA parameter
initialization through different uncertainty levels, modelled with PDFs. The limits of the JA
parameters are set based on available information. For material A, the saturation is known and
Ms is not included in the estimation procedure. The rest of material A parameters are set based
on approximations and values in the literature [1, 7]. The limits for material B are higher because
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previous research supports this hypothesis [18]. The chosen limits for both materials are presented in
Table 1.

Figure 4: BH curve of material B.

Table 1: Limits of Jiles-Atherton parameters for both materials.

Parameter Limits Material A Limits Material B UnitLower Upper Lower Upper

Ms 1.52x106 1.52x106 9.35x105 11.42x105 A/m
a 1 100 1 1000 A/m
α 10−6 10−5 10−6 10−5 [-]
c 0.1 0.9 0.1 0.9 [-]
k 1 100 1 5000 A/m

At this stage, the different parameter initialization strategies are analyzed and listed below.

• Uniform PDF: a random uniform distribution is used to initialize the JA parameters, denoted
as U(u, l). This case presents the scenario with the least knowledge about the material. The
selection of suitable boundaries for each JA parameter is necessary (cf. Table 1).

• Normal PDF: the parameter initialization is performed with normal PDFs with three levels
of uncertainty. The uncertainty levels are represented through standard deviations σ =
{1%, 5%, 10%} which can be formalized as: N(µ, 0.01µ), N(µ, 0.05µ), and N(µ, 0.1µ).
Hence, three scenarios with different levels of knowledge are tested separately.

• Probability-box: the parameter initialization is performed by constructing a p-box for each
parameter. These p-boxes are the combination of levels of knowledge modelled as normal
PDFs. In this research, the p-boxes are formed by merging normal PDFs with 1%, 5% and
10% uncertainties, specified as in the normal distribution approach. An example of the
combination of different normal CDFs for the k parameter is shown in Figure 5a.

The upper and lower limits of the p-box are shown in black in Figure 5b. The parameter
initialization process is performed first by randomly selecting a value between 0 and 1.
This value is translated into the p-box through inverse sampling [10] and the maximum
and minimum boundaries are selected. Considering that each value between the selected
boundaries has different probabilities, with the median having the highest value and the
boundaries having the lowest, the initial parameter is sorted out by considering a normal
distribution between the boundaries. Figure 5b shows this strategy with the example random
value of 0.6 and the corresponding normal PDF with lower and upper limits at 12 and 13.2.
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(a) Example of a p-box construction from different
normal CDFs for JA parameter k.

k [A/m]

(b) Illustration of parameter initialization selection with
p-box strategy.

Figure 5: Comparison of p-box construction and parameter initialization strategy.

The parameter initialization is followed by executing the chosen metaheuristic-search algo-
rithms: GA, PSO or DE. The error is calculated by the root mean square error ε between the
measured and calculated flux density in %:

ε =
1

Bs

√√√√ 1

NB

NB∑
i=1

(Bdatai −Bcali)
2 × 100 (14)

where Bs is the saturation value of the flux density in [T], i is the current iteration, NB is the number
of flux density values, Bdatai is the flux density value in [T] of the material at each iteration and Bcali
is the estimated flux density in [T] of the material at each iteration. The error and computational time
obtained in each iteration are stored for post-processing. After the execution stage is finished,
the optimal parameter selection for each metaheuristic algorithm and parameter initialization
strategy is selected and used to tune the JA model.

The algorithm ends when (i) it converges, i.e. the error has not changed in the last 100 iterations
or (ii) a maximum number of iterations has been reached (itmax = 1000, in this study). Then, the
error, computational time and JA optimized parameters are stored, and the same procedure is repeated
Nit = 10000 times to obtain the error and computational time distributions. After Nit trials it
is possible to compare different algorithms with statistically relevant results. After trying all the
different parameter initialization and metaheuristic algorithm combinations, the strategies with the
best trade-off between accuracy and computational time are compared.

4 Numerical Results

In this section, the best accuracy and computation time results are presented for the uniform PDF,
normal PDF, and p-box parameter initialization strategies. A more detailed analysis of the results
obtained with the first two parameter initialization approaches can be found in [9].

4.1 Material A

Figure 6 shows the comparison between accuracy and computational time among the best cases of
each initialization strategy and Table 2 displays different statistics inferred from error and computa-
tional time distributions such as confidence interval (CI). For uniform and normal PDF parameter
initializations the best results are obtained with DE and GA with 5% uncertainty, respectively. The
best results for p-box parameter initialization strategy are obtained with the GA metaheuristic algo-
rithm. The findings indicate that the p-box yields the highest accuracy with the highest probability of
getting an error of 2.1%. However, the normal PDF parameter initialization strategy demonstrates a
shorter computational time compared to the p-box. The normal PDF parameter initialization results
show maximum likelihood of ending the computation after 1 second, while the p-box case is more
likely to last 2 seconds or longer. This increased execution time for the p-box is justified by the inverse
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sampling process needed to construct the p-box from different PDFs and the wider search space. Still,
the computational time with p-box is lower than with uniform PDF parameter initialization, with a
maximum likelihood of ending the computation in 6 seconds.

(a) Error (b) Computational time

Figure 6: Error and computational time PDFs for the best metaheuristic algorithms with the different
parameter initialization strategies for material A.

Note that the p-box computational time is acceptable, although it is not the shortest. In addition, the
p-box approach provides greater flexibility for the specification of the initial parameters. In contrast,
the normal PDF initialization strategy requires greater confidence in the knowledge of experts or
available information.

Table 2: Summary of error and computational time results for material A (cf. Figure 6).
Parameter Case Uniform DE Normal GA 5% P-box GA

Error [%]

Best/Worst 2.1/2.5 2.1/2.2 2.1/2.5
Max. Likelihood 2.2 2.1 2.1

95% Upper/Lower 2.1/2.4 2.1/2.1 2.1/2.2

Time [s]

Best/Worst 1/11 <1/2 1/6
Max. Likelihood 6 1 2

95% CI Upper/Lower 2/8 <1/1 1/5

4.2 Material B

Figure 7 shows the best results obtained with each parameter initialization strategy for material B
and Table 3 displays different statistics inferred from the error and computational time distributions
obtained for material B. The best results are obtained with the DE algorithm for uniform parameter
initialization and PSO with 1% uncertainty for normal PDF. For p-box parameter initialization, the
best outcomes are obtained when the GA algorithm is used.

The findings reveal that the accuracy of the p-box strategy improves the uniform and normal PDF
parameter initialization strategies, with the highest probability of getting a minimum error of 1.9%
compared to the uniform and normal PDF parameter initializations with 1.7% and 1.8% errors,
respectively. Even though the maximum likelihood error is higher for p-box, the best case accuracy is
lower than for the rest of the parameter initialization strategies. Moreover, the computational time for
the p-box parameter initialization strategy is longer than for normal PDF. For normal PDF parameter
initialization, the computation has the maximum likelihood of lasting 2 seconds, while for the p-box
parameter initialization, it is 3 seconds. In addition, the computational time for the p-box strategy
is shorter than for the uniform PDF parameter initialization, with a maximum likelihood time of 5
seconds. In contrast, as shown in Table 3, the 95% upper bound CI is higher for p-box parameter
initialization, 20 seconds, than for uniform PDF, 17 seconds. This difference can be attributed to
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the broader parameter range considered by the p-box initialization approach. Considering all these
results, the computational time for p-box parameter initialization can be considered acceptable.

(a) Error (b) Computational time

Figure 7: Error and computational time PDFs for different algorithms with the different parameter
initialization strategies for material B.

Table 3: Summary of error and computational time results for material B (cf. Figure 7).
Parameter Case Uniform DE Normal PSO 1% P-box GA

Error [%]
Best/Worst 1.7/2.5 1.7/2.4 1.0/2.0

Max. Likelihood 1.7 1.8 1.9
95% Upper/Lower 1.7/1.9 1.8/1.8 1.1/2

Time [s]
Best/Worst 1/41 1/23 3/43

Max. Likelihood 5 2 3
95% CI Upper/Lower 3/17 1/9 3/20

5 Conclusions

This study presents a framework for evaluating the initialization of Jiles Atherton (JA) parameters
using uniform, normal, and probability-box (p-box) distributions. Unlike uniform and normal distri-
butions, p-boxes can combine different sources of material data, expert knowledge, and its uncertainty
to accurately estimate the JA parameters. The proposed approach evaluates the effectiveness of p-box
parameter initialization for two different materials by analyzing their propagation through metaheuris-
tic algorithms: Genetic Algorithms, Particle Swarm Optimization, and Differential Evolution. The
algorithm with the best accuracy and computational time results for each material is compared with
parameter initialization strategies that have demonstrated satisfactory performance in JA parameter
estimation: the classical random uniform distribution and normal probability density function (PDF).

Obtained results indicate that with p-boxes, the accuracy of the results is improved. However, the
computational time is increased compared to the normal PDF parameter initialization. This increase
is due to the inverse sampling process needed to construct the p-box from different PDFs and the
broader parameter range that is analyzed with this strategy. Overall, p-box parameter initialization
has resulted in a higher accuracy and longer computational time than uniform parameter initialization.
Therefore, the p-box approach emerges as an alternative technique for JA parameter initialization and
metaheuristics-based estimation when there are few material data and expert knowledge.

The proposed framework is based on the combination of different normal PDFs to construct a p-box.
However, future research may explore the use of alternative PDFs for the generation of p-boxes,
which could better represent expert knowledge about the magnetic material and the transformer.
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