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Abstract

Denoising diffusion models are a recent class of generative models exhibiting state-of-the-art
performance in image and audio synthesis. Such models approximate the time-reversal of a
forward noising process from a target distribution to a reference measure, which is usually
Gaussian. Despite their strong empirical results, the theoretical analysis of such models
remains limited. In particular, all current approaches crucially assume that the target density
admits a density w.r.t. the Lebesgue measure. This does not cover settings where the target
distribution is supported on a lower-dimensional manifold or is given by some empirical
distribution. In this paper, we bridge this gap by providing the first convergence results
for diffusion models in this setting. In particular, we provide quantitative bounds on the
Wasserstein distance of order one between the target data distribution and the generative
distribution of the diffusion model.

1 Introduction

Diffusion modeling, also called score-based generative modeling, is a new paradigm for generative modeling
which exhibits state-of-the-art performance in image and audio synthesis (Song and Ermon, 2019; Song et al.,
2021b; Ho et al., 2020; Nichol and Dhariwal, 2021; Dhariwal and Nichol, 2021). Such models first consider a
forward stochastic process, adding noise to the data until a Gaussian distribution is reached. The model
then approximates the backward process associated with this forward noising process. It can be shown, see
(Haussmann and Pardoux, 1986) for instance, that in order to compute the drift of the backward trajectory,
the gradient of the forward logarithmic density (Stein score) must be estimated. Such an estimator is then
obtained using score matching techniques (Hyvärinen, 2005; Vincent, 2011) and leveraging neural network
techniques. At sampling time, the backward process is initialized with a Gaussian and run backward in time
using the approximation of the Stein score. Despite impressive empirical results, theoretical understanding and
convergence analysis of diffusion models remain limited. De Bortoli et al. (2021b) establish the convergence
of diffusion models in total variation under the assumption that the target distribution admits a density
w.r.t. the Lebesgue measure and under dissipativity conditions. More recently Lee et al. (2022) obtained
convergence results for diffusion models, including predictor-corrector schemes, under the assumption that
the target distribution admits a density w.r.t. the Lebesgue measure and satisfies a log-Sobolev inequality.

However, these works implicitly assume that the score does not explode as t → 0, by imposing that the score
of the data distribution is Lipschitz continuous or satisfies some growth property. This is not observed in
practice and experimentally the norm of the score blows up when t → 0, see (Kim et al., 2022) for instance.
Indeed, the assumptions that the target distribution admits a density w.r.t. the Lebesgue measure and has
a Lipschitz logarithmic gradient does not hold if one assumes the manifold hypothesis (Tenenbaum et al.,
2000; Fefferman et al., 2016; Goodfellow et al., 2016; Brown et al., 2022) or if the target measure is an
empirical measure. In this setting, the target distribution is supported on a lower dimensional compact set.
In the case of image processing, this hypothesis is supported by empirical evidence (Weinberger and Saul,
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2006; Fefferman et al., 2016). Under this hypothesis, even though the forward process admits a density for
all t > 0 its logarithmic gradient explodes for small t → 0. Consequently, previous theoretical analyses of
diffusion models do not apply to this setting. To our knowledge, (Pidstrigach, 2022) is the only existing
work investigating the convergence of diffusion models under such manifold assumptions by showing that the
limit of the continuous backward process with approximate score is well-defined and that its distribution is
equivalent to the one of the target distribution under integrability conditions on the error of the score. In
particular, Pidstrigach (2022) show that these distributions have the same support.

In this work, we complement these results and study the convergence rate of diffusion models under the
manifold hypothesis. More precisely, we derive quantitative convergence bounds in Wasserstein distance of
order one between the target distribution and the generative distribution of the diffusion model. The rest of
the paper is organized as follows. In Section 2, we recall the basics of diffusion models. We present our main
results and discuss links with the existing literature in Section 3. The rest of the paper is dedicated to the
proof of Theorem 1 in Section 4. We conclude and explore future avenues in Section 5.

2 Diffusion models for generative modeling

In this section, we recall the basics of diffusion models. Henceforth, let π ∈ P(Rd) denote the target
distribution, also known as the data distribution, and π∞ = N(0, Id) the d-dimensional Gaussian distribution
with zero mean and identity covariance matrix. In what follows, we let T > 0 and consider the forward
noising process (Xt)t∈[0,T ] given by an Ornstein–Uhlenbeck1 process as follows

dXt = −βtXtdt +
√

2βtdBt, X0 ∼ π. (1)

where (Bt)t≥0 is a d-dimensional Brownian motion and t 7→ βt is a (positive) weight function. In practice,
setting β0 ≤ βT allows for better control of the backward diffusion near the target distribution, see (Nichol
and Dhariwal, 2021; Song et al., 2021b) for instance. In what follows, we assume that (1) admits a strong
solution. Under mild assumptions on the target distribution (Haussmann and Pardoux, 1986; Cattiaux et al.,
2021), the backward process (Yt)t∈[0,T ] = (XT −t)t∈[0,T ] satisfies

dYt = βT −t{Yt + 2∇ log pT −t(Yt)}dt +
√

2βT −tdBt, (2)

where {pt}t∈(0,T ] the family of densities of {L(Xt)}t∈(0,T ]
2 w.r.t. the Lebesgue measure. In order to define

(2) we do not need to assume that π admits a density w.r.t. the Lebesgue measure. In practice, instead of
sampling from Y0 ∼ L(XT ) we sample from Y0 ∼ π∞ = N(0, Id). For large T > 0 the mismatch between the
distribution of XT and π∞ is small due to geometric convergence of the Ornstein–Uhlenbeck process.

In practice, {∇ log pt}t∈[0,T ] cannot be computed exactly and is approximated by a family of estimators
{s(t, ·)}t∈[0,T ]. Those estimators minimize the denoising score matching loss function ℓ given by

ℓ(s) =
∫ T

0 ϕ(t)E[∥s(t, Xt) − ∇ log pt|0(Xt|X0)∥2]dt, (3)

with pt|0 is the density of Xt given X0, i.e. the density of the transition kernel associated with (1) and
ϕ : [0, T ] → R+ is a weighting function. In practice, (3) is approximated using Monte Carlo samples and the
loss function is minimized over the parameters of a neural network.

Once the score estimator s is learned, we introduce a continuous-time backward process (Ŷt)t∈[0,T ] approxi-
mating (Yt)t∈[0,T ] and given by

dŶt = βT −t{Ŷt + 2s(T − t, Ŷt)}dt +
√

2βT −tdBt, Ŷ0 ∼ π∞ = N(0, Id). (4)

In practice, one needs to discretize (4) in order to define an algorithm which can be implemented. We consider
a sequence of stepsizes {γk}k∈{0,...,K} such that

∑K
k=0 γk = T . In what follows, for any k ∈ {0, . . . , K} we

1Also called Variance Preserving Stochastic Differential Equation (VPSDE) in Song et al. (2021b).
2For any Rd-valued random variable X, L(X) is the distribution of X.
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denote tk+1 =
∑k

j=0 γj and t0 = 03. Given this sequence of stepsizes, we consider the interpolation process
(Ȳt)t∈[0,T ] defined for any k ∈ {0, . . . , K} and t ∈ [tk, tk+1] by

dȲt = βT −t{Ȳt + 2s(T − tk, Ȳtk
)}dt +

√
2βT −tdBt, Ȳ0 ∼ π∞.

This process is an Ornstein–Uhlenbeck process on the interval [tk, tk+1]. Denoting (Yk)k∈{0,...,K+1} such that
for any k ∈ {0, . . . , K + 1}, Yk = Ȳtk

, we have for any k ∈ {0, . . . , K}

Yk+1 = Yk + γ1,k(Yk + 2s(T − tk, Yk)) +
√

2γ2,kZk, (5)

γ1,k = exp[
∫ T −tk

T −tk+1
βsds] − 1, γ2,k = (exp[2

∫ T −tk

T −tk+1
βsds] − 1)/2.

where {Zk}k∈N is a sequence of independent d-dimensional Gaussian random variables with zero mean and
identity covariance matrix. The discretization (5) approximately corresponds to the discrete-time scheme
introduced in (Ho et al., 2020), see Appendix B.2. We call this discretization scheme the exponential integrator
(EI) discretization, similarly to Zhang and Chen (2022) who introduced a similar scheme in accelerated
deterministic diffusion models. Lee et al. (2022) analyze a slightly different scheme corresponding to replacing
βT −tȲt by βT −tȲtk

in (4). We summarize the processes we have introduced in Table 1 and discuss the
links between (5) and the classical Euler–Maruyama discretization in Appendix B.1. As emphasized in the

Description Evolution equation
Forward process dXt = −βtXtdt +

√
2βtdBt

Backward process (BP) dYt = βT −t{Yt + 2∇ log pT −t(Yt)}dt +
√

2βT −tdBt

Score approximate BP (SBP) dŶt = βT −t{Ŷt + 2s(T − t, Ŷt)}dt +
√

2βT −tdBt

EI interpolation of SBP dȲt = βT −t{Ȳt + 2s(T − tk, Ȳtk )}dt +
√

2βT −tdBt

EI discretization of SBP Yk+1 = Yk + γ1,k(Yk + 2s(T − tk, Yk)) +
√

2γ2,kZk

Table 1: Different processes considered in this paper.

introduction, under the manifold hypothesis or in the case where the target distribution is an empirical
measure, the true score ∇ log pt explodes when t → 0. This behavior has been observed in practice for image
synthesis (Kim et al., 2022; Song and Ermon, 2020). One way to deal with this explosive behavior is to
truncate the integration of the backward diffusion, i.e. instead of running (Yt)t∈[0,T ] we consider (Yt)t∈[0,T −ε]
for a small hyperparameter ε > 0, (Vahdat et al., 2021; Song and Ermon, 2020). Translating this condition on
the associated discretized process, we assume that tK = T − ε and study {Yk}k∈{0,...,K} by disregarding the
last sample YK+1. We note that versions of diffusion models defined in discrete time do not suffer from such
shortcomings as the truncation is embedded in the discretization scheme, see (Song et al., 2021b; Song and
Ermon, 2020; 2019; Ho et al., 2020) for instance. Recently Kim et al. (2022) have proposed a soft probabilistic
truncation to replace the proposed hard threshold.

3 Main results

We first start by introducing and discussing our main assumptions. The only assumption we consider on the
data distribution π is that it is supported on a compact set M ⊂ Rd (i.e. a bounded and closed subset of Rd).
A1. π is supported on a compact set M and 0 ∈ M.

The assumption 0 ∈ M can be omitted but is kept to simplify the proofs. We denote diam(M) the diameter
of the manifold defined by diam(M) = sup{∥x − y∥ : x, y ∈ M}.

An assumption of compactness is natural in image processing as images are encoded on a finite range (typically
[0, 255] for each channel). We emphasize that this assumption encompasses not only all distributions which
admit a continuous density on a lower dimensional manifold but also all empirical densities of the form
(1/N)

∑N
i=1 δXi . Next, we turn to the temperature schedule t 7→ βt and make the following assumption.

3Note that tK+1 = T .

3



Published in Transactions on Machine Learning Research (11/2022)

A2. t 7→ βt is continuous, non-decreasing and there exists β̄ > 0 such that for any t ∈ [0, T ], 1/β̄ ≤ βt ≤ β̄.

Under this assumption, the integral of t 7→ βt is well-defined and for any t ∈ [0, T ] we have that

Xt = mtX0 + σtZ, mt = exp[−
∫ t

0 βsds], σ2
t = 1 − exp[−2

∫ t

0 βsds],

where the first equality holds in distribution and Z is a Gaussian random variable with zero mean and identity
covariance. Note that A2 is satisfied for every schedule used in practice, see Appendix G. Finally, we make
the following assumption on the score network.
A3. There exist s ∈ C([0, T ] × Rd,Rd) and M ≥ 0 such that for any t ∈ [0, T ] and xt ∈ Rd,

∥s(t, xt) − ∇ log pt(xt)∥ ≤ M(1 + ∥xt∥)/σ2
t .

Contrary to De Bortoli et al. (2021b), we do not assume a uniform bound in time and space as we allow
growth as t → 0 and ∥x∥ → 0. This assumption is more realistic as ∥∇ log pt(xt)∥ ∼t→0 c0(xt)/σ2

t and
∥∇ log pt(xt)∥ ∼∥xt∥→+∞ c1(t)∥xt∥ as we will show in Appendix C. This explosive behavior as t → 0 is
accounted for in practical implementations. For example Song et al. (2021b) used a parameterization of
the score of the form s(t, x) = n(t, x)/σt, where n is a neural network with learnable parameters. Our
assumption is notably different from the one of Lee et al. (2022) which assume a uniform in time L2 bound
between the score estimator and the true score. Nevertheless, in Appendix I we derive Theorem I.1 which
is the counterpart to our main result under a L2 error assumption, using the theory of Lee et al. (2022) to
derive an L∞ error from a L2 one. However our L2 error bounds are weaker than the ones of Lee et al. (2022)
as they are estimated w.r.t. to the distribution of the algorithm and not w.r.t. the true backward distribution.
We highlight that L2 bounds are more realistic than L∞ as the score is estimated on the data.

Finally, we make the following assumption on the sequence of stepsizes. Recall that for any k ∈ {0, . . . , N}
we have tk+1 =

∑k
j=0 γj and t0 = 0.

A4. For any k ∈ {0, . . . , K − 1}, we have γk supv∈[T −tk+1,T −tk] βv/σ2
v ≤ δ ≤ 1/2.

In the case where βt = β0 for any t ∈ [0, T ], A4 is implied by the following condition: for any k ∈ {0, . . . , K−1}

γk(β0 + (2
∑K

j=k+1 γj)−1) ≤ δ. (6)

In the next section, we fix γK = ε and in this case, the condition (6) is satisfied if γk ≤ δε/(2 + β0ε).

3.1 Convergence bounds

We are now ready to state our main result.
Theorem 1. Assume A1, A2, A3, A4 that T ≥ 2β̄(1 + log(1 + diam(M)), γK = ε and ε, M, δ ≤ 1/32. Then,
there exists D0 ≥ 0 such that

W1(L(YK), π) ≤ D0(exp[κ/ε](M + δ1/2)/ε2 + exp[κ/ε] exp[−T/β̄] + ε1/2),

with κ = diam(M)2(1 + β̄)/2 and

D0 = D(1 + β̄)7(1 + d + diam(M)4)(1 + log(1 + diam(M))), (7)

and D is a numerical constant.

First, we note that letting T → +∞, δ, M → 0 and then ε → 0 we get that W1(L(YK), π) → 0. This
consequence is to be expected since limε→0 L(YT −ε) = π. An explicit dependency of the bound on these
parameters is given in Corollary 2. More generally the error bound depends on four variables (a) ε which
corresponds to the truncation of the backward process, (b) T the integration time of the forward process,
(c) δ which is related to a condition on the stepsizes of the backward discretization, see A4 (d) M which
controls the score approximation, see A3. The dependence w.r.t. δ1/2 and M is linear, whereas the dependence
w.r.t. T is of the form exp[−T/β̄]. These two terms are multiplied by a quantity depending on the truncation
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bound ε which is exponential of the form exp[κ/ε]. We conjecture that under additional assumptions on
M this dependence can be improved to also be polynomial, see Theorem 3 for an extension of Theorem 1
under general Hessian assumptions. Additional remarks and comments on Theorem 1 and its assumptions
are considered in Appendix F.

Proof. We provide a sketch of the proof. The detailed proof is postponed to Section 4. The distribution
of YK is given by π∞RK , where RK is the transition kernel associated with YK |Y0. In order to control
W1(π∞RK , π), we consider the following inequality

W1(π∞RK , π) ≤ W1(π∞RK , π∞QtK
) + W1(π∞QtK

, πPT −tK
) + W1(πPT −tK

, π), (8)

where (Pt)t∈[0,T ] is the semi-group associated with (Xt)t∈[0,T ] and (Qt)t∈[0,T ] is the semi-group associated
with (Yt)t∈[0,T ]. We then control each one of these terms. The first term corresponds to the discretization
error and the score approximation. It is upper bounded by a term of the form O(exp[κ/ε](M + δ1/2)/ε2). The
second term corresponds to the convergence of the continuous-time exact backward process and is of order
O(exp[κ/ε] exp[−T/β̄]). The last term corresponds to the error between the data distribution and a slightly
noisy version of this distribution and is of order O(ε1/2).

As an immediate corollary of Theorem 1, we have the following result.
Corollary 2. Assume A1, A2, A3, A4. Let η ∈ (0, 1/32), T ≥ 2β̄(1 + log(1 + diam(M)) and

T ≥ β̄(κ + 1)/η2, M ≤ exp[−κ/η2]η5, δ ≤ exp[−2κ/η2]η10, γK = η2.

Then,
W1(L(YK), π) ≤ 4D0η,

with κ = diam(M)2(1 + β̄)/2 and D0 given in (7).

The constant D0 appearing in Theorem 1 and Corollary 2 does not depend on ε, T , δ and M but only on β̄,
diam(M) and d. In particular, we highlight that the dependence of D0 w.r.t. the dimension is O(d) and the
dependence w.r.t. the diameter of M is O(diam(M)4) up to logarithmic term. Note that the diameter might
only depend on intrisic dimension p of M which satisfies p ≪ d in some settings. For example in the case of
an hypercube of dimension p we have diam(M) = √

p.

Contrary to De Bortoli et al. (2021b); Lee et al. (2022); Pidstrigach (2022), our results are stated w.r.t. the
Wasserstein distance and not the total variation distance or the Kullback-Leibler divergence. We emphasize
that studying the total variation or Kullback-Leibler divergence between the distribution of YK and the
one of π under A1 with M lower dimensional than Rd lead to vacuous bounds as these quantities are lower
bounded by 1 in the case of the total variation and +∞ in the case of the Kullback-Leibler divergence since
the densities we are comparing are not supported on the same set.4 This is not the case with the Wasserstein
distance of order one. To the best of our knowledge Theorem 1 is the first convergence result for diffusion
models w.r.t. W1. We note that our result could be extended to Wp for any p ≥ 1, since we do not rely on
any property specific to W1 among all Wp distances for any p ≥ 1. In particular, our analysis does not use
the fact that W1 is an integral probability metric, (Sriperumbudur et al., 2009).

We conclude this section, with an improvement upon Theorem 1 in the case where tighter bounds on the
Hessian ∇2 log pt are available.
Theorem 3. Assume A1, A2, A3, A4 that T ≥ 2β̄(1 + log(1 + diam(M)), γK = ε and ε, M, δ ≤ 1/32. In
addition, assume that there exists Γ ≥ 0 such that for any t ∈ (0, T ] and xt ∈ Rd

∥∇2 log pt(xt)∥ ≤ Γ/σ2
t . (9)

Then, there exists D0 ≥ 0 such that

W1(L(YK), π) ≤ D0((M + δ1/2)/εΓ+2 + exp[−T/β̄]/εΓ + ε1/2),
4We emphasize however that total variation bounds smaller than 1 and finite Kullback-Leibler divergence have strong

implications, namely the generative model has same support as the target distribution. However, such property is not satisfied
in practice, see Appendix F or (Jolicoeur-Martineau et al., 2021, Figure 2) for instance.
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with
D0 = D(1 + d + (1 + diam(M))4) exp[3(1 + β̄)2(Γ + 2)(1 + log(1 + diam(M)))].

and D is a numerical constant.

Proof. The complete proof is postponed to Appendix J.1. The crux of the proof is to derive an improved
version of Proposition 6 which provides controls on some tangent process. Indeed, in Proposition 6, we use
an upper bound of the form ∥∇2 log pt(xt)∥ ≤ Γ/σ4

t which is a loose upper bound derived under A1.

Theorem 3 improves the bounds of Theorem 1, since the exponential dependency w.r.t. ε is replaced by
a polynomial dependency with exponent Γ. At first sight, it is not clear when (9) is satisfied. However,
in special cases we can verify this condition explicitly. For example, in Appendix J.2, we show that this
condition is satisfied if π is the uniform distribution on the hypercube, with p ∈ {1, . . . , d}. The condition (9)
has strong geometrical implications on M. In particular, under appropriate smoothness assumptions on M,
it implies that M is convex, Appendix J.3.

3.2 Statistical guarantees and empirical measure targets

We emphasize that the results of Theorem 1 hold under the general assumption A1 which only requires the
target measure to be supported on a compact set. This includes measures which are supported on a smooth
manifold of dimension p ≤ d but also all empirical measures of the form (1/N)

∑N
i=1 δXi with {Xi}N

i=1 ∼ π⊗N .
In particular if we assume that the underlying target measure π is supported on a manifold of dimension
p ≤ d and that the diffusion models are trained w.r.t. some empirical measure associated with π then we
have the following result.
Proposition 4. Assume A1, A2, A3, A4 that T ≥ 2β̄(1 + log(1 + diam(M)), γK = ε and ε, M, δ ≤ 1/32.
Then, for any η > 0 there exist D0, D1 ≥ 0 such that

E[W1(L(YK), π)] ≤ D0(exp[κ/ε](M + δ1/2)/ε2 + exp[κ/ε] exp[−T/β̄] + ε1/2) + D1N−1/(dM (M)+η),

with dM (M) the Minkowski dimension of M, see (11), κ = diam(M)2(1 + β̄)/2, D1 given in (Weed and Bach,
2019, Theorem 1) and

D0 = D(1 + β̄)7(1 + d + diam(M)4)(1 + log(1 + diam(M))),

with D a numerical constant.

Proof. For any N ∈ N, we denote πN = (1/N)
∑N

i=1 δXi . Using Theorem 1, we have that for any N ∈ N

W1(L(YK), πN ) ≤ D0(exp[κ/ε](M + δ1/2)/ε2 + exp[κ/ε] exp[−T/β̄] + ε),

with a constant D0 which does not depend on {Xi}N
i=1 and N . Therefore, we have that for any N ∈ N

E[W1(L(YK), πN )] ≤ D0(exp[κ/ε](M + δ1/2)/ε2 + exp[κ/ε] exp[−T/β̄] + ε). (10)

Using (Weed and Bach, 2019, Theorem 1) and (Weed and Bach, 2019, Proposition 2), for any η > 0, there
exists D1 ≥ 0 such that

E[W1(πN , π)] ≤ D1N−1/(dM (M)+η),

which concludes the proof upon combining this result, (10) and the triangle inequality.

The Minkowski dimension d(M) is defined as follows:

d(M) = d − lim infε→0 log(Vol(Mε))/ log(1/ε), (11)

with Vol(A) the volume of a (measurable) set A and Mε the ε-fattening of M, i.e. for any ε > 0, Mε =
{x ∈ Rd : d(x, M) ≤ ε}. For example if M is a topological manifold of dimension p ≤ d then its Minkowski
dimension is p, i.e. dM (M) = p. Hence, in this case the error term in Proposition 4 depends exponentially on
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the dimension of M and on its diameter but depends only linearly on d, the dimension of the ambient space.
Note again that diam(M) might depend on the dimension of M. For example in the case of the hypercube
M = [−1/2, 1/2]p, we have diam(M) = √

p. Hence, the results of Proposition 4 show that diffusion models
exploit the lower-dimensional structure of the target. We highlight that this result does not quantify the
diversity of diffusion models, i.e. their ability to produce samples which are distinct from the ones of the
training dataset Alaa et al. (2022); Zhao et al. (2018). There is empirical evidence that denoising diffusion
models yield generative models with good diversity properties Xiao et al. (2021); Dhariwal and Nichol (2021)
and we leave the theoretical study of the diversity of denoising diffusion models for future work.

3.3 Related works

To the best of our knowledge, (De Bortoli et al., 2021b) is the first quantitative convergence results for
denoising diffusion models. More precisely, De Bortoli et al. (2021b) show a bound in total variation between
the distribution of the diffusion model and the target distribution of the form

∥L(YK+1) − π∥TV ≤ A(exp[−T ] + exp[T ](M1/2 + δ1/2)). (12)

This result holds under the assumption that π admits a density w.r.t. Lebesgue measure which satisfies
some dissipativity conditions. Again we emphasize that such results in total variation are vacuous under
the manifold hypothesis. The upper bound in (12) is obtained using a similar splitting of the error as in
Theorem 1. However the control of the discretization error is handled using Girsanov formula in (De Bortoli
et al., 2021b) and relies on similar techniques as (Dalalyan, 2017; Durmus and Moulines, 2017). In the
present work, this error is controlled using the interpolation formula from Del Moral and Singh (2019) which,
combined with controls on stochastic flows, allows for tighter controls of the discretization error w.r.t. W1.

Lee et al. (2022) study the convergence of diffusion models under (uniform in time) L2 controls on the score
approximation. Their result is given w.r.t. the total variation and therefore suffers from the same shortcoming
as the ones of De Bortoli et al. (2021b). In particular it is assumed that the data distribution admits a
density w.r.t. the Lebesgue measure which satisfies some regularity conditions as well as a logarithmic Sobolev
inequality. Additionally, it is required that ∇2 log pt is bounded uniformly in time and in space which is not
true under the manifold hypothesis and is hard to verify in practice even in simple cases.

Closer to our line of work are the results of Pidstrigach (2022) who proves that the approximate backward
process (4) converges to a random variable whose distribution is supported on the manifold of interest. In
this work, we complement these results by studying the discretization scheme and providing quantitative
bounds between the output of the diffusion model and the target distribution.

Related to the manifold hypothesis and the study of convergence of diffusion models De Bortoli et al. (2022)
study the convergence of a Riemannian counterpart of diffusion models. Result are given w.r.t. the total
variation (defined on the manifold of interest). Even though such diffusion models directly incorporate the
manifold information they require the knowledge of the geodesics and the Riemannian metric of the manifold.
In the case of the manifold hypothesis these quantities are not known and therefore cannot be used in practice.
In particular, De Bortoli et al. (2022) focus on manifolds which have a well-known structure such as S1, T2 or
SO3(R).

Franzese et al. (2022) show that there exists a trade-off between long and short time horizons T . Their analysis
is based on a rearrangement of the Evidence Lower Bound (ELBO) obtained by Huang et al. (2021). This
ELBO can be decomposed in the sum of two terms: one which decreases with T (controlling the bias between
L(XT ) and π∞) and one which increases with T (corresponding to the loss term (3)). Their decomposition
of the ELBO is in fact equivalent to (Song et al., 2021a, Theorem 1). In Appendix H we include a short
derivation of this result.

Finally, we highlight the earlier results of Block et al. (2020a). In this work, the authors study a version of
the Langevin algorithm in which the score term is approximated. This is different from the diffusion model 5

setting and is closer to the setting of Plug-and-Play (PnP) approaches (Venkatakrishnan et al., 2013; Arridge
5Even though the authors provide a discussion on an annealed version of the algorithm they study which corresponds to the

original framework of Song and Ermon (2019).
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et al., 2019; Zhang et al., 2017). Related to our manifold assumptions, Block et al. (2020b) show that in a
setting similar to PnP approaches, the corresponding Langevin dynamics enjoys fast convergence rates if the
target distribution is supported on a manifold with curvature assumptions. In particular, they show that a
noisy version of the target distribution satisfies a logarithmic Sobolev inequality with constant which only
depends on the intrisic dimension of the manifold.

4 Proof of Theorem 1

In this section, we present a proof of Theorem 1. More precisely, we control each term on the right hand
side of (8). The bottleneck of the proof resides in the control of the discretization and approximation error
W1(π∞RK , π∞QtK

) which is dealt with in Section 4.1. Then, we turn to the convergence of the backward
process W1(π∞QtK

, πPT −tK
) in Section 4.2. Finally, we control the noising error W1(πPT −tK

, π) and
conclude in Section 4.3. Technical results are postponed to the appendix.

4.1 Control of W1(π∞RK , π∞QtK
)

In this section, we control W1(π∞RK , π∞QtK
). To do so we are going to use the backward formula introduced

in Del Moral and Singh (2019). First, we recall the definition of the stochastic flows (Yx
s,t)s,t∈[0,T ] and the

interpolation of its discretization (Ȳx
s,t)s,t∈[0,T ], for any x ∈ Rd and s, t ∈ [0, T ] with t ≥ s

dYx
s,t = βT −t{Yx

s,t + 2∇ log pT −t(Yx
s,t)}dt +

√
2βT −tdBt, Yx

s,s = x,

and for any k ∈ {0, . . . , K} and t ∈ [sk, tk+1)

dȲx
s,t = βT −t{Ȳx

s,t + 2s(T − sk, Ȳx
s,sk

)}dt +
√

2βT −tdBt, Ȳx
s,s = x,

where sk = max(s, tk). We also introduce the tangent process (Yx
s,t)t∈[s,T ]

d∇Yx
s,t = βT −t{Id +2∇2 log pT −t(Yx

s,t)}∇Yx
s,tdt, ∇Yx

s,s = Id . (13)

Note that (Yx
s,t)t∈[s,T ] is a d × d stochastic process. The tangent process (∇Yx

s,t)s,t∈[0,T ] can also be defined
as follows. Under mild regularity assumption, for any s, t ∈ [0, T ] with t ≥ s, x 7→ Yx

s,t is a diffeomorphism,
see (Kunita, 1981), and we denote x 7→ ∇Yx

s,t its differential. Then, (Kunita, 1981, Section 2) shows under
mild assumptions that (∇Yx

s,t)s,t∈[0,T ] satisfies (13). Hence, (∇Yx
s,t)s,t∈[0,T ] encodes the local variation of

the process (Yx
s,t)s,t∈[0,T ] w.r.t. its initial condition. Our bound on the approximation/discretization error

relies on the following proposition which was first proven by Del Moral and Singh (2019).
Proposition 5. Assume A1. Then, for any s, t ∈ [0, T ) with s < t and x ∈ Rd

Yx
s,t − Ȳx

s,t =
∫ t

s
(∇YȲx

s,u

u,t )⊤∆bu((Ȳx
s,v)v∈[s,T ])du,

where for any u ∈ [0, T ) with u ∈ [sk, tk+1) for some k ∈ {0, . . . , K} and (ωv)v∈[s,T ] ∈ C([s, T ] ,Rd) we have

bu(ω) = βT −u(ωu + 2∇ log pT −u(ωu)), b̄u(ω) = βT −u(ωu + 2s(T − sk, ωsk
)), ∆bu(ω) = bu(ω) − b̄u(ω).

where sk = max(s, tk).

Proof. The proof of this proposition is postponed to Appendix E.

Using Proposition 5 our goal is now to control ∥∇Yx
s,t∥ and ∥∆bs((Ȳx

s,t)t∈[s,T ])∥ for any s, t ∈ [0, T ] and
x ∈ Rd. To do so, we introduce the time t⋆ which is a lower bound on the supremum time so that the
backward process is contractive on [0, t⋆],

t⋆ = T − 2β̄(1 + log(1 + diam(M))). (14)

We then obtain the following bound.
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Proposition 6. Assume A1 and T ≥ 2β̄(1 + log(1 + diam(M)). Let tK ∈ [0, T ). Then, for any s ∈ [0, tK ]
and x ∈ Rd we have

∥∇Yx
s,tK

∥ ≤ exp[−(1/2)
∫ T −s

T −t⋆ βudu1[0,t⋆)(s)] exp[(diam(M)2/2)σ−2
T −tK

].

Proof. Let x ∈ Rd. First, using (13) and Lemma C.2 we have that for any s, t ∈ [0, T ] with s ≤ t

d∥∇Yx
s,t∥2 ≤ 2βT −t(∥∇Yx

s,t∥2 − 2(1 − m2
T −tdiam(M)2/(2σ2

T −t))/σ2
T −t∥∇Yx

s,t∥2)dt.

First, assume that s ≤ t⋆ and that t ≥ t⋆. In that case, using Lemma D.8 we have that∫ t⋆

s
βT −u(1 − 2/σ2

T −u + m2
T −udiam(M)2/σ4

T −u)du ≤ −(1/2)
∫ t⋆

s
βT −udu.

Therefore, using that result and the fact that ∇Yx
s,s = Id, we get that

∥∇Yx
s,t⋆∥ ≤ exp[−(1/2)

∫ T −s

T −t⋆ βudu]. (15)

In addition, using Lemma D.8 we have that∫ t

t⋆ βT −u(1 − 2/σ2
T −u + m2

T −udiam(M)2/σ4
T −u)du ≤ (diam(M)2/2)(σ−2

T −t − σ−2
T −t⋆).

Therefore, we get that
∥∇Yx

s,t∥ ≤ exp[(diam(M)2/2)σ−2
T −t]∥∇Yx

s,t⋆∥.

Hence, combining this result and (15), in the case where s ≤ t⋆ we have

∥∇Yx
s,t∥ ≤ exp[−(1/2)

∫ T −s

T −t⋆ βsds] exp[(diam(M)2/2)σ−2
T −t].

The proof in the cases where s ≥ t⋆, t ≥ t⋆ and s ≤ t⋆, t ≤ t⋆ are similar and left to the reader.

Our next goal is to control ∥∆b∥. We recall that b, b̄ : [0, T ] × C([0, T ] ,Rd) → Rd where for any u ∈ [0, T )
such that u ∈ [sk, tk+1) for some k ∈ {0, . . . , K} and ω = (ωv)v∈[s,T ] ∈ C([s, T ] ,Rd) 6 we have

bu(ω) = βT −u(ωu + 2∇ log pT −u(ωu)), b̄u(ω) = βT −u(ωu + 2s(T − sk, ωsk
)),

∆bu(ω) = bu(ω) − b̄u(ω),

where sk = max(s, tk). We now provide upper bounds on ∆b. We introduce the intermediate drift functions
b(a), b(b), b(c), b(d) such that b(a) = b and b(d) = b̄. In addition, for any s, u ∈ [0, T ) such that u ≥ s,
u ∈ [sk, tk+1) for some k ∈ {0, . . . , K} and for any ω = (ωv)v∈[s,T ] ∈ C([s, T ] ,Rd) we have

b(b)
u (ω) = βT −u(ωu + 2∇ log pT −sk

(ωu)), b(c)
u (ω) = βT −u(ωu + 2∇ log pT −sk

(ωsk
)),

∆(a,b)b = b(a) − b(b), ∆(b,c)b = b(b) − b(c), ∆(c,d)b = b(c) − b(d),

where sk = max(s, tk). We have that

∥∆b∥ ≤ ∥∆(a,b)b∥ + ∥∆(b,c)b∥ + ∥∆(c,d)b∥. (16)

In the rest of this section, we control each term on the right hand side of (16).
Lemma 7. For any s, u ∈ [0, T ) such that u ≥ s, u ∈ [sk, tk+1) for some k ∈ {0, . . . , K} and ω = (ωv)v∈[s,T ] ∈
C([s, T ] ,Rd) we have

∥∆(a,b)bu(ω)∥ ≤ 2 supv∈[T −u,T −tk](β2
v/σ6

v)(2 + diam(M)2)(diam(M) + ∥ωu∥)γk.

6With a slight abuse of notation we assume that each process on C([s, T ]) is extended on C([0, T ]) by setting ωu = ωs for any
u ∈ [0, s].
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Proof. Assume that s ≤ tk. Then, we have

∥∆(a,b)bu(ω)∥ ≤ 2βT −u∥∇ log pT −u(ωu) − ∇ log pT −tk
(ωu)∥

≤ 2βT −uγk supv∈[T −u,T −tk] ∥∂v∇ log pT −v(ωu)∥.

Using Lemma C.3, we have that

∥∆(a,b)bu(ω)∥ ≤ 2βT −u supv∈[T −u,T −tk](βv/σ6
v)(2 + diam(M)2)(diam(M) + ∥ωu∥)γk,

which concludes the proof in the case where s ≤ tk. The case where s ≥ tk is similar and left to the reader.

Lemma 8. For any s, u ∈ [0, T ) such that u ≥ s, u ∈ [sk, tk+1) for some k ∈ {0, . . . , K} and ω = (ωv)v∈[s,T ] ∈
C([s, T ] ,Rd) we have

∥∆(b,c)bu(ω)∥ ≤ 2(βT −u/σ4
T −u)(1 + diam(M)2)∥ωu − ωsk

∥,

where sk = max(s, tk).

Proof. Assume that s ≤ tk. We have

∥∆(b,c)bu(ω)∥ ≤ 2βT −u∥∇ log pT −tk
(ωtk

) − ∇ log pT −tk
(ωu)∥

≤ 2βT −u supv∈[u,T −tk] ∥∇2 log pT −tk
(ωv)∥∥ωu − ωtk

∥.

Using Lemma C.2 we have that

∥∆(b,c)bu(ω)∥ ≤ 2(βT −u/σ4
T −u)(1 + diam(M)2)∥ωu − ωtk

∥,

which concludes the proof in the case where s ≤ tk. The case where s ≥ tk is similar and left to the reader.

Finally, combining Lemma 7, Lemma 8 and A3 in (16), we get that for any s, u ∈ [0, T ) such that u ≥ s,
u ∈ [sk, tk+1) for some k ∈ {0, . . . , K} and (ωv)v∈[s,T ] ∈ C([s, T ] ,Rd) we have

∥∆bu(ω)∥ ≤ 2 supv∈[T −tk+1,T −tk](β2
v/σ6

v)(2 + diam(M)2)(diam(M) + ∥ωu∥)γk (17)
+ 2(βT −u/σ4

T −u)(1 + diam(M)2)∥ωu − ωsk
∥

+ 2βT −uM(1 + ∥ωsk
∥)/σ2

T −u,

where sk = max(s, tk).

The following proposition controls the local error between the continuous-time backward process and the
interpolation of the discretized one where the true score is replaced by the approximation s.
Proposition 9. Assume A1, A2, A3, A4. In addition, assume that δ, M, γK ≤ 1/32. Then, we have for any
s, u ∈ [0, tK ] with u ≥ s

E[∥∆bu((Ȳs,v)v∈[s,T ])∥] ≤ C0(T − tK + β̄)2(M + δ1/2)/(T − tK)2,

where Ȳs,s ∼ N(0, Id) and

C0 = (1 + β̄)7/2(4 + 256d + 43664(1 + diam(M))4). (18)

Proof. Let s, u ∈ [0, tK ] with u ≥ s. In what follows, for ease of notation, we denote for any k ∈ {0, . . . , K}

κk = supv∈[T −tk+1,T −tk] βv/σ2
v .

There exists k ∈ {0, . . . , K − 1} such that u ∈ [tk, tk+1]. Assume that s ≤ tk. Recall that using (17), we have
that for any ω = (ωv)v∈[s,T ] ∈ C([s, T ] ,Rd)

∥∆bu(ω)∥ ≤ 2 supv∈[T −tk+1,T −tk](β2
v/σ6

v)(2 + diam(M)2)(diam(M) + ∥ωu∥)γk
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+ 2(βT −u/σ4
T −u)(1 + diam(M)2)∥ωu − ωtk

∥
+ 2βT −uM(1 + ∥ωsk

∥)/σ2
T −u

≤ 2(κ2
k/σ2

T −tk+1
)γk(2 + diam(M)2)(diam(M) + ∥ωu∥)

+ 2κ2
k(1 + diam(M)2)∥ωu − ωtk

∥/βT −u + 2κkM(1 + ∥ωsk
∥).

Combining this result with Lemma D.5, its following remark and Lemma D.6, we get that

E[∥∆bu((Ȳs,v)v∈[s,T ])∥] ≤ 2(κ2
k/σ2

T −tk+1
)γk(2 + diam(M)2)(diam(M) + K1/2

0 )

+ 2κ2
k(1 + diam(M)2)L1/2

0 β̄3/2γ
1/2
k + 2κkM(1 + K1/2

0 ).

Denoting C = 2(2 + diam(M)2)(diam(M) + K1/2
0 ) + 2L1/2

0 β̄3/2(1 + diam(M)2) + 2(1 + K1/2
0 ), we get that

E[∥∆bu((Ȳs,v)v∈[s,T ])∥] ≤ C((κ2
k/σ2

T −tk+1
)γk + κ2

kγ
1/2
k + Mκk).

Combining this result, A4 and Lemma D.3 we have

E[∥∆bu((Ȳs,v)v∈[s,T ])∥] ≤ C(1 + β̄)2(1 + β̄/(T − tK))2(δ1/2 + M)
+ C(1 + β̄)(1 + β̄/(T − tK))(δ/σ2

T −tK
)

≤ C(1 + β̄)2(T − tK + β̄)2(δ1/2 + M)/(T − tK)2 + C(1 + β̄)(T − tK + β̄)(δ/σ2
T −tK

)/(T − tK).

Finally, using Lemma D.2, we have σ−2
T −tK

= (1 − exp[−2
∫ T −tK

0 βsds])−1 ≤ 1 + β̄/(2(T − tK)) Therefore,
using that γK = T − tK < 1 we get that

E[∥∆bu((Ȳs,v)v∈[s,T ])∥] ≤ C(1 + β̄)2(T − tK + β̄)2(δ + δ1/2 + M)/(T − tK)2

≤ 2C(1 + β̄)2(T − tK + β̄)2(δ1/2 + M)/(T − tK)2

which concludes the first part of the proof in the case where s ≤ tk. The same bound holds in the case where
s ≥ tk. Finally, we conclude upon noticing that 2C(1 + β̄)2 ≤ C0 with C0 given by (18).

We are now ready to control the global error between the backward process and the interpolation of the
associated discrete-time process where the true score has been replaced by its approximation s.
Proposition 10. Assume A1, A2, A3, A4 and γK = ε. In addition, assume that ε, δ, M ≤ 1/32. Then

W1(π∞QtK
, π∞RK) ≤ D0 exp[diam(M)2(1 + β̄)/(2ε)](M + δ1/2)/ε2,

where D0 = (1 + β̄)7(8 + 512d + 87328(1 + diam(M))4)(1 + log(1 + diam(M))).

Proof. Using Proposition 5, we have

∥YtK
− YK∥ = ∥YtK

− ȲtK
∥ ≤

∫ tK

0 ∥∇YȲ0,u

u,tK
∥∥∆bu((Ȳ0,v)v∈[0,T ])∥du.

Combining this result, recalling that t⋆ is defined in (14) and Proposition 6, we get

∥YtK
− YK∥ ≤

∫ tK

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds1[0,t⋆)(u)] exp[(diam(M)2/2)σ−2
T −tK

]∥∆bu((Ȳ0,v)v∈[0,T ])∥du

≤ exp[(diam(M)2/2)σ−2
T −tK

](
∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]∥∆bu((Ȳ0,v)v∈[0,T ])∥du

+
∫ tK

t⋆ ∥∆bu((Ȳ0,v)v∈[0,T ])∥du).

Using this result and Proposition 9 we get

W1(π∞QtK
, π∞RK) ≤ E[∥YtK

− YK∥]

≤ exp[(diam(M)2/2)σ−2
T −tK

](
∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]E[∥∆bu((Ȳ0,v)v∈[0,T ])∥]du

11
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+
∫ tK

t⋆ E[∥∆bu((Ȳ0,v)v∈[0,T ])∥]du).
≤ exp[(diam(M)2/2)σ−2

T −tK
]C0(T − tK + β̄)2(M + δ1/2)/(T − tK)2

×(
∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]du + tK − t⋆). (19)

We have that ∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]du ≤
∫ t⋆

0 exp[−(t⋆ − u)/(2β̄)]du ≤ 2β̄. (20)

In addition, using (14) we have

tK − t⋆ = T − ε − T + 2β̄(1 + log(1 + diam(M))) ≤ 2β̄(1 + log(1 + diam(M))). (21)

Using Lemma D.2, we have that σ−2
T −tK

≤ (1 + β̄)/ε. Combining this result, (20) and (21) in (19) we get

W1(π∞QtK
, π∞RK) ≤ 2C0 exp[diam(M)2(1 + β̄)/(2ε)](1 + β̄)3(1 + log(1 + diam(M)))(M + δ1/2)/ε2,

which concludes the proof.

4.2 Control of W1(π∞QtK
, πPT −tK

)

In this section, we focus on the error W1(π∞QtK
, πPT −tK

). First, note that πPT −tK
= πPT QtK

. Therefore,
using Proposition D.9, we have

W1(π∞QtK
, πPT −tK

) = W1(π∞QtK
, πPT QtK

) ≤ exp[(1/2)σ−2
T −tK

]W1(πPT , π∞). (22)

To control W1(πPT , π∞), we use a synchronous coupling, i.e. we set (Yt, Zt)t∈[0,T ] such that

dYt = −βtYtdt +
√

2βtdBt, dZt = −βtZtdt +
√

2βtdBt,

where (Bt)t∈[0,T ] is a d-dimensional Brownian motion and Y0 ∼ π, Z0 ∼ π∞. We have that for any t ∈ [0, T ],
Zt ∼ π∞. In addition, denoting ut = E[∥Yt − Zt∥] for any t ∈ [0, T ], we have that ut ≤ u0 exp[−

∫ t

0 βsds].
Therefore, combining this result and (22), we get that

W1(π∞QtK
, πPT −tK

) ≤ exp[(1/2)σ−2
T −tK

] exp[−
∫ T

0 βtdt]W1(π, π∞). (23)

Therefore, using Lemma D.2, we have

W1(π∞QtK
, πPT −tK

) ≤ exp[(1 + β̄)diam(M)2/(2ε)] exp[−T/β̄](
√

d + diam(M)).

4.3 Control of W1(πPT −tK
, π) and conclusion

In this section, we focus on the error W1(π, πPT −tK
) and conclude the proof. We have that W1(π, πPT −tK

) ≤
E[∥X − mT −tK

X + σT −tK
Z∥], with X ∼ π and Z ∼ N(0, Id). Hence, using 1 − mT −tK

≤ σT −tK
, we have

W1(π, πPT −tK
) ≤ diam(M)(1 − mT −tK

) + σT −tK

√
d ≤ (diam(M) +

√
d)σT −tK

.

Using Lemma D.2 and this result we have

W1(π, πPT −tK
) ≤ (2β̄)1/2(diam(M) +

√
d)ε1/2. (24)

We conclude the proof upon combining this result, (23) and Proposition 10 in (8)

5 Conclusion

In this work, we have studied the convergence of diffusion models under the manifold hypothesis and provided
convergence guarantees w.r.t. the Wasserstein distance of order one. Our theoretical results show that
diffusion models are able to recover target distributions defined on low-dimensional manifolds. One current
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limitation of our results lies in the dependency w.r.t. 1/ε which is exponential in the general case and might
be overly pessimistic. This dependency can be improved at the cost of imposing conditions on the Hessian of
log pt but further investigations are needed to establish similar results in realistic settings.

Our results can be extended in several directions. First, in this work we focused on the Ornstein–Uhlenbeck
process as a forward noising process. It would be interesting to analyze other forward diffusions such as the
critically-damped one (Dockhorn et al., 2021). Another extension would be to study other discretization
frameworks such as predictor-corrector schemes (Song et al., 2021a) and to extend our analysis to more
realistic statistical settings. Finally, it is a challenge to derive similar bounds for target distributions with Rd

support and tail constraints.

Finally, we would like to deepen our study of the relationship between the geometry of the manifold M and
the properties of the score function. Preliminary results from Appendix J.3 indicate that the convexity of M
can be recovered from the properties of the score but it remains unclear if more can be said on the geometry
of the manifold.
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A Organization of the appendix

The appendix is organized as follows. We start by discussing our discretization scheme in Appendix B. In
Appendix C, we provide upper bounds on the gradient and Hessian of the logarithmic gradient of the density
of the forward process under the manifold assumption. In Appendix D, we control the stability of several
backward processes. In Appendix E, we recall and adapt a stochastic interpolation formula from Del Moral
and Singh (2019). We check the different assumptions on the noise schedule in Appendix G. A short proof of
the results of Franzese et al. (2022) is presented in Appendix H. In Appendix I, we present an extension of
our results in the case where error is controlled w.r.t. the L2 norm, following the work of Lee et al. (2022).
We improve on Theorem 1 in Appendix J under some Hessian conditions.

B Discretization of backward processes

In Appendix B.1, we briefly describe the links between our proposed discretization and the classical Euler-
Maruyama discretization. In Appendix B.2, we show that the discretization (5) is associated to the one of Ho
et al. (2020) under specific settings

B.1 Link with Euler-Maruyama discretization

First, we recall the Euler-Maruyama discretization. Given a sequence of stepsizes a discretization of (4) is
given by the so-called Euler-Maruyama approximation, i.e. we define for any k ∈ {0, . . . , K} and t ∈ [tk, tk+1]

dȲEM
t = βT −tk

{ȲEM
tk

+ 2s(T − tk, ȲEM
tk

)}dt +
√

2βT −tk
dBt, ȲEM

0 ∼ π∞. (25)

The associated discrete process (Y EM
k )k∈{0,...,K+1} is given for any k ∈ {0, . . . , K + 1} by Y EM

k = ȲEM
tk

and
we have for any k ∈ {0, . . . , K}

Y EM
k+1 = Y EM

k + γkβT −tk
{Y EM

k + 2s(T − tk, Y EM
k )} +

√
2βT −tk

γkZk, (26)

where {Zk}k∈N is a sequence of independent d-dimensional Gaussian random variables with zero mean and
identity covariance matrix.

Note that (5) describes the same update as (25) up to the first order w.r.t. γk. In practice, there is no
additional cost to replace the classical Euler-Maruyama discretization with the discretization defined in (5),
provided that the integral of the temperature schedule t 7→ βt can be computed in close form, which is the
case in all the cases considered experimentally, see Appendix G.

However, in our theoretical analysis we found out that (5) introduces less error than (26) when compared to the
approximate backward process (4). In our study we only consider the discretization scheme (Yk)k∈{0,...,K+1}
but emphasize that our analysis could be readily extended to derive similar discretization errors for the
process (Y EM

k )k∈{0,...,K+1}.

B.2 Equivalence with Ho et al. (2020)

In this section, we show that the discretization scheme introduced in Ho et al. (2020) and the one of (5) are
equivalent up to the first order in some parameter.
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Setting of Ho et al. (2020) We start by recalling the setting of Ho et al. (2020). Since, there is a conflict
between our notations and the ones of Ho et al. (2020), we write our constants in red and the constants of
Ho et al. (2020) in blue. The forward process in Ho et al. (2020) is given for any t ∈ {1, . . . , T}7

q(xt|x0) = N(xt;
√

ᾱtx0, (1 − ᾱt) Id), (27)

and we define
βt = 1 − αt, ᾱt =

∏t
s=1 αs. (28)

In that case the loss function is given by

ℓ(θ) =
∑T

t=1 E[∥ϵt − ϵθ(
√

ᾱtx0 +
√

1 − ᾱtϵt, t)∥2], (29)

with {ϵt}T
t=1 a collection of independent Gaussian random variables with zero mean and identity covariance

matrix. The backward sampling is given by the following recursion

xt−1 = αt
−1/2(xt − (βt/

√
1 − ᾱt)ϵθ(xt, t)) + βtzt, (30)

with{zt}T
t=1 a collection of independent Gaussian random variables with zero mean and identity covariance

matrix8. Note that using these notations, there is a conflict of notation between the forward process and the
backward process. To clarify our identification, we denote yt = xt for any t ∈ {0, . . . , T}, with xt given by
(30), in what follows.

Identification In what follows, we set t = k + 1, T = K and for any t ∈ {1, . . . , T}

αt = exp[−2
∫ T −tK+1−(k+1)

T −tK+1−k
βsds] = exp[−2

∫ T −tK−k

T −tK+1−k
βsds].

For instance, we have α1 = exp[−2
∫ T −tK

0 βsds] and αT = exp[−2
∫ T

T −t1
βsds]. Note that in this case, using

(28), we have
ᾱt

1/2 = exp[−
∫ T −tK−k

0 βsds] = mT −tK−k
.

Similarly,
√

1 − ᾱt = σT −tK−k
. In what follows, we identify the distribution of the forward process (27) with

the one of (1), the loss function (29) with the one of (3) and the time reversal (30) with the one of (5).

(a) The distribution q(xt|x0) given in (27) is the distribution of XT −tK−k
|X0 where (Xt)t∈[0,T ] is given

in (1), since XT −tK−k
= mT −tK−k

X0 + σT −tK−k
Z with Z ∼ N(0, Id). Therefore, we identify xt and

XT −tK−k
for any t ∈ {1, . . . , T}. Similarly, for any t ∈ {1, . . . , T}, we identify t and T − tK−k.

(b) Using that Xt = mtX0 + Bσt
for any t ∈ {0, . . . , T}, the loss is given by

ℓ(s) =
∫ T

0 κ(t)E[∥s(t, Xt) − ∇ log pt|0(Xt|X0)∥2]dt

=
∫ T

0 κ(t)E[∥s(t, Xt) + Bσt/σt
2∥2]dt

=
∫ T

0 κ(t)/σt
2E[∥ − σts(t, Xt) − Bσt

/σt∥2]dt

=
∫ T

0 κ(T − t)/σT −t
2E[∥ − σT −ts(T − t, XT −t) − BσT −t

/σT −t∥2]dt.

With a slight abuse of notation we assume that κ(T − t) =
∑K

k=0 δtK−k
(t)σT −t

2 for any t ∈ [0, T ].
Hence, we get that

ℓ(s) =
∑K

k=0 E[∥ϵt − (−σT −tK−k
s(T − tK−k, XT −tK−k

))∥2]

=
∑K

k=0 E[∥ϵt − (−
√

1 − ᾱts(T − tK−k, xt))∥2]

=
∑T

t=1 E[∥ϵt − (−
√

1 − ᾱts(t,
√

ᾱtx0 +
√

1 − ᾱtϵt))∥2]

Hence, identifying ϵθ(·, t) and −
√

1 − ᾱts(t, ·) for any t ∈ {1, . . . , T}, we recover (29).
7Note that in Ho et al. (2020), T is a number of steps and not the total time of the forward.
8We consider the case where σt = βt.
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(c) We now aim at recovering (30) from (5). Using the change of variable k → K − k and noting that for
any t ∈ (0, T ], Bσt/σt is a Gaussian random variable with zero mean and identity covariance matrix
we have

YK−k+1 = YK−k + (exp[
∫ T −tK−k

T −tK−k+1
βsds] − 1)(YK−k + 2s(T − tK−k, YK−k))

+(exp[2
∫ T −tK−k

T −tK−k+1
βsds] − 1)1/2ZK−k

= YK−k + (αt
−1/2 − 1)(YK−k + 2s(T − tK−k, YK−k)) +

√
βtZK−k

= αt
−1/2YK−k + 2(αt

−1/2 − 1)s(T − tK−k, YK−k) +
√

βtZK−k

= αt
−1/2YK−k − 2((αt

−1/2 − 1)/
√

1 − ᾱt)ϵθ(YK−k, t) +
√

βtZK−k. (31)

Finally, since αt = 1 − βt we have αt
1/2 = 1 − βt/2 + o(βt). This implies that 2(αt

−1/2 − 1) =
−βt/

√
αt + o(βt/

√
αt). Therefore, combining this result and (31), we get that

YK−k+1 = αt
−1/2(YK−k + (βt/

√
1 − ᾱt)ϵθ(t, YK−k)) +

√
βtZK−k + o(βt/

√
αt).

This corresponds to (30) up to a term of the form o(βt/
√

αt).

C Gradient and Hessian controls on the logarithmic density

Let π ∈ P(Rd) be the target probability measure. We denote (pt)t>0 such that for any t > 0 the density
w.r.t. the Lebesgue measure of the distribution of Xt (with initialization XN

0 ∼ π) is given by pt. Similarly,
πN ∈ P(Rd) be an empirical version of π, i.e. πN = (1/N)

∑N
k=1 Xk, with {Xk}N

k=1 ∼ π⊗N . We denote
(pN

t )t>0 such that for any t > 0 the density w.r.t. the Lebesgue measure of the distribution of XN
t (with

initialization XN
0 ∼ πN ) is given by pt. In order to show the stability and growth of the processes at hand we

need to control quantities related to the gradient and Hessian of log qt where qt = pt or pN
t . We first show a

dissipativity condition on the gradient. We recall that for any t ∈ [0, T ]

mt = exp[−
∫ t

0 βsds], σ2
t = 1 − exp[−2

∫ t

0 βsds].

Such dissipativity conditions will allow us to control the moments of the introduced backward processes.
Lemma C.1. Assume A1. Then for any t ∈ (0, T ] and xt ∈ Rd we have that

⟨∇ log qt(xt), xt⟩ ≤ − ∥xt∥2
/σ2

t + mtdiam(M) ∥xt∥ /σ2
t ,

with qt = pN
t or pt. In addition, we have

∥∇ log qt(xt)∥2 ≤ 2 ∥xt∥2
/σ4

t + 2m2
t diam(M)2/σ4

t . (32)

Proof. Let N ∈ N. We have that for any t ∈ [0, T ] and xt ∈ Rd

pN
t (xt) = (1/N)

∑N
k=1 exp[−∥xt − mtX

k∥2/2σ2
t ]/(2πσ2

t )d/2,

Therefore, we get that for any t ∈ [0, T ] and xt ∈ Rd

∇ log pN
t (xt) = (−1/N)

∑N
k=1(xt − mtX

k) exp[−∥xt − mtX
k∥2/2σ2

t ]/((2πσ2
t )d/2σ2

t pN
t (xt)).

Hence, we have
⟨∇ log pN

t (xt), xt⟩ ≤ − ∥xt∥2
/σ2

t + mtdiam(M) ∥xt∥ /σ2
t .

Therefore taking the limit N → +∞, the same conclusion holds for pt. The proof of (32) follows the same
lines and is left to the reader.

We now provide controls on the Hessian ∇2 log qt. Such bounds allow to control the growth (or contraction)
of the tangent process. This will also allow us to control the growth (or contraction) of the distance between
backward processes w.r.t. the Wasserstein distance of order one.
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Lemma C.2. Assume A1 then we have for any t ∈ (0, T ], xt ∈ Rd and M ∈ Md(Rd)

⟨M, ∇2 log qt(xt)M⟩ ≤ −(1 − m2
t diam(M)2/(2σ2

t ))/σ2
t ∥M∥2.

In addition, we have
∥∇2 log qt(xt)∥ ≤ (1 + diam(M)2)/σ4

t .

More generally, we have

∇2 log pt(xt) = − Id /σ2
t

+(2σ4
t )−1 ∫

M×M(x0 − x′
0)⊗2 exp[−∥xt − mtx0∥2/(2σ2

t )] exp[−∥xt − mtx
′
0∥2/(2σ2

t )]dπ(x0)dπ(x′
0)

/(
∫

M exp[−∥xt − mtx0∥2/(2σ2
t )]dπ(x0))2.

Proof. Let N ∈ N. For any t ∈ (0, T ] and x ∈ Rd, we let p̄N
t = pN

t (2πσ2
t )d/2 and we have

p̄N
t (x) = (1/N)

∑N
k=1 exp[−∥x − mtX

k∥2/2σ2
t ],

Hence, we have

∇ log p̄N
t (x) = (−1/N)

∑N
k=1(x − mtX

k) exp[−∥x − mtX
k∥2/2σ2

t ]/(σ2
t p̄N

t (x)).

Hence, we get that

∇2 log p̄N
t (x) = − Id /σ2

t

+(1/N)
∑N

k=1(x − mtX
k) ⊗ (x − mtX

k) exp[−∥x − mtX
k∥2/2σ2

t ]/(σ4
t p̄N

t (x))

−(1/N2)(
∑N

k=1(x − mtX
k) exp[−∥x − mtX

k∥2/2σ2
t ])

⊗(
∑N

k=1(x − mtX
k) exp[−∥x − mtX

k∥2/2σ2
t ])/(σ2

t p̄N
t (x))2.

For any k ∈ {0, . . . , N − 1}, denote fk
t = −(x − mtX

k)/σ2
t and ek

t = exp[−∥fk
t ∥2]. Using the previous result,

we have

∇2 log p̄N
t (x)= − Id /σ2

t +
∑N

k=1 fk
t ⊗ fk

t ek
t /

∑N
k=1 ek

t

−(
∑N

k=1 fk
t ek

t /
∑N

k=1 ek
t ) ⊗ (

∑N
k=1 fk

t ek
t /

∑N
k=1 ek

t )

= − Id /σ2
t + (1/2)

∑N
j,k=1(fk

t − f j
t ) ⊗ (fk

t − f j
t )ek

t ej
t /

∑N
k,j=1 ek

t ej
t . (33)

In addition, using that for any ℓ ∈ {1, . . . , N}, Xℓ ∈ M we have that

∥fk
t − f j

t ∥ = mt∥Xk − Xj∥/σ2
t ≤ mtdiam(M)/σ2

t .

Therefore, we get that

⟨M, ∇2 log p̄N
t (x)M⟩ ≤ −(1 − m2

t diam(M)2/(2σ2
t ))/σ2

t ∥M∥2.

Using (33), the fact that M is compact and the strong law of large numbers we have that

limN→+∞ ∇2 log p̄N
t (x) = − Id /σ2

t

+
∫
Rd(x − mtx0) ⊗ (x − mtx̄0) exp[−∥x − mtx0∥2/(2σ2

t )] exp[−∥x − mtx̄0∥2/(2σ2
t )]dπ(x0)dπ(x̄0)

/(
∫
Rd exp[−∥x − mtx̄0∥2/(2σ2

t )]dπ(x0))2.

Hence, we get that limN→+∞ ∇2 log pN
t (x) = ∇2 log pt, which concludes the proof.

Finally, in order to control the local error of the time discretization, we also need to control the time derivative
of the gradient, i.e. ∂t∇ log qt.
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Lemma C.3. Assume A1. Then for any t ∈ (0, T ] and xt ∈ Rd we have that

∥∂t∇ log qt(xt)∥ ≤ (βt/σ6
t )(2 + diam(M)2)(diam(M) + ∥x∥).

Proof. Let N ∈ N and t ∈ (0, T ]. Recall that for any x ∈ Rd, pN
t (x) = p̄N

t (x)/(2πσ2
t )d/2 with

p̄N
t (x) = (1/N)

∑N
k=1 ek

t (x), ek
t (x) = exp[−∥x − mtX

k∥2/(2σ2
t )].

In what follows, we denote fk
t = log ek

t for any k ∈ {1, . . . , N}. For any x ∈ Rd we have

∂t log p̄N
t (x) =

∑N
k=1 ∂tf

k
t (x)ek

t (x)/
∑N

k=1 ek
t (x).

Therefore, we have for any x ∈ Rd

∂t∇ log p̄N
t (x) =

∑N
k=1 ∂t∇fk

t (x)ek
t (x)/

∑N
k=1 ek

t (x)

+
∑N

k=1 ∂tf
k
t (x)∇fk

t (x)ek
t (x)/

∑N
k=1 ek

t (x)

−
∑N

k,j=1 ∂tf
k
t (x)∇f j

t (x)ek
t (x)ej

t (x)/
∑N

k,j=1 ek
t (x)ej

t (x)

=
∑N

k=1 ∂t∇fk
t (x)ek

t (x)/
∑N

k=1 ek
t (x)

+(1/2)
∑N

k,j=1(∂tf
k
t (x) − ∂tf

j
t (x))(∇fk

t (x) − ∇f j
t (x))ek

t (x)ej
t (x)/

∑N
k,j=1 ek

t (x)ej
t (x). (34)

In what follows, we fix k, j ∈ {1, . . . , N} and provide upper bounds for |∂tf
k
t − ∂tf

j
t |, ∥∇fk

t − ∇f j
t ∥ and

∂t∇fk
t . First, we have that for any x ∈ Rd, ∇fk

t (x) = −(x − mtX
k)/σ2

t . Hence, using that mt ≤ 1, we get
that for any x ∈ Rd

∥∇fk
t (x) − ∇f j

t (x)∥ ≤ mtdiam(M)/σ2
t ≤ diam(M)/σ2

t . (35)

In addition, we have that for any x ∈ Rd

∂tf
k
t (t) = ∂tσ

2
t /(2σ4

t )∥x − mtX
k∥2 + ∂tmt/σ2

t ⟨Xk, x − mtX
k⟩.

Combining this result, the fact that ∂tσ
2
t = −2mt∂tmt and that ∂tmt = −βtmt, we get that

∂tf
k
t (t) = −βtmt/σ2

t [−(mt/σ2
t )∥x − mtX

k∥2 + ⟨x − mtX
k, Xk⟩]

= −βtmt/σ2
t ⟨x − mtX

k, −(mt/σ2
t )(x − mtX

k) + Xk⟩
= −βtmt/σ4

t ⟨x − mtX
k, −mtx + Xk⟩

= βtmt/σ4
t (mt∥x∥2 + mt∥Xk∥2 + (1 + m2

t )⟨x, Xk⟩). (36)

Using this result and that mt ≤ 1, we have that for any x ∈ Rd

|∂tf
k
t (x) − ∂tf

j
t (x)| ≤ 2βtm

2
t diam(M)2/σ4

t + βtmt(1 + m2
t )diam(M)∥x∥/σ4

t (37)
≤ 2(βt/σ4

t )diam(M)(diam(M) + ∥x∥).

Using (36), we have for any x ∈ Rd

∇∂tf
k
t (x) = 2βtm

2
t /σ4

t x + (βtmt/σ4
t )(1 + m2

t )Xk.

Therefore, combining this result and the fact that mt ≤ 1, we get that for any x ∈ Rd

∥∂t∇fk
t (x)∥ ≤ 2(βt/σ4

t )(diam(M) + ∥x∥). (38)

Combining (35), (37) and (38) in (34), we get that for any x ∈ Rd

∥∂t∇ log p̄N
t (x)∥ ≤ 2(βt/σ4

t )(diam(M) + ∥x∥) + (βt/σ6
t )diam(M)2(diam(M) + ∥x∥)

≤ (βt/σ6
t )(2 + diam(M)2)(diam(M) + ∥x∥),

which concludes the proof using that limN→+∞ ∂t∇ log pN
t (xt) = ∂t∇ log pt.
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We conclude this section with bounds on the higher-order differentials of log pt. To compute higher derivatives
we will use the following lemma.
Lemma C.4. Let E = {ei}M

i=1 be a family of functions such that for any i ∈ {1, . . . , M}, ei ∈ C∞(Rd,R).
Similarly, let G = {gi}M

i=1 be a family of functions such that for any i ∈ {1, . . . , M}, gi ∈ C∞(Rd,Rp). Let
F (E, G) such that for any x ∈ Rd

F (E, G) =
∑M

i=1 giei/
∑M

i=1 ei.

Then, we have

∇F (E, G) = F (E, ∇G) + (1/2)F (E ⊗ E, (G ⊖ G) ⊙ (∇ log E ⊖ ∇ log E)),

where ⊗ is the tensor product, ⊙ the pointwise product and ⊖ the tensor substraction.

Proof. We assume that p = 1. The proof in the general case is similar and left to the reader. We have that

∇F (E, G) =
∑M

i=1 ∇giei/
∑M

i=1 ei +
∑M

i,j=1 gi∇ log(ei)eiej/
∑M

i,j=1 eiej

−
∑M

i,j=1 gi∇ log(ej)eiej/
∑M

i,j=1 eiej

=
∑M

i=1 ∇giei/
∑M

i=1 ei

+(1/2)
∑M

i,j=1(gi∇ log(ei) + gj∇ log(ej) − gi∇ log(ej) − gj∇ log(ei))eiej/
∑M

i,j=1 eiej

=
∑M

i=1 ∇giei/
∑M

i=1 ei

+(1/2)
∑M

i,j=1(gi − gj)(∇ log ei − ∇ log ej)/
∑M

i,j=1 eiej ,

which concludes the proof.

Lemma C.5. Assume A1. Then, there exists C ≥ 0 such that for any t ∈ (0, T ] we have

∥∇2 log pt(x)∥ + ∥∇3 log pt(x)∥ + ∥∇4 log pt(x)∥ ≤ C/σ8
t .

Proof. Let t ∈ (0, T ]. First, remark that for any x ∈ Rd

∇2 log pt(x) = − Id /σ2
t + F (E⊗2, (∇ log E ⊖ ∇ log E)⊙2),

where E = {ei}N
i=1 and for any i ∈ {1, . . . , N}, ei(x) = exp[−∥x−mtX

i∥2/(2σ2
t )]. Note that ∇ log E⊖∇ log E

does not depend on x and there exists C0 ≥ 0 such that for any i, j ∈ {1, . . . , N}, ∥∇ log ei(x)−∇ log ej(x)∥ ≤
C0/σ2

t . Hence, using Lemma C.4 we have

∇3 log pt(x) = F (E⊗4, (∇ log E ⊖ ∇ log E)⊙2 ⊙ (∇ log(E ⊗ E) ⊖ ∇ log(E ⊗ E))).

Again, note that G1 = (∇ log E ⊖ ∇ log E)⊙2 ⊙ (∇ log(E ⊗ E) ⊖ ∇ log(E ⊗ E)) does not depend on x, upon
remarking that

∇ log(E ⊗ E) ⊖ ∇ log(E ⊗ E) = (∇ log E ⊖ ∇ log E) ⊕ (∇ log E ⊖ ∇ log E).

Finally, we have ∇4 log pt(x) = F (E⊗8, G2), where

G2 = [((∇ log E ⊖ ∇ log E)⊙2 ⊙ (∇ log(E ⊗ E) ⊖ ∇ log(E ⊗ E)))
⊖ ((∇ log E ⊖ ∇ log E)⊙2 ⊙ (∇ log(E ⊗ E) ⊖ ∇ log(E ⊗ E)))] ⊙ (∇ log(E⊗4) ⊖ ∇ log(E⊗4)).

Therefore, we get that there exists C ≥ 0 such that for any x ∈ Rd

∥∇ log p3
t (x)∥ ≤ C/σ6

t , ∥∇ log p4
t (x)∥ ≤ C/σ8

t .

We conclude the proof upon using that σt ≤ 1.
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D Control of the backward processes

We start by introducing the different processes in Appendix D.1. We gather a few technical results in
Appendix D.2. Then, we turn to the stability and Lipschitz properties of the backward processes in
Appendix D.3. Finally, we control the growth of the backward tangent process in Appendix D.4.

D.1 Introduction of the processes

In this section, we study the stability of the backward process given by

dYt = βT −t{Yt + 2∇ log qT −t(Yt)}dt +
√

2βT −tdBt, (39)

where qt is either pt or pN
t . We are also going to consider the following approximate continuous-time process

dŶt = βT −t{Ŷt + 2s(T − t, Ŷt)}dt +
√

2βT −tdBt, (40)

where s(t, ·) is an approximation of either pt or pN
t . Note that since qt > 0 and q ∈ C∞((0, T ] × Rd,Rd)

and that s ∈ C1((0, T ] × Rd,Rd) we have that (39) and (40) admit strong solutions up to an explosion time.
Finally, we also consider the following interpolating process: for any t ∈ [tk, tk+1)

dȲt = βT −t{Ȳt + 2s(T − tk, Ȳtk
)}dt +

√
2βT −tdBt. (41)

This process is an interpolation of a modified Euler–Maruyama discretization of (40). Note that the classical
Euler–Maruyama discretization would be associated with the following interpolation

dȲEM
t = βT −tk

{ȲEM
tk

+ 2s(T − tk, ȲEM
tk

)}dt +
√

2βT −tk
dBt.

In (41), we take advantage of the linear part of the drift. Indeed on the interval [tk, tk+1], the process (41) is
a simple Ornstein–Uhlenbeck which can be integrated explicitly. In particular for any k ∈ {0, . . . , N − 1} and
t ∈ [tk, tk+1] we have

Ȳt = Ȳtk
+ (exp[

∫ T −tk

T −t
βsds] − 1)(Ȳtk

+ 2s(T − tk, Ȳtk
)) + (exp[2

∫ T −tk

T −t
βsds] − 1)1/2Z,

where Z is a Gaussian random variable with zero mean and identity covariance and the equality holds in
distribution independent from Ȳtk

. Denoting {Yk}k∈{0,...,N−1}, we get that for any k ∈ {0, . . . , N − 1}

Yk+1 = Yk + (exp[
∫ T −tk

T −tk+1
βsds] − 1)(Yk + 2s(T − tk, Yk)) + (exp[2

∫ T −tk

T −tk+1
βsds] − 1)1/2Zk,

where {Zk}k∈N is a collection of independent Gaussian random variables with zero mean and identity
covariance matrix. Using this scheme instead of the classical Euler–Maruyama simplifies the analysis of the
discretization. Up to the first order this scheme is equal to the classical Euler–Maruyama discretization. Once
again, we emphasize that computing this scheme is as expensive as computing the classical Euler–Maruyama
discretization provided that the integral

∫ t

s
βudu are available in close form for all s, t ∈ [0, T ] which is the

case for all the discretization schemes used in practice. We refer to Table 1 for a list of all processes used in
the proof. In what follows, we control the stability of these processes.

D.2 Some useful technical lemmas

We gather in this section some technical results.
Lemma D.1. For any s, t ∈ [0, T ] we have∫ t

s
βT −u/σ2

T −udu = [(−1/2) log(exp[2
∫ T −u

0 βvdv] − 1)]ts, (42)∫ t

s
βT −um2

T −u/σ4
T −udu = [(1/2)/(1 − exp[−2

∫ T −u

0 βvdv])]ts. (43)

In particular, if β = β0 then∫ t

s
βT −u/σ2

T −udu = [(−1/2) log(exp[2β0(T − u)] − 1)]ts,∫ t

s
βT −um2

T −u/σ4
T −udu = [(1/2)/(1 − exp[−2β0(T − u)])]ts.
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Proof. We have ∫ t

s
βT −u/σ2

T −udu =
∫ t

s
βT −u/(1 − exp[−2

∫ T −u

0 βvdv])du

=
∫ t

s
βT −u exp[2

∫ T −u

0 βvdv]/(exp[2
∫ T −u

0 βvdv] − 1)du

= (−1/2)
∫ t

s
∂u log(exp[2

∫ T −u

0 βvdv] − 1)du.

This concludes the proof of (42). We have∫ t

s
βT −um2

T −u/σ4
T −udu =

∫ t

s
βT −um2

T −u/(1 − exp[−2
∫ T −u

0 βvdv])2du

=
∫ t

s
βT −u exp[−2

∫ T −u

0 βvdv]/(1 − exp[−2
∫ T −u

0 βvdv])2du

= (1/2)
∫ t

s
∂u(1 − exp[−2

∫ T −u

0 βvdv])−1du.

This concludes the proof of (43).

Lemma D.2. Assume A2. We have σ2
t ≤ 2tβ̄ and σ−2

t ≤ 1 + β̄/(2t).

Proof. First, using that for any a ≥ 0, exp[−a] ≥ 1 − a we have

σ2
t = 1 − exp[−2

∫ t

0 βsds] ≤ 1 − exp[−2β̄t] ≤ 2β̄t.

Second, using that for any a ≥ 0, 1/(1 + exp[−a]) ≤ 1 + 1/a we have

σ−2
t = (1 − exp[−2

∫ t

0 βsds])−1 ≤ 1 + (2
∫ t

0 βsds)−1,

which concludes the proof.

For any k ∈ {0, . . . , K} we introduce κk = supu∈[T −tk+1,T −tk] βu/σ2
u.

Lemma D.3. Assume A2. Then, we have that for any k ∈ {0, . . . , N − 1}

κk ≤ β̄(1 + β̄/t).

Proof. Recall that for any s ∈ [0, T ], σ2
s = 1 − exp[−2

∫ s

0 βudu]. Using that for any v ≥ 0, (1 − e−2v)−1 ≤
1 + 1/(2v) we have for any t ∈ (0, T ]

βt/σ2
t ≤ βt + βt(2

∫ t

0 βsds)−1 ≤ βt(1 + β̄/t),

which concludes the proof.

D.3 Stability and Lipschitz properties of the backward processes

The controls derived in Appendix C allow for uniform control of the moments of the backward processes.
Note that such Lyapunov techniques were used in Fontaine et al. (2021) to control energy functionals in
convex optimization problems. The following lemma is not used directly in our final analysis but provides
intuitive controls on the backward process.
Lemma D.4. Assume A1, A3 and that there exists η > 0 such that M + ηdiam(M) ≤ 1/4. Then, for any
t ∈ [0, T ] we have

E[∥Ŷt∥2] ≤ d + 8(1 + M + diam(M)/η).

In particular if M ≤ 1/8 then for any t ∈ [0, T ] we have

E[∥Ŷt∥2] ≤ d + 8(1 + M + 8diam(M)2).
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Proof. First, using Lemma C.1, we have that for any t ∈ [0, T ), E[∥Ŷt∥2] < +∞. Hence, using Itô’s lemma,
we have

d(1/2)∥Ŷt∥2 = βT −t{∥Ŷt∥2 + 2⟨s(T − t, Ŷt), Ŷt⟩ + 2}dt +
√

2βT −t⟨Ŷt, dBt⟩.

Therefore, using A3, Lemma C.1 and that for any a, b, η > 0, 2ab ≤ a2η + b2/η we get that for any t ∈ [0, T )
we have that (1/2)E[∥Ŷt∥2] ≤ ut, where u0 = d/2 and

dut = βT −t(1 − 2/σ2
T −t + 2(M + ηmT −tdiam(M))/σ2

T −t)ut

+ βT −t(2 + 2M + 2mT −tdiam(M)/η)/σ2
T −t

= βT −t(σ2
T −t − 2 + 2(M + ηmT −tdiam(M)))/σ2

T −tut

+ βT −t(2 + 2M + 2mT −tdiam(M)/η)/σ2
T −t.

For any t ∈ [0, T ] and x ∈ R define F (t, x) given by

F (t, x) = −(2 − σ2
T −t − 2(M + mT −tηdiam(M)))/σ2

T −tx + (2 + 2M + 2mT −tdiam(M)/η)/σ2
T −t.

Using that for any t ∈ [0, T ], mt, σ2
t ∈ [0, 1], we have that for any t ∈ [0, T ]

2 − σ2
T −t − 2(M + ηmT −tdiam(M)) ≥ 1 − 2(M + ηdiam(M)) ≥ 1/2.

Using (Fontaine et al., 2021, Lemma 3) we get that for any t ∈ [0, T ]

ut ≤ d/2 + 2(1 + M + diam(M)/η)/(1 − 2(M + ηdiam(M))) ≤ d/2 + 4(1 + M + diam(M)/η),

which concludes the proof.

Lemma D.5. Assume A1, A2 and A3. Assume that there exists δ > 0 such that for any k ∈ {0, . . . , K},
γkβT −tk

/σ2
T −tk

≤ δ. Assume that there exists η > 0 such that A(δ, M, η, diam(M)) > 0 with

A(δ, M, η, diam(M)) = 2 − 2δ − 32δ(1 + M2) − 8M − 4ηdiam(M),
B(δ, M, η, diam(M)) = 32δ(M2 + diam(M)2) + 2(1 + δ)(diam(M)/η + M) + 4d.

Then, we have for any k ∈ {0, . . . , K}

E[∥Yk∥2] ≤ K = d + B(δ, M, η, diam(M))(1/A(δ, M, η, diam(M)) + δ). (44)

In particular if M ≤ 1/32 and δ ≤ 1/32 then for any k ∈ {0, . . . , K}

E[∥Yk∥2] ≤ K0 = 5d + 320(1 + diam(M))2.

Proof. Recall that using (5), we have that for any k ∈ {0, . . . , K − 1}

Yk+1 = Yk + (exp[
∫ T −tk

T −tk+1
βsds] − 1)(Yk + 2s(T − tk, Yk)) + (exp[2

∫ T −tk

T −tk+1
βsds] − 1)1/2Zk, (45)

For simplicity, we denote

γ1,k = (exp[
∫ T −tk

T −tk+1
βsds] − 1)/βT −tk

, γ2,k = (exp[2
∫ T −tk

T −tk+1
βsds] − 1)/(2βT −tk

).

Then, (45) can be rewritten for any k ∈ {0, . . . , K − 1} as

Yk+1 = Yk + γ1,kβT −tk
(Yk + 2s(T − tk, Yk)) +

√
2γ2,kβT −tk

Zk. (46)

In what follows, we denote γ̄1,k = γ1,kβT −tk
and γ̄2,k = γ2,kβT −tk

. In addition, using that γkβT −tk
≤ δ ≤ 1/4,

we have that γ1,k ≤ γ2,k ≤ 2γ1,k. Indeed, we have that for any k ∈ {0, . . . , K − 1}

γ2,k/γ1,k = (1/2)(exp[
∫ T −tk

T −tk+1
βsds] + 1) ≥ 1,

γ2,k/γ1,k = (1/2)(exp[
∫ T −tk

T −tk+1
βsds] + 1) ≤ (1/2)(exp[γkβT −tk

] + 1) ≤ 2,
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Using Lemma C.1, we have that for any t ∈ [0, T ], xt ∈ Rd and η > 0

⟨xt, s(t, xt)⟩ ≤ −∥xt∥2/σ2
t + mtdiam(M)∥xt∥/σ2

t + M(1 + ∥xt∥)∥xt∥/σ2
t

≤ (−1 + 2M + ηmtdiam(M)) ∥xt∥2
/σ2

t + (mtdiam(M)/η + M)/σ2
t , (47)

where we have used that for any a, b ≥ 0, 2ab ≤ ηa2 + b2/η in the last line. In addition, using Lemma C.1,
for any t ∈ [0, T ] and xt ∈ Rd we have

∥s(t, xt)∥2 ≤ 2∥s(t, xt) − ∇ log pt(xt)∥2 + 2∥∇ log pt(xt)∥2

≤ 4M2(1 + ∥xt∥2)/σ4
t + 4∥xt∥2/σ4

t + 4m2
t diam(M)2/σ4

t

≤ 4(1 + M2)∥xt∥2/σ4
t + 4(M2 + m2

t diam(M)2)/σ4
t . (48)

Combining (46), (47) and (48) we have for any k ∈ {0, . . . , K − 1}

E[∥Yk+1∥2] = (1 + γ̄1,k)2E[∥Yk∥2] + 4γ̄2
1,kE[∥s(T − tk, Yk)∥2]

+ 4γ̄1,k(1 + γ̄1,k)E[⟨Yk, s(T − tk, Yk)⟩] + 2γ̄2,kd

≤ (1 + 2γ̄1,k + γ̄2
1,k)E[∥Yk∥2] + 16(γ̄1,k/σ2

T −tk
)2(1 + M2)E[∥Yk∥2]

+ 16(γ̄1,k/σ2
T −tk

)2(M2 + m2
T −tk

diam(M)2)
+ 4γ̄1,k(1 + γ̄1,k)E[⟨Yk, s(T − tk, Yk)⟩] + 4γ̄1,kd

≤ (1 + 2γ̄1,k + γ̄2
1,k)E[∥Yk∥2] + 16(γ̄1,k/σ2

T −tk
)2(1 + M2)E[∥Yk∥2]

+ 16(γ̄1,k/σ2
T −tk

)2(M2 + m2
T −tk

diam(M)2)
+ 4(γ̄1,k/σ2

T −tk
)(1 + γ̄1,k)(−1 + 2M + ηmT −tk

diam(M))E[∥Yk∥2]
+ (γ̄1,k/σ2

T −tk
)(1 + γ̄1,k)(mT −tk

diam(M)/η + M) + 4γ̄1,kd.

In what follows, we let δk = γ̄1,k/σ2
T −tk

. Using that for any t ∈ [0, T ], mt, σt ∈ [0, 1] we have

E[∥Yk+1∥2] ≤ (1 + 2δk + δ2
k)E[∥Yk∥2] + 16δ2

k(1 + M2)E[∥Yk∥2]
+ 16δ2

k(M2 + diam(M)2)
+ 4δk(1 + δk)(−1 + 2M + ηdiam(M))E[∥Yk∥2]
+ δk(1 + δk)(diam(M)/η + M) + 4δkd

Since s 7→ βs is non-decreasing, that βT −tk
γk ≤ δ ≤ 1/4 and that for any w ∈ [0, 1/2], ew − 1 ≤ 1 + 2w, we

have
exp[

∫ T −tk

T −tk+1
βsds] − 1 ≤ exp[βT −tk

γk] − 1 ≤ 2βT −tk
γk.

Therefore, we get that δk ≤ 2γkβT −tk
/σ2

T −tk
≤ 2δ. Since δk ≤ 2δ we have

E[∥Yk+1∥2] ≤ (1 + 2δk + 2δkδ)E[∥Yk∥2] + 32δkδ(1 + M2)E[∥Yk∥2]
+ 4δk(−1 + 2M + ηdiam(M))E[∥Yk∥2]
+ 32δkδ(M2 + diam(M)2)
+ 2δk(1 + δ)(diam(M)/η + M) + 4δkd.

Hence, we have that

E[∥Yk+1∥2] ≤ (1 + δk[−2 + 2δ + 32δ(1 + M2) + 8M + 4ηdiam(M)])E[∥Yk∥2]
+ δk[32δ(M2 + diam(M)2) + 2(1 + δ)(diam(M)/η + M) + 4d].

Denote A = 2−2δ −32δ(1+M2)−8M−4ηdiam(M), B = 32δ(M2 +diam(M)2)+2(1+δ)(diam(M)/η +M)+4d.
Then, we have

E[∥Yk+1∥2] ≤ (1 − δkA)E[∥Yk∥2] + δkB.
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Hence, if E[∥Yk∥2] ≥ B/A we have that E[∥Yk+1∥2] ≤ E[∥Yk∥2]. In addition, if E[∥Yk∥2] ≤ B/A then,
E[∥Yk+1∥2] ≤ B/A + δB. Therefore, we conclude by recursion that for any k ∈ {0, . . . , K}

E[∥Yk∥2] ≤ d + B(1/A + δ),

which concludes the first part of the proof. If δ, M ≤ 1/32 then, A(δ, M, η, diam(M)) ≥ 1/2 − 4ηdiam(M). We
conclude upon setting η = 1/(16diam(M)). In that case A(δ, M, η, diam(M)) ≥ 1/4 and

B(δ, M, η, diam(M)) ≤ 32δ(M2 + diam(M)2) + 2(1 + δ)(16diam(M) + M) + 4d

≤ 64(1 + diam(M) + diam(M)2) + 4d,

which concludes the proof.

Note that the same result holds for (Ȳt)t∈[0,tK ].
Lemma D.6. Assume A1, A2 and A3. In addition, assume that for any k ∈ {0, . . . , K − 1},
γkβT −tk

/σ2
T −tk

≤ δ ≤ 1/4. Then, we have for any k ∈ {0, . . . , K − 1} and t ∈ [tk, tk+1]

E[∥Ȳt − Ȳtk
∥2] ≤ LβT −tk

γk,

with L = 8(1 + δ)(16(5 + M2)K + 16(4diam(M)2 + M2)) + 4 and where K is defined in (44). In particular if
M ≤ 1/32 and δ ≤ 1/32

E[∥Ȳt − Ȳtk
∥2] ≤ L0βT −tk

γk = (64d + 20544(1 + diam(M))2)βT −tk
γk.

Proof. Recall that

Ȳt = Ȳtk
+ (exp[

∫ T −tk

T −t
βsds] − 1)(Ȳtk

+ 2s(T − tk, Ȳtk
)) + (exp[2

∫ T −tk

T −t
βsds] − 1)1/2Z,

where Z is a Gaussian random variable with zero mean and identity covariance and the equality holds in
distribution independent from Ȳtk

. Therefore, we get that

E[∥Ȳt − Ȳtk
∥2] = 2(exp[

∫ T −tk

T −t
βsds] − 1)2(E[∥Ȳtk

∥2] + 4E[∥s(T − tk, Ȳtk
)∥2])

+(exp[2
∫ T −tk

T −t
βsds] − 1)d. (49)

In addition, using A3, Lemma C.1 and that for any t ∈ [0, T ], mt ∈ [0, 1], we get that for any u ∈ [0, T ] and
xu ∈ Rd

∥s(u, xu)∥ ≤ M(1 + ∥xu∥)/σ2
u + 2∥xu∥/σ2

u + 2diam(M)/σ2
u

≤ (1/σ2
u){(M + 2) ∥xu∥ + (M + 2diam(M))}.

Combining this result and (49), we get that

E[∥Ȳt − Ȳtk
∥2] = 2(exp[

∫ T −tk

T −t
βsds] − 1)2(E[∥Ȳtk

∥2]

+4E[∥s(T − tk, Ȳtk
)∥2]) + (exp[2

∫ T −tk

T −t
βsds] − 1)d

≤ 2(exp[
∫ T −tk

T −t
βsds] − 1)2E[∥Ȳtk

∥2]

+ 32(4 + M2)(exp[
∫ T −tk

T −t
βsds] − 1)2E[∥Ȳtk

∥2]/σ2
T −tk

+ 32(exp[
∫ T −tk

T −t
βsds] − 1)2(4diam(M)2 + M2)/σ2

T −tk

+(exp[2
∫ T −tk

T −t
βsds] − 1)d. (50)

Since s 7→ βs is non-decreasing, that βT −tk
γk ≤ δ ≤ 1/4 and that for any w ∈ [0, 1/2], e2w − 1 ≤ 1 + 4w, we

have for any α ∈ {1, 2}

exp[α
∫ T −tk

T −t
βsds] − 1 ≤ exp[αβT −tk

γk] − 1 ≤ 2αβT −tk
γk.
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Combining this result and (51), we get that

E[∥Ȳt − Ȳtk
∥2] ≤ 8β2

T −tk
γ2

kE[∥Ȳtk
∥2 + 32(4 + M2)∥Ȳtk

∥2/σ2
T −tk

+ 32(4diam(M)2 + M2)/σ2
T −tk

]
+ 4βT −tk

γkd (51)
≤ 8(β2

T −tk
γ2

k/σ2
T −tk

)(32(5 + M2)E[∥Ȳtk
∥2] + 32(4diam(M)2 + M2)) + 4βT −tk

γkd.

Therefore, using Lemma D.5 and (44), we get that

E[∥Ȳt − Ȳtk
∥2] ≤ 8(β2

T −tk
γ2

k/σ2
T −tk

)(32(5 + M2)K + 32(4diam(M)2 + M2)) + 4βT −tk
γkd

≤ {256δ((5 + M2)K + 4diam(M)2 + M2) + 4d}βT −tk
γk

which concludes the first part of the proof. Now assuming that δ, M ≤ 1/32 we have

E[∥Ȳt − Ȳtk
∥2] ≤ (64K + 64diam(M)2 + 16d)βT −tk

γk

≤ 64d + 20544(1 + diam(M))2,

which concludes the proof.

D.4 Control of the tangent backward process

We now introduce the tangent process associated with (Yt)t∈[0,T ]. We have

d∇Yt = βT −t(Id +2∇2 log pT −t(Yt))∇Ytdt, ∇Y0 = Id . (52)

We recall that controlling the tangent process allows to control the Wasserstein distance between the original
process and its target measure. Indeed, let (Yx

t )t∈[0,T ] and (Yy
t )t∈[0,T ] be the processes given by (39) with

initial condition x and y respectively. Then we have that for any t ∈ [0, T ]

∥Yx
t − Yy

t ∥ ≤
∫ 1

0 ∥∇Yzλ
t ∥dλ∥x − y∥, (53)

where (∇Yx
t )t∈[0,T ] is the tangent process given by (52) and associated with (Yzλ

t )t∈[0,T ], where zλ =
λx + (1 − λ)y. Before providing controls in the general setting, we take a detour and focus on the case where
diam(M) = 0, i.e. π = δ0. In the following proposition, we show that in this case the backward process
converges in finite-time. This highlights the role of the diameter of the manifold in the subsequent analysis.
Proposition D.7. Assume A1 and that diam(M) = 0, i.e. π = δ0. Then, we have that for any x, y ∈ Rd

and t ∈ [0, T ]

W1(δxQt, δyQy) ≤ 2 exp[(1/2)
∫ T

T −t
βsds](exp[2

∫ T

0 βsds] − 1)−1/2(exp[2
∫ T −t

0 βsds] − 1)1/2 ∥x − y∥.

In particular, we have that for any x ∈ Rd, δxQT = π, i.e. the backward diffusion converges in finite time no
matter the initialization distribution.

Proof. Let t ∈ [0, T ]. Using Lemma C.2, we have that for any M ∈ Md(R)

⟨M, ∇2 log qt(xt)M⟩ ≤ −σ−2
t ∥M∥2.

In particular, we have that for any M ∈ Md(R)

βT −t⟨M, Id +2∇2 log qT −t(xt)M⟩ ≤ (βT −t − 2βT −tσ
−2
T −t)∥M∥2. (54)

Using Lemma D.1, we have∫ t

0 (βT −s − 2βT −sσ−2
T −s)ds

=
∫ t

0 βT −sds + log(exp[2
∫ T −t

0 βsds] − 1) − log(exp[2
∫ T

0 βsds] − 1)

=
∫ T

T −t
βsds + log(exp[2

∫ T −t

0 βsds] − 1) − log(exp[2
∫ T

0 βsds] − 1).
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Finally, we have that

exp[
∫ t

0 (βT −s − 2βT −sσ−2
T −s)ds]

≤ exp[
∫ T

T −t
βsds](exp[2

∫ T

0 βsds] − 1)−1(exp[2
∫ T −t

0 βsds] − 1).

Hence, using this result, (52) and (54), we get that

(1/2)∥∇Yt∥2 ≤ exp[
∫ T

T −t
βsds](exp[2

∫ T

0 βsds] − 1)−1(exp[2
∫ T −t

0 βsds] − 1),

which concludes the first part of the proof, using (53). For the second part of the proof, we first remark
that for any x, y ∈ Rd, W1(δxQT , δyQT ) = 0. Therefore, for any probability measures µ, ν such that∫
Rd ∥x∥dµ(x) < +∞ and

∫
Rd ∥x∥dν(x) < +∞, we have W1(µQT , νQT ) = 0 We conclude upon combining

this result and that (δxPT )QT = δx.

Note that it is also possible to explicitly write down the backward stochastic process in this case since ∇ log pt

is available in close form. One can remark that in this case we recover an Ornstein–Uhlenbeck bridge.

In the case where the diameter is non-zero, we cannot recover such a contraction. However, it is possible to
obtain a contraction up to a certain point. The following lemma will allow us to control the growth of the
tangent process.
Lemma D.8. Assume A2 and that T ≥ 2β̄(1 + log(1 + diam(M)). Let t⋆ ∈ [0, T ] given by

t⋆ = T − 2β̄(1 + log(1 + diam(M)).

Then, for any t ∈ [0, t⋆] we have∫ t

0 βT −s(1 − 2/σ2
T −s + m2

T −sdiam(M)2/σ4
T −s)ds ≤ −(1/2)

∫ t

0 βT −tds.

In addition, for any t ∈ [t⋆, T ]∫ t

t⋆ βT −s(1 − 2/σ2
T −s + m2

T −sdiam(M)2/σ4
T −s)ds ≤ (diam(M)2/2)(σ−2

T −t − σ−2
T −t⋆).

Proof. Let s ∈ [0, T ]. Note that we have

1 − 2/σ2
T −s + m2

T −sdiam(M)2/σ4
T −s ≤ −1/2, (55)

if and only if
3σ4

T −t − 4σ2
T −s + 2m2

T −sdiam(M)2 ≤ 0.

Hence, using this result and the fact that σ2
T −s = 1 − m2

T −s we have that (55) is satisfied if and only if

3m4
T −s + 2(diam(M)2 − 1)m2

T −s − 1 ≤ 0.

Introduce P (u) = 3u2 + 2(diam(M)2 − 1)u − 1. We have that P (u) ≤ 0 for u ∈ [0, u0] with

u0 = [−(diam(M)2 − 1) + ((diam(M)2 − 1)2 + 3)1/2]/3 = (δ + (δ2 + 3)1/2)/3,

where δ = diam(M)2 − 1 ∈ [−1, +∞). If diam(M)2 − 1 ≥ 1 then, using this result and the fact that for any
a ∈ [0, +∞), (1 + a)1/2 ≥ 1 + a/2 − a2/8 we have

u0 ≥ δ(−1 + (1 + 3/δ2)1/2)/3 ≥ δ(1/(2δ2) − 3/(8δ4)) ≥ (1/2 − 3/8)/δ ≥ 1/(8δ). (56)

In addition, if δ ≤ 1 then δ2 ∈ [0, 1]. Using this result and the fact that for any a ∈ [0, 1],
√

3 + a ≥
(2 −

√
3)a +

√
3 we have

u0 ≥ (−δ + (3 + δ2)1/2)/3
≥ (−|δ| + (3 + |δ|2)1/2)/3 ≥ ((1 −

√
3)|δ| +

√
3)/3 ≥ 1/3.
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Combining this result and (56), we get that

u0 ≥ 1/(8(1 + |δ|)).

Therefore, we get that for any t ∈ [0, T ] such that m2
T −t ≤ 1/(8(1 + |δ|))

1 − 2/σ2
T −s + m2

T −sdiam(M)2/σ4
T −s ≤ −1/2.

Hence, for any t ∈ [0, T ] such that exp[−2(T − t)/β̄] ≤ 1/(8(1 + |δ|))

1 − 2/σ2
T −s + m2

T −sdiam(M)2/σ4
T −s ≤ −1/2.

Let t⋆
0 such that exp[−2(T − t⋆

0)/β̄] = 1/(8(1 + |δ|)). We get that

t⋆
0 = T − (β̄/2) log(8(1 + |δ|)).

Using that for any a ≥ 0, 1 + |a2 − 1| ≤ 2(1 + a)2 and that log(16) ≤ 4, we get that

t⋆
0 ≥ T − (β̄/2)(log(16(1 + diam(M))2)) ≥ t⋆ = T − 2β̄(1 + log(1 + diam(M))).

Hence, since t 7→ mT −t is non-decreasing, we get that for any t ∈ [0, t⋆], mT −t ≤ 1/(8(1 + |δ|)) and therefore

1 − 2/σ2
T −s + m2

T −sdiam(M)2/σ4
T −s ≤ −1/2,

which concludes the first part of the proof. The second part of the proof follows from Lemma D.1 and∫ t

t⋆ βT −s(1 − 2/σ2
T −s + m2

T −sdiam(M)2/σ4
T −s)ds

≤ (diam(M)2/2)[(1 − exp[−2
∫ T −t

0 βsds])−1 − (1 − exp[−2
∫ T −t⋆

0 βsds])−1]
≤ (diam(M)2/2)(σ−2

T −t − σ−2
T −t⋆),

which concludes the proof.

The control of the tangent process in the case where diam(M) > 0 is given in Proposition 6.
Proposition D.9. Assume A1 and T ≥ 2β̄(1 + log(1 + diam(M)). Then, for any x, y ∈ Rd and t ∈ [0, tK ]

W1(δxQt, δyQt) ≤ exp[(diam(M)2/2)σ−2
T −tK

]∥x − y∥.

Proof. This is a direct consequence of (53) and Proposition 6.

E A stochastic interpolation formula

In this section, we present a formula first introduced in Del Moral and Singh (2019) which is a stochastic
extension of the Alekseev–Gröbner formula (Alekseev, 1961). We recall the definition of the stochastic flows
(Yx

s,t)s,t∈[0,T ] and the interpolation of its discretization (Ȳx
s,t)s,t∈[0,T ], for any x ∈ Rd

dYx
s,t = βT −t{Yx

s,t + 2∇ log qT −t(Yx
s,t)}dt +

√
2βT −tdBt, Yx

s,s = x.

and
dȲx

s,t = βT −t{Ȳx
s,t + 2s(T − tk, Ȳx

s,tk
)}dt +

√
2βT −tdBt, Ȳx

s,s = x.

The following proposition is a straightforward application of (Del Moral and Singh, 2019, Theorem 1.2). Note
that these results apply since the drift and the volatility of the backward processes have bounded differential
up to order three, see Lemma C.5.
Proposition E.1. Assume A1. Then, for any s, t ∈ [0, T ) with s < t and x ∈ Rd

Yx
s,t − Ȳx

s,t =
∫ t

s
(∇YȲs,u

u,t )⊤∆bu((Ȳs,v)v∈[s,u])du,

where for any u ∈ [0, T ) such that u ∈ [tk, tk+1) for some k ∈ {0, . . . , K − 1} and (ωv)v∈[s,u] ∈ C([s, u] ,Rd)
we have

bu(ω) = βT −u(ωu + 2∇ log qT −u(ωu)), b̄u(ω) = βT −tu
(ωu + 2s(T − tk, ωtk

)),
∆bu(ω) = bu(ω) − b̄u(ω).
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F Additional comments on Theorem 1

In this section, we discuss the validity of A3 and then comment the suboptimality of the bound of Theorem 1.

F.1 Validity of A3

First, we highlight that under A1, A3 is satisfied if for any t ∈ (0, T ] and xt ∈ Rd we have ∥s(t, xt) −
∇ log pt(xt)∥ ≤ Mr∥∇ log pt(xt)∥ with Mr ≥ 0. Indeed, using this condition A1, Lemma C.1 and letting
M = 4Mr(1 + diam(M)), we get that A3 is satisfied. Hence, A3 is implied by a control on the relative error
between the score function and its approximation.

Assume that π = δ0. Then in that case ∇ log pt = ∇ log pt|0(·|0) and we can compute explicitly the error
∥s(t, xt) − ∇ log pt(xt)∥ at given query points (t, xt). In Figure 1, we analyze this error in a two-dimensional
setting. In particular, we recover that the behavior of the error is explosive as ∥x∥ → +∞ and t → 0.

Figure 1: Target is a Dirac mass at 0. Left: norm of the true score ∥∇ log pt|0(x)∥ (x-axis: time evolution
(T = 1), y-axis: spatial evolution (along the first coordinate, second coordinate is fixed to 0). Right: norm
of the error between the estimated score and the true score ∥s(t, x) − ∇ log pt|0(x)∥ (x-axis: time evolution
(T = 1), y-axis: spatial evolution (along the first coordinate, second coordinate is fixed to 0).

Finally, we conclude this study by illustrating the explosive behavior of the norm of the score in a two-
dimensional setting (we restrict ourselves to this small dimensional setting so that we can get a dense grid of
query points without encountering memory issues), see Figure 2. We emphasize that the norm of the score
has a similar behavior as the error term, i.e. it is explosive as ∥x∥ → +∞ and t → 0.

Figure 2: Target is the uniform distribution on two concentric circles. Left: samples from the target
distribution (orange) and samples from the diffusion model (blue). Middle: trajectories of the diffusion model.
Right: norm of the estimated score ∥s(t, x)∥ (x-axis: time evolution (T = 1), y-axis: spatial evolution (along
the first coordinate, second coordinate is fixed to 0).
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In both settings, the score function is learned by minimizing the Denoising Score Matching objective (3)
using the ADAM optimizer. The architecture of the network and training settings are similar to the ones
used in De Bortoli et al. (2021a).

F.2 Suboptimality of the bound

Recall that the generative model is given by L(YK). In Theorem 1, we provide an upper bound on
W1(L(YK), π). In this section, we compare the obtained bound with a bound on W1(L(Y0), π). Recall that
Y0 ∼ N(0, Id). Considering any coupling (X, Y0) such that X ∼ π and Y0 ∼ N(0, Id), we have

W1(L(Y0), π) ≤ E[∥X∥] + E[∥Y0∥] ≤ diam(M) +
√

d.

This naive bound can be better than the one obtained in Theorem 1, especially for large values of D0. If that
is the case then the derived bound seems to be vacuous at first sight since diffusing the process backward
does not improve the Wasserstein distance of order one between the obtained model and the target measure.
However, we argue that such cases are possible especially if we are using a poor estimation of the score, i.e.
a large value of M in A3. Indeed, neglecting the discretization error and setting β = 1 for simplicity, the
backward process is given by

dŶt = {Ŷt + 2s(T − t, Ŷt)}dt +
√

2dBt, Ŷ0 ∼ π∞ = N(0, Id). (57)

Assume that s = 0 (which is approximately the case at initialization if we parameterize s with a neural
network with a fully connected last layer and no non-linearity), then the dynamics becomes

dŶt = Ŷtdt +
√

2dBt, Ŷ0 ∼ π∞ = N(0, Id). (58)

In that case, for any t ∈ [0, T ], Ŷt is Gaussian and we have that L(Ŷt) = N(0, ((3 exp[2t] − 1)/2) Id). In
addition, we have that for any f : Rd → R which is 1-Lipschitz we have

W1(L(ŶT ), π) ≥ E[f(Ŷt)] −
∫
Rd f(x)dπ(x).

Choosing f(x) = |x1| for any x = (x1, . . . , xd) ∈ Rd in the previous inequality we get,

W1(L(ŶT ), π) ≥ (3 exp[2T ] − 1)1/2 − diam(M).

Therefore, choosing T ≥ 0 large enough and using (57), we get that W1(L(ŶT ), π) ≥ W1(L(Ŷ0), π). This
result implies that even in idealized setting, the backward process might steer the Gaussian distribution away
from the target distribution π. This is due to the explosive property of the Ornstein-Uhlenbeck process (58)
which should be compared to the contractive behavior of the forward Ornstein-Uhlenbeck process (1).

G Assumptions on the schedule

In what follows, we consider three schedules commonly used in practice: (a) the constant schedule, (b) the
linear schedule, (c) the cosine schedule. We show that A2 is satisfied in all these cases. We consider a
generalized version of the cosine schedule which makes it differentiable by replacing the hard clamping by a
soft version with level r > 0 (note that letting r → 0 we recover the original cosine schedule). The constant
schedule is defined by βs = β0 for all s ∈ [0, T ]. The linear schedule was introduced in Ho et al. (2020) and is
defined by βs = β0 + (βT − β0)t/T with βT > β0 > 0. Finally, the cosine schedule was introduced in (Nichol
and Dhariwal, 2021, Equation (17)) in discrete-time and can be defined as follows in continuous-time

βt = softminr(1, lim
h→0

(ᾱt−h − ᾱt)/(ᾱt−hh)) = softminr(1, f)t, f(t) = −ᾱ′
t/ᾱt,

with ᾱ defined as
ᾱt = cos((t/T + η)/(1 + η)(π/2))2/ cos(η/(1 + η)(π/2))2,

and where η ≥ 0, r > 0 are parameters and for any f1, f2 : [0, T ] → R+

softminr(f1, f2)t = −r log(exp[−f1(t)/r] + exp[−f2(t)/r]).
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In the special case where f1 = 1 we have

softminr(1, f2)t = 1 − r log(1 + exp[(1 − f2(t))/r]),

We have
ᾱ′(t)/ᾱ(t) = −π/(T (1 + η)) tan((t/T + η)/(1 + η)(π/2)).

In particular, t 7→ βt is increasing and bounded above and below on [0, T ].

Finally, we end this section by remarking that if one aims at studying the Euler-Maruyama discretization
of the approximate backward, i.e. the process given by (26) then one needs to also assume some Lipschitz
property on the schedule s 7→ βs.

H A short proof of the results of Franzese et al. (2022)

In (Franzese et al., 2022, Equation (9)), the authors show that (under mild regularity assumptions9)∫
Rd log pθ,T (x)p0(x)dx ≥

∫
Rd log p0(x)p0(x)dx − G(sθ, T ) − KL(pT |p∞). (59)

To do so, they rearrange the ELBO result from Huang et al. (2021). We have that (59) is equivalent to

KL(p0|pθ,T ) ≤ G(sθ, T ) + KL(pT |p∞). (60)

The definition of G(sθ, T ) is given by

G(sθ, T ) = (1/2)(
∫ T

0 β2
t E[∥sθ(t, Xt) − ∇ log pt|0(Xt|X0)∥2]dt

−
∫ T

0 β2
t E[∥∇ log pt(Xt) − ∇ log pt|0(Xt|X0)∥2]).

Developing the square and using that E[∇ log pt|0(Xt|X0)|Xt] = ∇ log pt(Xt), we get that

G(sθ, T ) =
∫ T

0 β2
t E[∥sθ(t, Xt) − ∇ log pt(Xt)∥2]dt.

Hence, combining this result and (60), we have that (59) is equivalent to (Song et al., 2021a, Theorem 1)
which is obtained upon combining the data-processing inequality, the decomposition of the Kullback-Leibler
via conditioning and the Girsanov theorem.

I Wasserstein controls under L2 errors

In this section, we replace the assumption A3 by the following weaker control.
A5. There exist s ∈ C([0, T ] × Rd,Rd) and M ≥ 0 such that for any k ∈ {0, . . . , K} and xt ∈ Rd,

E[∥s(T − tk, Yk) − ∇ log pT −tk
(Yk)∥2] ≤ M2E[(1 + ∥Yk∥2)]/σ4

T −tk
,

where we recall that (Yk)k∈{0,...,K} is given by (5).

Note that this assumption is different from the one of Lee et al. (2022) as the expectation is considered w.r.t.
{Yk}K

k=0 and not {Ytk
}K

k=0. In order to control the L2 error, Lee et al. (2022) use a change of measure and
control the χ2 divergence between the density of Yk and the one Ytk

for any k ∈ {0, . . . , K}. These controls
are obtained using a logarithmic Sobolev assumption on the target measure π. Adapting these results to
our Wasserstein distance setting is not straightforward and is left for future work. Under A5, we have the
following theorem, which is an extension of Theorem 1. To prove this theorem, we extend (Lee et al., 2022,
Theorem 4.1) to the Wasserstein distance of order one and weaker growth conditions.

9We assume that all probability measures admit densities w.r.t. the Lebesgue measure and that all the integrals we consider
are well-defined.
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Theorem I.1. Assume A1, A2, A4, A5 that T ≥ 2β̄(1+log(1+diam(M)), tK = T −ε and ε, M, M/ζ, δ ≤ 1/32.
Then, there exists D0 ≥ 0 such that

W1(L(YK), π) ≤ D0(Kζ + exp[κ/ε](M/ζ + δ1/2)/ε2 + exp[κ/ε] exp[−T/β̄] + ε1/2),

with κ = diam(M)2(1 + β̄)/2 and

D0 = D(1 + β̄)5(1 + d + diam(M)4)(1 + log(1 + diam(M))),

and D is a numerical constant.

We start with the following lemma, which is an extension of Lemma D.5 to the setting where A3 is replaced
by A5.
Lemma I.2. Assume A1, A2 and A5. Assume that there exists δ > 0 such that for any k ∈ {0, . . . , K},
γkβT −tk

/σ2
T −tk

≤ δ. Assume that there exists η > 0 such that A(δ, M, η, diam(M)) > 0 with

A(δ, M, η, diam(M)) = 2 − 2δ − 32δ(1 + M2) − 8M − 4ηdiam(M),
B(δ, M, η, diam(M)) = 32δ(M2 + diam(M)2) + 2(1 + δ)(diam(M)/η + M) + 4d.

Then, we have for any k ∈ {0, . . . , K}

E[∥Yk∥2] ≤ K = d + B(δ, M, η, diam(M))(1/A(δ, M, η, diam(M)) + δ).

In particular if M ≤ 1/32 and δ ≤ 1/32 then for any k ∈ {0, . . . , K}

E[∥Yk∥2] ≤ K0 = 5d + 320(1 + diam(M))2.

Proof. Recall that using (5), we have that for any k ∈ {0, . . . , K − 1}

Yk+1 = Yk + (exp[
∫ T −tk

T −tk+1
βsds] − 1)(Yk + 2s(T − tk, Yk)) + (exp[2

∫ T −tk

T −tk+1
βsds] − 1)1/2Zk, (61)

For simplicity, we denote

γ1,k = (exp[
∫ T −tk

T −tk+1
βsds] − 1)/βT −tk

, γ2,k = (exp[2
∫ T −tk

T −tk+1
βsds] − 1)/(2βT −tk

).

Then, (61) can be rewritten for any k ∈ {0, . . . , K − 1} as

Yk+1 = Yk + γ1,kβT −tk
(Yk + 2s(T − tk, Yk)) +

√
2γ2,kβT −tk

Zk. (62)

In what follows, we denote γ̄1,k = γ1,kβT −tk
and γ̄2,k = γ2,kβT −tk

. In addition, using that γkβT −tk
≤ δ ≤ 1/4,

we have that γ1,k ≤ γ2,k ≤ 2γ1,k. Indeed, we have that for any k ∈ {0, . . . , K − 1}

γ2,k/γ1,k = (1/2)(exp[
∫ T −tk

T −tk+1
βsds] + 1) ≥ 1,

γ2,k/γ1,k = (1/2)(exp[
∫ T −tk

T −tk+1
βsds] + 1) ≤ (1/2)(exp[γkβT −tk

] + 1) ≤ 2,

In what follows, for any t ∈ [0, T ] and xt ∈ Rd, we denote ∆t = ∥s(t, xt) − ∇ log pt(xt)∥. Using Lemma C.1,
we have that for any t ∈ [0, T ], xt ∈ Rd and η > 0

⟨xt, s(t, xt)⟩ ≤ −∥xt∥2/σ2
t + mtdiam(M)∥xt∥/σ2

t + ∆t(xt)∥xt∥

≤ (−1 + ηmtdiam(M)) ∥xt∥2
/σ2

t + (mtdiam(M)/η)/σ2
t + ∆t(xt)∥xt∥, (63)

where we have used that for any a, b ≥ 0, 2ab ≤ ηa2 + b2/η in the last line. In addition, using Lemma C.1,
for any t ∈ [0, T ] and xt ∈ Rd we have

∥s(t, xt)∥2 ≤ 2∥s(t, xt) − ∇ log pt(xt)∥2 + 2∥∇ log pt(xt)∥2

≤ 2∆t(xt)2 + 4∥xt∥2/σ4
t + 4m2

t diam(M)2/σ4
t , (64)
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In addition, using A5, the Cauchy-Schwarz inequality and (63) we have

E[⟨Yk, s(T − tk, Yk)⟩] ≤ (−1 + ηmT −tk
diam(M))E[∥Yk∥2]/σ2

T −tk
+ (mT −tk

diam(M)/η)/σ2
T −tk

+ E[∆T −tk
(Yk)∥Yk∥]

≤ (−1 + ηmT −tk
diam(M))E[∥Yk∥2]/σ2

T −tk
+ (mT −tk

diam(M)/η)/σ2
T −tk

+ E1/2[∆T −tk
(Yk)2]E1/2[∥Yk∥2]

≤ (−1 + ηmT −tk
diam(M))E[∥Yk∥2]/σ2

T −tk
+ (mT −tk

diam(M)/η)/σ2
T −tk

+ M(1 + E1/2[∥Yk∥2])E1/2[∥Yk∥2]/σ2
T −tk

≤ (−1 + ηmT −tk
diam(M) + M)E[∥Yk∥2]/σ2

T −tk
+ (mT −tk

diam(M)/η)/σ2
T −tk

+ ME1/2[∥Yk∥2]/σ2
T −tk

≤ (−1 + ηmT −tk
diam(M) + 2M)E[∥Yk∥2]/σ2

T −tk
+ (mT −tk

diam(M)/η + M)/σ2
T −tk

. (65)

Finally, using A5 and (64) we have

E[∥s(T − tk, Yk)∥2] ≤ 4E[∆T −tk
(Yk)2] + 4E[∥Yk∥2]/σ4

T −tk
+ 4m2

T −tk
diam(M)2/σ4

T −tk

≤ 4M2(1 + E[∥Yk∥2])/σ4
T −tk

+ 4E[∥Yk∥2]/σ4
T −tk

+ 4m2
T −tk

diam(M)2/σ4
T −tk

≤ 4(1 + M2)E[∥Yk∥2])/σ4
T −tk

+ 4(M2 + m2
T −tk

diam(M)2)/σ4
T −tk

. (66)

Combining (62), (65) and (66) we have for any k ∈ {0, . . . , K − 1}

E[∥Yk+1∥2] = (1 + γ̄1,k)2E[∥Yk∥2] + 4γ̄2
1,kE[∥s(T − tk, Yk)∥2]

+ 4γ̄1,k(1 + γ̄1,k)E[⟨Yk, s(T − tk, Yk)⟩] + 2γ̄2,kd

≤ (1 + 2γ̄1,k + γ̄2
1,k)E[∥Yk∥2] + 16(γ̄1,k/σ2

T −tk
)2(1 + M2)E[∥Yk∥2]

+ 16(γ̄1,k/σ2
T −tk

)2(M2 + m2
T −tk

diam(M)2)
+ 4γ̄1,k(1 + γ̄1,k)E[⟨Yk, s(T − tk, Yk)⟩] + 4γ̄1,kd

≤ (1 + 2γ̄1,k + γ̄2
1,k)E[∥Yk∥2] + 16(γ̄1,k/σ2

T −tk
)2(1 + M2)E[∥Yk∥2]

+ 16(γ̄1,k/σ2
T −tk

)2(M2 + m2
T −tk

diam(M)2)
+ 4(γ̄1,k/σ2

T −tk
)(1 + γ̄1,k)(−1 + 2M + ηmT −tk

diam(M))E[∥Yk∥2]
+ (γ̄1,k/σ2

T −tk
)(1 + γ̄1,k)(mT −tk

diam(M)/η + M) + 4γ̄1,kd.

The rest of the proof is identical to the one of Lemma D.5.

Let ζ > 0. For any k ∈ {0, . . . , K} we define Ak such that

Ak = {y ∈ Rd : ∥s(T − tk, y) − ∇ log pT −tk
(y)∥ > (M/ζ)/σ2

T −tk
}.

We define the process (Y ⋆
k )k∈{0,...,K} such that Y ⋆

0 = Y0 and for any k ∈ {0, . . . , K − 1}, if Yk = Y ⋆
k and

Yk ∈ Ak then Y ⋆
k+1 = Yk+1. Otherwise, we define

Y ⋆
k+1 = Y ⋆

k + (exp[
∫ T −tk

T −tk+1
βsds] − 1)(Y ⋆

k + 2∇ log pT −tk
(Y ⋆

k )) + (exp[2
∫ T −tk

T −tk+1
βsds] − 1)1/2Zk.

This is similar to assuming that there exists s⋆ such that for any k ∈ {0, . . . , K − 1}

Y ⋆
k+1 = Y ⋆

k + (exp[
∫ T −tk

T −tk+1
βsds] − 1)(Y ⋆

k + 2s⋆(T − tk, Y ⋆
k )) + (exp[2

∫ T −tk

T −tk+1
βsds] − 1)1/2Zk,

with s⋆ which satisfies10 A3 with M replaced by M/ζ and while Yk ∈ Ak, Y ⋆
k+1 = Yk+1.

We have the following lemma which is an extension of (Lee et al., 2022, Theorem 4.1) to the Wasserstein
setting. Note that contrary to (Lee et al., 2022, Theorem 4.1) which states results in total variation we also
need control on the moments of the distribution under a L2 error, which is precisely Lemma I.2.

10Note that we slightly abuse since s⋆ is random (depending on the behavior of Yk) but one can check that all our proofs
remain unchanged in this slightly larger setting
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Lemma I.3. Assume A1, A2 and A5. Assume that there exists δ > 0 such that for any k ∈ {0, . . . , K},
γkβT −tk

/σ2
T −tk

≤ δ and that M, M/ζ, δ ≤ 1/32. Then, we have for any k ∈ {0, . . . , K}

E[∥Y ⋆
k − Yk∥] ≤ 4(1 + K0)ζk,

where K0 is defined in Lemma I.2.

Proof. Using the Cauchy-Schwarz inequality we have

E[∥Y ⋆
k − Yk∥] = E[∥Y ⋆

k − Yk∥1Yk ̸=Y ⋆
k

]

≤
√

2(E1/2[∥Y ⋆
k ∥2] + E1/2[∥Yk∥2])(

∑k
j=1 P(Yj ∈ Aj))1/2

≤
√

2(E1/2[∥Y ⋆
k ∥2] + E1/2[∥Yk∥2])

× (
∑k

j=1 P(∥s(T − tj , Yj) − ∇ log pT −tj
(Yj)∥ > (M/ζ)/σ2

T −tj
))1/2. (67)

Using the Markov inequality, we have for any j ∈ {0, . . . , K}

P(∥s(T − tj) − ∇ log pT −tj (Yj)∥ > (M/ζ)/σ2
T −tj

)
≤ E[∥s(T − tj , Yj) − ∇ log pT −tj

(Yj)∥2]σ4
T −tj

ζ2/M2 ≤ ζ2E[1 + ∥Yj∥2].

Therefore, combining this result, (67) and Lemma I.2 we have E[∥Y ⋆
k − Yk∥] ≤ 4(1 + K0)ζk.

We are now ready to complete the proof of Theorem I.1

Proof. We have
W1(L(YK), π) ≤ W1(L(YK), L(Y ⋆

k )) + W1(L(Y ⋆
k ), π). (68)

Note that using Theorem 1 we have

W1(L(Y ⋆
k ), π) ≤ D0(exp[κ/ε](M/ζ + δ1/2)/ε2 + exp[κ/ε] exp[−T/β̄] + ε1/2). (69)

In addition, using Lemma I.3 we have

W1(L(YK), L(Y ⋆
k )) ≤ 4(1 + K0)ζK.

Combining this result and (69) in (68) concludes the proof.

J Improved bounds under Hessian conditions

In Appendix J.1, we prove Theorem 3 which is an improvement upon Theorem 1 under tighter conditions
on the Hessian ∇2 log pt. In Appendix J.2, we show that this condition is satisfied in the case of a uniform
measure over [−1/2, 1/2]p for some p ∈ {1, . . . , d}. Finally, in Appendix J.3, we show, under appropriate
smoothness conditions, that the condition is never satisfied on non-convex sets.

J.1 Proof of Theorem 3

In this section, we prove Theorem 3. We start by deriving an improvement on Proposition 6. The
main difference between Proposition 6 and Proposition J.1 lies into the dependency w.r.t. σ−2

T −tK
. In

Proposition 6, we have an exponential dependency exp[(diam(M)2/2)σ−2
T −tK

] whereas in Proposition J.1, we
have a polynomial dependency σ−2Γ

T −tK
.

For ease of notation we introduce the following assumption.
A6. There exists Γ ≥ 0 such that for any t ∈ (0, T ] and xt ∈ Rd, ∥∇2 log pt(xt)∥ ≤ Γ/σ2

t .

We start with the following proposition.
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Proposition J.1. Assume A1, A6 and that T ≥ 2β̄(1 + log(1 + diam(M)). Let tK ∈ [0, T ). Then, for any
t ∈ [0, tK ] and x ∈ Rd we have

∥∇Yx
t,tK

∥ ≤ exp[−(1/2)
∫ T −t

T −t⋆ βsds1[0,t⋆)(t)]σ−2Γ
T −tK

exp[(Γ + 1)
∫ T −t⋆

T −tK
βudu].

Proof. Let x ∈ Rd. First, using (13) and Lemma C.2 we have that for any s, t ∈ [0, T ] with s ≤ t

d∥∇Yx
s,t∥2 ≤ 2βT −t(∥∇Yx

s,t∥2 − 2(1 − m2
T −tdiam(M)2/(2σ2

T −t))/σ2
T −t∥∇Yx

s,t∥2)dt.

First, assume that s ≤ t⋆ and that t ≥ t⋆. In that case, using Lemma D.8 we have that∫ t⋆

s
βT −u(1 − 2/σ2

T −u + m2
T −udiam(M)2/σ4

T −u)du ≤ −(1/2)
∫ t⋆

s
βT −udu.

Therefore, using that result and the fact that ∇Yx
s,s = Id we get that

∥∇Yx
s,t⋆∥ ≤ exp[−(1/2)

∫ T −s

T −t⋆ βudu]. (70)

In addition, using that for any t ∈ (0, T ] and xt ∈ Rd, ∥∇2 log pt(xt)∥ ≤ Γ/σ2
t we have

d∥∇Yx
s,t∥2 ≤ 2βT −t(1 + 2Γ/σ2

T −t)∥∇Yx
s,t∥2dt.

In addition, using Lemma D.1 we have that∫ t

t⋆ βT −u(1 + 2Γ/σ2
T −u)du≤ Γ[log(exp[2

∫ T −t⋆

0 βT −udu] − 1)

− log(exp[2
∫ T −t

0 βT −udu] − 1)] +
∫ T −t⋆

T −t
βudu

≤ Γ[log(σ2
T −t⋆) − log(σ2

T −t)] + (Γ + 1)
∫ T −t⋆

T −t
βudu

≤ −Γ log(σ2
T −t) + (Γ + 1)

∫ T −t⋆

T −t
βudu.

Therefore, combining this result and (70), we get that

∥∇Ys,t∥ ≤ σ−2Γ
T −t exp[(Γ + 1)

∫ T −t⋆

T −t
βudu]∥∇Ys,t⋆∥

≤ σ−2Γ
T −t exp[(Γ + 1)

∫ T −t⋆

T −t
βudu] exp[−(1/2)

∫ T −s

T −t⋆ βudu].

The proof in the cases where s ≥ t⋆, t ≥ t⋆ and s ≤ t⋆, t ≤ t⋆ are similar and left to the reader.

The rest of the proof follows the proof of Section 4. The following proposition is the counterpart of
Proposition 10. Again note that the exponential dependency w.r.t. 1/ε has been replaced by a polynomial
dependency.
Proposition J.2. . Assume A1, A2, A3, A4, A6 and tK = T − ε. In addition, assume that ε, δ, M ≤ 1/32.
Then

W1(π∞QtK
, π∞RK) ≤ D0(M + δ1/2)/εΓ+2,

where

D0 = 4(4 + 256d + 43664(1 + diam(M))4) exp[3(1 + β̄)2(Γ + 2)(1 + log(1 + diam(M))))].

Proof. Using Proposition 5, we have

∥YtK
− YK∥ ≤

∫ tK

0 ∥∇Yu,tK
(Ȳ0,u)∥∥∆bu((Ȳ0,v)v∈[0,T ])∥du.

Combining this result, recalling that t⋆ is defined in (14) and Proposition J.1, we get

∥YtK
− YK∥ ≤

∫ tK

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds1[0,t⋆)(u)]σ−2Γ
T −tK
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× exp[(Γ + 1)
∫ T −t⋆

T −tK
βsds]∥∆bu((Ȳ0,v)v∈[0,T ])∥du

≤ σ−2Γ
T −tk

exp[(Γ + 1)
∫ T −t⋆

T −tK
βsds](

∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]∆bu((Ȳ0,v)v∈[0,T ])du

+
∫ tK

t⋆ ∆bu((Ȳ0,v)v∈[0,T ])du).

Using this result and Proposition 9 we get

W1(π∞QtK
, π∞RK) ≤ E[∥YtK

− YK∥]

≤ σ−2Γ
T −tK

exp[(Γ + 1)
∫ T −t⋆

T −tK
βsds](

∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]E[∥∆bu((Ȳ0,v)v∈[0,T ])∥]du

+
∫ tK

t⋆ E[∥∆bu((Ȳ0,v)v∈[0,T ])∥]du).

≤ σ−2Γ
T −tK

exp[(Γ + 1)
∫ T −t⋆

T −tK
βsds]C0(T − tK + β̄)2(M + δ1/2)/(T − tK)2

×(
∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]du + tK − t⋆)

≤ σ−2Γ
T −tK

exp[(Γ + 1)β̄(tK − t⋆)ds]C0(T − tK + β̄)2(M + δ1/2)/(T − tK)2

×(
∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]du + tK − t⋆). (71)

We have that ∫ t⋆

0 exp[−(1/2)
∫ T −u

T −t⋆ βsds]du ≤
∫ t⋆

0 exp[−(t⋆ − u)/(2β̄)]du ≤ 2β̄. (72)
In addition, using (14) we have

tK − t⋆ = T − ε − T + 2β̄(1 + log(1 + diam(M))) ≤ 2β̄(1 + log(1 + diam(M))). (73)

Finally, using Lemma D.2, we have that σ−2
T −tK

≤ (1 + β̄)/ε. Combining this result, (72) and (73) in (71)
and that for any a ≥ 0, 1 + a ≤ exp[a], we get

W1(π∞QtK
, π∞RK) ≤ 4(1 + β̄)Γ+3(1 + log(1 + diam(M)))

× exp[2β̄2(Γ + 1)(1 + log(1 + diam(M)))]C0(M + δ1/2)ε−(Γ+2)

≤ 4(1 + β̄)Γ+3(1 + log(1 + diam(M)))
× exp[2β̄2(Γ + 1)(1 + log(1 + diam(M)))]C0(M + δ1/2)ε−(Γ+2)

≤ 4 exp[3β̄2(Γ + 2)(1 + log(1 + diam(M)))]C0(M + δ1/2)ε−(Γ+2),

which concludes the proof.

We now state the equivalent of Proposition D.9.
Proposition J.3. Assume A1, A6 and T ≥ 2β̄(1 + log(1 + diam(M)). Then, for any x, y ∈ Rd and
t ∈ [0, tK ]

W1(δxQt, δyQt) ≤ exp[2(Γ + 1)β̄2(1 + log(1 + diam(M)))]σ−2Γ
T −tK

∥x − y∥.

Proof. This is a direct consequence of (53), Proposition J.1 and (73).

Finally, we control W1(π∞QtK
, πPT −tK

). First, we have

W1(π∞QtK
, πPT −tK

) = W1(π∞QtK
, πPT QtK

) (74)
≤ exp[2(Γ + 1)β̄2(1 + log(1 + diam(M)))]σ−2Γ

T −tK
W1(πPT , π∞).

To control W1(πPT , π∞), we use a synchronous coupling, i.e. we set (Yt, Zt)t∈[0,T ] such that

dYt = −βtYtdt +
√

2βtdBt, dZt = −βtZtdt +
√

2βtdBt,

where (Bt)t∈[0,T ] is a d-dimensional Brownian motion and Y0 ∼ π, Z0 ∼ π∞. We have that for any t ∈ [0, T ],
Zt ∼ π∞. In addition, denoting ut = E[∥Yt − Zt∥] for any t ∈ [0, T ], we have that

dut ≤ u0 exp[−
∫ t

0 βsds].
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Therefore, combining this result and (74), we get that

W1(π∞QtK
, πPT −tK

) ≤ exp[2(Γ + 1)β̄2(1 + log(1 + diam(M)))]σ−2Γ
T −tK

exp[−
∫ T

0 βtdt]W1(π, π∞).

Therefore, similarly as in the proof of Proposition 10, we have

W1(π∞QtK
, πPT −tK

) ≤ D1 exp[−T/β̄]/εΓ,

with
D1 = exp[2(Γ + 2)(1 + β̄)2(1 + log(1 + diam(M)))](

√
d + diam(M)).

We conclude the proof of Theorem 3 upon combining this result, Proposition J.2 and (24).

J.2 Hessian bounds for the uniform distribution

The goal of this section is to prove the following result.
Proposition J.4. Assume that π is the uniform distribution over [−1/2, 1/2]p for some p ∈ {1, . . . , d}. Then,
there exists Γ ≥ 0 such that for any t ∈ (0, T ] and x ∈ Rd, ∥∇2 log pt(xt)∥ ≤ Γ/σ2

t .

Proof. Let t ∈ (0, T ]. We start by deriving a closed form expression for pt. We have for any x ∈ Rd

pt(x) =
∫

M exp[−∥x − mtz∥2/(2σ2
t )]dπ(z)(2πσt)−d/2

= exp[−
∑d

i=p+1 x2
i /(2σ2

t )]
∏p

i=1
∫ 1/2

−1/2 exp[−(xi − mtzi)2/(2σ2
t )]dzi(2πσt)−d/2

= exp[−
∑d

i=p+1 x2
i /(2σ2

t )]
∏p

i=1
∫ xi+mt/2

xi−mt/2 exp[−z2
i /(2σ2

t )]dzi(2πσt)−d/2m−p
t

= exp[−
∑d

i=p+1 x2
i /(2σ2

t )](2πσt)−d/2×
∏p

i=1
∫ (xi+mt/2)/σt

(xi−mt/2)/σt
exp[−z2

i /2]dzi(σt/mt)p

= (2π)d/2(2πσt)−d/2(σt/mt)p∏d
i=p+1 φ(xi/σt)

×
∏p

i=1{Φ((xi + mt/2)/σt) − Φ((xi − mt/2)/σt)},

where φ(t) = exp[−t2/2]/
√

2π and Φ(t) =
∫ t

−∞ φ(s)ds. Note that from this expression, ∇2 log pt is diagonal.
Hence, we only need to compute ∂2

i log pt(x) for any x ∈ Rd and i ∈ {1, . . . , d}. Let i ∈ {p + 1, . . . , d}. We
have for any x ∈ Rd

∂2
i log pt(x) = −σ−2

t .

We now turn to the case where i ∈ {1, . . . , p}. In this case, we denote Ft(Φ, a, b) = Φ(a + b) − Φ(a − b) and
we have

∂2
i log pt(x) = (1/σ2

t )∂2
2 log Ft(Φ, xi/σt, mt/σt). (75)

We have that for any a, b ∈ R with a ̸= b

∂2
2 log Ft(Φ, a, b) = Ft(φ′, a, b)/Ft(Φ, a, b) − Ft(φ, a, b)2/Ft(Φ, a, b)2. (76)

In what follows, we assume that a > b and we define for any t ∈ R

erfc(t) = 1 − (2/
√
π)

∫ t

0 exp[−s2]ds.

Note that Ft(Φ, a, b) = (1/2)(erfc((a − b)/2) − erfc((a + b)/2)). In addition, there exists C > 0 such that for
any t ̸= 0 we have

erfc(t) ≥ exp[−t2]/(
√
πt)(1 + C/t2), erfc(t) ≤ exp[−t2]/(

√
πt)(1 − /(Ct2)).

In particular, we have

Ft(Φ, a, b) ≤ exp[−(a − b)2/2]/(
√

2π(a − b))(1 + R0(a, b)), (77)
Ft(Φ, a, b) ≥ exp[−(a − b)2/2]/(

√
2π(a − b))(1 − R̄0(a, b)),
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where

R0(a, b) = C/(a − b)2 + exp[+(a − b)2/2 − (a + b)2/2](a − b)/(a + b)(1 − /(C(a + b)2)),
R̄0(a, b) = −C/(a − b)2 + exp[+(a − b)2/2 − (a + b)2/2](a − b)/(a + b)(1 + C/(a + b)2),

Note that there exists C0 ≥ 0 such that for any a, b ∈ R with a ≥ b + 1

(R0(a, b) + R̄0(a, b))(a − b)2 ≤ C0. (78)

In particular, there exists a0 ≥ 0 such that if a ≥ b + a0, R̄0(a, b) + R0(a, b) ≤ 1/2. Similarly, we have

Ft(φ, a, b) = (2π)−1/2 exp[−(a − b)2/2](−1 + exp[−((a + b)2 − (a − b)2)/2]). (79)

We denote R1(a, b) = exp[−((a + b)2 − (a − b)2)/2] and note that there exists C1 ≥ 0 such that for any
a, b ∈ R with a ≥ b + 1

R1(a, b)(a − b)2 ≤ C1. (80)
Finally, we have

Ft(φ′, a, b) = (2π)−1/2 exp[−(a − b)2/2](a − b)(1 + (a + b)/(a − b) exp[−((a + b)2 − (a − b)2)/2]). (81)

We denote R2(a, b) = (a + b)/(a − b) exp[−((a + b)2 − (a − b)2)/2] and note that there exists C2 ≥ 0 such
that for any a, b ∈ R with a ≥ b + 1

R2(a, b)(a − b)2 ≤ C2. (82)
Combining (76), (77), (79) and (81), we get that for any a, b ∈ R with a ≥ b + 1

∂2
2 log Ft(Φ, a, b) ≤ (a − b)2[(1 + R2(a, b))/(1 + R̄0(a, b)) − (1 + R1(a, b))2/(1 + R0(a, b))2].

In addition, we have for any a, b ∈ R with a ≥ b + 1

(1 + R2(a, b))/(1 + R̄0(a, b)) − (1 + R1(a, b))2/(1 + R0(a, b))2

= (R2(a, b)(1 + R0(a, b))2 − R1(a, b)(1 + R̄0(a, b)))/[(1 + R̄0(a, b))2(1 + R̄0(a, b))].

Combining this result, (78), (80) and (82), we get that for any a, b ∈ R with a ≥ b + a0

R2(a, b)(1 + R0(a, b))2 − R1(a, b)(1 + R̄0(a, b) ≤ 4(C1 + C2)/(a − b)2.

Therefore, there exists C3 ≥ 0 such that for any a ≥ b + a0, |∂2
2 log Ft(Φ, a, b)| ≤ C3. Similarly there exists

C4 ≥ 0 such that if a ≤ −b − a0, |∂2
2 log Ft(Φ, a, b)| ≤ C4. By symmetry, there exists C5 ≥ 0 such that for

any b ≥ a + a0 or −b ≥ −a − a0, we have |∂2
2 log Ft(Φ, a, b)| ≤ C5 and we conclude by continuity that there

exists C ≥ 0 such that for any a, b ∈ R,

∂2 log Ft(Φ, a, b) ≤ C,

which concludes the proof upon combining this result with (75).

J.3 The role of convexity

In this section, for any x ∈ Rd, we define fx : M → R+ given for any y ∈ M by fx(y) = ∥x − y∥2. Before
giving our main result we need to introduce a few useful tools.

For any subset X ⊂ Rd and x ∈ Rd we define P(x) = {y ∈ X : d(x, X) = d(x, y)}. Note that P(x) can be
empty. We say that a set X is Chebyshev if for all x ∈ Rd, there exists p(x) ∈ X such that P(x) = {p(x)}, i.e.
Chebyshev sets are the subsets of Rd such that each point admits a unique projection on X. It is clear that all
closed and convex sets are Chebyshev sets. Note that all Chebyshev sets are closed since for any Chebyshev
set X and x ∈ ∂X (the frontier of X) we have that there exists p(x) ∈ X such that d(x, p(x)) = d(x, X) = 0,
i.e. x ∈ X. In addition, Chebyshev sets are also convex, see (Kritikos, 1938; Motzkin, 1935; Bundt, 1934).
This result implies the following proposition.
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Proposition J.5. Let X ⊂ Rd. X is a closed convex set if and only if X is a Chebyshev set.

In order to prove our main result, we introduce some basics on Morse theory. Assume that M is a smooth
manifold and f ∈ C∞(M,R). We say that x ∈ M is a non-degenerate minimizer if x ∈ M is a minimizer of
f and the Hessian of f at x is not singular. We then have the following proposition (see (Matsumoto, 2002)
for instance).
Proposition J.6. Let f ∈ C∞(M,R) and x ∈ M a non degenerate minimizer of f . Then there exist U ⊂ M
open and φ : U → φ(U) ⊂ Rp a local chart such that φ(x) = 0 and for any ŷ ∈ φ(U)

f(φ−1(ŷ)) = f(x) + ∥ŷ∥2.

In addition, we have Dφ(x) = ∇2f(x).

Note that upon considering φ−1(φ(U)/2) instead of U we can always assume that φ−1 has bounded derivatives.

Finally, we introduce the concept of shape operator (also called second fundamental form or Weingarten
form), see (Bishop and Crittenden, 2011). We assume that the metric on M is the induced Euclidean metric.
Let N ∈ Γ(TM⊤) a section on the normal bundle TM⊤. We define AN : Γ(TM)2 → C∞(M) such that for
any V1, V2 ∈ Γ(TM)

AN (V1, V2) = −⟨V1, ∇V2N⟩.
Note that AN is symmetric, linear and the scalar product and covariant derivative ∇ are considered w.r.t.
the ambient Euclidean metric. The shape operator encodes the local geometry of M. For example in the
case of Sd−1, we have that for any N ∈ Γ(TM⊤) and V1, V2 ∈ Γ(TM)

AN (V1, V2) = −⟨V1, V2⟩⟨N0, N⟩, (83)

where N0 is the normal vector field pointing outward of the sphere, see (Absil et al., 2013). We have the
following result, see (Bishop and Crittenden, 2011, Theorem 3) and (Bishop, 1974).
Proposition J.7. If M is convex then for any N ∈ Γ(TM⊤) such that for any x, y ∈ M, ⟨y − x, N(x)⟩ ≥ 0,
AN is non-negative.

Finally, let f̄ ∈ C∞(Rd,R) and f its restriction to M. Using (Absil et al., 2013), we have for any V1, V2 ∈
Γ(TM)

∇2f(V1, V2) = ⟨V1, Π(∇2f̄(V2))⟩ + AΠ⊤(∇f̄)(V1, V2), (84)
where for any x ∈ M, Πx is the orthogonal projection operator on TxM. We are now ready to state our
main result.
Theorem J.8. Assume that M ⊂ Rd is a smooth manifold and that π admits a smooth density w.r.t. the
Hausdorff measure on M. The following hold:

(a) If M is convex then for any x ∈ M we have lim supt→0 σ2
t ∥∇2 log pt(mtx)∥ < +∞.

(b) If there exists x ∈ Rd such that |P(x)| > 1 and for any p(x) ∈ P(x), A
p(x)−x
p(x) ≻ − Id. Then, we have

lim inft→0 σ4
t ∥∇2 log pt(mtx)∥ > 0.

Theorem J.8 implies that one can obtain information about the geometry of M by computing the Hessian of
the logarithmic gradient of the densities of (L(Xt))t∈[0,T ]. In the convex case the scaling w.r.t. σt is of order
σ−2

t whereas in the second scenario the scaling is of order σ−4
t . Note that the condition “there exists x ∈ Rd

such that |P(x)| > 1” is equivalent to assuming that M is not a Chebyshev set and hence a non convex set in
virtue of Proposition J.5. Therefore in Theorem J.8-(b), we assume that M is non convex and a curvature
condition. The condition A

p(x)−x
x ≻ − Id implies that the manifold is not too “negatively curved” at the

projection points. The non-strict inequality is always true, i.e. for any p(x) ∈ P(x), Ap(x)−x
x ⪰ − Id since

∇2fx(p(x)) ⪰ 0.

We conjecture that this curvature condition can be relaxed. Indeed, it is not satisfied in the case where
M = {x ∈ Rd : ∥x∥ = 1}, since the only point x ∈ Rd such that |P(x)| > 1 is x = 0 and in that case
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P(x) = M and therefore ∇2f0 = 0, which implies that for any x ∈ M, Ax
x = − Id. This formula could also

have been obtained from (83). However, one can show that we still have lim inft→0 σ4
t ∥∇2 log pt(0)∥ > 0. In

future works, we would like to relax these curvature conditions assuming that the manifold has an analytic
structure and using results from (Combet, 2006).

Finally, we highlight that Theorem J.8-(a) is weaker than the condition A6. To bridge the gap between
Theorem J.8-(a) and A6 one would need to strengthen Theorem J.8-(a) to derive uniform in space bounds.
This would require to use quantitative version of the Morse lemmas, see (Le Loi and Phien, 2014) for instance.
We postpone this study to future works. However, Theorem J.8-(b) implies that A6 does not hold. Hence,
any non convex set which is not too “negatively curved” does not satisfy A6.

Proof. (a) First, we assume that M is convex. We show that for any x ∈ Rd and p(x) ∈ P(x), ∇2fx(p(x)) ≻ 0,
i.e. the Hessian of fx is not degenerate. For any x ∈ Rd, we define f̄x such that for any y ∈ Rd, f̄x(y) = ∥x−y∥2.
Using (84), we have for any x ∈ Rd

∇2fx(p(x)) = Id +Ap(x)−x ⪰ Id ≻ 0. (85)

Since M is convex for any x ∈ Rd, P(x) = {p(x)} and note that P(x) is the set of minimizers of fx. Let
x ∈ Rd. Using Proposition J.6 and (85), there exist U ⊂ M open and φ : U → φ(U) ⊂ Rp a local chart such
that φ(p(x)) = 0 and for any ŷ ∈ φ(U)

∥x − φ−1(ŷ)∥2 = ∥x − p(x)∥2 + ∥ŷ∥2, (86)

with φ−1(0) = p(x). Note that Dφ−1(0) = (∇2fx(p(x)))−1. For any t ∈ (0, T ], denote λt = mt/σt. Using
(86), we have that∫

U2(y0 − y1)⊗2 exp[−(mt/σt)2∥x − y0∥2/2] exp[−(mt/σt)2∥x − y1∥2/2]dπ(y0)dπ(y1)
=

∫
φ−1(U)2(φ−1(ŷ0) − φ−1(ŷ1))⊗2 exp[−(mt/σt)2∥ŷ0∥2/2] exp[−(mt/σt)2∥ŷ1∥2/2]dπ̂(ŷ0)dπ̂1(ŷ1)

× exp[−(mt/σt)2∥x − p(x)∥2]
= (1/λt)2p

∫
λtφ−1(U)2(φ−1(ŷ0/λt) − φ−1(ŷ1/λt))⊗2 exp[−∥ŷ0∥2/2] exp[−∥ŷ1∥2/2]dπ̂(ŷ0)dπ̂1(ŷ1)

× exp[−(mt/σt)2∥x − p(x)∥2],

where π̂ = φ#π admits a positive density w.r.t. the Lebesgue measure. Therefore, there exists C0 ≥ 0 such
that for any t ∈ (0, T ]

(2π/λ2
t )−p∥

∫
U2(y0 − y1)⊗2 exp[−(mt/σt)2∥x − y0∥2/2] exp[−(mt/σt)2∥x − y1∥2/2]dπ(y0)dπ(y1)∥

≤ C0(2π)−pσ2
t

∫
(Rp)2 ∥ŷ0 − ŷ1∥2 exp[−∥ŷ0∥2/2] exp[−∥ŷ1∥2/2]dŷ0dŷ1

× exp[−(mt/σt)2∥x − p(x)∥2]
≤ 2C0pσ2

t exp[−(mt/σt)2∥x − p(x)∥2], (87)

where we have used that ∥a − b∥2 ≤ 2(∥a∥2 + ∥b∥2) for any a, b ∈ Rp in the last line. In addition, since U is
open we have that M ∩ Uc is compact and since for any y ∈ M ∩ Uc, ∥y − x∥2 > ∥p(x) − x∥2, there exists
ε > 0 such that for any y ∈ M ∩ Uc, ∥y − x∥2 ≥ ∥p(x) − x∥2 + ε. Therefore, we have

∥
∫

(M∩Uc)2(y0 − y1)⊗2 exp[−(mt/σt)2∥x − y0∥2/2] exp[−(mt/σt)2∥x − y1∥2/2]dπ(y0)dπ(y1)∥

≤ diam(M)2 exp[−(mt/σt)2∥x − p(x)∥2] exp[−ε(mt/σt)2]. (88)

Combining (87) and (88) there exists C1 ≥ 0 such that for any t ∈ (0, T ]

(2π/λ2
t )−p∥

∫
M2(y0 − y1)⊗2 exp[−(mt/σt)2∥x − y0∥2/2] exp[−(mt/σt)2∥x − y1∥2/2]dπ(y0)dπ(y1)∥

≤ C1σ2
t exp[−(mt/σt)2∥x − p(x)∥2]. (89)

In addition, there exists C2 > 0 such that for any t ∈ (0, T ]

(2π/λ2
t )−p

∫
U exp[−(mt/σt)2∥x − y∥2/2]dπ(y) ≥ (1/C2) exp[−(mt/σt)2∥x − p(x)∥2]. (90)
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Therefore, combining (89) and (90), we get that there exists C3 ≥ 0 such that for any t ∈ (0, T ]

∥
∫

M(y0 − y1)⊗2 exp[−(mt/σt)2∥x − y0∥2/2] exp[−(mt/σt)2∥x − y1∥2/2]dπ(y0)dπ(y1)∥
/(

∫
M exp[−(mt/σt)2∥x − y∥2/2]dπ(y))2 ≤ C3σ2

t .

We conclude the proof in the convex case upon combining this result and Lemma C.2.

(b) Second, we assume that there exists x ∈ Rd such that |P(x)| > 1 and for any p(x) ∈ P(x), Ap(x)−x ≻ − Id.
Using (84), we have for any p(x) ∈ P(x)

∇2fx(p(x)) = Id +Ap(x)−x ≻ 0.

Using this fact and that P(x) is the set of minimizers of fx and is compact, we get that |P(x)| < +∞. Hence,
we assume that P(x) = {pi(x)}N

i=1 with N > 1. Using Proposition J.6, for any i ∈ {1, . . . , N}, there exist
Ui ⊂ M open and φi : Ui → φi(Ui) ⊂ Rp a local chart such that φi(pi(x)) = 0 and for any ŷ ∈ φi(Ui)

∥x − φ−1
i (ŷ)∥2 = ∥x − pi(x)∥2 + ∥ŷ∥2,

with φ−1
i (0) = pi(x). Note that Dφ−1

i (0) = (∇2fx(pi(x)))−1. Without loss of generality we assume that for
any i, j ∈ {1, . . . , N}, Ui ∩ Uj = ∅. We have that∫

U0×U1
(y0 − y1)⊗2 exp[−(mt/σt)2∥x − y0∥2/2] exp[−(mt/σt)2∥x − y1∥2/2]dπ(y0)dπ(y1)

=
∫

φ−1
0 (U0)×φ−1

1 (U1)(φ
−1
0 (ŷ0) − φ−1

1 (ŷ1))⊗2 exp[−(mt/σt)2∥ŷ0∥2/2]

× exp[−(mt/σt)2∥ŷ1∥2/2]dπ̂(ŷ0)dπ̂1(ŷ1) exp[−(mt/σt)2∥x − p(x)∥2]
= (1/λt)2p

∫
λtφ−1

0 (U0)×λtφ−1
1 (U1)(φ

−1
0 (ŷ0/λt) − φ−1

1 (ŷ1/λt))⊗2

× exp[−∥ŷ0∥2/2] exp[−∥ŷ1∥2/2]dπ̂(ŷ0)dπ̂1(ŷ1) exp[−(mt/σt)2∥x − p(x)∥2]. (91)

In addition, using the dominated convergence theorem we have

lim
t→+∞

(2π)−p
∫

λtφ−1
0 (U0)×λtφ−1

1 (U1)(φ
−1
0 (ŷ0/λt) − φ−1

1 (ŷ1/λt))⊗2 (92)

× exp[−∥ŷ0∥2/2] exp[−∥ŷ1∥2/2]dπ̂(ŷ0)dπ̂1(ŷ1) = ĥ0(p0(x))ĥ1(p1(x))(p0(x) − p1(x))⊗2,

where ĥi is the density of π̂i = (φi)#π w.r.t. the Lebesgue measure. In addition, there exists C4 ≥ 0 such
that for any t ∈ (0, T ]

(2π)−p/2 ∫
U0

exp[−(mt/σt)2∥x − y0∥2/2]dπ(y0)

= (2π)−p/2 ∫
φ−1

0 (U0) exp[−(mt/σt)2∥ŷ0∥2/2]dπ̂(ŷ0) exp[−(mt/σt)2∥x − p(x)∥2]

≤ C4 exp[−(mt/σt)2∥x − p(x)∥2]λp/2
t . (93)

In addition, since U0 is open we have that M ∩ Uc
0 is compact and since for any y ∈ M ∩ Uc

0, ∥y − x∥2 >
∥p(x) − x∥2, there exists ε > 0 such that for any y ∈ M ∩ Uc

0, ∥y − x∥2 ≥ ∥p(x) − x∥2 + ε. Therefore, we have∫
M∩Uc

0
exp[−(mt/σt)2∥x − y0∥2/2]dπ(y0) ≤ C5 exp[−(mt/σt)2∥x − p(x)∥2/2] exp[−ε(mt/σt)2].

Combining this result and (93), we get that there exists C6 > 0 such that

(2π/λ2
t )−p/2∫

M exp[−(mt/σt)2∥x − y0∥2/2]dπ(y0) ≤ C6 exp[−(mt/σt)2∥x − p(x)∥2/2].

Combining this result, (91) and (92), there exists C7 > 0 such that

lim inf
t→0

∫
M(y0 − y1)⊗2 exp[−(mt/σt)2∥x − y0∥2/2] exp[−(mt/σt)2∥x − y1∥2/2]dπ(y0)dπ(y1)

/(
∫

M exp[−(mt/σt)2∥x − y∥2/2]dπ(y))2 ≥ (x0 − x1)⊗2/C6.

We conclude upon combining this result and Lemma C.2.
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