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Abstract
Uncertainty representation and quantification are
paramount in machine learning, especially in
safety-critical applications. In this paper, we pro-
pose a novel framework for the quantification of
aleatoric and epistemic uncertainty based on the
notion of credal sets, i.e., sets of probability distri-
butions. Thus, we assume a learner that produces
(second-order) predictions in the form of sets of
probability distributions on outcomes. Practically,
such an approach can be realized by means of en-
semble learning: Given an ensemble of learners,
credal sets are generated by including sufficiently
plausible predictors, where plausibility is mea-
sured in terms of (relative) likelihood. We provide
a formal justification for the framework and intro-
duce new measures of epistemic and aleatoric un-
certainty as concrete instantiations. We evaluate
these measures both theoretically, by analysing
desirable axiomatic properties, and empirically,
by comparing them in terms of performance and
effectiveness to existing measures of uncertainty
in an experimental study.

1. Introduction
Understanding and handling uncertainty is a fundamental
challenge in machine learning (ML) and artificial intelli-
gence (AI) research. Due to the intrinsic complexities and
variability of real-world data, coupled with the probabilistic
nature of many ML algorithms, the latter are often subject
to various forms of uncertainty. Unless properly addressed,
this uncertainty can pose substantial limitations to the reli-
ability of ML systems, which is especially problematic in
applications with stringent safety considerations, such as in
medicine and the healthcare sector (Lambrou et al., 2010;
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Senge et al., 2014; Yang et al., 2009).

In the broader scope of the literature, a distinction between
aleatoric and epistemic uncertainty is usually made (Hora,
1996). Aleatoric uncertainty originates from the inherent
stochastic nature of the data-generating process, while epis-
temic uncertainty is due to the learners incomplete knowl-
edge of this process. The latter can therefore be reduced
by acquiring additional information, such as new observa-
tions. Conversely, aleatoric uncertainty, being a character-
istic of the data-generating process itself, is non-reducible
(Hüllermeier & Waegeman, 2021). Representing and quan-
tifying these types of uncertainties have become pivotal
in recent ML research, including Bayesian deep learning
(Depeweg et al., 2018; Kendall & Gal, 2017), adversarial
example detection (Smith & Gal, 2018), and data augmenta-
tion in Bayesian classification (Kapoor et al., 2022).

The Bayesian approach, in which the learner’s epistemic
uncertainty is represented in terms of a (second-order) prob-
ability distribution on the underlying model class, prevails
the ML literature so far. Yet, this approach is not without
criticism (Wimmer et al., 2023). In this paper, we propose
an alternative framework for the quantification of aleatoric
and epistemic uncertainty based on the notion of credal
sets, i.e., sets of probability distributions. Thus, we assume
a learner that produces predictions in the form of sets of
probability distributions on outcomes. For representations
of that kind, we introduce new measures of aleatoric, and
epistemic uncertainty. We evaluate these measures both the-
oretically, by analysing desirable axiomatic properties, and
empirically, by comparing them in terms of performance
and effectiveness to existing measures of uncertainty in an
experimental study.

Our point of departure is a taxonomy of different types of
uncertainty-aware learning algorithms, based on Shaker &
Hüllermeier (2021), in the next section. In Section 3, we
address the problem of uncertainty quantification and re-
call basic uncertainty measures for the probabilistic and
Bayesian case. The conceptual basis of our credal approach
is developed in Section 4, and the problem of learning credal
predictors is addressed in Section 5. Our experimental stud-
ies are presented in Section 6, prior to concluding in Section
8.
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Figure 1: Uncertainty awareness in multi-class classification, illustrated on the probability simplex for Y = {y1, y2, y3}.
From left to right: Probabilistic agent (AU, but no EU awareness), Bayesian agent (AU and EU awareness), and Levi agent
(AU and EU awareness).

2. Representation of Uncertainty
In this paper we consider the setting of classification. Let X
be a (measurable) instance space and Y a label space, where
we assume without loss of generality Y = {y1, . . . , yK}
for some K ∈ N. Further, D = {(xi, yi)}ni=1 ∈ (X × Y)n

is a set of training data. The pairs (xi, yi) are realizations
of random variables (Xi, Yi), which are assumed to be in-
dependent and identically distributed (i.i.d.) according to
some probability measure P on X × Y . We also assume
a hypothesis space H to be given, where each hypothesis
h ∈ H is a probabilistic predictor X −→ P(Y) that map
instances x to a probability measure on Y .

Given D and H, the learner induces a hypothesis h, the
predictions h(x) = θx of which are considered as estima-
tions of the ground-truth conditional distribution on Y given
X = x, denoted θ∗

x. For simplicity, we will often omit
the (query) instance x as a subscript. As P(Y), the class
of probability measures on Y , can be identified with the
(K−1)-simplex ∆K , both the estimate and the ground truth
can be considered as elements of this simplex, i.e., as vectors
θ = (θ1, . . . , θK)⊤ and θ∗ = (θ∗1 , . . . , θ

∗
K)⊤, respectively,

where θ∗k is the true probability P (Y = k |X = x) of the
kth class (given x) and θk the estimate of this probability.

Given a query x ∈ X for which a prediction is sought,
different learning methods proceed on the basis of differ-
ent types of information. Depending on how the predictive
uncertainty, i.e., the uncertainty about a predicted proba-
bility distribution θ ∈ ∆K , is represented, we propose to
distinguish four types of possible learners. Referring to the
literature on decision under uncertainty, we call these learn-
ers probabilistic, Bayesian, and Levi agent, respectively.

2.1. Probabilistic Agents

A common practice in machine learning is to consider learn-
ers that fully commit to a single hypothesis h ∈ H and use

this hypothesis to make predictions. Given x ∈ X as input,
such a learner will predict a single probability distribution
h(x) = θ, which is considered as an estimation of the
ground-truth conditional probability θ∗. We call a learner of
that kind a probabilistic agent. Such an agent’s uncertainty
about the outcome y is purely aleatoric. At the level of
the hypothesis space, the agent pretends full certainty, and
hence the absence of any epistemic uncertainty.

2.2. Bayesian Agents

Following the principle of (strict) Bayesianism as promoted
by statisticians like Bruno de Finetti (De Finetti, 1980), a
Bayesian agent expresses its belief as a probability distribu-
tion over the hypothesis space H. Rather than committing
to one specific hypothesis, the agent assigns a probability
(density) q(h) to each potential hypothesis h ∈ H. Further-
more, when new data D is observed, the belief is updated
by substituting this distribution with the posterior q(h | D).

Since every h ∈ H gives rise to a different probabilistic
prediction h(x), a Bayesian agent’s belief about the out-
come y ∈ Y is represented by a probability distribution
of probability distributions (viz. a second-order distribu-
tion). Formally, this distribution is the image of q under the
mapping H −→ ∆K , h 7→ h(x):

p(θ) =

∫
H

Jh(x) = θK d q(h | D). (1)

Hence, p(θ) is the probability (density) of the probabilistic
prediction θ.

In addition to the second-order distribution p, known as the
posterior predictive distribution, a Bayesian agent gener-
ally also induces a representative (first-order) distribution
through Bayesian model averaging:

θ̄ =

∫
H
h(x) d q(h | D). (2)
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2.3. Levi Agents

Instead of representing model uncertainty in terms of a dis-
tribution p on H, this uncertainty could also be characterised
in terms of an arguably even simpler model, namely, a sub-
set Q ⊆ H of hypotheses. According to this model, each
h ∈ Q is deemed a possible candidate predictor, whereas
all h ̸∈ Q are excluded as being implausible. Under the
mapping h 7→ h(x), the set Q directly translates into a set
C ⊆ ∆K of possible class distributions:

C = {θ = h(x) |h ∈ Q}. (3)

In the literature, such a set of probability distributions is also
referred to as a credal set (Walley, 1991). The reasonable-
ness of taking decisions on the basis of sets of probability
distributions (and thus deviating from strict Bayesianism)
has been advocated by decision theorists like Isaac Levi
(Levi, 1974; 1980). Correspondingly, we call a learner of
this kind a Levi agent.

In the realm of machine learning, an approach of this kind is
somewhat in line with the model of version space learning
(Mitchell, 1977), i.e., the subset Q can be seen as a kind of
version space. From an uncertainty representation point of
view, a set Q ⊆ H appears to provide weaker information
compared to a distribution q ∈ P(H). While this is true in a
sense, a set-based representation does also have advantages.
In particular, many have argued that probability distributions
are less suitable for representing ignorance in the sense of
a lack of knowledge (Dubois et al., 1996). For example,
if the uniform distribution is taken as a model of complete
ignorance, as commonly done in probability theory, it is no
longer possible to distinguish between a complete lack of
knowledge and precise knowledge about the equal proba-
bility of all outcomes. Apart from that, one has to admit
that the specification of a meaningful (prior) distribution is
a difficult task in a machine learning setting, where H is a
very complex space.

Another problem of a (second-order) probabilistic model
is caused by the measure-theoretic grounding and additive
nature of probability, which implies that the uniform dis-
tribution is not invariant under nonlinear transformation.
As a consequence, even when starting with a uniform dis-
tribution on H, suggesting complete lack of knowledge
about the right predictor, the image (1) will normally not
be uniform on ∆K . In other words, even if the learner is
supposedly ignorant about the right predictor, it will pretend
a certain degree of informedness about the prediction in a
point x ∈ X . Even worse, different predictive distributions
(and degrees of uncertainty) will be obtained for different
instances x ∈ X .

3. Uncertainty Quantification
According to our discussion so far, different types of learners
represent their information or “belief” about the outcome
y for an instance x in different ways, e.g., in terms of a
probability distribution, a second-order distribution, or a
credal set. What we are interested in is a quantification of
the epistemic and aleatoric (and maybe total) uncertainty
associated with such representations. More formally, we
are seeking a measure of epistemic uncertainty, EU, and a
measure of aleatoric uncertainty, AU. In the following, we
discuss this problem for probabilistic and Bayesian agents,
which prevail in the machine learning literature so far.

3.1. Probabilistic Agents: Entropy

Recall that a probabilistic agent represents predictive un-
certainty in terms of a distribution θ on Y . The most well-
known measure of uncertainty of a single probability dis-
tribution is the (Shannon) entropy, which, in our case of a
discrete Y , is given as

S(θ) ..= −
k∑

k=1

θk · log2 θk, (4)

with the convention that 0 log 0 = 0. This measure is the
most straightforward candidate to quantify the aleatoric un-
certainty of a probabilistic agent, i.e., AU = S(θ). Since
such an agent assumes it has exact knowledge of the predic-
tive distribution, the epistemic uncertainty is 0.

The Shannon entropy can be justified axiomatically, and var-
ious axiomatic systems have been proposed in the literature
(Csiszár, 2008).

3.2. Bayesian Agents: Conditional Entropy and Mutual
Information

The Bayesian paradigm, which represents the learner’s epis-
temic state by the posterior distribution over the hypothesis
space, is widely accepted in the machine learning commu-
nity. Most recently, the problem of predictive uncertainty
estimation has attracted specific attention in the field of deep
neural networks. Corresponding methods typically seek to
quantify (total) uncertainty on the basis of the predictive
posterior distribution on Y . Additionally, epistemic uncer-
tainty is viewed as a characteristic of the posterior q(· | D) or
the resultant distribution p(·) on ∆K : The less concentrated
this distribution is, the higher the (epistemic) uncertainty of
the learner.

A well-established method for quantifying and distinguish-
ing between aleatoric and epistemic uncertainty, now preva-
lent in machine learning (Houlsby et al., 2011; Depeweg
et al., 2018; Mobiny et al., 2017), relies on a classical
information-theoretic result. This result states that the en-
tropy of a random variable U can be decomposed into the
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conditional entropy of U given another random variable
V and the mutual information between U and V . In our
context, by treating the distribution on ∆K as a random vari-
able Θ (with distribution p) and the outcome as a random
variable Y , we derive the following:

TU(p) = S(Y ) = S(θ̄) = −
K∑

k=1

θ̄k · log2(θ̄k), (5)

AU(p) = S(Y |Θ) = −
∫

p(θ) · S(θ) dθ, (6)

EU(p) = S(Y )− S(Y |Θ) = I(Y,Θ), (7)

where I is mutual information.

4. A Credal Approach
The Bayesian approach is clearly meaningful and has pro-
duced promising results in practice. Yet, it has recently been
criticised for various reasons. Some conceptual problems of
second-order distributions for representing the learner’s be-
lief have already been mentioned in Section 2.3. Moreover,
Wimmer et al. (2023) provide a critical discussion of the
quantification of uncertainty in terms of mutual information
and conditional entropy (Section 3.2), and demonstrate that
these measures may show counter-intuitive behavior. Much
of the problems revealed have to do with with “averaging”
of (first-order) uncertainty over the learner’s belief, i.e., over
the second-order distribution.

We take these criticism as motivation to elaborate on the
Levi agent as an alternative to the Bayesian approach, which
essentially means replacing the second-order distribution
by a credal set for representing the learner’s epistemic state.
More specifically, we propose a novel class of uncertainty
measures for credal sets, and show that these measures are
highly flexible and enjoy desirable theoretical properties.
An empirical analysis will then follow in the next section.

4.1. Existing Credal Uncertainty Measures

In the uncertainty literature, there is quite some work on
defining uncertainty measures for credal sets and related
representations. Here, aleatoric and epistemic uncertainty
are also referred to as conflict (randomness, discord) and
non-specificity, respectively (Yager, 1983). The standard
uncertainty measure in classical possibility theory (where
uncertain information is simply represented in the form
of subsets A ⊆ Y of possible alternatives) is the Hartley
measure (Hartley, 1928)

H(A) = log(|A|), (8)

Just like the Shannon entropy, this measure can be justified
axiomatically (Rényi, 1970).

Given the insight that conflict and non-specificity are two
different, complementary sources of uncertainty, and (4)
and (8) as well-established measures of these two types of
uncertainty, a natural question in the context of credal sets
is to ask for a generalized representation

TU(C) = AU(C) + EU(C), (9)

where AU is a generalization of the Shannon entropy, and
EU a generalization of the Hartley measure.

As for the non-specificity part in (9), the following gen-
eralization of the Hartley measure to the case of graded
possibilities has been proposed by various authors (Abellan
& Moral, 2000):

GH(C) ..=
∑
A⊆Y

mQ(A) log(|A|) , (10)

where mC : 2Y −→ [0, 1] is the Möbius inverse of the
capacity function ν : 2Y −→ [0, 1] defined by

νQ(A) ..= inf
q∈Q

q(A) (11)

for all A ⊆ Y , that is,

mC(A) =
∑
B⊆A

(−1)|A\B|νC(B). (12)

The measure (10) enjoys several desirable axiomatic prop-
erties, and its uniqueness was shown by Klir & Mariano
(1987).

The generalization of the Shannon entropy as a measure of
conflict turned out to be more difficult. The upper and lower
Shannon entropy play an important role in this regard:

S∗(C) ..= max
θ∈C

S(θ), S∗(C) ..= min
θ∈C

S(θ). (13)

Based on these measures, the following disaggregations of
total uncertainty (9) have been proposed (Abellan et al.,
2006):

S∗(C) =
(
S∗(C)−GH(C)

)
+GH(C), (14)

S∗(C) = S∗(C) +
(
S∗(C)− S∗(C)

)
. (15)

In both cases, upper entropy serves as a measure of total
uncertainty, which is again justified on an axiomatic basis.
In the first case, the generalized Hartley measure is used for
quantifying epistemic uncertainty, and aleatoric uncertainty
is obtained as the difference between total and epistemic
uncertainty. In the second case, epistemic uncertainty is
specified in terms of the difference between upper and lower
entropy.

Nevertheless, a fully satisfactory representation of aggregate
uncertainty in the form (9), with all three measures having
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nice theoretical properties, has not yet been found for the
case of credal sets. Both S∗ and GH appear to be well
justified and enjoy strong axiomatic properties. To a slightly
lesser extent, this is also true for S∗ (this measure violates
the property of monotonicity). However, those measures in
(14–15) that are derived in terms of difference violate most
of the desirable properties.

4.2. Novel Credal Uncertainty Measures

Recall that, in the Bayesian case, the learner holds belief
in the form of a probability distribution p on ∆K , and epis-
temic uncertainty is defined in terms of mutual information.
The latter can also be written as follows:

EU(p) = EY∼θ̄ ℓ(θ̄, Y )− Eθ∼pEY∼θ ℓ(θ, Y ), (16)

where ℓ(·, ·) is the log-loss. That is, EU is the gain — in
terms of loss reduction — the learner can expect when pre-
dicting, not on the basis of the uncertain knowledge p, but
only after being revealed the true θ. Intuitively, this is plau-
sible: The more uncertain the learner is about the true θ
(i.e., the more dispersed p), the more it can gain by getting
to know this distribution. We can also summarize this as
follows:

• Total uncertainty is the expected (log-)loss of the
learner when predicting optimally on the basis of its
uncertain belief p.

• Aleatoric uncertainty is the expected loss that remains,
even when the learner is perfectly informed about the
ground-truth θ before predicting.

• Epistemic uncertainty is the difference between the
two, i.e., the expected loss reduction due to information
about θ.

We modify and extend this approach as follows: First, as
motivated above, we present belief in terms of a credal set
instead of a distribution. Second, we allow for loss functions
other than log-loss. Thus, “maxing” over a (credal) set
instead of averaging over a distribution, we define epistemic
uncertainty in terms of the maximal gain:

EU(C) := max
θ,θ′∈C

Dℓ(θ,θ
′), (17)

with the ℓ-divergence

Dℓ(θ,θ
′) := EY∼θ

{
ℓ(θ′, Y )− ℓ(θ, Y )

}
. (18)

The latter is the expected regret (excess loss) when pre-
dicting θ′ although the ground-truth is θ. For the aleatoric
uncertainty, we obtain lower and upper bounds as follows:

AU(C) := inf
θ∈C

Hℓ(θ), (19)

AU(C) := sup
θ∈C

Hℓ(θ), (20)

with Hℓ the ℓ-entropy of θ given by

Hℓ(θ) := EY∼θ ℓ(θ, Y ). (21)

Our approach, as detailed above, relies on the choice of
a suitable loss function ℓ(·, ·). Natural candidates for this
loss are (strictly) proper scoring rules (Gneiting & Raftery,
2005). In this work, we consider four commonly-used
proper scoring rules. Table 1 shows the losses and their
respective aleatoric and epistemic component. Quite re-
cently, the efficacy of (strictly) proper scoring rules has been
further explored in the context of second-order uncertainty
quantification (Sale et al., 2023a;c).

Further, if we accept the idea of an additive aggregation of
aleatoric and epistemic uncertainty into a measure of total
uncertainty, we obtain the following lower and upper bound
for the latter:

TU(C) = AU+ EU, (22)

TU(C) = AU+ EU . (23)

Of course, suitable measures of aleatoric, epistemic, and
total uncertainty associated with a credal set should meet
certain theoretical properties. Such properties have been
proposed by Abellán & Klir (2005); Jiroušek & Shenoy
(2018), and more recently adapted by Hüllermeier et al.
(2022) and Sale et al. (2023b) in a machine learning context.
As shown by the following theorem, our proposed measures
fulfills several desirable properties. In the following we will
denote the set of all credal sets on P(Y) by Cr(Y).

Theorem 4.1. If the loss-function ℓ : ∆K × Y −→ R is
continuous in θ ∈ ∆K , it fulfills the following properties:

(i) Continuity: Lower and upper bounds for TU and AU
as well as EU are continuous functionals.

(ii) Monotonicity: for all C,P ∈ Cr(Y) such that C ⊆ P ,
we have EU(C) ≤ EU(P ); the same holds for AU
and TU, respectively.

(iii) Precise probabilities: for all C ∈ Cr(Y) such that
C = {θ}, we have EU(C) = 0. Then, the lower and
upper bounds for TU and AU, respectively, coincide.

Additionally, if ℓ(·, ·) is a proper scoring rule, lower and
upper bounds for TU, AU, and EU are non-negative.

Let us finally consider some exemplary instantiations of our
family of measures, i.e., concrete measures that are obtained
by fixing a loss function ℓ(·, ·). First, for the special case of
the log-loss, we recover lower and upper entropy for AU.
Moreover, as Dℓ is the KL divergence, EU is the maximal
KL divergence between any pair of distributions θ,θ′ ∈ C.
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Table 1: Proper scoring rules and their decomposition into aleatoric and epistemic uncertainty for the Levi agent.

Loss Aleatoric (upper\lower) Epistemic

log sup
θ∈C

\ inf
θ∈C

S(θ) max
θ,θ′∈C

DKL(θ ||θ′)

Brier sup
θ∈C

\ inf
θ∈C

1−
∑K

k=1 θ
2
k max

θ,θ′∈C

∑K
k=1(θ

′
k − θk)

2

spherical sup
θ∈C

\ inf
θ∈C

1− ||θ||2 max
θ,θ′∈C

||θ||2 −
∑K

k=1 θ
′
kθk/||θ||2

zero-one sup
θ∈C

\ inf
θ∈C

1−max θk max
θ,θ′∈C

max θk − θk=argmax θ′
k

Allowing for other losses increases flexibility and allows one
to capture uncertainty of different kind. For example, log-
loss essentially captures uncertainty regarding the outcome
y eventually observed. From the perspective of the learner,
however, this uncertainty might not be the most relevant
one. Instead, the learner might be more interested in the
uncertainty about the best decision to make, i.e., the best
prediction. These uncertainties are clearly not the same.
For example, consider the case of binary classification and
suppose that C = {θ = (θpos, θneg) | 1/2 < θpos ≤ 1}. In
this case, it is clear that the learner should predict positive.
In other words, there is no (epistemic) uncertainty about the
right decision, although the uncertainty about the outcome is
still rather high. An exemplary instantiation accounting for
decision uncertainty is the 0/1 loss, which serves as another
interesting instantiation:

ℓ(θ, y) =

{
0, if y = argmaxk θk

1, otherwise.
(24)

5. Learning Credal Predictors
In the previous sections, we motivated the notion of a Levi
agent and provided its conceptual basis in terms of uncer-
tainty representation and quantification. However, we did
not yet address the question of how to realise a Levi agent
algorithmically, i.e., how to learn a classifier that produces
predictions in the form of credal sets.

Several approaches have been proposed within the imprecise
probabilities literature (Zaffalon, 2002; Corani & Zaffalon,
2008), where credal predictors are often based on the impre-
cise Dirichlet model (IDM) (Walley, 1996). Furthermore,
recent advancements have seen methods from the impre-
cise probability literature adapted for application in deep
learning (Wang et al., 2024; Caprio et al., 2023).

In this paper, we adopt another way of learning credal sets,
which is based on the statistical notion of (relative) likeli-
hood function (Cattaneo, 2007; Antonucci et al., 2011). In
the spirit of a confidence region, this approach considers
all hypothesis that are sufficiently plausible, namely those
whose relative likelihood is above a certain threshold level

α ∈ [0, 1]. In the imprecise-probabilities literature, the
resulting credal set is often referred to as α-cut (credal set).

Given training data D , the relative likelihood of a hypothe-
sis h ∈ H is defined as

LH(h) :=
L(h)

L(ĥML)
=

L(h)

suph′∈H L(h′)
, (25)

where L(h) =
∏N

i=1 p(yi |h,x) denotes the likelihood of
the hypothesis h ∈ H, and ĥML the maximum likelihood
predictor. Then, given α ∈ [0, 1] and x ∈ X , we obtain the
following credal set:

Cα := {h(x) ∈ Q | LH(h) ≥ α}. (26)

The parameter α determines the “cautiousness” of the
learner: The smaller α, the less hypotheses will be rejected
as implausible candidates. The choice of α is facilitated
through its clear semantics. For example, setting α = 0.2
means that an h will only be excluded if there is another
hypothesis whose likelihood is at least 5 times higher. The
likelihood-based approach is also attractive from an ensem-
ble learning perspective: Rather than including the predic-
tions from all ensemble members in the credal set, those
with comparatively low likelihood can be excluded. Note
that α-cuts are not restrictive, since we can recover the ini-
tial credal set by Cα with α = 0. In practice, we find that
the hypotheses of an ensemble will have high relative likeli-
hoods after training and as such we don’t explicitly remove
hypotheses.

6. Experiments
Since ground-truth uncertainty degrees are normally not
available, the evaluation of uncertainty measures is a non-
trivial problem. Here, we perform experiments to study
the effectiveness of the proposed measures in different
“downstream” tasks: prediction with abstention, out-of-
distribution (OoD) detection, and active learning. The code
for the experiments can be found in a Github repository1.

1https://github.com/pwhofman/credal-uncertainty
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6.1. Accuracy-Rejection Curves

Accuracy-rejection curves (ARCs) can be generated by al-
lowing the predictor to abstain from making decision on
part of the data. Naturally, a predictor equipped with a
good uncertainty quantification method can abstain from
making decisions on instances where the uncertainty is high.
As such, the accuracy should increase as the percentage of
abstained instances increases.

We train an ensemble of 5 probabilistic neural networks
on the FashionMNIST (Xiao et al., 2017) and the Food101
(Bossard et al., 2014) datasets. A detailed description of
the model architecture and training setup is provided in
Appendix B.

The predictor should abstain from instances that are asso-
ciated with a high aleatoric uncertainty. However, in the
presence of epistemic uncertainty a single estimate for the
aleatoric uncertainty may not be accurate. Our proposal pro-
vides both lower and upper bounds for aleatoric uncertainty
guaranteeing that the true uncertainty is captured within
these bounds. We use the upper bound for aleatoric uncer-
tainty as a basis for rejection, ensuring that the predictor
avoids instances that might exhibit high aleatoric uncer-
tainty.

We compare our measures of upper AU with to the baseline
of random rejection. It’s worth noting that our measure for
upper aleatoric uncertainty, when instantiated with log-loss,
aligns with the upper entropy. All accuracies are reported as
the mean over 5 runs, the standard deviation depicted by the
shaded area. Figure 2 shows the accuracy-rejection curves
for the FashionMNIST and Food101 dataset.

The accuracy-rejection curves for all measures exhibit sim-
ilar behaviors: The curves increase monotonically until
reaching 100% accuracy. The measure based on the spher-
ical loss performs best for both datasets. As anticipated,
random rejection leads to a flat ARC.

6.2. Out-of-Distribution Detection

We use out-of-distribution (OoD) detection to assess epis-
temic uncertainty. A model is trained on a dataset, which is
referred to as the in-distribution (iD) data, and we compute
the epistemic uncertainty on instances of the iD test set.
Then, the model receives instances from another dataset,
referred to as the out-of-distribution dataset. For these test
instances, we also compute epistemic uncertainty. Naturally,
the model, which has not seen the OoD data before, should
have higher epistemic uncertainty for these instances. To
evaluate how well the epistemic uncertainties of the iD and
OoD instances are separated, we compute the AUROC.

We train an ensemble of 5 neural networks on FashionM-
NIST (iD) and use MNIST (LeCun et al., 1998) and KM-
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Figure 2: Accuracy-Rejection curve on FashionMNIST
(top) and Food101 (bottom). Upper aleatoric uncertainty is
used as the rejection criterion. The shaded areas represent
the standard deviations over five runs.

NIST (Clanuwat et al., 2018) as the OoD datasets. We
compute the mean and standard deviation of the AUROC
over 5 runs. The same is done for Food101, where the OoD
datasets are SVHN (Netzer et al., 2011) and CIFAR100
(Krizhevsky et al., 2009). We refer to the supplementary
material for more details on model architecture and training
setup.

Table 2 shows the results for the networks trained on Fash-
ionMNIST or Food101. Instantiated with the log-loss, our
measure performs across the four datasets.

6.3. Active Learning

We conduct active learning experiments to highlight the flex-
ibility of our proposed measure. As our measure allows for
different instantiations, it also allows us to model different
types of uncertainty, as discussed in Section 4.2. In active
learning, querying instances with highest uncertainty should
give the most information (Nguyen et al., 2022). However,
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Table 2: Out-of-Distribution Detection using epistemic uncertainty. The mean and standard deviation over five runs are
reported. Best performance is in bold.

iD OoD log Brier spherical zero-one Hartley entropy

FMNIST MNIST 0.871±0.017 0.812±0.019 0.818±0.019 0.742±0.015 0.815±0.019 0.826±0.019

KMNIST 0.973±0.002 0.94±0.004 0.946±0.003 0.863±0.006 0.944±0.004 0.942±0.003

Food101 SVHN 0.700±0.04 0.572±0.027 0.588±0.038 0.669±0.007 0.479±0.023 0.681±0.07

CIFAR-100 0.805±0.015 0.66±0.016 0.681±0.016 0.697±0.008 0.576±0.022 0.775±0.021
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Figure 3: Active learning using MNIST.

the type of uncertainty can be relevant here. As the ultimate
goal is high accuracy, thus making the correct decision,
the learner should query points for which it is maximally
uncertain in terms of the decision it should make.

We train an ensemble of 10 neural networks on a small
amount of data and iteratively allow it to query a set of
new instances from a pool of available data. We use the
instantiations of our epistemic uncertainty measure with
log-loss and zero-one-loss.

The test accuracy is recorded over 5 runs and the mean
and standard deviation are reported. The model architecture,
training details and other details can be found in Appendix B.
Figure 3 shows the test accuracy of the model as it iteratively
receives more data to train on.

In pool-based active learning, the performance of different
methods tends to converge in the end, because the overlap of
the training sets necessarily increases when the complement
(namely the pool) decreases. What is more important, there-
fore, is the performance in the beginning. As can be seen in
Figure 3, our zero-one-loss-based uncertainty sampling has
a clear advantage here, and reaches a higher accuracy much
faster. This shows the importance of quantifying decision
uncertainty in a setting where a model is strictly evaluated
based on the decisions it makes.

7. Limitations and Future Work
In this work, we used an ensemble of learners to generate a
credal set. Although this works well empirically, we do not
offer any guarantees on the inclusion of the ground truth
conditional distribution in the set. An interesting next step
would be to study how a credal set with statistical guarantees
can be learned. Recent work by Javanmardi et al. (2024) has
focused on this question. Furthermore, we do not assume
a convex set, while credal sets are usually assumed to be
convex sets of probability measures. Future work could
explore whether this assumption is meaningful in machine
learning and how it affects theoretical and empirical results.

8. Conclusion
In light of recent literature on uncertainty quantification and
criticism of uncertainty measures defined in the Bayesian
setting, we advocate the use of credal sets as an alternative
representation of epistemic uncertainty in machine learning.
In our approach, such credal sets are constructed using
α-cuts of the relative likelihood function, which offers a
natural way to establish an ordering of predictive models
and harmonises quite well with ensemble-based learning.

We also proposed a new family of measures for quantifying
aleatoric and epistemic uncertainty, which is inspired by the
measures commonly used for second-order distributions in
the Bayesian setting (conditional entropy and mutual infor-
mation), but adapts them to the case of credal sets and gen-
eralises them to loss-functions other than log-loss. We show
that this family of measures exhibits appealing theoretical
properties and propose concrete instantiations for capturing
different kinds of uncertainty. Empirically, we demonstrate
the versatility and flexibility of our measures in different
scenarios where the learner’s uncertainty-awareness is key
to strong performance (learning with abstention, distribution
shift, active sampling).
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A. Proofs
Proof of Theorem 4.1

Let ℓ : ∆K × Y −→ R be continuous in θ ∈ ∆K .

(1) Since ℓ : ∆K × Y −→ R is continuous in θ ∈ ∆K it follows from the linearity of the expectation that the lower
and upper bounds of AU and EU are continuous. The lower and upper bounds of TU, as a sum of two continuous
functions, are also continuous.

(2) Let C,P ∈ Cr(Y) such that C ⊆ P . We have the following:

EU(C) = max
θ,θ′∈C

Dℓ(θ,θ
′) ≤ max

θ,θ′∈P
Dℓ(θ,θ

′) = EU(P )

AU(C) = sup
θ∈C

Hℓ(θ) ≤ sup
θ∈P

Hℓ(θ) = AU(P )

TU(C) = AU(C) + EU(C) ≤ AU(P ) + EU(P ) = TU(P )

This proves monotonicity of the corresponding measures.

(3) Let C ∈ Cr(Y) such that C = {θ}. Then, we have immediately

EU(C) = max
θ,θ′∈C

Dℓ(θ,θ
′) = Dℓ(θ,θ) = 0

Similarly, the lower and upper bounds TU, and AU, respectively, coincide.

Now, let ℓ(·, ·) be a proper scoring rule, i.e., Ey∼θℓ(θ, y) ≤ Ey∼θℓ(θ
′, y), where θ,θ′ ∈ P(Y) and y ∈ Y . Thus,

0 ≤ Ey∼θℓ(θ
′, y)− Ey∼θℓ(θ, y), this yields as desired

EU(Q) = max
θ,θ′∈Q

{Ey∼θℓ(θ
′, y)− Ey∼θℓ(θ, y)} ≥ 0.

Since we assume that ℓ(·, ·) is non-negative, it is easy to see that the lower and upper bounds for TU and AU, respectively,
are non-negative. This concludes the proof.

Derivation of measures with 0/1 loss

We show the following with respect to the 0/1-loss instantiation of our measures:

Dℓ(θ,θ
′) = Ey∼θ {ℓ(θ′, y)− ℓ(θ, y)}

=
∑
y∈Y

θ(y)ℓ(θ′, y)−
∑
y∈Y

θ(y)ℓ(θ, y)

=
∑

y ̸=argmaxy′∈Y θ′(y′)

θ(y)−
∑

y ̸=argmaxy′∈Y θ(y′)

θ(y)

= (1− θ(argmax
y′∈Y

θ′(y′)))− (1− θ(argmax
y′∈Y

θ(y′)))

= max
y∈Y

θ(y)− θ

(
argmax

y′∈Y
θ′(y′)

)

The lower and upper bound of AU simplify, for Q ∈ Cr(Y), to:

AU(Q) = inf
θ∈Q

(
1−max

y∈Y
θ(y)

)
, AU(Q) = sup

θ∈Q

(
1−max

y∈Y
θ(y)

)
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B. Experimental Details
In the following we provide the necessary details regarding the experimental setting. The code is written in Python 3.10.12
with PyTorch (Paszke et al., 2019) and all experiments are done using with the help of PyExperimenter (Tornede et al.,
2023).

B.1. Models

We use the following base models.

The Multi-Layer Perceptron (MLP) has 784 - 200 - 200 - 10 neurons and ReLU activation functions at every layer, except
for the last which uses a softmax function to transform the logits into probabilities.

The Convolutional Neural Network (CNN), based on (LeCun et al., 1998), has two convolutional layers with 20 and 50
5 by 5 filers, respectively. Both convolutional layers are followed by a max-pooling operation with a 2 by 2 filter. The
convolutional layers are followed by two fully-connected layers with dimensions 800 by 500 and 500 by 10, respectively.
All layers use a ReLU activation function, except for the last which uses a softmax to transform the logits into probabilities.

The PyTorch implementation of the ResNet (He et al., 2016), pretrained on ImageNet (Deng et al., 2009), with a final
fully-connected layer of 512 by 10 and a softmax function to give probabilistic output for 10 classes.

We generate ensemble outputs by taking the mean of the base model outputs.

B.2. Downstream Tasks

All downstream tasks are run five times and for each run a new ensemble is trained.

Accuracy-Rejection Curves We train the CNN on FMNIST for 20 epochs using the Adam optimizer (Kingma & Ba,
2015) with the PyTorch default parameters. We train the ResNet that has been pre-trained on ImageNet for 5 epochs on
Food101 using Adam with the default parameters. We randomly sample 10000 instances from the dedicated test split of the
datasets and use this to generate the accuracy-rejection curves.

Out-of-Distribution Detection For Out-of-Distribution Detection we use the models that were trained for the Accuracy-
Rejection task. We also sample 10000 instances from the test sets of the in-Distribution and Out-of-Distribution dataset.

Active Learning We use an ensemble of 10 MLPs trained using the Adam optimizer and the default parameters. The 10
learners are initially trained using 50 and can acquire 50 new instances in every one of 20 rounds. The models are trained for
5 epochs every round. The accuracy of the models is computed on the test set.
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