
An empirical study of the (L0, L1)-smoothness
condition in deep learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

The (L0, L1)-smoothness condition was introduced by Zhang-He-Sra-Jadbabai in1

2020, who both proved convergence bounds under this assumption and provided2

empirical evidence it is satisfied in deep learning. Since then, many groups have3

proven convergence guarantees for functions which satisfy this condition, motivated4

by the expectation that loss functions arising in deep learning satisfy it. In this paper5

we provide further empirical study of this condition in the setting of feedforward6

neural networks of depth at least 2, with L2 or cross entropy loss. The results7

suggest that the (L0, L1)-smoothness condition is not satisfied in this setting.8

1 Introduction9

The two properties most prized in the field of optimization are convexity and smoothness Many10

desirable convergence results have been proved for functions satisfying both of these conditions.11

Meanwhile, in the past decade, deep learning has astonished experts and laypeople alike with its12

power and versatility. Understanding how deep neural networks work is of great interest, and it would13

be very desirable to apply the tools of optimization theory to understand the convergence properties14

of deep neural networks.15

At present this is usually not possible. This is because many powerful results in optimization theory16

assume the function being optimized is smooth and convex, while it is well established that the loss17

function of deep neural networks is neither smooth nor convex. Therefore, it would be useful to18

develop weaker notions of smoothness and convexity, that both hold for deep neural networks and for19

which good convergence guarantees can be proved.20

This motivated Zhang-He-Sra-Jadbabai Zhang et al. [2020b] to introduce the (L0, L1)-smoothness21

condition in 2020. In this promising approach, they succeeded both to provide empirical evidence that22

this form of smoothness is satisfied by deep neural networks, as well as later prove good convergence23

bounds for functions that satisfy this condition.24

Motivated by the expectation that deep neural networks satisfy this condition, expressed for example25

in Chen et al. [2023] and Crawshaw et al. [2022], a considerable amount of work has been done26

proving convergence bounds under the (L0, L1) condition, for several different optimizers. Groups27

including Wang-Zhang-Zhang-Meng-Ma-Chen in Wang et al. [2022] and Faw-Rout-Caramanis-28

Shakkottai in Faw et al. [2023] have extended the work of Zhang-He-Sra-Jadbabai, and succeeded in29

proving good convergence guarantees for functions that satisfy this condition.30

However there has been limited study of whether deep neural networks satisfy the (L0, L1)-31

smoothness condition. In 2022 Patel-Zhang-Tian gave two examples of neural network loss functions32

L that are not (L0, L1)-smooth, in Patel et al. [2022]. Their work showed it is not the case that all33

loss functions arising in deep learning satisfy the (L0, L1) condition, but left open the question of34

Submitted to the Mathematics of Modern Machine Learning Workshop at NeurIPS 2024. Do not distribute.

whether the networks they found were exceptional, or reflected a general property of loss functions35

arising in deep learning.36

In this paper we undertake further empirical study of (L0, L1)-smoothness in the setting of deep37

feedforward neural networks. Our experiments suggest that for deep feedforward neural networks,38

the failure of the (L0, L1)-smoothness condition that Patel-Zhang-Tian observed in their examples is39

not the exception but the rule.40

Our first contribution is to compute the magnitudes of the gradient and hessian of L along a fixed41

line R, with L the loss function of a feedforward neural network. Under either L2 loss or cross42

entropy loss, we observe a quadratic relationship, suggesting a failure of the (L0, L1)-smoothness43

condition.44

Our second contribution is again to look at the loss function L of a feedforward neural network with45

L2 loss. We sample a number of randomly generated initializations, and compute the the magnitudes46

of the gradient and hessian of L along a radial line segment through those lines. We observe a range47

of behaviors, some consistent with the (L0, L1)-smoothness condition, others suggesting a failure of48

the (L0, L1)-smoothness condition near initialization.49

In the next section, we discuss related work. In Section 3 we describe several empirical results.50

In Appendix A we provide background and notation, and in Appendix B we provide supporting51

materials.52

2 Related work53

To date, none of the weaker smoothness conditions discussed in Section A.1 have been successfully54

verified for deep neural networks. In response, in 2020 Zhang-He-Sra-Jadbabai proposed a novel55

relaxation of the classical notion of smoothness, along with reasons one may hope that this condition56

is satisfied by deep neural networks, in Zhang et al. [2020b] . Their innovation is to allow the local57

smoothness constant to increase with the gradient norm.58

Definition 1 (see Zhang et al. [2020b]). Given two real numbers L0 and L1, a twice differentiable59

function L : Rd → R is (L0, L1)-smooth if the Hessian of L, denoted HL, satisfies the inequality60

‖HL(ρ)‖ ≤ L0 + L1‖∇L(ρ)‖ (1)

for all ρ ∈ Rd, where the norm on the left is taken to be the operator norm of the matrix and the norm61

on the right is the L2 norm of the vector.62

Remark 1. All matrix norms are equivalent up to constants, that is, for any two matrix norms || · ||A
and || · ||B , there exist constants q and r such that

q||M ||A ≤ ||M ||B ≤ r||M ||A,
for all matrices M . Therefore, one can equivalently use any matrix norm on the left hand side of63

Equation 1, up to rescaling the constants L0 and L1. In this paper, we will take the Frobenius norm64

on the left side and the L2 norm on the right side of Equation 1.65

After introducing this condition, Zhang-He-Sra-Jadbabai went on to prove upper and lower bounds66

convergence for functions L that satisfy the (L0, L1)-smoothness condition for some choice of L067

and L1, for several different optimizers. They consider gradient descent, clipped gradient descent, as68

well as stochastic versions of both.69

They go on to provide empirical evidence that this condition is satisfied by deep neural networks.70

In experiments on a variety of architectures and tasks, including image recognition and language71

generation, they consider the (L0, L1)-smoothness condition in the regions of the loss landscape72

traversed during training and find evidence that it is satisfied.73

Because a condition which both allows us to prove convergence results and is satisfied by deep neural74

networks has been long desired, this work is very appealing and a number of works have expanded75

on this seminal work.76

Following Zhang et al. [2020b], several groups have gone on to provide analyses of the convergence77

properties of additional optimizers, and under a wider range of assumptions, for functions that78

satisfy the (L0, L1)-smoothness condition. In Li et al. [2023a], and Li et al. [2023b], Li-Qian-Tian-79

Rakhlin-Jadbabaie proved convergence results for additional optimizers, such as Adam, and under80

2

a wider range of assumptions, including a generalization of the (L0, L1)-smoothness condition. In81

related work, Faw-Rout-Caramanis-Shakkottai developed new techniques allowing them to derive82

convergence bounds for SGD without assuming uniform bounds on the noise support in Faw et al.83

[2023].84

There has been less attention on studying this new condition in the specific context of deep neural85

networks. Since the (L0, L1)-smoothness condition was introduced in Zhang et al. [2020b], fewer86

groups have analyzed the motivating hope that loss functions arising from deep neural networks87

satisfy the (L0, L1)-smoothness condition.88

One group that did consider this question is Patel-Zhang-Tian, who gave a theoretical analysis of89

the geometry of several loss functions and in doing so produced two examples of loss functions L90

that do not satisfy the (L0, L1)-smoothness condition in Patel et al. [2022]. The first is a very simple91

feedforward network with three linear layers and a single nonlinear layer, learning the simple dataset92

input 0 output 0 with probability 1/2 and input 1 output 1 with probability 1/2.93

The second is a 1-dimensional linear recurrent neural network, learning a similar dataset. In both94

cases, they give a complete mathematical analysis of the smoothness of the resulting loss function95

and conclude not only that the loss functions are not m-smooth for any m, but also do not satisfy the96

(L0, L1)-smoothness condition for any choice of L0 and L1.97

In this paper, we find that these examples are not isolated. Our experiments suggest that they are in98

fact representative of the general case.99

3 Experiments100

3.1 Fixed line101

In the first experiment, we fix a line motivated by the work of Patel et al. [2022], compute the norms102

of the Hessian and gradient along the line, and observe the relative growth rates. We made the103

following computations in Mathematica, any other programming platform that can compute neural104

networks can be used as well.105

We begin with the case of L2 loss. We begin by initializing a feedforward neural network of layer106

widths (1, 4, 7, 1). We take the activation function σ to be tanh. Next, we choose 20 data points,107

with x and y drawn uniformly at random from the interval [−1, 1]. Having made these choices, we108

can compute the corresponding loss function.109

In the case of L2 loss, the direction in the loss landscape we sample from is the region near the line110

R specified in Appendix B. We draw points at random from a tubular neighborhood of this line, by111

taking points on the line for values of t between 100 and 700, incrementing by 3 each time, and112

adding noise drawn uniformly at random to each point, with width ε(t) = 1/t2. Finally, we compute113

the norms of the Hessian and gradient and the sampled points.114

2000 4000 6000 8000

2.0×107

4.0×107

6.0×107

8.0×107

1.0×108

1.2×108

1.4×108
1.48318x2 +578.68 x-632784.

500 1000 1500 2000 2500 3000

500000

1.0×106

1.5×106

2.0×106

2.5×106
0.279358 x2 -3.94193x+9376.66

Figure 1: Left: our calculations for the example with L2 loss are shown in a scatter plot of the pairs
(norm of gradient, norm of Hessian). Right: the same, for the example with cross-entropy loss.

For the case of cross-entropy loss, we proceed similarly. We begin by initializing a feedforward115

neural network of layer widths (1, 3, 3, 2). We take the activation function σ to be tanh. Next, we116

choose 10 data points, at random, with x drawn uniformly at random from the interval [−1, 1] and117

y assigned to be (1, 0) for the first 8 points, and (0, 1) for the remaining. (The width of the tubular118

3

neighborhood is chosen based on the proportions of each label, so fixing the proportions is easiest.)119

Having made these choices, we can compute the corresponding loss function.120

In the case of cross-entropy loss, the direction in the loss landscape we sample from is the region121

near the line R described in the proof. We draw points at random from a tubular neighborhood of122

this line, by taking points on the line for values of t between 100 and 700, incrementing by 3 each123

time, and adding noise drawn uniformly at random to each point, with width ε(t) = 20/t2. Finally,124

we compute the norms of the Hessian and gradient and the sampled points.125

The resulting plots are shown in Figure 1, together with the degree 2 polynomial of best fit for each.126

At first glance, these plots look different than the ones shown in Zhang et al. [2020b]. Here we note127

that the two sets of plots are consistent, as the scatter plots in Figure 1 are plotted directly, while the128

scatter plots shown in the body of Zhang et al. [2020b] are shown on a log-log plot.129

2000 4000 6000 8000

5×106

1×107

5×107

1×108

500 1000 2000

5×104

1×105

5×105

1×106

Figure 2: Left: our calculations for the example with L2 loss are shown in a log-log scatter plot of the
pairs (norm of gradient, norm of Hessian). Right: the same, for the example with cross-entropy loss.

Note that a polynomial of any degree shown on a log-log plot will look linear. In Figure 2, we130

redisplay the information on Figure 1 on log-log plots. In this format, the figures look similar to the131

figures in Zhang et al. [2020b].132

3.2 Random segments133

In the previous experiment, we studied the relationship between the magnitudes of the gradient and134

the Hessian of L along a fixed line. One might ask what plots of the magnitude of the gradient against135

the magnitude of the Hessian look like in regions encountered when training a neural network. One136

place to look is at initialization.137

In this experiment, we again compare the gradient and the Hessian of L, this time near points138

initialized according to Kaiming initialization, along random line segments through those points.139

We used the same architectures as in Subsection 3.1. Namely, we consider a feedforward network140

with layer widths [1, 4, 7, 1], L2 loss, and using tanh for the activation function. We then generated 20141

data points at random to define the loss function L. We record the randomly chosen data in Appendix142

B.143

We then generated 15 random initialization parameters p1, ..., p15 using the Kaiming initialization144

procedure. We chose a radial line segment Si through each parameter pi, and computed the magni-145

tudes of the gradient and hessian at 50 equidistributed points along each Si. In 6 cases the relationship146

appeared approximately linear. In 5 cases the relationship appeared superlinear. In 4 cases, other147

nonlinear graphs were observed.148

In the following, we display some of these graphs, numbered in the order of appearance, not the order149

they were generated in. In Appendix B we record the endpoints of the line segments Si, which we150

call starti and endi.151

At the randomly initialized point p1 on the left in Figure 3, the resulting graph appears approximately152

linear to begin, then approximately like an upward-facing semicircle. At the randomly initialized153

point p2 on the right, the resulting graph appears approximately linear for the first quarter, then154

approximately linear to begin, then approximately linear but with a steeper slope, then approximately155

linear with an even steeper slope in the last stretch.156

4

Figure 3: We show |∇L| along the x-axis and the |hess(L)| along the y-axis.

Figure 4: We show |∇L| along the x-axis and the |hess(L)| along the y-axis.

At the randomly initialized point p3 on the left in Figure 4, the resulting graph appears approximately157

quadratic. At the randomly initialized point p4 in the center, the resulting graph looks U-shaped.158

Finally at the randomly initialized point p5 on the right, the resulting graph grows quickly at the end.159

The last two calculations show examples of initializations near which, in the radial direction, the160

magnitude of the hessian does appear to be bounded by a linear function of the magnitude of the161

gradient, as seen in Figure 5.162

Figure 5: We show |∇L| along the x-axis and the |hess(L)| along the y-axis.

We note that empirical measurements cannot prove if the loss function L satisfies an (L0, L1)-163

smoothness condition or not. Indeed, on any compact set such as this spherical shell we are studying164

in this experiment the loss function L not only will satisfy a (L0, L1)-smoothness condition for some165

choice of L0 and L1 but will satisfy m−smoothness for some choice of m.166

That being said, on a compact region one may ask if the hessian of L appears bounded by a linear167

function of the gradient of L. Near some of the random initializations we generated the hessian of L168

does appear bounded by a linear function of the gradient of L, such as the plots in Figure 5.169

5

However, near other random initializations we generated, the answer appears to be no, such as in the170

plots in Figure 4. This provides empirical evidence that in the region near random initializations, the171

loss function does not satisfy a (L0, L1)-smoothness condition.172

4 Conclusion173

In this paper, we made an empirical study of the (L0, L1)-smoothness condition in the setting of174

feedforward networks, with either L2 or cross-entropy loss. The results suggest that the (L0, L1)-175

smoothness condition is not in general satisfied.176

Thus the convergence guarantees that have been proved for (L0, L1)-smoothness might not be directly177

applicable to the loss functions arising from deep feedforward networks. Though we take a different178

conclusion from Zhang-He-Sra-Jadbabai, our results are not in contradiction with the empirical179

studies in the original paper by Zhang et al. [2020a]. Note that in their work, they compute the180

magnitude of the gradient of L and the magnitude of the hessian of L along gradient trajectories, but181

do not compute those quantities in transverse directions.182

In contrast, we compute the magnitude of the gradient of L and the magnitude of the hessian of183

L in radial directions. So it is not contradictory that we observe different relationships. We note184

that the geometry near a gradient trajectory, in directions transverse to the trajectory, are relevant in185

theoretical bounds on convergence. So the additional empirical study here provides useful further186

information.187

In recent work, Li-Quian-Tian-Rakhlin-Jadbabaie Li et al. [2023a] introduce a class of conditions188

generalizing the (L0, L1)-smoothness condition, which they call `-smoothness conditions, for any189

function `. The (L0, L1)-smoothness condition is recovered in the special case that ` is an affine190

linear function.191

The rates of growth of the magnitude of the hessian as a function of the magnitude of the gradients192

we observe suggest that not only does the loss function L of a deep neural network not satisfy the193

(L0, L1)-smoothness condition, that is `-smoothness for a linear function, but that L also does not194

satisfy `-smoothness for any subquadratic function `. This is worth noting because in Li et al. [2023a],195

convergence guarantees proven in cases when ` is subquadratic, and in the thorough analysis given,196

examples are also provided illustrating that similar guarantees are not possible in cases when ` is197

quadratic or superquadratic. Our work shows that the loss functions of deep feedforward networks lie198

in this more challenging setting.199

Our work suggests that in order to develop similar convergence arguments that can be applied directly200

to the loss functions arising in deep learning, different generalizations of the (L0, L1)-smoothness201

condition may be needed.202

One could also study (L0, L1)-smoothness with the approach used to study weak convexity in the203

setting of deep networks by Liu-Zhu-Belkin Liu et al. [2022]. It may be that while the (L0, L1)-204

smoothness condition does not hold uniformly over the loss landscapes of deep feedforward networks,205

that it is possible to identify regions of the loss landscape on which (L0, L1)-smoothness holds.206

This work is an invitation to interesting directions for future work. The study of (L0, L1)-smoothness207

is an exciting nexus where new techniques in optimization are being developed with inspiration from208

the geometries that arise in deep learning.209

5 Broader Impacts210

This work focuses on the mathematical understanding of a technical aspect of deep learning. While211

this may feel removed from the machine learning systems that are beginning to be integrated into our212

daily lives, advances in this and similar papers are expected to improve the performance of machine213

learning systems over time. Therefore this work may have greater societal impact than is initially214

apparent.215

As the authors of this work, we have a responsibility to make our technical advancements understand-216

able to the broadest range of people, to promote the beneficial uses of these technologies, and to work217

to mitigate the risks of these technologies.218

6

References219

A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence of gradient methods for220

high-dimensional statistical recovery. The Annals of Statistics, 40(5):2452 – 2482, 2012. doi:221

10.1214/12-AOS1032. URL https://doi.org/10.1214/12-AOS1032.222

Z. Chen, Y. Zhou, Y. Liang, and Z. Lu. Generalized-smooth nonconvex optimization is as efficient as223

smooth nonconvex optimization. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,224

and J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning,225

volume 202 of Proceedings of Machine Learning Research, pages 5396–5427. PMLR, 23–29 Jul226

2023. URL https://proceedings.mlr.press/v202/chen23ar.html.227

M. Crawshaw, M. Liu, F. Orabona, W. Zhang, and Z. Zhuang. Robustness to unbounded smoothness228

of generalized signsgd. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,229

editors, Advances in Neural Information Processing Systems, volume 35, pages 9955–9968. Cur-230

ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/231

2022/file/40924475a9bf768bdac3725e67745283-Paper-Conference.pdf.232

M. Faw, L. Rout, C. Caramanis, and S. Shakkottai. Beyond uniform smoothness: A stopped analysis233

of adaptive sgd. In G. Neu and L. Rosasco, editors, Proceedings of Thirty Sixth Conference234

on Learning Theory, volume 195 of Proceedings of Machine Learning Research, pages 89–160.235

PMLR, 12–15 Jul 2023. URL https://proceedings.mlr.press/v195/faw23a.html.236

E. Hazan, K. Levy, and S. Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex237

optimization. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, edi-238

tors, Advances in Neural Information Processing Systems, volume 28. Curran Associates,239

Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/240

934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf.241

H. Li, J. Qian, Y. Tian, A. Rakhlin, and A. Jadbabaie. Convex and non-convex optimization under242

generalized smoothness. In Thirty-seventh Conference on Neural Information Processing Systems,243

2023a. URL https://openreview.net/forum?id=8aunGrXdkl.244

H. Li, A. Rakhlin, and A. Jadbabaie. Convergence of adam under relaxed assumptions. In245

A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances246

in Neural Information Processing Systems, volume 36, pages 52166–52196. Curran Associates,247

Inc., 2023b. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/248

a3cc50126338b175e56bb3cad134db0b-Paper-Conference.pdf.249

C. Liu, L. Zhu, and M. Belkin. Loss landscapes and optimization in over-parameterized non-250

linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:85–251

116, 2022. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2021.12.009. URL https:252

//www.sciencedirect.com/science/article/pii/S106352032100110X. Special Issue on253

Harmonic Analysis and Machine Learning.254

H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order methods,255

and applications. SIAM Journal on Optimization, 28(1):333–354, 2018. doi: 10.1137/16M1099546.256

URL https://doi.org/10.1137/16M1099546.257

V. Patel, S. Zhang, and B. Tian. Global convergence and stability of stochastic gradient descent.258

In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in259

Neural Information Processing Systems, volume 35, pages 36014–36025. Curran Associates,260

Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/261

ea05e4fc0299c27648c9985266abad47-Paper-Conference.pdf.262

B. Wang, Y. Zhang, H. Zhang, Q. Meng, Z.-M. Ma, T.-Y. Liu, and W. Chen. Provable adaptivity in263

Adam, 2022. arXiv:2208.09900.264

B. Zhang, J. Jin, C. Fang, and L. Wang. Improved analysis of clipping algorithms for non-convex265

optimization. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances266

in Neural Information Processing Systems, volume 33, pages 15511–15521. Curran Associates,267

Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/268

b282d1735283e8eea45bce393cefe265-Paper.pdf.269

7

https://doi.org/10.1214/12-AOS1032
https://proceedings.mlr.press/v202/chen23ar.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/40924475a9bf768bdac3725e67745283-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/40924475a9bf768bdac3725e67745283-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/40924475a9bf768bdac3725e67745283-Paper-Conference.pdf
https://proceedings.mlr.press/v195/faw23a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf
https://openreview.net/forum?id=8aunGrXdkl
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3cc50126338b175e56bb3cad134db0b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3cc50126338b175e56bb3cad134db0b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3cc50126338b175e56bb3cad134db0b-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S106352032100110X
https://www.sciencedirect.com/science/article/pii/S106352032100110X
https://www.sciencedirect.com/science/article/pii/S106352032100110X
https://doi.org/10.1137/16M1099546
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea05e4fc0299c27648c9985266abad47-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea05e4fc0299c27648c9985266abad47-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ea05e4fc0299c27648c9985266abad47-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b282d1735283e8eea45bce393cefe265-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b282d1735283e8eea45bce393cefe265-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b282d1735283e8eea45bce393cefe265-Paper.pdf

J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training: A theoretical270

justification for adaptivity. In International Conference on Learning Representations, 2020b. URL271

https://openreview.net/forum?id=BJgnXpVYwS.272

A Background and notation273

A.1 Weak smoothness274

Definition 2. Let m > 0. A function L : Rd → R is m-smooth if for every α, β ∈ Rd, we have275

‖∇L(β)−∇L(α)‖ ≤ m‖α− β‖.

When L is twice differentiable, this can alternatively be stated as the condition that the magnitude of276

the second derivative of L is uniformly bounded by m.277

Because many functions that one would like to minimize are not m-smooth for any m, researchers278

have long proposed weaker notions of smoothness and tried to prove convergence results under279

such alternate definitions of smoothness, in an effort to expand the range of functions that we can280

confidently optimize. We begin by noting a few of the popular definitions.281

Definition 3 (see Hazan et al. [2015]). Let τ, ε > 0, γ ∈ Rd. A function L : Rd → R is (τ, ε, γ)-282

locally-smooth if for every α, β ∈ Rd such that ‖α− γ‖ ≤ ε and ‖β − γ‖ ≤ ε, we have283

|L(β)− L(α)− 〈∇L(β), α− β〉| ≤ τ

2
‖α− β‖2.

Definition 4 (see Agarwal et al. [2012]). Let τ, ε > 0 and let R : Rd → R+ be a regularizer. A284

function L : Rd → R satisfies restricted smoothness with respect to R with parameters (τ, ε) if for285

every α, β ∈ Rd, we have286

|L(β)− L(α)− 〈∇L(β), α− β〉| ≤ τ

2
‖α− β‖2 + εR2(α− β).

Definition 5 (see Lu et al. [2018]). Let h : Rd → R be a differentiable convex “reference function”,287

and m a positive real number. A function L : Rd → R is m-smooth relative to h if for any α, β ∈ Rd288

we have289

L(β) ≤ L(α) + 〈∇L(α), β − α〉+m(h(β)− h(α)− 〈∇h(α), β − α〉).

A.2 Weak convexity290

In the Introduction, we noted that there is interest both in weaker notions of smoothness and weaker291

notions of convexity, and in determining whether the loss functions arising from deep neural networks292

satisfy any of them.293

While in this paper we will focus on smoothness conditions, here we point to work considering these294

questions for convexity conditions.295

In Liu et al. [2022], Liu-Zhu-Belkin considered the PL* condition, a condition related to the classical296

Polyak-Lojasiewicz condition. They showed that for the loss function of neural networks, if the297

network satisfies some conditions including that they are sufficiently wide, one can construct many298

balls within the parameter space Rd on which the PL* condition holds.299

While it is known that the loss functions arising in deep learning are not convex, this result shows300

that there is a weaker type of convexity that is satisfied in some regions for some neural networks.301

At this time, we do not know of analogous results for relaxed smoothness conditions. In this work, we302

will give a negative result, for most neural networks, it is not the case that the (L0, L1)-smoothness303

condition holds over the entire parameter space Rd. Perhaps an analog of Liu-Zhu-Belkin’s result304

for the PL* convexity condition is possible - perhaps there are regions in the parameter space Rd on305

which the (L0, L1)-smoothness condition holds. We leave that question to future work.306

8

https://openreview.net/forum?id=BJgnXpVYwS

A.3 Notation307

A.3.1 Fully connected feedforward neural networks308

To define a fully connected feedforward neural network, we begin by specifying the number of layers309

` of the network, and the widths din, c1, . . . , c`, dout of the layers, ordered from “earliest” to “latest”.310

For each adjacent pair of layers i, i + 1, we will have the space of affine linear maps from Rci to311

Rci+1 . Such a map is given by the choice of a ci× ci+1 matrix we will call M i, and a vector in Rci+1312

we will call bi. The entries of M i we call weights, the entries of bi we call biases, and the choice of313

weights and biases for all the layers we call the choice of a parameter vector ρ ∈ Rp.314

Figure 6: This is a diagram representing a feedforward neural network with one hidden layer, with
the input width din = 2, the width of the hidden layer k1 = 5, and output width dout = 1.

Next, we choose an activation function315

σ : R→ R. (2)

In this paper, we assume that σ is twice differentiable.316

Given the choices above of an architecture and σ, this neural network provides a way to input a set ρ317

of weights and biases for the network and output a function fρ : Rdin → Rdout .318

Given a vector319

ρ = (w,b) ∈ Rp (3)

in the parameter space, we define the function320

fρ = fw,b : Rdin → Rdout (4)

by composing the following sequence of maps specified by the neural network and the choice of the321

weights and biases in all the layers w,b:322

Rdin M1x+b1

−→ Rc1 σ−→ Rc1 M
2x+b2

−→ · · · M
`x+b`−→ Rc` σ−→ Rc` M

`+1x+b`+1

−→ Rdout . (5)

In this construction, the arrow Rki σ−→ Rki indicates that we apply σ componentwise.323

Example 1. Consider a fully connected feedforward graph with layers of widths 1, 3, 1 and σ =324

(u 7→ u2 + 1). The corresponding function space consists of those functions of the form325

fα : x 7→ w2
11

(
(w1

11x+ b11)
2 + 1

)
+ w2

12

(
(w1

21x+ b12)
2 + 1

)
+ w2

13

(
(w1

31x+ b13)
2 + 1

)
+ b21.

(6)

In our calculations we will find it useful to have the following notation for the stages of the neural326

network. We define recursively327

f1ρ (x) =M1x+ b1 (7)
328

f iρ(x) =M iσ(f i−1ρ (x)) + bi, (8)

so that the previously defined function fρ(x) equals f `+1
ρ (x).329

9

A.3.2 The loss function L330

In deep learning, one starts with a data set, chooses an architecture for a neural network, and then331

wishes to find a parameter vector, in other words a set of weights and biases for the network, such332

that with that choice, the function expressed by the network predicts well on similar data.333

To find such a parameter vector, a key step is to define a loss function334

L : Rd → R (9)

from the set of all parameters to the real numbers. This function L is constructed in such a way that335

parameter vectors ρ on which the loss function achieves a low value are good choices for the network.336

In today’s implementations, a gradient descent based algorithm is used to find such ρ that minimize337

L.338

In this paper, we consider two ways of constructing L, and we define each in this section. In both339

cases, we fix340

• a neural network,341

• a choice of activation function σ,342

• and a data set343

D :=
{
(xi,yi)

}
i∈{1,...,n} ⊂ Rdin × Rdout . (10)

Definition 6. The L2 loss is defined by:344

L(ρ) :=

n∑
s=1

(
fα(xs)− ys

)2
. (11)

Definition 7. The cross-entropy loss is defined by:345

L(ρ) = −
n∑

m=1

dout∑
j=1

[ym]j log
e[fρ(xm)]j∑b
k=1 e

[fρ(xm)]k
. (12)

where [v]j denotes the jth entry of a vector v.346

B Supporting material347

First, the description of the lineR appearing in Section 3.1.348

We define R to be the image of the following linear map ρ : R → Rd, where Rd is the parameter349

space of the neural network. Given a real number t ∈ R, ρ(t) is the following choice of weights and350

biases.351

For all but the last layer, we take the weights to be zero and the biases all equal to zero.352

M i = 0, bi = (c · · · c)
T if 1 ≤ i ≤ `

In the last layer, we take M `+1 to be t times a constant matrix M . We choose M carefully, depending353

on the loss. Finally, we take all the biases equal to 0.354

M =

m11 . . . m1k

...
. . .

...
mb1 · · · mbk

 (13)

M `+1 = tM, b`+1 = ~0 (14)

10

Now, the randomly chosen data x and y for the experiment in Section 3.2.355

~x =
(
−0.51 −0.32 0.45 −0.42 −0.51 −0.30 0.50 −0.98 −0.22 −0.51

0.40 0.79 0.20 0.96 0.90 −0.04 0.60 −0.27 0.01 0.41
)

356

~y =
(
−0.70 −0.86 −0.20 0.88 0.88 −0.33 −0.92 0.06 0.89 0.21

−0.35 0.32 0.27 0.97 0.86 −0.20 0.49 −0.05 −0.75 0.90
)

start1 =357 (
0.048 0.026 −0.0063 0.025 −0.014 −0.0014 −0.059 0.024

−0.026 0.0021 −0.022 0.013 −0.012 −0.0093 −0.021 0.0052

−0.026 −0.03 −0.022 −0.014 −0.011 0.018 0.00088 −0.024
−0.023 −0.021 0.026 0.019 −0.019 0.025 0.0017 −0.028
0.012 0.014 −0.0012 0.012 −0.017 −0.019 0.022 0.022

0.009 0.015 −0.027 0.02 −0.01 −0.0078 −0.0032 −0.016

−0.0082 −0.0049 −0.0077
)

end1 =358 (
9.6 5.2 −1.3 4.9 −2.8 −0.29 −12 4.8 −5.3 0.43

−4.3 2.7 −2.5 −1.9 −4.2 1 −5.2 −6 −4.4 −2.8
−2.2 3.6 0.18 −4.9 −4.6 −4.3 5.3 3.8 −3.8 5.1

0.34 −5.7 2.3 2.9 −0.25 2.3 −3.3 −3.8 4.5 4.5

1.8 2.9 −5.4 4 −2.1 −1.6 −0.65 −3.3 −1.7 −0.98 −1.6
)

start2 =359 (
0.068 −0.059 −0.035 −0.034 0.096 −0.055 0.055 −0.02

−0.03 −0.007 0.036 0.048 −0.027 −0.04 −0.029 0.0052

−0.041 −0.014 −0.019 0.025 0.017 0.042 0.017 −0.018
−0.044 −0.022 0.046 0.041 0.021 0.046 0.049 −0.041
0.016 0.022 0.024 0.017 0.036 −0.0045 0.0011 0.048

−0.033 −0.05 0.041 −0.013 −0.026 0.018 0.031 0.013

−0.024 0.019 0.015
)

end2 =360 (
14 −12 −7.1 −6.8 19 −11 11 −4 −6 −1.4

7.2 9.6 −5.4 −8 −5.8 1 −8.2 −2.8 −3.9 5

3.5 8.4 3.4 −3.6 −8.9 −4.5 9.3 8.2 4.3 9.2

9.9 −8.1 3.3 4.4 4.9 3.5 7.2 −0.91 0.23 9.7

−6.6 −10 8.3 −2.7 −5.3 3.6 6.2 2.6 −4.8 3.9 3
)

11

start3 =361 (
0.085 0.052 0.4 0.021 0.24 0.23 0.29 −0.064

−0.098 0.024 0.079 0.12 −0.14 0.12 0.13 0.042

−0.083 −0.076 −0.047 −0.055 0.13 0.02 0.097 −0.0038
−0.19 −0.015 0.088 −0.048 0.089 −0.16 −0.13 0.013

−0.12 −0.011 0.2 0.13 0.053 −0.2 0.062 −0.014
0.15 −0.013 −0.035 0.042 −0.0064 −0.14 −0.087 −0.14

−0.099 0.082 −0.024
)

end3 =362 (
17 10 80 4.3 49 46 59 −13 −20 4.7

16 24 −28 24 26 8.5 −17 −15 −9.5 −11
25 4 20 −0.76 −37 −3 18 −9.7 18 −32
−27 2.7 −24 −2.3 40 26 11 −39 12 −2.9

30 −2.6 −6.9 8.5 −1.3 −28 −17 −28 −20 17 −4.8
)

start4 =363 (
−16 27 5.7 0.032 15 42 −35 −22

−5.9 20 19 0.22 −13 −13 −5.4 −15
21 3.8 10 17 −6 −21 17 −11
11 −15 4.4 13 6.5 −15 −11 0.92

−22 −16 3.1 −0.93 16 0.43 19 −12
−16 −11 15 17 −13 8.3 −0.28 −12

11 12 13
)

end4 =364 (
−35 60 13 0.071 32 92 −78 −49 −13 45

42 0.5 −28 −28 −12 −34 46 8.4 23 38

−13 −48 37 −24 25 −32 9.8 28 14 −34
−24 2 −48 −35 6.8 −2.1 36 0.96 42 −27

−36 −25 32 38 −29 18 −0.62 −26 24 27 28
)

start5 =365 (
0.37 −0.29 0.045 0.35 −0.16 0.2 0.16 0.14

−0.047 −0.11 0.16 −0.15 0.066 0.11 −0.22 −0.095
0.053 0.028 0.068 0.22 −0.13 −0.22 −0.092 0.023

−0.097 −0.11 −0.22 −0.19 0.17 0.014 0.18 0.18

0.011 0.015 −0.13 −0.17 0.22 0.051 0.17 0.14

0.13 −0.071 0.22 0.054 −0.084 0.036 0.037 0.035

−0.1 −0.16 0.14
)

12

end5 =366 (
−33 5.1 39 −18 22 18 16 −5.3 −12 18

−17 7.5 13 −25 −11 6 3.1 7.7 25 −15
−25 −10 2.6 −11 −12 −25 −21 19 1.6 20

21 1.3 1.7 −15 −20 25 5.8 19 16 14

−8 25 6.2 −9.6 4.1 4.2 4 −11 −18 16
)

start6 =367 (
0.27 −0.38 0.37 0.35 −0.31 −0.055 0.19 0.12

0.031 0.16 0.1 −0.00026 0.11 0.18 0.16 0.0043

0.14 0.073 −0.13 −0.0036 −0.17 0.055 −0.14 0.11

−0.13 −0.21 −0.027 0.0049 −0.14 0.068 0.12 −0.12
−0.093 −0.083 −0.086 0.11 −0.2 0.029 0.2 0.22

−0.12 −0.2 −0.093 −0.074 0.0041 −0.094 −0.017 0.016

−0.032 −0.12 −0.053
)

end6 =368 (
30 −42 41 39 −35 −6.1 21 14 3.5 18

11 −0.029 12 20 18 0.48 16 8.2 −14 −0.4
−19 6.1 −16 12 −15 −24 −3 0.55 −16 7.7

14 −13 −10 −9.3 −9.7 12 −22 3.3 22 25

−14 −22 −10 −8.3 0.46 −11 −1.9 1.8 −3.6 −13 −5.9
)

start7 =369 (
0.34 0.09 −0.37 −0.33 0.21 −0.21 0.17 −0.38

0.13 −0.1 −0.021 −0.099 −0.12 −0.16 0.14 0.15

0.11 −0.0072 0.073 −0.12 −0.039 0.18 0.18 −0.15
−0.16 −0.18 0.12 −0.18 −0.016 −0.049 0.024 −0.01
0.044 0.13 0.12 −0.073 −0.12 −0.077 −0.19 −0.11
0.15 −0.023 −0.12 −0.12 0.089 0.15 0.038 −0.061

−0.096 −0.0099 0.082
)

end7 =370 (
33 8.9 −37 −32 21 −21 17 −38 13 −10

−2 −9.7 −12 −15 14 15 11 −0.71 7.2 −11
−3.9 18 18 −15 −16 −18 12 −18 −1.6 −4.8
2.3 −1 4.4 12 11 −7.2 −12 −7.6 −19 −11

15 −2.2 −11 −12 8.7 14 3.8 −6 −9.5 −0.98 8.1
)

13

The random vector371

w2 =
(
−0.87 −0.67 0.5 −0.29 −0.93 0.83 −0.004 0.64

0.5 0.46 −0.46 0.47 0.046 −0.29 −0.023 0.38

−0.22 −0.27 0.41 −0.1 0.032 −0.14 −0.28 −0.31
0.23 0.18 −0.12 −0.066 0.2 0.058 −0.36 0.37

0.31 0.22 −0.17 −0.27 −0.11 −0.34 0.095 0.34

−0.31 −0.26 0.18 0.24 −0.29 0.23 0.022 −0.012

−0.28 0.28 0.36
)

The random vector372

w4 =
(
−0.72 0.74 −0.86 −0.19 −0.15 −0.094 −0.23 0.41

−0.32 0.35 −0.095 0.46 0.39 0.1 0.037 −0.38
−0.3 −0.39 −0.44 0.1 −0.21 0.084 −0.5 0.12

0.31 0.22 −0.41 −0.29 0.057 −0.39 −0.048 0.091

−0.094 −0.079 −0.44 0.31 0.27 0.16 0.35 0.48

−0.22 0.23 −0.12 0.3 −0.078 −0.31 −0.13 0.31

0.011 −0.2 0.34
)

The random vector373

w6 =
(
0.64 −0.26 −0.76 0.37 0.45 0.82 0.6 0.2

−0.34 −0.4 −0.23 −0.2 −0.08 −0.099 0.017 0.35

−0.36 −0.3 0.18 −0.13 −0.062 0.33 0.37 −0.37
0.23 −0.13 −0.16 −0.23 0.37 0.31 0.0082 −0.047
0.37 −0.18 −0.32 0.037 −0.25 0.44 0.088 0.2

−0.048 0.17 0.44 0.12 −0.11 0.23 0.11 0.22

−0.063 0.14 0.12
)

14

	Introduction
	Related work
	Experiments
	Fixed line
	Random segments

	Conclusion
	Broader Impacts
	Background and notation
	Weak smoothness
	Weak convexity
	Notation
	Fully connected feedforward neural networks
	The loss function L

	Supporting material

