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Abstract

In this paper, we introduce a model-based deep-learning approach to solve
finite-horizon continuous-time stochastic control problems with jumps. We it-
eratively train two neural networks: one to represent the optimal policy and
the other to approximate the value function. Leveraging a continuous-time
version of the dynamic programming principle, we derive two different train-
ing objectives based on the Hamilton–Jacobi–Bellman equation, ensuring that
the networks capture the underlying stochastic dynamics. Empirical evalua-
tions on different problems illustrate the accuracy and scalability of our ap-
proach, demonstrating its effectiveness in solving complex, high-dimensional
stochastic control tasks. Code is available at https://github.com/jdupret97/
Deep-Learning-for-CT-Stochastic-Control-with-Jumps.

1 Introduction

A large class of dynamic decision-making problems under uncertainty can be modeled as continuous-
time stochastic control problems. In this paper, we introduce two neural network-based numerical
algorithms for such problems in high dimensions with finite time horizon and jumps. More precisely,
we consider control problems of the form

sup
α

E

[∫ T

0

f(t,Xα
t , αt)dt+ F (Xα

T )

]
, (1)

for a finite horizon T > 0, where the supremum is over predictable control processes α = (αt)0≤t≤T

taking values in a subset A ⊆ Rm. The controlled process Xα evolves in a subset D ⊆ Rd according
to

dXα
t = β(t,Xα

t , αt)dt+ σ(t,Xα
t , αt)dWt +

∫
E

γ(t,Xα
t−, z, αt)N

α(dz, dt), Xα
0 = x ∈ D, (2)

for an initial condition x ∈ D, an n-dimensional Brownian motion W and a controlled random
measure Nα on E × R+, with E = Rl \ {0}, and suitable functions β : [0, T ] × D × A → Rd,
σ : [0, T ]×D×A→ Rd×n and γ : [0, T ]×D×E×A→ Rd. The functions f : [0, T ]×D×A→ R
and F : D → R model the running and final rewards, respectively. We assume the controlled random
measure is given by Nα(B × [0, t]) =

∑Mα
t

j=1 1{Zj∈B} for measurable subsets B ⊆ E, where Mα

is a Poisson process with a stochastic intensity of the form λ(t,Xα
t−, αt) and Z1, Z2, . . . are i.i.d.

E-valued random vectors such that, conditionally on α, the random elements W,Mα and Z1, Z2, . . .
are independent. Our goal is to find an optimal control α∗ and the corresponding value of problem
(1). In view of the Markovian nature of the dynamics (2), we work with feedback controls of the
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form αt = α(t,Xα
t−) for measurable functions α : [0, T )×D → A and consider the value function

V : [0, T ]×D → R given by

V (t, x) = sup
α

E

[∫ T

t

f(s,Xα
s , αs)ds+ F (Xα

T )
∣∣∣Xα

t = x

]
. (3)

Under suitable assumptions2, V is the unique solution of the following Hamilton–Jacobi–Bellman
(HJB) equation

∂tV (t, x) + sup
a∈A

H(t, x, V, a) = 0, V (T, x) = F (x) , (4)

for the Hamiltonian H : [0, T )×D × V ×A→ R given3 by

H(t, x, V, a) := f(t, x, a) + βT (t, x, a)∇xV (t, x) +
1

2
Tr
[
σσT (t, x, a)∇2

xV (t, x)
]

+ λ(t, x, a)E[V (t, x+ γ(t, x, Z1, a))− V (t, x)] ,
(5)

where ∇xV , ∇2
xV denote the gradient and Hessian of V with respect to x. Our approach consists in

iteratively training two neural networks to approximate the value function V and an optimal control
α∗ attaining V . It has the following features:

• It yields accurate results for high-dimensional continuous-time stochastic control problems
in cases where the dynamics of the underlying stochastic processes are known.

• It can effectively handle a combination of diffusive noise and random jumps with controlled
intensities.

• It can handle general situations where the optimal control is not available in closed form but
has to be learned together with the value function.

• It approximates both the value function and optimal control at any point (t, x) ∈ [0, T )×D.

While methods like finite differences, finite elements and spectral methods work well for solving
partial (integro-)differential equations P(I)DEs in low dimensions, they suffer from the curse of
dimensionality, and as a consequence, become infeasible in high dimensions. Recently, different
deep learning based approaches for solving high-dimensional PDEs have been proposed (Raissi et al.,
2017, 2019; Han et al., 2017, 2018; Sirignano & Spiliopoulos, 2018; Berg & Nyström, 2018; Beck
et al., 2021; Lu et al., 2021; Bruna et al., 2024). They can directly be used to solve continuous-time
stochastic control problems that admit an explicit solution for the optimal control in terms of the value
function since in this case, the expression for the optimal control can be plugged into the HJB equation,
which then reduces to a parabolic PDE. On the other hand, if the optimal control is not available
in closed form, it cannot be plugged into the HJB equation, but instead, has to be approximated
numerically while at the same time solving a parabolic PDE. Such implicit optimal control problems
can no longer be solved directly with one of the deep learning methods mentioned above but require
a specifically designed iterative approximation procedure. For low-dimensional problems with non-
explicit optimal controls, a standard approach from the reinforcement learning (RL) literature is to
use generalized policy iteration (GPI), a class of iterative algorithms that simultaneously approximate
the value function and optimal control (Jacka & Mijatović, 2017; Sutton & Barto, 2018). Particularly
popular are actor-critic methods going back to Werbos (1992), which have a separate memory
structure to represent the optimal control independently of the value function. However, classical GPI
schemes become impractical in high dimensions as the PDE and optimization problem both have to
be discretized and solved for every point in a finite grid. This raises the need of meshfree methods for
solving implicit continuous-time stochastic control problems in high dimensions with continuous
action space. Several local approaches based on a time-discretization of (2) have been explored by
e.g. Han & E (2016); Nüsken & Richter (2021); Huré et al. (2021); Bachouch et al. (2022); Ji et al.
(2022); Li et al. (2024); Domingo-Enrich et al. (2024a,b). Alternatively, this can also be achieved
using popular (deep) RL techniques including policy gradient methods such as A2C/A3C (Mnih et al.,
2016), PPO (Schulman et al., 2017) and TRPO (Schulman et al., 2015); Q-learning type algorithms
with DQN (Mnih et al., 2013), C51 (Bellemare et al., 2017), see also Wang et al. (2020); Jia &
Zhou (2023); Gao et al. (2024); Szpruch et al. (2024); and hybrid approaches with DDPG (Lillicrap

2see e.g. Soner (1988)
3By V we denote the set of all functions in C1,2([0, T )× Rd) such that the expectation in (5) is finite for all

t, x and a.
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et al., 2019) or SAC (Haarnoja et al., 2018). However, these model-free deep RL algorithms do not
explicitly take into account the underlying dynamics (2) of the stochastic control problem (1) but
instead, solely on sampling from the environment. As a result, they are less accurate in cases where
the state dynamics are known (see Figure 3 below). Moreover, this curse of dimensionality inherent
in solving high-dimensional PDEs is further exacerbated when dealing with the jump-diffusion (2),
as the resulting HJB PIDE (4) requires the numerical evaluation of jump expectations for every
space-time point sampled from the domain.

In this paper, we introduce a deep model-based approach for stochastic control problems with jumps
which takes the system dynamics (2) into account by leveraging results derived from the HJB equation
(4). This removes the need to simulate the underlying jump-diffusion equation and, as a result, avoids
discretization errors. Our approach combines GPI with PIDE solving techniques and approximates
the value function and optimal control in an actor-critic fashion with two neural networks trained
iteratively on sampled data from the space-time domain. It has the advantage that it provides a
global approximation of the value function and optimal control available for all space-time points,
which can be evaluated rapidly in online applications. We develop two related algorithms. The
first one, GPI-PINN, approximates the value function by training a neural network to minimize the
residuals of the HJB equation (4), following a physics-inspired neural network (PINN) approach
(Raissi et al., 2017, 2019) while leveraging Proposition 3.1 below to avoid the direct computation
of the gradient ∇xV and Hessian ∇2

xV in the Hamiltonian (5). GPI-PINN can thus be viewed as
an extension of the method proposed by Duarte et al. (2024), adapted to a finite-horizon setup with
time-dependence and a terminal condition in the HJB equation, leading to time-dependent optimal
control strategies and value function. It works well in high dimensions for control problems without
jumps in the underlying dynamics (2) (γ = 0), but becomes inefficient in the presence of jumps as
it requires computing the jump-expectation EV (t, x + γ(t, x, Z1, a)) at numerous sample points
(t, x) in every iteration of the algorithm. To address this, our second algorithm, GPI-CBU, relies on a
continuous-time Bellman updating rule to approximate the value function, thereby circumventing the
computation of gradients, Hessians and jump-expectations altogether. This makes it highly efficient
for high-dimensional stochastic control problems with jumps, even when the control is not available
in closed form.

We illustrate the accuracy and scalability of our approach in different numerical examples and provide
comparisons with popular RL and deep-learning control methods. Proofs of theoretical results and
additional numerical experiments are given in the Appendix.

2 General approach

Let α : [0, T )×D → A be a feedback control such that equation (2) has a unique solution Xα and
consider the corresponding value function

V α(t, x) = E

[∫ T

t

f(s,Xα
s , α(s,X

α
s−))ds+ F (Xα

T )
∣∣∣Xα

t = x

]
, (t, x) ∈ [0, T ]×D.

Under appropriate assumptions, one obtains the following two results from standard arguments4.
Theorem 2.1 (Feynman–Kac Formula). V α satisfies the PIDE

∂tV
α(t, x) +H(t, x, V α, α(t, x)) = 0, V α(T, x) = F (x).

Theorem 2.2 (Verification Theorem). Let v ∈ V ∩ C([0, T ]×D) be a solution of the HJB equation
(4) such that there exists a measurable mapping α̂ : [0, T )×D → A satisfying

α̂(t, x) ∈ argmax
a∈A

H(t, x, v, a) for all (t, x) ∈ [0, T )×D

and the controlled jump-diffusion equation (2) admits a unique solution for each initial condition
x ∈ D. Then v = V and α̂ is an optimal control.

Based on Theorems 2.1 and 2.2, we iteratively approximate the value function V and optimal control
α∗ with neural networks5 Vθ : [0, T ]×D → R and αφ : [0, T ]×D → A. For given αφ, we train Vθ
so as to solve the controlled HJB equation

∂tVθ(t, x) +H(t, x, Vθ, αφ(t, x)) = 0, Vθ(T, x) = F (x) , (6)
4see e.g. the arguments in the proofs of Theorems 1.3.1 and 2.2.4 in Bouchard (2021).
5Using a C2-activation function in the network Vθ ensures that it belongs to C2([0, T ]× Rd).
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while for given Vθ, αφ is trained with the goal to maximize the Hamiltonian H(t, x, Vθ, αφ(t, x)).

In the following, we introduce two different training objectives for updating the value network
Vθ, leading respectively to the algorithms GPI-PINN and GPI-CBU. GPI-PINN uses a PINN-type
loss together with a trick adapted from Duarte et al. (2024) to bypass the explicit computation
of gradients and Hessians, whereas GPI-CBU relies on a continuous-time Bellman updating rule
with an expectation-free version of the Hamiltonian, thereby also avoiding the computation of the
jump-expectations in (5).

3 GPI-PINN

GPI-PINN, described in Algorithm 1 below, relies on a PINN approach to minimize the residuals
of the controlled HJB equation (6) in the value function approximation step. To avoid explicit
computations of the gradient ∇xVθ(t, x) and Hessian ∇2

xVθ(t, x), which appear in the Hamiltonian
(5), we use the following trick, adapted from Duarte et al. (2024).
Proposition 3.1. Consider a function v ∈ V together with a pair (t, x) ∈ [0, T ) ×D. Define the
function ψ : R→ R by

ψ(h) :=
n∑

i=1

v

(
t+

h2

2n
, x+

h√
2
σi(t, x, a) +

h2

2n
β(t, x, a)

)
,

where σi(t, x, a) is the ith column of the d× n matrix σ(t, x, a). Then,

ψ′′(0) = ∂tv(t, x) + β>(t, x, a)∇xv(t, x) +
1

2
Tr
[
σσ>(t, x, a)∇2

xv(t, x)
]
. (7)

Proposition 3.1 makes it possible to replace the computation of gradients and Hessians of v by
evaluating the univariate function ψ′′(0), the cost of which, using automatic differentiation, is a small
multiple of n · cost(v).
To formulate GPI-PINN, we need the extended Hamiltonian

H(t, x, v, a) := ∂tv(t, x) +H(t, x, v, a), (8)

which by Proposition 3.1, can be written as

H(t, x, v, a) = ψ′′(0) + f(t, x, a) + λ(t, x, a)E
[
v(t, x+ γ(t, x, Z1, a))− v(t, x)

]
.

In Algorithm 1, we simplify notations usingH(t, x, θ, φ) := H(t, x, Vθ, αφ(t, x)).

Algorithm 1 GPI-PINN

Initialize admissible weights θ(0) for Vθ and φ(0) for αφ. Choose proportionality factors ξ1, ξ2 > 0
and set epoch k = 0.
repeat

Step 1: Update the value network Vθ(k+1) for a given control αφ(k) by minimizing the loss

θ(k+1) = argmin
θ

L1(θ, φ
(k)) , (9)

where
L1(θ, φ) = ξ1 E(t,x)∼µH2(t, x, θ, φ) + ξ2 Ex∼ν (Vθ(T, x)− F (x))2 (10)

Step 2: Update the control network αφ(k+1) for a given value network Vθ(k+1) by minimizing
the loss

φ(k+1) = argmin
φ

L2(θ
(k+1), φ) , (11)

where
L2(θ, φ) = −E(t,x)∼µH

(
t, x, θ, φ

)
(12)

k ← k + 1
until some convergence criterion is satisfied.
return Vθ(k) and αφ(k) and set k∗ ← k.
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The loss function L1 in (10) consists of two terms. The first represents the expected PIDE residual
in the interior of the space-time domain with respect to a suitable measure µ on [0, T ) ×D. The
second term penalizes violations of the terminal condition according to a measure ν on D. Hence,
L1 measures how well the function Vθ satisfies the controlled HJB equation (6) corresponding to a
control αφ. In every epoch k, the goal in Step 1 is therefore to find a parameter vector θ such that the
value network Vθ minimizes the error L1(θ, φ

(k)). We do this with a mini-batch stochastic gradient
method which updates the measures µ and ν according to the residual-based adaptive distribution
(RAD) method of Wu et al. (2023), as it is known to significantly improve the accuracy of PINNs. In
Step 2, we then minimize L2(θ

(k+1), φ) with respect to φ. This corresponds to choosing the control
αφ so as to maximize the extended HamiltonianH (or equivalentlyH); see Duan et al. (2023), Dupret
& Hainaut (2024) and Cohen et al. (2025) for theoretical convergence results supporting this approach.

Since the expectations in L1, L2 and the extended Hamiltonian (8) are typically not avail-
able in closed form, we replace them by sample-based estimates. First, we estimate H(t, x, θ, φ)
with Ĥ(t, x, θ, φ) by approximating the jump-expectation

EVθ(t, x+ γ(t, x, Z1, aφ(t, x))) ≈
1

J

J∑
j=1

Vθ(t, x+ γ(t, x, zj , aφ(t, x))) (13)

for points (zj)
J
j=1 in E sampled from the distribution Z of Z1. Then in every gradient step, we

approximate L1 and L2 by

L̂1(θ, φ
(k)) =

ξ1
M1

M1∑
m=1

(
Ĥ
(
tm, xm, θ, φ

(k)
))2

+
ξ2
M2

M2∑
m=1

(Vθ(T, ym)− F (ym))
2 (14)

and

L̂2(θ
(k+1), φ) = − 1

M1

M1∑
m=1

Ĥ
(
tm, xm, θ

(k+1), φ
)
, (15)

where (tm, xm)M1
m=1 ∈ [0, T ) ×D and (ym)M2

m=1 ∈ D are sampled from µ and ν, respectively. In
every epoch k = 0, . . . , k∗ − 1, we initialize θ(k)0 := θ(k) and make N1 gradient steps

θ
(k)
i+1 = θ

(k)
i − η1∇θL̂1(θ

(k)
i , φ(k)) = θ

(k)
i − 2η1ξ1

M1

M1∑
m=1

Ĥ
(
tm, xm, θ

(k)
i , φ(k))∇θĤ

(
tm, xm, θ

(k)
i , φ(k))

− 2η1ξ2
M2

M2∑
m=1

(
V
θ
(k)
i

(T, ym)− F (ym)
)
∇θVθ

(k)
i

(T, ym), (16)

i = 0, . . . , N1−1, to obtain θ(k+1) = θ
(k)
N1

. Then, we initialize φ(k)0 = φ(k) and performN2 gradient
steps

φ
(k)
i+1 = φ

(k)
i − η2∇φL̂2(θ

(k+1), φ
(k)
i ) = φ

(k)
i +

η2
M1

M1∑
m=1

∇φĤ
(
tm, xm, θ

(k+1), φ
(k)
i

)
, (17)

i = 0, . . . , N2 − 1, to get φ(k+1) = φ
(k)
N2

.

GPI-PINN then yields global approximations Vθ(k∗) and αφ(k∗) of the value function and
optimal control on the whole space-time domain [0, T ] × D. By using Proposition 3.1, it avoids
the computation of the gradients and Hessians appearing in the Hamiltonian. However, it still has
two drawbacks that make it inefficient for high-dimensional control problems with jumps. First,
it has to approximate the jump-expectations E

[
Vθ(tm, xm + γ(tm, xm, Z1, αφ(tm, xm)))

]
for all

sample points (tm, xm), m = 1, . . . ,M1, in each of the gradient steps (16)–(17) and for every
epoch k = 0, 1, . . . , k∗, see Eq. (13). Secondly, since the Hamiltonian is already a second-order
integro-differential operator, the gradient steps∇θĤ in (16) require the computation of third order
derivatives, which is numerically costly.

5



4 GPI-CBU

GPI-CBU addresses the shortcomings of GPI-PINN by using a value function updating rule based on
the expectation-free operator Gζ : [0, T ]×D × E × V ×A→ R given by

Gζ(t, x, z, v, a) := v(t, x) + ζ
[
∂tv(t, x) + f(t, x, a) + β>(t, x, a)∇xv(t, x)

+
1

2
Tr
[
σσ>(t, x, a)∇2

xv(t, x)
]
+ λ(t, x, a) (v(t, x+ γ(t, x, z, a))− v(t, x))

] (18)

for a scaling factor ζ ∈ R.
Proposition 4.1. Let Xα be a solution of the jump-diffusion equation (2) corresponding to a
feedback control α : [0, T ) × D → A with associated value function V α ∈ C1,2([0, T ] × D).
For given t ∈ [0, T ), let Yt be a D-valued random variable independent of Z1 such that
EG2

ζ(t, Yt, Z1, V
α, α(t, Yt)) < ∞. Then V α(t, Yt) = g(Yt) for the Borel measurable function

g : D → R minimizing the mean squared error

E
[(
g(Yt)−Gζ(t, Yt, Z1, V

α, α(t, Yt))
)2]

.

Proposition 4.1 suggests to update6 the value function parameters according to

θ(k+1) = argmin
θ

E
∫ T

0

(
Vθ(t, Yt)−Gζ

(
t, Yt, Z1, Vθ(k) , α(t, Yt)

))2
dt. (19)

By adding a penalty term enforcing the terminal condition, we obtain the recursive scheme

θ(k+1) = argmin
θ

L
(k)
1 (θ) (20)

for the loss

L
(k)
1 (θ)= ξ1E(t,x,z)∼µ⊗Z

(
Vθ(t, x)−Gζ(t, x, z, θ

(k), φ(k))
)2

+ ξ2Ex∼ν (Vθ(T, x)− F (x))2 ,

where we use the notation Gζ(t, x, z, θ, φ) := Gζ(t, x, z, Vθ, αφ(t, x)). To implement (20), we
approximate L

(k)
1 (θ) with

L̂ (k)
1 (θ) =

ξ1
M1

M1∑
m=1

(
Vθ(tm, xm)−Gζ

(
tm, xm, zm, θ

(k), φ(k)))2+ ξ2
M2

M2∑
m=1

(Vθ(T, ym)− F (ym))2 (21)

for (tm, xm, zm)M1
m=1 ∈ [0, T )×D × E sampled from µ⊗ Z and (ym)M2

m=1 ∈ D sampled from ν.
In every epoch k = 0, . . . , k∗ − 1, we initialize θ(k)0 = θ(k) and perform N1 gradient steps

θ
(k)
i+1 = θ

(k)
i − η1∇θL̂

(k)
1 (θ

(k)
i ) = θ

(k)
i − 2η1ξ2

M2

M2∑
m=1

(
V
θ
(k)
i

(T, ym)− F (ym)
)
∇θVθ

(k)
i

(T, ym)

− 2η1ξ1
M1

M1∑
m=1

(
V
θ
(k)
i

(tm, xm)−Gζ

(
tm, xm, zm, θ

(k)
0 , φ(k)))∇θVθ

(k)
i

(tm, xm) ,

(22)

i = 0, ..., N1 − 1, to obtain θ(k+1) = θ
(k)
N1

. To update the control network αφ, we next introduce the
operator

G(t, x, z, θ, φ) := ∂tVθ(t, x) + f(t, x, αφ(t, x)) + β>(t, x, αφ(t, x))∇xVθ(t, x)

+
1

2
Tr
[
σσ>(t, x, αφ(t, x))∇2

xVθ(t, x)
]
+ λ(t, x, αφ(t, x)) (Vθ(t, x+ γ(t, x, z, αφ(t, x)))− Vθ(t, x)) ,

which is an expectation-free version of the extended Hamiltonian H that, instead of the
jump-expectation EVθ(t, x + γ(t, x, Z1, aφ(t, x))), only contains a single jump Vθ(t, x +
γ(t, x, z, aφ(t, x))), z ∈ E. GPI-CBU updates the parameters of the control network αφ according to

φ(k+1) = argmin
φ

L
(k+1)
2 (φ)

6By (27), the update rule (19) corresponds to Vθ(k+1) = TαVθ(k) := Vθ(k) + ζH(·, Vθ(k) , α(·)) for the
continuous-time Bellman updating (CBU) operator Tα associated with the feedback control α and fixed point
TαV α = V α.
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for the loss

L
(k+1)
2 (φ) = −E(t,x,z)∼µ⊗Z G(t, x, z, θ(k+1), φ) = −E(t,x)∼µH(t, x, θ(k+1), φ).

We hence minimize the sample estimate

L̂
(k+1)
2 (φ) = − 1

M1

M1∑
m=1

G(tm, xm, zm, θ(k+1), φ) , (23)

by setting φ(k)0 = φ(k) and making N2 gradient steps

φ
(k)
i+1 = φ

(k)
i − η2∇φL̂

(k+1)
2 (φ

(k)
i ) = φ

(k)
i +

η2
M1

M1∑
m=1

∇φG(tm, xm, zm, θ(k+1), φ
(k)
i ), (24)

i = 0, . . . , N2 − 1, to obtain φ(k+1) = φ
(k)
N2

.

Algorithm 2 GPI-CBU

Initialize admissible neural weights θ(0) for Vθ and φ(0) for αφ. Choose learning rates η1, η2,
proportionality factors ξ1, ξ2 and numbers of gradient steps N1, N2. Set epoch k = 0.
repeat

Step 0: GenerateM1 sample points (tm, xm, zm) ∈ [0, T )×D×E from µ⊗Z andM2 sample
points ym ∈ D from ν.
Step 1: Update Vθ(k+1) by minimizing the loss (21)

θ(k+1) = argmin
θ

L̂
(k)
1 (θ) ,

with N1 gradient steps (22).
Step 2: Update αφ(k+1) by minimizing the loss (23)

φ(k+1) = argmin
φ

L̂
(k+1)
2 (φ) ,

with N2 gradient steps (24).
k ← k + 1

until some convergence criterion is satisfied.
return Vθ(k) and αφ(k) and set k∗ ← k.

Like GPI-PINN, GPI-CBU leverages Proposition 3.1 to bypass the computation of the gradients
∇xVθ and Hessians ∇2

xVθ. In addition, it avoids the costly computation of the jump-expectations
E
[
Vθ
(
tm, xm+γ(tm, xm, Z1, αφ(tm, xm))

)]
at each sample point (tm, xm),m = 1, . . . ,M1. Also,

when updating the value network using (22), it does not have to compute third-order derivatives
like (16) since only ∇θVθ is needed. This relates to the value update rule (19) of GPI-CBU being
recursive as Gζ now depends explicitly on the value weights θ(k) computed at the previous epoch, in
contrast to the residual-based GPI-PINN. On the other hand, since GPI-PINN averages over different
jumps in each update, it exhibits more stable convergence than GPI-CBU; see the numerical results
in Section 5 below. The proportionality factors ξ1, ξ2 and the scaling factor ζ are hyperparameters. ξ1
and ξ2 can be fine-tuned following Wang et al. (2022). While Proposition 4.1 holds for any scaling
factor ζ ∈ R, its choice has an influence on the numerical performance of GPI-CBU. In the numerical
experiments of this paper, we set ζ = 1 as it provides a good trade-off between convergence speed
and accuracy of the improvements in GPI-CBU. On the other hand, negative scaling factors always
failed to converge to the true solutions with exploding losses L̂

(k)
1 and L̂

(k)
2 after only a few epochs.

Alternatively, one could consider an adaptive scaling factor ζk > 0 depending on the epoch k. More
details on hyperparameter fine-tuning are given in Appendix B. Finally, we emphasize that the policy
updating rule of GPI-CBU (24) is equivalent to that of GPI-PINN (17), except that it circumvents the
computation of the jump-expectations in Ĥ as it is now based on the expectation-free operator G.
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5 Numerical experiments

In our numerical experiments, we choose the DGM architecture of Sirignano & Spiliopoulos (2018)
for both the value and optimal control networks, as it has been shown to empirically improve the
PINN performance. Details on the network design and hyperparameters are given in Appendix B.

5.1 Linear-quadratic regulator with jumps

We first consider the linear-quadratic regulator (LQR) problem with jumps

inf
α

E

[∫ T

0

c1 ‖αs‖22 ds+ c2‖Xα
T ‖22

]
, (25)

where the infimum is over d-dimensional predictable processes (αt)0≤t≤T andXα is a d-dimensional
process with controlled dynamics

dXα
t = αt dt+Σ dWt + d

Mα
t∑

j=1

Zj , X0 = x ∈ Rd , (26)

for a d × d matrix Σ, a d-dimensional Brownian motion W , a Poisson process Mα with intensity
λαt = Λ1 + Λ2‖αt‖22 for Λ1,Λ2 ≥ 0 and independent i.i.d. mean-zero square integrable
d-dimensional random vectors Zj with E[‖Zj‖22] = υ, j = 1, 2, . . . This problem admits a closed-
form solution (see Appendix C), which provides a benchmark for our two numerical algorithms.
We report their mean absolute errors with respect to the true solutions V and α∗, defined as
MAEV = 1

M

∑M
i=1 |Vθ(k∗)(ti, xi)−V (ti, xi)| and MAEα = 1

M

∑M
i=1 ‖αφ(k∗)(ti, xi)−α∗(ti, xi)‖2

on a test set of size M uniformly sampled from [0, 1]× [−2.5, 2.5]d.

Figure 1 compares MAEV and runtimes of GPI-PINN and GPI-CBU as functions of the
number of epochs k for 10-dimensional (d = 10) LQR problems (25) with and without jumps. It can
be seen that GPI-PINN and GPI-CBU exhibit similar convergence in the number of epochs. The
residual-based approach of GPI-PINN makes it more stable than GPI-CBU; see also Baird (1995).
On the other hand, GPI-CBU has a lower computational cost. This is already the case without jumps
(left plot of Figure 1) since it avoids the numerical evaluation of third-order derivatives but becomes
much more significant with jumps (right plot of Figure 1) as it also circumvents the numerical
integration of the jumps.

Figure 1: Comparison of MAEV (blue) and runtime in seconds (green) of GPI-PINN (solid line) and GPI-CBU
(dashed line) for a 10-dimensional LQR problem without jumps (left) and with jumps (right).

Figure 2 shows results of GPI-CBU applied to a 50-dimensional LQR problem with jumps compared
to the analytical solution (30)-(33). While GPI-PINN is inefficient for this problem, GPI-CBU
achieves high accuracy in the approximation of the value function as well as the optimal policy.
Additional results for up to 150-dimensional LQR problems are reported in Appendix C.

8



Figure 2: Value function V (t, x) (left) and first component of the optimal control α∗
1(t, x) (right) at t = 0 for

x = (x1, 0, . . . , 0) with x1 ∈ [−2.5, 2.5] for a 50-dimensional LQR problem with jumps. Orange dotted line:
numerical results of GPI-CBU with ±1 standard deviation given by orange shaded area. Blue line: analytical
solution (30)–(33).

Figure 3: logMAEV of different deep-learning
methods for a 10-dimensional LQR problem with
jumps.

Figure 3 shows the accuracy of GPI-CBU on a 10-
dimensional LQR problem with jumps compared with
the two popular model-free RL algorithms PPO and SAC
as well as the model-based discrete-time approach of Han
& E (2016) applied to a time-discretization of the state
dynamics (26). It can be seen that in this setup, PPO
and SAC cannot compete with the two model-based ap-
proaches since they do not explicitly use the dynamics
(26) but instead solely rely on sampling from the envi-
ronment. The method of Han & E (2016) outperforms
PPO and SAC but does not achieve the same accuracy as
GPI-CBU due to discretization errors and since it does not
generalize well to unseen points in the test set. Trying to
cover the space-time domain well, we ran the method of
Han & E (2016) from several randomly sampled starting
points x0 ∈ D. But being a local method, it tends to learn
the optimal control only along the optimal state trajecto-
ries (t,Xα∗

t )0≤t≤T , which results in poor performance
in parts of the space-time domain that are not explored
well. Additional results are discussed in Appendix C.

5.2 Optimal consumption-investment with jumps

As a second example, we consider an economic agent who consumes at rate ct and invests in n
financial assets according to a strategy7 (π1

t , . . . , π
n
t ) so as to maximize

E

[∫ T

0

e−ρsu(csY
α
s )ds+ e−ρTU(Y α

T )

]
for two utility functions8 u,U : R+ → R, where Y α

t is the wealth process evolving like

dY α
t

Y α
t−

=

(
rt +

n∑
i=1

πi
t(µ

i − rt)− ct

)
dt+

n∑
i=1

πi
t

√σi
t Σ

>
S,i dWt + d

Mi
t∑

j=1

(
eZ

i
j − 1

)
for a stochastic interest rate rt, expected return rates µi, stochastic volatilities σi

t and stochastic
jump intensities λit whose dynamics are given in Appendix D.2 below. We consider strategies of the
form πi(t, σt, λt, rt, Y

α
t−) and c(t, σt, λt, rt, Y α

t−). This problem has d = 2n+2 state variables. The
corresponding HJB equation, given in (42) in Appendix D.2, does not have an analytical solution,
but Figure 4 shows that GPI-CBU converges numerically. More details about this consumption-
investment problem with stochastic coefficients are provided in Appendix D.2.

7πi
t describes the fraction of the agent’s total wealth held in the ith asset at time t.

8In our numerical experiments, we choose CRRA utility functions.
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In Appendix D.1, we also consider a simplified version of the problem where the coefficients rt, σi
t, λ

i
t

are constant. This case can be reduced to a 1-dimensional ODE that can be solved with a standard
Runge–Kutta scheme to obtain reference solutions. GPI-CBU generates results that are virtually
indistinguishable from the Runge–Kutta results.

Figure 4: Losses L̂ (k)
1 (θ(k+1)) (left) and L̂ (k)

2 (φ(k+1)) (right) of GPI-CBU as a function of the epoch k. The
blue curve in the left plot represents the interior loss of L̂ (k)

1 and the orange curve its boundary part, see Eq.
(21).

6 Conclusions, limitations and future work

In this paper, we have introduced two iterative deep learning algorithms for solving finite-horizon
stochastic control problems with jumps. Both use an actor-critic architecture and train two neural
networks to approximate the value function and optimal control, providing global solutions over
the entire space-time domain without requiring simulation or discretization of the underlying state
dynamics. Our first algorithm, GPI-PINN, works well for high-dimensional problems without jumps
but becomes computationally infeasible in the presence of jumps. The second algorithm, GPI-CBU,
leverages an efficient expectation-free iteration based on Proposition 4.1 which makes it particularly
well-suited for high-dimensional problems with jumps. Both algorithms are model-based. As such,
they outperform model-free RL methods in cases where the underlying state dynamics are known. The
accuracy and scalability of the two algorithms has been demonstrated in different numerical examples.

A limitation of our approach lies in the need to know the underlying dynamics of the state
process, which are not always available in real-world applications. While it is reasonable to assume
that physical systems obey known laws of motion, dynamics in economics and finance typically need
to be inferred from data. However, in such cases, they can be learned in a preliminary step using e.g.
recent model-learning algorithms such as Brunton et al. (2016) or Champion et al. (2019). Once
an approximate model has been learned from data, one of the proposed algorithms, GPI-PINN or
GPI-CBU, can be applied to efficiently solve the resulting stochastic control problem.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


A Proofs

A.1 Proof of Proposition 3.1

Letting v(·) = v
(
t+ h2

2n , x+
h√
2
σi(t, x, a) +

h2

2nβ(t, x, a)
)

, the second-order derivative of ψ(h) :=∑n
i=1 v(·) is given by

ψ′′(h) =

n∑
i=1

(
∂2
ttv(·)

h2

n2
+
h

n
[∇txv(·)]>

(
σi(t, x, a)√

2
+
h

n
β(t, x, a)

)
+

1

n
∂tv(·) +

1

n
[∇xv(·)]>β(t, x, a)

+

(
σi(t, x, a)√

2
+
h

n
β(t, x, a)

)>
∇2

xv(·)
(
σi(t, x, a)√

2
+
h

n
β(t, x, a)

)
+ [∇txv(·)]>

(
σi(t, x, a)√

2
+
h

n
β(t, x, a)

)
h

n

)
.

Evaluating it at h = 0 gives

ψ′′(0) = ∂tv(t, x) + [∇xv(t, x)]
>
β(t, x, a) +

1

2
Tr
[
σσ>(t, x, a)∇2

xv(t, x)
]
,

which proves the proposition.

A.2 Proof of Proposition 4.1

Since Yt is independent of Z1, one obtains from the definition of Gζ that

E[Gζ(t, Yt, Z1, V
α, α(t, Yt)) | Yt = x] = V α(t, x) + ζ

(
∂tV

α(t, x) + f(t, x, α(t, x))

+ β>(t, x, α(t, x))∇xV
α(t, x) +

1

2
Tr
[
σσ>(t, x, α(t, x))∇2

xV
α(t, x)

]
+ λ(t, x, α(t, x))E [V α(t, x+ γ(t, x, Z1, α(t, x)))− V α(t, x)]

)
= V α(t, x) + ζH(t, x, V α, α(t, x)) (27)

= V α(t, x),

where the last equality follows from Theorem 2.1. On the other hand, it is well known that

E[Gζ(t, Yt, Z1, V
α, α(t, Yt)) | Yt] = g(Y )

for the Borel measurable function g : D → R minimizing the mean squared error

E
[(
g(Yt)−Gζ(t, Yt, Z1, V

α, α(t, Yt))
)2]

;

see e.g. Theorem 4.1.15 of Durrett (2019). This concludes the proof.

B DGM Architecture

Figure 5: DGM architecture for the value neural network with L = 3 (i.e. 4 hidden layers).
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Each DGM layer in Figure 5 for the value network Vθ is as follows

S1 = σV
(
W 1 · (t, x) + b1

)
,

Z` = σV
(
Uz,` · (t, x) +W z,` · S` + bz,`

)
, ` = 1, . . . , L,

G` = σV
(
Ug,` · (t, x) +W g,` · S1 + bg,`

)
, ` = 1, . . . , L,

R` = σV
(
Ur,` · (t, x) +W r,` · S` + br,`

)
, ` = 1, . . . , L,

H` = σV
(
Uh,` · (t, x) +Wh,` ·

(
S` �R`

)
+ bh,`

)
, ` = 1, . . . , L,

S`+1 =
(
1−G`

)
�H` + Z` � S`, ` = 1, . . . , L,

Vθ(t, x) = σVout

(
W · SL+1 + b

)
,

where the number of hidden layers is L+ 1, and � denotes element-wise multiplication. The DGM
parameters for the value network are

θ =
{
W 1, b1,

(
Uz,`,W z,`, bz,`

)L
`=1

,
(
Ug,`,W g,`, bg,`

)L
`=1

,(
Ur,`,W r,`, br,`

)L
`=1

,
(
Uh,`,Wh,`, bh,`

)L
`=1

,W, b
}
.

The number of units in each layer is N . σV : RN → RN is a twice-differentiable element-wise
nonlinearity and σVout

: RN → V is the output activation function, also twice-differentiable, where
V ⊆ R is chosen such as to satisfy possible restrictions on the value function’s output, inferred
from the form of the stochastic control problem (e.g. non-negative value function). The control
network is designed following the same DGM architecture with σαout

: RN → A. Throughout the
numerical examples of the paper, we consider L = 3, each one with N = 50 neurons, see Figure 5.
For the value network, we use tanh as the activation function σV and softplus for σVout . For the
control network, we adopt tanh for σα, while the output activation σαout is linear in Example 5.1 and
sigmoid in Example 5.2.

Unless otherwise stated, we take a number of sample points M1,M2 equal to 256, a num-
ber of gradient steps N1, N2 equal to 64, and a maximum number of epochs k∗ ← min{k∗, 1500}.
In practice, we sample a new batch of size M1 +M2 at each gradient step for Step 1 and 2 of
Algorithms 1 and 2, covering a total batch size of (N1 +N2)(M1 +M2) per epoch k. The network
parameters are then updated using the Adaptive Moment Estimation with constant learning rates
η1, η2 equal to 0.001. For both GPI-PINN and GPI-CBU, the algorithms are fairly robust to these
choices. In our setting, the most critical hyperparameters for convergence are then the proportionality
factors ξ1, ξ2, which we determined using the approach of Wang et al. (2022), together with the
scaling rate ζ (specific to GPI-CBU). In our experiments, we set ζ = 1 as it provides a good trade-off
between convergence speed and accuracy of the improvements in GPI-CBU. Alternatively, one
could consider an adaptive scaling factor ζk depending on the epoch k, similarly to learning rate
schedules. On the other hand, we observe that negative scaling factors always fail to converge to the
true solutions with exploding losses L̂

(k)
1 and L̂

(k)
2 after only a few epochs. Finally, Algorithms 1

and 2 are implemented using TensorFlow and Keras, which are software libraries in Python with
reverse mode automatic differentiation. GPU acceleration has been used on a NVIDIA RTX 4090.

C Linear-quadratic regulator with jumps: detailed results

The value function for the LQR problem with jumps (25) is given by

V (t, x) = inf
α

E

[∫ T

0

c1 ‖αs‖22 ds+ c2‖Xα
T ‖22

∣∣∣Xα
t = x

]
. (28)

The corresponding HJB equation is

0 = ∂tV (t, x) +
1

2
Tr
[
ΣΣ>∇2Vx(t, x)

]
+ inf

a∈Rd

{
c1‖a‖22

+ (Λ1 + Λ2‖a‖22)E [V (t, x+ Z1)− V (t, x)] + a>∇xV (t, x)
} (29)
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with terminal condition V (T, x) = c2‖x‖22. It is straightforward to show using the verification
Theorem 2.2 with HJB equation (29) and the Ansatz

V (t, x) =
1

2
h(t)‖x‖22 + g(t) , (30)

that g satisfies

g(t) =
1

2

(
Tr[ΣΣ>] + Λ1υ)

∫ T

t

h(s)ds , (31)

where h solves the non-linear ordinary differential equation

h′(t) =
h2(t)

2c1 + h(t)υΛ2
, h(T ) = 2c2 , (32)

which can be computed efficiently using a numerical method such Runge–Kutta of order 5(4)
(Dormand & Prince, 1980). The optimal control α∗ is then given by

α∗(t, x) = − h(t)x

2c1 + h(t)υΛ2
. (33)

In the constant intensity case Λ2 = 0,Λ1 > 0, (31) and (32) simplify to

h(t) =
2c1c2

c1 + c2(T − t)
and g(t) = (Tr[ΣΣT ] + Λ1v) c1

(
ln(

c2
c1

(T − t) + 1)

)
.

In this section, we assume for each jump size Zj ∼ Nd(0d,ΣJ), with ΣJ ∈ Rd×d. Hence, we
sample according to Z being a Gaussian distribution the M3 points z(m)

j of GPI-PINN for each
(tm, xm), m = 1, . . . ,M1, and the M1 points zm of GPI-CBU, see Section 4. Moreover, the
frequencies with which various states appear in the sample should be roughly proportional to the
probabilities of their occurrence under an optimal policy (Bachouch et al., 2022). As one can guess
from (28), it is optimal to drive the process Xα towards 0. Therefore, since µ(t, x) = µ(x | t)µ(t),
we assume µ(t) ∼ U[0,T ] and µ(x | t) ∼

√
tNd(0d, Id) to generate the values of x and t. Similarly,

ν(x) ∼
√
T Nd(0d, Id). We then use as parameters of the LQR: T = 1, c1 = 1, c2 = 0.25 and each

element of Σ, ΣJ is sampled from U[0,1].

The three following Figures 6-7-8 are obtained with GPI-CBU in d = 50 dimensions under
the constant intensity case Λ1 = 0.25, Λ2 = 0.

Figure 6: Value function V (t, x) (left) and first component of the optimal control α∗
1(t, x) (right)

at t = 0 for x = (x1, 0, . . . , 0) with x1 ∈ [−2.5, 2.5]. Orange dotted line: numerical results of
GPI-CBU with ±1 standard deviation given by orange shaded area (k∗ = 1500, Λ2 = 0). Blue line:
analytical solution (30)-(33).
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Figure 7: Value function V (t, x) (left) and first component of the optimal control α∗
1(t, x) (right) at

x = 150 with t ∈ [0, 1]. Orange dotted line: numerical results from GPI-CBU with ± one standard
deviation in orange shaded area (k∗ = 1500, Λ2 = 0). Blue line: analytical solution (30)-(33).

Figure 8: Heatmaps of MAEV (left) and MAEα (right) for t ∈ [0, 1] and for x = (x1,149) with
x1 ∈ [−2.5, 2.5], obtained from GPI-CBU for the LQR problem with Λ2 = 0.

We now consider in the following results the controlled intensity case with Λ1 = 0,Λ2 = 2, using
the same parameters and sampling procedure as above. Since the intensity now also depends on the
control, GPI-PINN becomes even more computationally intensive than in the constant intensity case
and of no practical interest in the presence of jumps. Consequently, in the following Figures 9–10
(and 2), we again focus exclusively on GPI-CBU for a 50-dimensional LQR problem.

Figure 9: Value function V (t, x) (left) and first component of the optimal control α∗
1(t, x) (right) at

x = 150 with t ∈ [0, 1]. Orange dotted line: numerical results from GPI-CBU with ± one standard
deviation in orange shaded area (k∗ = 1500, Λ1 = 0). Blue line: analytical solution (30)–(33).
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Figure 10: Heatmaps of MAEV (left) and MAEα (right) for t ∈ [0, 1] and for x = (x1,149) with
x1 ∈ [−2.5, 2.5], obtained from GPI-CBU for the LQR problem with Λ1 = 0.

These results further validate the accuracy of GPI-CBU, even when considering a controlled intensity
for the jump process. As expected, the optimal control α∗

1 is lower in magnitude compared to the
constant intensity setting, since it increases the intensity and thus the likelihood of jumps, while the
optimal strategy still consists in driving Xα towards 0. Again, higher MAEV and MAEα metrics,
computed from (30)–(33), tend to occur at the boundaries of the domain, see Figure 10.

Finally, you can find below a table summarizing higher-dimensional results for GPI-CBU in the
LQR setting with controlled intensity after k∗ = 5000 epochs. This illustrates the scalability of the
approach.

Dimensions d MAEV MAEα Loss L1 Loss L2 Time (sec.)
5 0.0023 0.0041 0.0237 -0.1332 6,410

10 0.0025 0.0049 0.0314 -0.1972 8,093
50 0.0147 0.0075 0.1267 -0.4206 16,129

100 0.0492 0.00539 0.6970 -0.4461 24,359
150 0.0979 0.0096 3.7210 -0.4671 33,120

Table 1: GPI-CBU’s performance metrics in function of the state dimension d for the LQR example
with controlled intensity after k∗ = 5000 epochs.
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D Optimal consumption-investment problem

D.1 Constant coefficients

We first study the optimal consumption-investment problem with constant coefficients, where we
assume the risk-free asset evolves according to

dS0
t = rS0

t dt , (34)

for a constant interest rate r ∈ R, and with n stocks whose price follows for i = 1, . . . , n,

dSi
t

Si
t−

= µidt+Σ>
i dWt + d

Mi
t∑

j=1

(
eZ

i
j − 1

)
(35)

for some constants µi ∈ R, Σi ∈ Rn, correlated9 n-dimensional Brownian motions W , inde-
pendent Poisson processes M i with constant intensities λi ≥ 0 and i.i.d. normal random vectors
Zi
1, Z

i
2, ..., Z

i
Mi

t
∼ N (µi

Z , σ
i
Z) with µi

Z ∈ R, σi
Z ∈ R+. Suppose an investor starts with an initial

endowment of Y0 > 0, consumes at rate ctY α
t− and invests in the n stocks according to πi

tY
α
t−,

i = 1, . . . n. If the risk-free asset is used to balance the transactions, the resulting wealth evolves
according to

dY α
t

Y α
t−

=

(
r +

n∑
i=1

πi
t(µ

i − r)− ct

)
dt+

n∑
i=1

πi
t

Σ>
i dWt + d

Mi
t∑

j=1

(
eZ

i
j − 1

) . (36)

Let us assume she attempts to optimize

E

[∫ T

0

e−ρsu(csY
α
s )ds+ U(Y α

T )

]
,

for two utility functions u,U : R+ → R and ρ ∈ R. Since the driving noise in (36) has stationary
independent increments, it is enough to consider strategies of the form ct = c(t, Y α

t−) and πi
t =

πi(t, Y α
t−) for functions c, πi : [0, T )× R+ → (0, 1), i = 1, . . . , n. This n+ 1-dimensional control

is then written αt = (π1
t , . . . , π

n
t , ct)

>∈ A := (0, 1)n+1. Assuming constant relative risk aversion
(CRRA) utility functions u,U with γ ∈ (0, 1), the reward functional is then denoted

V α(t, y) = E

[∫ T

t

e−ρ(s−t) (csY
α
s )

γ

γ
ds+

(Y α
T )

γ

γ

∣∣∣Y α
t = y

]
. (37)

Finally, writing µ = (µ1, . . . , µn)>, µZ = (µ1
Z , . . . , µ

n
Z)

>, σZ = (σ1
Z , . . . , σ

n
Z)

>, λ =
(λ1, . . . , λn)>, π = (π1, . . . , πn)>, the associated HJB equation for the value function V (t, y) =
supα V

α(t, y) satisfies10 for all (t, y) ∈ [0, T )× R+,

0 =∂tV (t, y)− ρV (t, y) + sup
(c,π)∈A

{
(r + (µ− r)>π − c) y ∂yV (t, y)

+
1

2
π>ΣΣ>π y2 ∂2yyV (t, y) +

n∑
i=1

λiE
[
V (t, y + y πi(eZ

i
1 − 1))− V (t, y)

]
+

(cy)γ

γ

}
,

(38)

with V (T, y) = yγ/γ. This stochastic control problem does not admit an analytical solution but
we can instead characterize its solution in terms of a PIDE, so as to assess the accuracy of the
proposed Algorithms 1 and 2. Following Øksendal & Sulem (2007), we assume the following form
V (t, y) = A(t)yγ/γ for the value function. First order condition on the HJB equation (38) then

9Note that Σ = (Σ1, . . . ,Σn)
>∈ Rn×n can be seen as the upper Choleski decomposition of the correlation

matrix ΣΣ> of the Brownian motion W .
10Note that the term −ρV (t, y) in (38) is not contained in our general HJB equation (4). But GPI-PINN and

GPI-CBU still work if it is added.
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implies that optimal fractions of wealth is a vector of constants π∗(t, y) = π∗ := (π1,∗, . . . , πn,∗)>

satisfying

(µ− r)> +ΣΣ>π∗(γ − 1) +

n∑
i=1

λi E
[(

1 + πi,∗(eZ
i
1 − 1)

)γ−1 (
eZ

i
1 − 1

)]
= 0 , (39)

and the optimal consumption rate c∗ is independent from the wealth y and given by

c∗(t, y) = A(t)1/(γ−1) . (40)

Plugging back these optimal controls inside the HJB equation (38), we find that the function A(t)
satisfies the ODE

∂tA(t)

A(t)
= ρ−γ

(
r + (µ− r)>π∗ −A(t)1/(γ−1)

)
− 1

2
γ(γ − 1)π∗>ΣΣ>π∗

−
n∑

i=1

λiE
[(

1 + πi,∗(eZ
i
1 − 1)

)γ
− 1
]
−A(t)1/(γ−1),

(41)

with A(T ) = 1, which can be solved numerically using again the Runge–Kutta method of order
5(4). For both Algorithms 1 and 2, we sample the time and space points independently from the
uniform distributions U[0,T ] and U[0,yb], respectively. The parameters of the optimal investment
problem below are as follows: T = 1, yb = 150, r = 0.02, ρ = 0.045, γ = 0.3, λ = 0.45 · 1n, µZ =
0.25 · 1n, σZ = 0.2 · 1n, µ = 0.032 · 1n,ΣΣ

> = 0.2 · 1n×n with diag(ΣΣ>) = 1n. Note that,
compared to the LQR problem in Section 5.1, the proportionality factor ξ is now set to 10. Moreover,
since A = (0, 1)n+1, σαout

is chosen to be the sigmoid activation function. Instead of the DGM
architecture, we here train a classical feedforward neural network with 4 hidden layers, each of 128
neurons. Finally, the MAEV and MAEα metrics are again defined as in Section 5.1 on a test set of
size M , uniformly sampled from [0, 1] × [0, yb] with V and α∗ obtained from the RK45 method
described above.

We again compare in Figure 11 the MAEV and runtime between GPI-PINN and GPI-CBU
in function of the number of epochs k for n = 10 stocks in the consumption-investment problem
(37) with and without jumps. We again see that the residual-based GPI-PINN Algorithm 1 tends to
be more stable and accurate for larger epochs, despite having a higher runtime. When accounting
for jumps in the dynamics (36), GPI-PINN becomes numerically very time-consuming, even for a
10-dimensional control problem. This issue is even amplified compared with the LQR problem (see
Figure 1), as the jump size now depends on the control π in the wealth dynamics (36). In contrast,
GPI-CBU again handles these jumps far more efficiently.

Figure 11: Comparison of the MAEV (blue) and the runtime in seconds (green) between GPI-PINN
(solid line) and GPI-CBU (dashed line) in function of the number of epochs k for the optimal
consumption-investment problem without jumps (left) and with jumps (right) for n = 10 stocks.

We then address a 50-dimensional optimal consumption-investment problem with jumps, where only
GPI-CBU is implemented as GPI-PINN becomes numerically infeasible. Figures 12 and 13 again
confirm the accuracy of GPI-CBU for both the value function and the optimal consumption rate c∗(t),
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with the standard deviation across 10 independent runs of GPI-CBU being virtually imperceptible.
The optimal wealth allocations π∗, being constant, are not depicted. However, the MAEα heatmap in
Figure 14 corroborates our method’s accuracy in determining both c∗ and π∗. We also observe in this
Figure 14 that the higher absolute errors tend to occur at the boundaries of the domain.

Figure 12: Value function V (t, y) at t = 0 for y ∈ [0, 150] (left) and at y = 50 for t ∈ [0, 1] (right),
with n = 50 stocks. Orange dotted line: numerical results from GPI-CBU with ± one standard
deviation in orange shaded area (k∗ = 1000). Blue line: numerical solution from the Runge-Kutta
scheme applied to (40)-(41).

Figure 13: Optimal consumption rate c∗(t) for t ∈ [0, 1]. Orange dotted line: numerical results from
GPI-CBU with ± one standard deviation in orange shaded area (k∗ = 1000). Blue line: numerical
solution from the Runge-Kutta scheme applied to (40)-(41).

Figure 14: Heatmaps of MAEV (left) and MAEα (right) for t ∈ [0, 1] and for y ∈ [0, 150], obtained
from GPI-CBU for the optimal consumption-investment problem with constant coefficents.
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D.2 Stochastic coefficients

We then study a more complex optimal consumption-investment problem in a realistic market of the
form (34)–(35) with a stochastic interest rate

drt = ar(bt − rt)dt+ νr
√
rt Σ

>
r dWt,

with stochastic (Heston) volatility models for the n stock prices

dSi
t

Si
t−

= µidt+
√
σi
t Σ

>
S,i dWt + d

Mi
t∑

j=1

(
eZ

i
j − 1

)
,

dσi
t = aiσ(b

i
σ − σi

t) + νiσ

√
σi
t Σ

>
σ,i dWt,

and with stochastic jump intensities

dλit = aiλ(b
i
λ − λit) + νiλ

√
λit Σ

>
λ,i dWt .

Note that Σ = (ΣS,1, . . . ,ΣS,n,Σσ,1, . . . ,Σσ,n,Σλ,1, . . . ,Σλ,n,Σr)
> ∈ R(3n+1)×(3n+1) is the (up-

per) Choleski decomposition of the correlation matrix ΣΣ> associated with the (3n+1)-dimensional
Brownian motions W . In this case, the wealth process can still be described as follows

dY α
t

Y α
t−

=

(
rt +

n∑
i=1

πi
t(µ

i − rt)− ct

)
dt+

n∑
i=1

πi
t

√σi
t Σ

>
S,i dWt + d

Mi
t∑

j=1

(
eZ

i
j − 1

) ,
and the strategies should be of the form c(t, σt, λt, rt, Y

α
t−) and πi(t, σt, λt, rt, Y

α
t−), with αt =

(π1
t , . . . , π

n
t , ct)

> ∈ A := (0, 1)n+1. Hence, denoting the (2n + 2)-dimensional process Xα
t =

(σt, λt, rt, Y
α
t−), its dynamics are given by

dXα
t = µX(t,Xα

t )dt+ΣX(t,Xα
t )dWt + γX(t,Xα

t ) d

n∑
i=1

Mi
t∑

j=1

(
eZ

i
j − 1

)
,

where

µX(t,Xα
t ) =

 aσ(bσ − σt)
aλ(bλ − λt)
ar(br − rt)

Y α
t−(rt + (µ− rt)

>πt − ct)

 , ΣX(t,Xα
t ) =


νσ

√
σt Σ

>
σ

νλ
√
λt Σ

>
λ

νr
√
rt Σ

>
r

Y α
t−
∑n

i=1 π
i
t

√
σi
t Σ

>
S,i

 ,

and

γX(t,Xα
t ) =

 0n

0n

0
Y α
t−π

>
t 1n

 ,

with µX(·) ∈ R2n+2,ΣX(·) ∈ R(2n+2)×(3n+1)
+ and γX(·) ∈ R2n+2. Therefore, the value function

V (t, x) = sup
α

E

[∫ T

t

e−ρ(s−t) (csY
α
s )

γ

γ
ds+

(Y α
T )

γ

γ

∣∣∣Xα
t = x

]
,

satisfies the following HJB equation for all (t, x) ∈ [0, T )× Rn
+ × Rn

+ × R× R+,

0 = ∂tV (t, x)− ρV (t, x) + sup
(c,π)∈A

{
µ>
X(t, x)∇xV (t, x) +

1

2
Tr
[
ΣX(t, x)Σ>

X(t, x)∇2
xV (t, x)

]
+

n∑
i=1

λi E
[
V (t, σ, λ, r, y + y πi(eZ

i
1 − 1))− V (t, x)

]
+

(cy)γ

γ

}
, (42)

with terminal condition V (T, x) = yγ/γ. We consider a portfolio of n = 25 stocks, resulting in a
52-dimensional value function and a 26-dimensional control process, with the same parameters as in
Section D.1. This version of the consumption-investment problem is significantly more complex
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than the one discussed in Section D.1, with the value function’s dimensionality increasing from 2 to
52. Consequently, the RK45 numerical method can no longer serve as a reference point to solve
the associated HJB equation (42), making it impossible to compute the MAEV and MAEα metrics.
However, despite this lack of a reference for comparison, GPI-CBU still produces results that appear
reasonable. We indeed first observe in Figure 4 (main manuscript) that the losses L̂

(k)
1 (21) and

L̂
(k)
2 (23) converge as the number of epoch k increases. Note that the orange curve in the left plot

represents the interior loss (first right-hand term) of L̂
(k)
1 , while the blue curve is the boundary loss

(second right-hand term) of L̂
(k)
1 , see Eq. (21).

The following Figures 15 and 16 confirm that the results from GPI-CBU for both the value
function and the optimal control are reasonable, as they closely resemble those from Figures 12
and 13. For the value functions of Figure 15, the standard deviations across 10 independent runs
of GPI-CBU remain very low, confirming the stability of the approximations. For the optimal
consumption rate in Figure 16 (left plot), the standard deviation across the 10 runs tends to be higher
for values of time t close to 0, although being still reasonable. Finally, varying the first dimension of
the intensity λ1 mainly impacts the corresponding fraction of wealth π1,∗

t , while its effect on the
other proportions and consumption rate is more moderate (since arising from the correlation matrix
ΣΣT of the Brownian motion W ).

Figure 15: Value function V (t, x) at t = 0 for x = (0.15 · 110,110, 0.02, y) with y ∈ [0, 150]
(left) and at x = (0.15 · 110,110, 0.02, 50) for t ∈ [0, 1] (right). Blue line: numerical results from
GPI-CBU with ± one standard deviation in orange shaded area (k∗ = 1000).

Figure 16: Left plot: optimal consumption rate c∗(t, x) at x = (0.15 ·110,110, 0.02, 50) for t ∈ [0, 1]
with numerical results from GPI-CBU in blue line and ± one standard deviation in orange shaded
area (k∗ = 1000). Right plot: optimal consumption rate c∗(t, x) and first five optimal fractions of
wealth π∗(t, x) at t = 0 and x = (0.15 · 110, λ

1,19, 0.02, 50) for λ1 ∈ [0, 5].
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