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Abstract

We aim to establish connections between diffusion-based sampling, optimal transport, and
optimal (stochastic) control through their shared links to the Schrödinger bridge problem.
Throughout, we highlight the importance of having a reference measure on the path space
for the design of a valid objective function that can be used to transport ν to µ, consequently
sample from the target µ, via (optimally) controlled dynamics.

1 Introduction

Traditionally, the task of sampling from un-normalized density is largely delegated to MCMC methods.
However, modern machine learning developments in optimal transport and generative modeling have greatly
expanded the toolbox we have available for performing such tasks, which can further benefit from powerful
advancements in neural networks. It holds promise for sampling from high-dimensional and multimodal
distributions compared to MCMC-based alternatives. In this work, we propose control objectives that are
amenable to tractable approximation (without access to data from the target, as classically considered in
the MCMC literature) for sampling purpose. The central object for this synthesis will be forward-backward
SDEs via time-reversals.

2 General Framework

In this section we put several recently proposed (and diffusion-inspired) methods in context, rendering them
as special instantiations of a more unifying path-wise picture. We loosely follow the framework put forth in
Vargas & Nüsken (2023) for some parts.

2.1 Goal and Setup

We are interested in sampling from ptarget(x) = µ(x)/Z by minimizing certain tractable loss, assuming
sampling from ν(z) is easy, but unlike in generative modeling, even though analytical expression for µ is
readily available, we do not have access to data from it that can be used to learn the score function. In
this sense, in terms of “transport mapping", the two sides are crucially not symmetric. More specifically,
the following represents a coupling between pprior(z) = ν(z) and ptarget(x), our desired target distribution,
where the transitions are parametrized by γ and θ:

π(x, z) := qγ(z|x)ptarget(x) = pθ(x|z)pprior(z) .

Minimizing objective of the type (DKL below denotes KL divergence)

L(γ, θ) := DKL(qγ(z|x)ptarget(x)∥pθ(x|z)pprior(z))

to 0 will ensure the marginals are satisfied, although the minimizers of the problem will not be unique. More
generally, one can make the transitions more hierarchical (yet still Markovian), and for this we introduce
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forward-backward SDEs. Pictorially, given a base drift f , we have the “sampling process" (the two processes
are time reversals of each other):

ν(z)
Pν,f+σu

−−−−−−−−→←−−−−−−−−
Pµ,f+σv

µ(x) (1)

for tunable controls u, v and terminal marginals ν, µ. Written as SDEs, they become (the drifts u, v here are
not independent)

dXt = [ft(Xt) + σut(Xt)]dt+ σ
−−→
dWt, X0 ∼ ν ⇒ (Xt)t∈[0,T ] ∼

−→
P ν,f+σu , (2)

dXt = [ft(Xt) + σvt(Xt)]dt+ σ
←−−
dWt, XT ∼ µ⇒ (Xt)t∈[0,T ] ∼

←−
P µ,f+σv . (3)

Operationally, (2)-(3) denote (picking f = 0, and {zt} a sequence of i.i.d standard Gaussians for illustration)

Xt = X0 +
∫ t

0
σus(Xs)ds+

∫ t

0
σ
−−→
dWs ⇒ Xt+h ≈ Xt + hσut(Xt) +

√
hσzt, X0 ∼ ν (4)

Xt = XT −
∫ T

t

σvs(Xs)ds−
∫ T

t

σ
←−−
dWs ⇒ Xt−h ≈ Xt + hσvt(Xt) +

√
hσzt, XT ∼ µ (5)

where the forward (the usual Itô’s) and backward integrals indicate different endpoints at which we make
the approximation. For any process (Yt)t, (Zt)t,∫ T

0
at(Yt)

−→
dZt ≈

∑
i

ati(Yti)(Zti+1 − Zti) ,
∫ T

0
at(Yt)

←−
dZt ≈

∑
i

ati+1(Yti+1)(Zti+1 − Zti) , (6)

which in particular implies the martingale property

E
X∼
−→P ν,f+σu

[∫ t

0
as(Xs)

−−→
dWs

]
= 0 , E

X∼
←−P µ,f+σv

[∫ T

t

as(Xs)
←−−
dWs

]
= 0 . (7)

Note one can also view the backward process (3) as the time reversal of the following forward SDE with the
additional score function: (ρ̂t is the density of ←−P µ,f+σv at time t)

dX̂t = (−f̂t(X̂t)− σv̂t(X̂t)− σ2∇ log ρ̂t(X̂t))dt+ σ
−−→
dWt, X̂0 ∼ µ (8)

with the hat denoting t → T − t. Now time reversing while keeping the same path measure will give the
following SDE:

dXt = [ft(Xt) + σvt(Xt)]dt+ σ
←−−
dWt, XT ∼ µ .

Therefore both (3) and (8) have the same path measure ←−P µ,f+σv. Forward/backward integral can be
converted through ∫ T

0
at(Yt)

−→
dZt =

∫ T

0
at(Yt)

←−
dZt − σ2

∫ T

0
(∇ · at)(Yt) dt , (9)

which will be used repeatedly throughout.
Remark (Nelson’s identity). The following relationship between time-reversal drifts for the SDE (2)-(3)
is well known: −→P ν,f+σu = ←−

P µ,f+σv iff −→P ν,f+σu
T = µ, and σvt(Xt) = σut(Xt) − σ2∇ log(−→P ν,f+σu

t ) =
σut(Xt)− σ2∇ log(←−P µ,f+σv

t ) for all t ∈ [0, T ].

2.2 Related Approaches

We would like the two path measures (with the specified two end-point marginals) to agree progressing in
either direction. The methods in Vargas et al. (2022); Zhang & Chen (2021) propose to set up a reference
process with a similar structure as (1) with f = 0:

ν(z)
Pν,σr

−−−−−−−−→←−−−−−−−−
Pη,σv

η(x) (10)
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where r is the drift for the reference process:

dXt = σrt(Xt)dt+ σ
−−→
dWt, X0 ∼ ν ⇒ (Xt)t∈[0,T ] ∼

−→
P ν,σr (11)

and η = −→P ν,σr
T . The part worth attention is that we fix the backward process such that ←−P µ,σv and ←−P η,σv

differ only in initialization with the same ensuing dynamics driven by v. The method amounts to estimating
loss of the following type:

LKL(u) = E−→P ν,σu

[
log
(
d
−→
P ν,σu

d
←−
P µ,σv

)]
= E−→P ν,σu

[
log
(
d
−→
P ν,σu

d
−→
P ν,σr

d
←−
P η,σv

d
←−
P µ,σv

)]

= E−→P ν,σu

[
log
(
d
−→
P ν,σu

d
−→
P ν,σr

dη

dµ

)
+ logZ

]

= E
X∼
−→P ν,σu

[∫ T

0

1
2∥us(Xs)− rs(Xs)∥2ds+ log

(
dη

dµ

)
(XT ) + logZ

]
. (12)

This suggests initializing from ν to estimate the loss (12) with the current control uθ̂ by simulating (2),
followed by gradient descent to optimize the θ̂-parameterized control policy and iterating between the two
steps can be a viable strategy, that could identify uθ∗ eventually and used to run (2) to draw samples from
µ. Note η, ν are simple distributions we have the freedom to pick, and the corresponding r(·) as well. The
last step of (12) is a simple application of Girsanov’s theorem for two SDEs with different drifts. This is
highly suggestive of a control-theoretic interpretation Berner et al. (2022), where the cost (12) is composed
of a running control cost and a terminal cost.

Common choice for ν include δ0 a fixed Dirac delta (this is technically speaking a half-bridge) or N (0, σ2I).
The r-controlled reference process (11) can be either Brownian motion (rt = 0) or an OU process (rt(x) =
− x

2σ ). Both combinations will give η as normally distributed. In the former case, the optimal drift u∗ with
f = 0 is known to be the Föllmer drift Tzen & Raginsky (2019) and can be computed explicitly as (picking
T = 1 for simplicity)

u∗t (x) = ∇ logEX
[
dµ

dη
(X1)|Xt = x

]
= ∇ logEz∼N (0,σ2I)

[
dµ

dN (0, σ2I) (x+
√

1− tz)
]
,

where the first expectation above is taken w.r.t the reference measure – Wiener process in this case; and it
follows that v∗t (x) = x/t by Doob’s h-transform. In the latter case, process (10) is simply in equilibrium.
The purpose of introducing the reference process (10) is to cancel out terms that we don’t have convenient
estimate for when calculating the likelihood ratio. All proofs are deferred to Appendix A.
Lemma 1 (Forward/Backward path-space likelihood ratio). In the general case of reference

dXt = σr+
t (Xt)dt+ σ

−−→
dWt, X0 ∼ Γ0 dXt = σr−t (Xt)dt+ σ

←−−
dWt, XT ∼ ΓT (13)

where −→P Γ0,σr
+ =←−P ΓT ,σr

− , there are 4 terms in DKL(−→P ν,f+σu∥
←−
P µ,f+σv) as

E
X∼
−→P ν,f+σu

[
log( dν

dΓ0
)(X0)− log( dµ

dΓT
)(XT ) + logZ

+ 1
2σ2

∫ T

0
(ft + σut − σr+

t )(Xt)⊤(ft + σut − σr+
t )(Xt)dt

− 1
σ2

∫ T

0
(ft + σvt − σr−t )(Xt)⊤(1

2ft + σut −
σ

2 vt −
σ

2 r
−
t )(Xt)dt−

∫ T

0
∇ · (ft + σvt − σr−t )(Xt)dt

]
.

By picking γ+, γ− = 0, and Lebesgue base measure for Γ0,ΓT , DKL(−→P ν,f+σu∥
←−
P µ,f+σv) becomes

E
X∼
−→P ν,f+σu

[∫ T

0

1
2∥ut(Xt)− vt(Xt)∥2 −∇ · (ft + σvt)(Xt)dt+ log dν(X0)

dµ(XT )

]
+ logZ .
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The loss (12) enforce uniqueness (and correct marginals ν, µ) but doesn’t impose optimality of the trajectory in
any sense. The judicious choice of common v and ν in (1) and (10) allow (12) to take on a control-theoretic
interpretation.
Remark. The approach in Chen et al. (2021a) which relies on training two drifts essentially amounts to solving
minu,v DKL(−→P ν,f+σu||

←−
P µ,f+σv) jointly with (49)-(50), as shown in Richter et al. (2023), is non-unique.

In diffusion generative modeling applications, score-matching-based loss Hyvärinen & Dayan (2005) can be
seen as minimizing the reverse KL over s = (u − v)/σ by running the backward process (3) and using the
Radon-Nikodym derivative in (46)-(47) with f = 0, r+ = r− = 0. It gives (C is independent of s below)

LKL(s) = E←−P µ,σv

[
log
(

d
←−
P µ,σv

d
−→
P ν,σv+σ2s

)]

= E←−P µ,σv

[∫ T

0

σ2

2 ∥st(Xt)∥2 dt+ σ2
∫ T

0
∇ · st(Xt) dt

]
+ C (14)

= E←−P µ,σv

[∫ T

0

σ2

2 ∥st(Xt)−∇x log pµ,σvt (Xt|XT = xT )∥2 dt

]
+ C ′

while fixing the backward drift v for which ν is easy to sample from (e.g., an OU process). In the last
transition above, we used the integration by parts identity

Eρt

[∫ T

0
s⊤t ∇ log ρt dt

]
= −Eρt

[∫ T

0
∇ · st dt

]
. (15)

In practice there will be an ir-reducible loss since the terminals ν and←−P µ,σv
0 don’t match exactly for any finite

T , but the dynamics −→P ν,σv+σ2s still makes sense as for two processes (pt)t, (qt)t with different initialization,
but same drift σv + σ2s∗, ∂tDKL(pt∥qt) = −Ept

[∥∇ log pt

qt
∥2] ≤ 0 contracts, although we have not been

quantitative about the decay rate.

We therefore see that either the approach of (12) or (14) relies on fixing some aspect of the process in-
volving (1) and (10) to restore uniqueness of the loss L. In both cases, it results in an one-parameter
loss, and the minimizer is not affected by the unknown constant Z from the loss. Successfully optimizing
DKL(−→P ν,σu∥

←−
P µ,σv) or DKL(←−P µ,σv∥

−→
P ν,σu) to zero error will imply that u pushes ν to µ and v vice versa,

mimicking a noising/denoising reversible procedure.

3 Methodology

As we saw from Section 2, there are many degrees of freedom in transporting ν to µ, which is not desirable
for training purpose. This gives us the motivation to turn to losses that can enforce a canonical choice. We
will adopt an “optimal control" perspective (which necessitates picking some reference) and leverage special
properties of the SB problem (introduced below) to come up with valid control objectives for this effort.

3.1 Various Perspectives on Schrödinger Bridge

Most of these can be traced out in Léonard (2014); Chen et al. (2021b), which has its roots in statistical
mechanics Schrödinger (1931) (and in modern terms, closely related to large-deviation results via Sanov’s
theorem). For us however, the following perspectives will be more fruitful. Consider over path space
C([0, T ];Rd), given a base measure Q, the optimization problem

P ∗ = arg min
P0=ν,PT =µ

DKL(P∥Q) (16)

where we assume Q admits SDE representation

dXt = ft(Xt)dt+ σdWt , X0 ∼ ν , (17)
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which is a slight generalization of the classical case where f = 0 is typically assumed.

(1) Mixture of pinned diffusions (weights given by π∗) can be seen by disintegration of path measure:

DKL(P∥Q) = DKL(P0T ∥Q0T ) +
∫
DKL(P zx∥Qzx) dP0T (z, x) . (18)

Since the only constraints are on the two end-points (16) is therefore equivalent to (19), by choosing P zx =
Qzx. The optimal solution takes the form P ∗ = π∗Qzx, which means one can sample from (z, x) ∼ π∗ ∈ Πν,µ,
and sample from the bridges conditioned on the end-points at t = 0, T .

(2) It has the interpretation of entropy-regularized optimal transport Peyré & Cuturi (2019) when f = 0:
in terms of static formulation because of (18), if the reference Q is simply the Wiener process (accordingly
r(x|z) ∝ e− 1

2T ∥x−z∥
2),

π∗(z, x) = arg min
πz=ν,πx=µ

DKL(π(z, x)∥r(z, x)) (19)

= arg min
πz=ν,πx=µ

Ez∼ν [DKL(π(x|z)∥r(x|z))] +DKL(ν(z)∥r(z))

= arg min
πz=ν,πx=µ

∫ 1
2∥x− z∥

2π(z, x) dxdz + T

∫
π(z, x) log π(z, x) dxdz ,

where the first term is nothing but the definition of the Wasserstein-2 distance (and optimal transport in the
sense of Kantorovich). This is a Lagrangian description of the transport. In terms of dynamical formulation,
via Girsanov’s theorem on path measure, with the controlled dynamics as dXt = [ft(Xt)+σut(Xt)]dt+σdWt,
(16) can be reformulated as a constrained problem over u

P ∗ = arg min
P

E
X∼
−→P ν,f+σu

[
1
2

∫ T

0
∥ut(Xt)∥2dt|

−→
P ν,f+σu
T = µ

]
. (20)

Or a regularized Benamou-Brenier fluid-dynamics Benamou & Brenier (2000) analogy of the optimal trans-
port

inf
ρ,v

∫
Rd

∫ T

0

[
1
2∥vt(Xt)− v̄t(Xt)∥2 + σ4

8

∥∥∥∥∇ log ρt(Xt)
ρ̄t(Xt)

∥∥∥∥2
]
ρt(Xt) dtdx (21)

s.t. ∂ρt
∂t

+∇ · (ρtvt) = 0, ρ0 = ν, ρ1 = µ (22)

where above v̄t = ft − σ2

2 ∇ log ρ̄t is the current velocity of the prior process, and we see the penalization
results in an additional relative Fisher information term. Since v∗ is a velocity field in the continuity equation,
it means a deterministic evolution (i.e., ODE) as

Ẋt = vt(Xt), X0 ∼ ν

will have Xt ∼ ρt, the optimal entropic interpolation flow, which gives an Eulerian viewpoint.

(3) Optimal control views the problem as steering ν at t = 0 to µ at t = T with minimal control effort. The
value function (i.e., optimal cost-to-go)

V (x, t) := min
u

Eu

[
1
2

∫ T

t

∥us(Xs)∥2ds|Xu
t = x,Xu

T ∼ µ

]
(23)

with the expectation taken over the stochastic dynamics

dXu
t = [ft(Xu

t ) + σut(Xu
t )]dt+ σdWt, X

u
0 ∼ ν (24)

should satisfy the Hamilton-Jacobi-Bellman equation via the dynamical programming principle

∂V (x, t)
∂t

+ ft(x)⊤∇V (x, t) + σ2

2 ∆V (x, t)− σ2

2 ∥∇V (x, t)∥2 = 0 , (25)
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where the optimal control u∗t (Xt) = −σ∇V (Xt, t) and gives the unique solution (ρut )t≥0 solving

∂ρut
∂t

= −∇ · (ρut (ft − σ2∇Vt)) + σ2

2 ∆ρut , ρu0 ∼ ν, ρuT ∼ µ . (26)

The correspondence between (23) and (25) can also be seen with the Feynman-Kac formula. Notice that

min
u

Eu

[∫ T

0

1
2∥ut(Xt)∥2dt− log µ

QT
(XT )

]
= 0 ,

which also gives an intuitive explanation of the optimally-controlled process. This holds since

DKL(P∥Q) = Eu

[∫ T

0

1
2∥ut(Xt)∥2dt

]
= Eu

[
1
2

∫ T

0
∥ut(Xt)∥2dt− log µ

QT
(XT )

]
+DKL(µ∥QT ) ,

which gives the claim by data processing inequality. The two coupled PDEs, one run forward in time
(Fokker-Planck (26)), one run backward in time (HJB (25)) are also the first-order optimality condition of

inf
ρ,u

∫
Rd

∫ T

0

1
2∥ut(Xt)∥2ρt(Xt) dtdx (27)

s.t. ∂ρt
∂t

+∇ · (ρt(ft + σut)) = σ2

2 ∆ρt, ρ0 = ν, ρ1 = µ (28)

where again the optimal u∗ = −σ∇V is of gradient type. Above the Laplacian is responsible for the
diffusion part, and (27)-(28) is related to (21)-(22) via a change of variable. One might try to design schemes
by forming the Lagrangian for the above (27)-(28), and solve the resulting saddle-point problem, but this
deviates somewhat from our pathwise narrative.
Remark. Compared to the Langevin SDE dXt = −∇f(Xt)dt+

√
2dWt, which only involves forward-evolving

density characterization and reaches equilibrium as T →∞, the controlled SDE (24) is time-inhomogeneous
and involves two PDEs (25)-(26). Langevin also has a backward Kolmogorov evolution for the expectation
of a function g: let V (x, t) = E[g(XT )|Xt = x] we have ∂tV (x, t) − ∇f(x)⊤∇V (x, t) + ∆V (x, t) = 0 with
V (x, T ) = g(x), and is de-coupled from the Fokker-Planck equation ∂tρt−∇· (ρt∇f)−∆ρt = 0 with ρ0 = ν
in this case.

(4) The dual potentials ϕ, ψ yield optimal forward/backward drifts: It holds that the optimal curve admits
representation

log ρt = log ϕt + logψt for all t (29)

and solving the boundary-coupled linear PDE system on the control

∂ϕt
∂t

= −σ
2

2 ∆ϕt −∇ϕ⊤t ft,
∂ψt
∂t

= σ2

2 ∆ψt −∇ · (ψtft) for ϕ0ψ0 = pprior, ϕTψT = ptarget (30)

gives two SDEs for the optimal curve in (16):

dXt = [ft(Xt) + σ2∇ log ϕt(Xt)]dt+ σ
−−→
dWt, X0 ∼ ν (31)

dXt = [ft(Xt)− σ2∇ logψt(Xt)]dt+ σ
←−−
dWt, XT ∼ µ . (32)

Note that equations (31)-(32) are time reversals of each other and obey Nelson’s identity thanks to (29). The
transformation (29)-(30) that involves (ρ∗t , u∗t ) = (ρ∗t ,−σ∇Vt) 7→ (ϕt, ψt) is a typical log ↔ exp Hopf-Cole
change-of-variable from (25)-(26). These PDE optimality results can be found in Caluya & Halder (2021).

(5) Factorization of the optimal coupling: in fact it is always the case that

dπ∗

dr
(X0, XT ) = ef(X0)eg(XT ) r-a.s. . (33)
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Moreover under mild conditions if there exists π, f, g for which such decomposition holds and π0 = ν, πT = µ,
π must be optimal – such condition (33) is necessary and sufficient for characterizing the solution to the SB
problem. (33) together with (18) give that (which can also be thought of as re-weighting on the path space)

dπ∗

dr
(X0:T ) = ef(X0)eg(XT ) r-a.s. , (34)

obeying the Schrödinger system∫
ef(X0)r(X0T )eg(XT )dXT = pprior(X0) ,

∫
ef(X0)r(X0T )eg(XT )dX0 = ptarget(XT ) . (35)

Using Doob’s h-transform, one can write the transition kernel of π∗ as a twisted dynamic of the prior r, and
the ϕ, ψ in (31)-(32) can also be expressed as a conditional expectation:

ϕt(x) =
∫
eg(XT )r(XT |Xt = x) dXT =

∫
Rd

ϕT (XT )r(XT |Xt = x) dXT ,

ψt(x) =
∫
ef(X0)r(Xt = x,X0) dX0 =

∫
Rd

ψ0(X0)r(Xt = x|X0) dX0

for t ∈ [0, T ], where the consistency of

ef(X0)r(X0) = ψ0(X0), eg(XT ) = ϕT (XT ) ⇒ π∗(X0, XT ) = ψ0(X0)r(XT |X0)ϕT (XT )

can be verified by (35) and (29). But in general, the transition kernel of the un-controlled process r(·|·) (or
ϕT , ψ0) is not available analytically for implementation as such. But it suggests there’s a backward-forward
SDE dynamics one could write for ϕt, ψt with drift ft initialized at ϕT , ψ0 respectively, as hinted by (30) as
well, if we view them as densities.

(6) Equation (31) means the optimal v∗t in the continuity equation (22) is ft + σ2∇ log ϕt − σ2

2 ∇ log ρt =
ft + σ2

2 ∇ log ϕt

ψt
, which gives the ODE probability flow for this dynamics (with X0 ∼ ν)

dXt = ft(Xt) + σ2

2 (∇ log ϕt(Xt)−∇ logψt(Xt)) dt , (36)

in the sense that the time marginals ρ(36)
t = ρ

(31)
t = ρ

(32)
t = P

(16)
t all agree. Moreover, using the instantaneous

change of variables formula Chen et al. (2018), we also have

log ρT (XT ) = log ρ0(X0)−
∫ T

0
∇ · ft(Xt) dt−

σ2

2

∫ T

0
∇ · (∇ log ϕt(Xt)−∇ logψt(Xt)) dt , (37)

which will be useful in Proposition 2 for estimating the normalizing constant. Note that in (37) both the
density and the point at which we are evaluating is changing.
Remark. The stochastic control formulation makes it clear that the trajectory we are trying to recover is
a meaningful one in the sense of minimal effort. If one were to switch the order of P and Q in (16), the
optimal control problem becomes (e.g., for f = 0)

inf
u

E

[∫ T

0

1
2∥ut(Xt)∥2dt

]
s.t. dXt = σut(Xt)dt+ σdWt, X0 ∼ ν,XT ∼ µ

for the expectation taken over the reference process, instead of the controlled state density ρut , which is not
very intuitive. The slightly non-conventional aspect of this control problem is the fixed terminal constraint.

To briefly summarize, all these different viewpoints explore the deep connections between PDEs (controls)
and SDEs (diffusions) in one way or another.
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3.2 Natural Attempts

In this section we discuss several natural attempts with the intention of adapting the SB formalism for
sampling from un-normalized densities.

(1) Iterative proportional fitting/Sinkhorn relies on factorized form (34) of the optimal solution π∗(z, x) =
P ∗0T for iterative projection as

P (1) = arg min
Q∈P(ν,·)

DKL(Q∥P (0)) = P (0)ν

P
(0)
0

, P (0) = arg min
Q∈P(·,µ)

DKL(Q∥P (1)) = P (1)µ

P
(1)
T

(38)

i.e., only the end point differ and one solves half-bridges using drifts learned from the last trajectory transition
rollout, initializing from either samples from µ(x) or ν(z). But since we don’t have samples from µ, neither
the score (i.e., the drift) nor the proceeding IPF updates/refinements can be implemented. In fact, the first
iteration of the IPF proposal in De Bortoli et al. (2021); Vargas et al. (2021) precisely corresponds to the
score-based diffusion proposal in Song et al. (2020). However, there is a connection between IPF and Path
space EM, which means that coordinate descent on the objective minϕ,ψ DKL(−→P ν,f+σ2∇ϕ∥

←−
P µ,f+σ2∇ψ),

when initializing at ϕ = 0 (i.e., the Schrödinger prior), is a valid strategy for solving (16).
Lemma 2 (Optimization of drifts of EM). The alternating scheme initializing with ϕ0 = 0 converge to
π∗(z, x):

ψn = arg min
ψ
DKL(−→P ν,f+σ2∇ϕn−1∥

←−
P µ,f+σ2∇ψ) (39)

ϕn = arg min
ϕ
DKL(−→P ν,f+σ2∇ϕ∥

←−
P µ,f+σ2∇ψn) . (40)

Moreover, both updates are implementable assuming samples from ν is available, which resolves non-
uniqueness in an algorithmic manner (fixing one direction of the drift at a time).

However, Lemma 2 above also shows that the prior only enters in the first step, therefore as it proceeds,
the prior influence tends to be ignored as error accumulates – this aspect is different from our proposal in
Proposition 1 below.

(2) Some alternatives to solve SB do not require analytical expression for µ: diffusion mixture matching
Peluchetti (2023) tilts the product measure ν⊗µ towards optimality gradually by learning a slightly different
term than the score; data-driven bridge Pavon et al. (2021) aims at setting up a fixed point recursion on the
SB system (35) for finding the optimal ϕ∗, ψ∗, but both rely on the availability of samples from µ (as well
as ν) to estimate various quantities for implementation.

(3) Naively one may hope to reparametrize (31)-(32) as (with the time-reversal condition baked in)

min
u

DKL(−→P ν,σ2
2 ∇ log ρt+∇ut∥

←−
P µ,∇ut−σ2

2 ∇ log ρt)

to learn the drift ∇u (this is somewhat akin to annealed flow, and expected to have unique solution). This
way, when the two path measures are optimized to agree, the resulting forward & backward drift necessarily
obey Nelson’s identity for the desired curve ρt. However, this only applies if we have access to the score
∇ log ρt, for (ρt)t∈[T ] the SB curve of density we wish to follow interpolating from ν to µ. Learning both ρ
and ∇u will become similar to learning ϕ and ψ, as the approaches we study in Section 3.3. In a similar
vein, if one chooses Γ0 = ν,ΓT = µ and r+

t = σ∇u∗t , r−t = σ∇u∗t − σ2∇ log ρt the optimal SB process as
reference, Lemma 1 asserts that the loss becomes

arg min
∇ϕ

DKL(−→P ν,σ∇ϕt∥
←−
P µ,σ∇ϕt−σ2∇ log ρt) = arg min

∇ϕ
E

[∫ T

0
∥∇ϕt −∇u∗t ∥2dt

]
,

something we cannot estimate and optimize for without additional information.

(4) The work of Caluya & Halder (2021) investigated the case where the reference process has a gradient
drift (i.e., f = −∇U) and reduce the optimal control task to solving a high-dimensional PDE subject to
initial-value constraint (c.f. Eqn (33) and (47) therein). However, solving PDEs is largely regarded to be
computationally more demanding than simulating SDEs.
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3.3 Training Loss Proposal

Recall our focus is on solving the regularized optimal transport problem (16) between ν and µ, by learning the
controls on the basis of samples from ν. Out of many joint couplings with correct marginals (i.e., transport
maps), the choice of a reference path process will select a particular trajectory ρt between ν and µ.

The execution of this plan crucially hinges on two ingredients: (1) backward / forward change of measure
formula established in Lemma 1; (2) properties of the optimal drifts for SB from Section 3.1, which in turn
can be exploited for training the controls. Challenge, as emphasized before, is we need to be able to estimate
the resulting loss and optimizing it guarantees convergence to the unique solution dictated by the SB.

Proposition 1 below serves as our main result. Both (1) and (4) are guided by “minimum-action" principle
w.r.t a reference. (2) bases itself on a reformulation of the HJB PDE involving the optimal control, and
(3) is grounded in the FBSDE system for SB optimality Chen et al. (2021a). In all cases, the objective is
a two-parameter loss that also allows us to recover the score σ2∇ log ρt from the returned solution. Note
that variance is taken w.r.t the uncontrolled process in (2) and w.r.t the controlled process in (3). Losses (1)
and (4), being conversion from the constrained problem (and each other), will need λ to be picked relatively
small so that the first part of the objective becomes 0 to identify the unique SB solution.
Proposition 1 (Regularized Control Objective). For the problem of (16), the following losses are justified:

(1) arg min∇ϕ,∇ψ DKL(−→P ν,f+σ2∇ϕ∥
←−
P µ,f−σ2∇ψ) + λ · E

X∼
−→P ν,f+σ2∇ϕ

[∫ T
0

σ2

2 ∥∇ϕt(Xt)∥2dt
]

(2) arg min∇ϕ,∇ψ DKL(−→P ν,f+σ2∇ϕ∥
←−
P µ,f−σ2∇ψ)+

Var
X∼
−→P ν,f

(
ψT (XT )− ψ0(X0) +

∫ T

0
(−σ

2

2 ∥∇ψt∥
2 +∇ · ft − σ2∆ψt)(Xt) dt− σ

∫ T

0
∇ψt(Xt)⊤dWt

)

or Var
X∼
−→P ν,f

(
ϕT (XT )− ϕ0(X0) + σ2

2

∫ T

0
∥∇ϕt∥2(Xt) dt− σ

∫ T

0
∇ϕt(Xt)⊤dWt

)
(3) arg minϕ,ψ Var

X∼
−→
P ν,f+σ2∇ϕ ((ϕT + ψT − logµ)(XT )) + Var

X∼
−→
P ν,f+σ2∇ϕ ((ϕ0 + ψ0 − log ν)(X0)) +

Var
X∼
−→P ν,f+σ2∇ϕ

(
ϕT (XT )− ϕ0(X0)− σ2

2

∫ T

0
∥∇ϕt∥2(Xt) dt− σ

∫ T

0
∇ϕt(Xt)⊤dWt

)
+

Var
X∼
−→
P ν,f+σ2∇ϕ

(
ψT (XT )− ψ0(X0)−

∫ T

0

(
σ2

2 ∥∇ψt∥
2 +∇ · (σ2∇ψt − ft) + σ2∇ψ⊤t ∇ϕt

)
(Xt) dt

− σ
∫ T

0
∇ψt(Xt)⊤dWt

)
(4) arg min∇ϕt,∇ log ρt DKL(−→P ν,f+σ2∇ϕt∥

←−
P µ,f+σ2∇ϕt−σ2∇ log ρt) + λ · E−→P ν,f+σ2∇ϕ

[∫ T
0

σ2

2 ∥∇ϕt(Xt)∥2 dt
]

In the above, DKL(−→P ν,f+σ2∇ϕ∥
←−
P µ,f−σ2∇ψ) is

E
X∼
−→P ν,f+σ2∇ϕ

[∫ T

0

σ2

2 ∥∇ϕt(Xt) +∇ψt(Xt)∥2 −∇ · (ft − σ2∇ψt)(Xt)dt+ log ν(X0)
µ(XT )

]
+ C (41)

and DKL(−→P ν,f+σ2∇ϕt∥
←−
P µ,f+σ2∇ϕt−σ2∇ log ρt) is

E−→P ν,f+σ2∇ϕ

[
log ν(X0)

µ(XT ) +
∫ T

0

σ2

2 ∥∇ log ρt(Xt)∥2 + σ2∇ · (∇ log ρt −∇ϕt)(Xt)−∇ · ft(Xt) dt
]

+ C ′ . (42)

In all cases, X0 = x0 ∼ ν is assumed given as initial condition. In particular, if the loss is 0 for (2) and
(3), the resulting ∇ϕ∗,∇ψ∗ solve the Schrödinger Bridge problem from ν to µ, that can in turn be used for
sampling from µ.

9
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It is tempting to draw a connection between the variance penalty in Proposition 1 and the log-variance
divergence between two path measures w.r.t a reference

VarPw

[
log
(
dPu

dPv

)]
studied in Richter et al. (2023). The loss in (3) is different from log-variance divergence over path space

Var−→P ν,f+σ2∇ϕ

[
log
(
d
−→
P ν,f+σ2∇ϕ

d
←−
P µ,f−σ2∇ψ

)]
,

which involve the sum of (53) and (54), and will not guarantee finding the optimal path, whereas the objective
in (3) incorporates the dynamics of two controlled (and coupled) dynamics w.r.t −→P ν,f that we know how to
characterize optimality for from results in Section 3.1.

In fact, another way to view the variance regularizers in loss (2) and (3) is through the SDE representation
of the controls from Lemma 3 below and observe that the variance condition precisely encodes the optimally-
controlled dynamical information.
Lemma 3 (SDE correspondence to SB optimality). We have for the optimal forward drift ∇ϕt and X ∼ −→P ν,f

as in (17),

dϕt(Xt) = −σ
2

2 ∥∇ϕt(Xt)∥2dt+ σ∇ϕt(Xt)⊤ dWt ,

analogously for the optimal backward drift −∇ψt, along X ∼ −→P ν,f ,

dψt(Xt) =
[
σ2

2 ∥∇ψt∥
2 −∇ · ft + σ2∆ψt

]
(Xt)dt+ σ∇ψt(Xt)⊤ dWt .

Moreover, along the controlled forward dynamics X ∼ −→P ν,f+σ2∇ϕ, the optimal control ϕ, ψ satisfy

dϕt(Xt) = σ2

2 ∥∇ϕt(Xt)∥2dt+ σ∇ϕt(Xt)⊤ dWt ,

dψt(Xt) =
[
σ2

2 ∥∇ψt∥
2 +∇ · (σ2∇ψt − ft) + σ2∇ϕ⊤t ∇ψt

]
(Xt)dt+ σ∇ψt(Xt)⊤dWt .

In the above, ∇ϕt,∇ψt refer to the optimal forward/backward drift of

dXt = [ft(Xt) + σ2∇ϕt(Xt)]dt+ σdWt, X0 ∼ ν ,

dXt = [ft(Xt)− σ2∇ψt(Xt)]dt+ σdWt, XT ∼ µ ,

and ϕT (XT ) + ψT (XT ) = log ptarget(XT ), ϕ0(X0) + ψ0(X0) = log ν(X0) for X ∼ −→P ν,f+σ2∇ϕ.

It is natural to ask if one could replace the variance regularizer Var(·) with a moment regularizer E[| · |2]
in e.g., loss (3). However, while the variance is oblivious to constant shift, the moment loss will require
knowledge of the normalizing constant Z of the target µ to make sense. We would also like to add that
enforcing the drifts to take the gradient form is not strictly necessary for some parts of the losses.
Remark. The gradient for either DKL or Log-variance w.r.t. u and v (and the Monte-Carlo estimate thereof)
can be found in e.g., Richter et al. (2023), where the authors show that log-variance has the additional
benefit of having variance of gradient = 0 at the optimal u∗, v∗, which is not true for DKL in general, and
has consequence for gradient-based updates such as Algorithm 1. Similar argument applies to the variance
regularizer we consider (e.g., loss (2)). For this, we look at the Gâteaux derivative of the variance function
V in an arbitray direction τ since

δ

δu
V (u, v; τ) := d

dϵ

∣∣∣∣
ϵ=0

V (u+ ϵτ, v)⇒ ∂θi
V (uθ, vγ) = δ

δu

∣∣∣∣
u=uθ

V (u, vγ ; ∂θi
uθ) .

10



Under review as submission to TMLR

Now if V̂ is the Monte-Carlo estimate of the variance of a random quantity g, it is always the case that (we
use δ

δu (·)τ to denote derivative in the τ direction)

δ

δu
V̂ (u, v; τ) = δ

δu
(Ê[g(u, v)2]− Ê[g(u, v)]2)τ = 2Ê[g(u, v) δ

δu
g(u, v)τ ]− 2Ê[g(u, v)] δ

δu
Ê[g(u, v)]τ ,

therefore if g(u∗, v∗) = 0 almost surely for every i.i.d sample, such as the regularizer in loss (2), the derivative
w.r.t the control u in direction ∂θiuθ is 0 at optimality, implying Var(∂θi V̂ (uθ∗ , vγ∗)) = 0. One can, of course,
also replace DKL with log-variance for the first part of the loss.

3.4 Discretization and Practical Implementation

We include a word about practical implementation in this part. As in Proposition F.1 of Vargas & Nüsken
(2023), it is possible to trade the divergence term for a backward integral and estimate DKL(−→P ν,u∥

←−
P µ,v)

(up to constant independent of u, v) as

1
N

N∑
i=1

[
log ν(Xi

0)
µ(Xi

K+1) +
K−1∑
k=0

1
2σ2(tk+1 − tk)∥X

i
k −Xi

k+1 + vk+1(Xi
k+1)(tk+1 − tk)∥2

]
(43)

for
Xi
k+1 = Xi

k + uk(Xi
k)(tk+1 − tk) + σ

√
tk+1 − tk · zik, zik ∼ N (0, I) (44)

the Euler-Maruyama discretization of the forward process using N Monte-Carlo samples, where K = T/h if
the stepsize h = tk+1 − tk for all k is kept constant.
Remark. As observed in Vargas & Nüsken (2023), discretized version with backward integral (43)-(44) has
the additional benefit of giving ELBO for the normalizing constant Z of ptarget with the estimator

Ẑ = µ(XK)qv(X0:K−1|XK)
ν(X0)pu(X1:K |X0) (45)

in the sense that Eν(X0)pu(X1:K |X0)[log Ẑ] ≤ log(Eν(X0)pu(X1:K |X0)[Ẑ]) = log[
∫
µ(XK)dXK ] = log(Z).

Putting everything together, we give the proposed algorithm below.

Algorithm 1 Control Objective Training for Sampling
Require: Initial draw (Xi,(0)

0 )Ni=1 ∈ Rd ∼ ν independent, initial controls u(0), v(0)

Require: Un-normalized density µ, drift f , num of time steps K, num of iterations T
for t = 0, · · · , T − 1 do

Simulate (44) with current control (u(t)
k )k=0,··· ,K , obtain (Xn,(t)

k )k=0,··· ,K for n = 1, · · · , N
Estimate the loss (43)+discretized regularizer (c.f. Lemma 4 below) and the gradient w.r.t the two

parameterized controls using the samples (Xn,(t)
k )k=0,···K,n=1,··· ,N

Gradient update on the parameters to obtain u(t+1) and v(t+1)

end for
return X

1,(T )
K , · · · , XN,(T )

K as N samples from µ with their importance weights wu(T )(Xn,(T )
K ) (58)

In practice, with imperfect control from the training procedure, one can perform importance sampling to
correct for the bias / improve on the estimate.
Proposition 2 (Importance Sampling). The following can be used to estimate the normalizing constant of
the target density ptarget:

(1) For the optimal ϕ∗, ψ∗, with Xt ∼
−→
P ν,f+σ2∇ϕ∗ ,

Z = µ(XT )
ν(X0) exp

(
σ2

2

∫ T

0
∇ · (∇ϕ∗t −∇ψ∗t )(Xt) dt+

∫ T

0
∇ · ft(Xt)dt

)
.

11
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(2) For any potentially suboptimal ϕ, ψ, with Xt ∼
−→
P ν,f+σ2∇ϕ,

Z = E−→P ν,f+σ2∇ϕ

[
exp

(
−σ

2

2

∫ T

0
∥∇ϕt +∇ψt∥2 +∇ · (ft − σ2∇ψt)dt− σ

∫ T

0
∇ϕt +∇ψtdWt − log ν(X0)

µ(XT )

)]
.

With a sub-optimal control ∇ϕ and Xt ∼
−→
P ν,f+σ2∇ϕ, re-weighting can be used to get an unbiased estimator

of a statistics g as Eϕ[g(XT )wϕ(XT )] = Eϕ∗ [g(XT )] = Eµ[g] for

wϕ(X) = exp
(

log µ

ν ∗ N (0, σ2T · I) (XT )− 1
2σ2

∫ T

0
∥ft + σ2∇ϕt∥2dt− 1

σ

∫ T

0
(ft + σ2∇ϕt) dWt

)
.

The following lemma provides a recipe for estimating the regularizer and the normalizing constant with
discrete-time updates. We focus on loss (3) from Proposition 1, since most of the other parts are similar or
straightforward to adapt.
Lemma 4 (Discretized Loss and Estimator). For X ∼ −→P ν,f+σ2∇ϕ,

Var
(
ψT (XT )−ψ0(X0)−

∫ T

0

(
σ2

2 ∥∇ψt∥
2 +∇ · (σ2∇ψt − ft) + σ2∇ψ⊤t ∇ϕt

)
(Xt) dt−σ

∫ T

0
∇ψt(Xt) dWt

)
can be estimated as (VarN denotes empirical estimate of variance using N samples)

VarN
(
ψK(Xi

K+1)− ψ0(Xi
0)−

K−1∑
k=0

1
2σ2h

∥Xi
k −Xi

k+1 + (fk+1 − σ2∇ψk+1)(Xi
k+1)h∥2 +

K−1∑
k=0

1
2σ2h

∥Xi
k+1 −Xi

k − fk(Xi
k)h∥2

)
,

which compared to the KL estimator (43) has two terms. The importance-weighted Z-estimator from (57)
can be approximated as

1
N

N∑
i=1

exp
(

log µ(Xi
K)

ν(Xi
0) −

K−1∑
k=0

1
2σ2h

∥Xi
k −Xi

k+1 + (fk+1 − σ2∇ψk+1)(Xi
k+1)h∥2 + 1

2

K−1∑
k=0
∥zik∥2

)
.

In both cases for i ∈ [N ] independently,

Xi
k+1 = Xi

k + (fk(Xi
k) + σ2∇ϕk(Xi

k))h+ σ
√
h · zik, zik ∼ N (0, I) .

Remark. In Vargas & Nüsken (2023), the authors propose
∫ T

0 E
∣∣∣∂tϕ+ f⊤∇ϕ+ σ2

2 ∆ϕ+ σ2

2 ∥∇ϕ∥
2
∣∣∣ (Xt)dt as

the HJB regularizer (c.f. (25)) on top of DKL(−→P ν,f+σ2∇ϕ∥
←−
P µ,f−σ2∇ψ) for loss (2) in Proposition 1. As is

clear from the proof in Proposition 1, it is equivalent to the variance condition. There is, of course, a similar
HJB for the backward drift ∇ψ, which in this case will read ∂tψ + f⊤∇ψ − σ2

2 ∆ψ − σ2

2 ∥∇ψ∥
2 +∇ · f = 0.

By trading a PDE constraint with a SDE one (based on likelihood ratio of path measures), we can avoid
evaluating the divergence term for the discrete updates. It remains to note the additional benefit of vanishing
variance of the gradient at the optimal control, as remarked earlier.

4 Conclusion

We detailed various connections between the seemingly disjoint areas of diffusion generative-modeling, op-
timal stochastic control and optimal transport, with the goal of sampling from high-dimensional, complex
distributions in mind. This is orthogonal to MCMC-based approaches, and is accomplished by a more
“learning-driven" methodology for the optimal control/drift under a suitable control objective. There are a
lot of flexibility in the choice of the reference, optimality criteria, divergence metric etc. (that also makes
the case for SB more compelling than existing diffusion-based samplers mentioned in Section 2.2), which we
hope to report on in the future.
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A Missing Proofs and Calculations

We give the omitted proof of Lemma 1 from Section 2 below, followed by Lemma 2 from Section 3.2.

Proof of Lemma 1. We give a few equivalent expressions for the Radon-Nikodym derivative, written in terms
of the drifts. Starting with Proposition 2.2 of Vargas & Nüsken (2023), −→P ν,f+σu almost surely,

log
(
d
−→
P ν,f+σu

d
←−
P µ,f+σv

)
(X) = log( dν

dΓ0
)(X0)− log( dµ

dΓT
)(XT ) + logZ

+ 1
σ2

∫ T

0
(ft + σut − σr+

t )(Xt)
(
−−→
dXt −

1
2(ft + σut + σr+

t )(Xt)dt
)

(46)

− 1
σ2

∫ T

0
(ft + σvt − σr−t )(Xt)

(
←−−
dXt −

1
2(ft + σvt + σr−t )(Xt)dt

)
. (47)

One can use (9) to convert the backward integral to a forward one with an additional divergence term

DKL(−→P ν,f+σu∥
←−
P µ,f+σv) = E

X∼
−→P ν,f+σu

[
log
(
d
−→
P ν,f+σu

d
←−
P µ,f+σv

)
(X)

]

= E
X∼
−→P ν,f+σu

[
log( dν

dΓ0
)(X0)− log( dµ

dΓT
)(XT ) + logZ

+ 1
2σ2

∫ T

0
(ft + σut − σr+

t )(Xt)⊤(ft + σut − σr+
t )(Xt)dt

− 1
σ2

∫ T

0
(ft + σvt − σr−t )(Xt)⊤(1

2ft + σut −
σ

2 vt −
σ

2 r
−
t )(Xt)dt−

∫ T

0
∇ · (ft + σvt − σr−t )(Xt)dt

]
(48)

+ E
X∼
−→P ν,f+σu

[∫ T

0
(ut − r+

t )(Xt)− (vt − r−t )(Xt)
−−→
dWt

]
and the last term vanishes because of (7). Therefore we see that there are 2 boundary terms, and 3 extra
terms corresponding to the forward/backward process. The loss of (12) clearly follows since only the second
line and one term in the first line survive. By picking γ+, γ− = 0, and Lebesgue base measure for Γ0,ΓT ,
we get

DKL(−→P ν,f+σu∥
←−
P µ,f+σv) = E

X∼
−→P ν,f+σu

[∫ T

0

1
2∥ut(Xt)− vt(Xt)∥2 −∇ · (ft + σvt)(Xt)dt

]
(49)

+ E
X∼
−→P ν,f+σu

[
log dν(X0)

dµ(XT ) +
∫ T

0
(ut − vt)(Xt)

−−→
dWt

]
+ logZ (50)

which agrees with Proposition 2.3 in Richter et al. (2023) up to a conventional sign in v, and is also the same
as the ELBO loss in (Chen et al., 2021a, Theorem 4). Note the different expressions in (12) and (49)-(50)
by picking distinct references (13) vs. (10).

One could also start with the forward SDE (8) and apply Girsanov’s theorem with (2),(8) together with the
chain rule for the KL to get

DKL(−→P ν,f+σu∥
←−
P µ,f+σv) = E−→P ν,f+σu

[
log
(
d
−→
P ν,f+σu

d
←−
P µ,f+σv

)
(X)

]

14
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= E−→P ν,f+σu

[
log
(

dν

d
←−
P µ,f+σv

0

)
(X0) + 1

2

∫ T

0
∥ut(Xt)− (vt + σ∇ log ρµ,f+σv

t )(Xt)∥2dt

]
. (51)

To see this is equivalent to (49)-(50), we use Fokker-Planck on the process (8) to reach

E−→P ν,f+σu

[
log
(

dµ

d
←−
P µ,f+σv

0

)
(X)− logZ

]
= E−→P ν,f+σu

[
log
(
d
←−
P µ,f+σv
T

d
←−
P µ,f+σv

0

)
(X)

]

= E−→P ν,f+σu

[∫ T

0
−∇ · (ft + σvt)(Xt) + σ(ut − vt)(Xt)⊤∇ log ρµ,f+σv

t (Xt)−
σ2

2 ∥∇ log ρµ,f+σv
t (Xt)∥2dt

]
(52)

as by Itô’s lemma for the process (2) with drift f + σu,∫ T

0
∂t log←−P µ,f+σv

t (Xf+σu
t ) dt =

∫ T

0

1
ρt

(
−∇ · (ρt(f + σv)) + σ2

2 ∆ρt +∇ρ⊤t (f + σu)
)
dt

+ σ

∫ T

0

∇ρ⊤t
ρt

dWt +
∫ T

0

σ2

2 ∆ log ρt dt

=
∫ T

0
−∇ρ

⊤
t

ρt
(ft + σvt + σ2∇ log ρt − ft − σut)

−∇ · (ft + σvt + σ2∇ log ρt) + σ2

2 ∆ log ρt dt+
∫ T

0
σ
∇ρ⊤t
ρt

dWt ,

which upon simple arranging, using (55) and taking expectation over Xf+σu ∼
−→
P ν,f+σu give (52). Now

adding up the previous two displays (51) and (52) using

E−→P ν,f+σu

[
log
(

dν

d
←−
P µ,f+σv

0

)]
= E−→P ν,f+σu

[
log
(
dν

dµ

)
+ log

(
dµ

d
←−
P µ,f+σv

0

)]

finishes the proof.

Proof of Lemma 2. We have up to a constant independent of ϕ, ψ, using Lemma 1, (39)-(40) give the loss

ψn ← arg min
ψ

∫ T

0
E
X∼
−→P ν,f+σ2∇ϕn−1

[
σ2∥∇ψ∥2

2 − σ2∇ϕ⊤n−1∇ψ −∇ · (σ2∇ψ)
]

(Xt)dt

ϕn ← arg min
ϕ

∫ T

0
E
X∼
−→P ν,f+σ2∇ϕ

[
σ2

2 ∥∇ϕ−∇ψn∥
2 −∇ · (f + σ2∇ψn)

]
(Xt)dt+ E

[
log ν(X0)

µ(XT )

]
where updating ϕ bears resemblance to (12), and updating ψ is akin to the score matching loss (14). The
equivalence to (38) assuming ϕ, ψ is expressive enough (i.e., (ϕ∗, ψ∗) = (ϕθ∗ , ψγ∗)) and ϕ0 = 0 is shown in
Vargas & Nüsken (2023) and relies on the fact that ϕ, ψ update (39)-(40) solve respectively

∇ψn = ∇ϕn−1 −∇ log ρν,f+σ2∇ϕn−1
t , ∇ϕn = ∇ψn −∇ log ρµ,f+σ2∇ψn

t ,

which fix one side of the marginal alternatively, while reversing the path-wise transition from the previous
one. It is known (38) converges to π∗ as n→∞.

In Section 2.2 we also claimed that for two processes (pt)t, (qt)t with different initialization, but same drift
σv+ σ2s where s is the score function, ∂tDKL(pt∥qt) = −σ2/2 ·Ept [∥∇ log pt

qt
∥2] ≤ 0 contracts towards each

other, when we run the generative process

dXt = [σvt(Xt) + σ2st(Xt)]dt+ σ
−−→
dWt, X0 ∼ ν ̸=

←−
P µ,σv

0 ,
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although the actual rate maybe slow. We give this short calculation here for completeness:

∂tDKL(pt∥qt)

=
∫

(∂tpt(x)) log pt(x)
qt(x) dx+

∫
qt(x)

[
∂tpt(x)
qt(x) −

pt(x)∂tqt(x)
q2
t (x)

]
dx

=
∫
pt

[
σvt + σ2st −

σ2

2 ∇ log pt(x)
]⊤
∇ log pt(x)

qt(x)dx−
∫
pt(x)
qt(x)∂tqt(x)dx

=
∫
pt

[
σvt + σ2st −

σ2

2 ∇ log pt(x)
]⊤
∇ log pt(x)

qt(x)dx−
∫
∇pt(x)
qt(x)

[
σvt + σ2st −

σ2

2 ∇ log qt(x)
]
qt(x)dx

=
∫ [

σvt + σ2st −
σ2

2 ∇ log pt(x)− σvt − σ2st + σ2

2 ∇ log qt(x)
]⊤
∇ log pt(x)

qt(x) · pt(x)dx

= −σ
2

2

∫ ∥∥∥∥∇ log pt(x)
qt(x)

∥∥∥∥2
pt(x)dx ≤ 0 .

Immediately follows is the proof of our main results: Proposition 1 and Lemma 3 from Section 3.3.

Proof of Proposition 1. The first term (41)-(42) simply involves writing DKL in terms of the (current) con-
trols using Lemma 1, up to constants. One can regularize to remove the constraints in (20) while still
ensuring the right marginals via

L(∇ϕ,∇ψ) := DKL(−→P ν,σ2∇ϕ∥
←−
P µ,−σ2∇ψ) + λR(∇ψ) or DKL(−→P ν,σ2∇ϕ∥

←−
P µ,−σ2∇ψ) + λ′R′(∇ϕ)

where R(·) can be either from reference measure as in (1) or from optimality condition on the control as in
(2). In both cases, the first term is a ρ constraint (time reversal consistency with correct marginals), and
the second one a ϕ-constraint (enforce optimality).

For (2), we give one direction of the argument for ∇ψ first. Let −→P ν,f denote the path measure associated
with dXt = ft(Xt)dt+σdWt, X0 ∼ ν, then −→P ν,f almost surely, the Radon-Nikodym derivative between −→P ν,f

and the controlled backward process is

log
(

d
−→
P ν,f

d
←−
P µ,f−σ2∇ψt

)
(X) = log dν(X0)

dµ(XT ) +
∫ T

0

σ2

2 ∥∇ψt∥
2 −∇ · (f − σ2∇ψt)dt+ σ

∫ T

0
∇ψt dWt .

In the case when the variance (taken along the prior X ∼ −→P ν,f )

Var
(
ψT (XT )− ψ0(X0)−

∫ T

0

σ2

2 ∥∇ψt∥
2 +∇ · f − σ2∆ψt(Xt)dt−

∫ T

0
σ∇ψt dWt

)
= 0 ,

it implies that the random quantity is almost surely a constant independent of the realization, and

log
(

d
−→
P ν,f

d
←−
P µ,f−σ2∇ψt

)
(X) = log dν(X0)

dµ(XT ) + ψT (XT )− ψ0(X0) + logZ ,

from which using the factorization characterization (34), and the terminal constraint ←−P µ,f−σ2∇ψt

0 =
ν,
←−
P µ,f−σ2∇ψt

T = µ imposed by the first KL condition, concludes that ←−P µ,f−σ2∇ψt must be the unique
solution to the SB problem. The other direction on ∇ϕ is largely similar, and one can show using Girsanov’s
theorem and the variance condition that along the prior X ∼ −→P ν,f ,

log
(
d
−→
P ν,f+σ2∇ϕt

d
−→
P ν,f

)
(X) =

∫ T

0
−σ

2

2 ∥∇ϕt∥
2dt+

∫ T

0
σ∇ϕt dWt = ϕT (XT )− ϕ0(X0) ,
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to conclude in the same way. Note that evaluating the variance regularizer only requires simulating from the
base process (17).

In (3), for any ϕt, the likelihood ratio along dXt = (f + σ2∇ϕt)dt+ σdWt, X0 ∼ ν is

log
(
d
−→
P ν,f+σ2∇ϕt

d
−→
P ν,f

)
(X) =

∫ T

0

σ2

2 ∥∇ϕt∥
2dt+

∫ T

0
σ∇ϕt dWt , (53)

which according to (34), has to be equal to ψ0(X0) + ϕT (XT )− log ν(X0) = −ϕ0(X0) + ϕT (XT ) Pν,f a.s.⇒
Pν,f+σ2∇ϕ a.s. to be optimal, justifying

Var
X∼
−→P ν,f+σ2∇ϕ

(
ϕT (XT )− ϕ0(X0)− σ2

2

∫ T

0
∥∇ϕt∥2(Xt) dt− σ

∫ T

0
∇ϕt(Xt) dWt

)
.

In a similar spirit, for any ψt, along the same process X ∼ −→P ν,f+σ2∇ϕt ,

log
(

d
−→
P ν,f

d
←−
P µ,f−σ2∇ψt

)
(X) =

∫ T

0
σ2∇ψ⊤t ∇ϕt + σ2

2 ∥∇ψt∥
2 −∇ · (ft − σ2∇ψt)dt+

∫ T

0
σ∇ψtdWt

+ log
(
dν(X0)
dµ(XT )

)
+ logZ , (54)

which again using (34), has to be equal to

−ψ0(X0)− ϕT (XT ) + log ν(X0) = −ψ0(X0)− log ptarget(XT ) + ψT (XT ) + log ν(X0)

to be optimal, yielding the anticipated variance regularizer. Additionally, in order to enforce the terminal
constraint along −→P ν,f+σ2∇ϕt , it suffices to sum up (53)-(54) to impose the time-reversal consistency, which
means ϕT (XT ) + ψT (XT ) = log ptarget(XT ) and ϕ0(X0) + ψ0(X0) = log pprior(X0) = log ν(X0) necessarily.

In (4), we use ∇ϕt and ∇ log ρt as optimization variables instead of the two drifts, and it follows from the
dynamical formulation (27)-(28). One can also read (42) as

∂t log ρt(Xt) = 1
ρt

(∂tρt +∇ρ⊤t Ẋt)

= 1
ρt

[−∇ · (ρt(ft + σ2∇ϕt)) + σ2

2 ∆ρt] + 1
ρt
∇ρ⊤t (ft + σ2∇ϕt −

σ2

2 ∇ log ρt)

= −σ2∆ϕt + σ2

2 ∆ log ρt −∇ · ft ,

which upon integrating and using integration by parts (15) give the loss. This first part establishes a
particular relationship between the two variables, and the second part enforces optimality among all curves
transporting between ν and µ driven by such dynamics – one can also switch this part to (21) if v̄t is
known.

Proof of Lemma 3. Using Itô’s lemma, we have along the reference SDE dXt = ft(Xt)dt+ σdWt, X0 ∼ ν,

dϕt =
[
∂ϕt
∂t

+∇ϕ⊤t ft + σ2

2 ∆ϕt
]
dt+ σ∇ϕ⊤t dWt .

Now deducing from (30), since the optimal ϕt solves the PDE for all (t, x) ∈ [0, T ]× Rd

∂tϕt = −f⊤t ∇ϕt −
σ2

2 ∆ϕt −
σ2

2 ∥∇ϕt∥
2 ,

substituting the last display into the previous one gives the result. Analogously, along the same reference
process with Itô’s lemma,

dψt =
[
∂ψt
∂t

+∇ψ⊤t ft + σ2

2 ∆ψt
]
dt+ σ∇ψ⊤t dWt

17
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and using the fact (30) that the optimal ψt solves for all (t, x) ∈ [0, T ]× Rd

∂tψt = −∇ψ⊤t ft −∇ · ft + σ2

2
(
∥∇ψt∥2 + ∆ψt

)
and plugging into the previous display yields the claim. In both of the PDE derivations above, we used the
fact that for any g : Rd → R,

1
g
∇2g = ∇2 log g + 1

g2∇g∇g
⊤ ⇒ 1

g
∆g = ∆ log g + ∥∇ log g∥2 (55)

by taking trace on both sides.

The second part of the lemma statement, where Xt evolves along the optimally controlled SDE, follows from
(Chen et al., 2021a, Theorem 3) up to a change of variable. Notice the sign change and the absence of the
cross term in the dynamics for ϕt, ψt when X ∼

−→
P ν,f vs. X ∼ −→P ν,f+σ2∇ϕ.

Proposition 2 and Lemma 4 are stated in Section 3.4, whose proof we give below.

Proof of Proposition 2. The optimal ∇ϕt,∇ψt allow us to calculate logZ for ptarget using (41) as either (can
be used without expectation, or with expectation and ignore the last term)

logZ = E−→P ν,f+σ2∇ϕ

[
−σ

2

2

∫ T

0
∥∇ϕt(Xt) +∇ψt(Xt)∥2dt+

∫ T

0
∇ · (ft(Xt)− σ2∇ψt(Xt))dt− log dν(X0)

dµ(XT )

]

+ E−→P ν,f+σ2∇ϕ

[
−σ
∫ T

0
(∇ϕt +∇ψt)(Xt)

−−→
dWt

]
=: E[−S] ;

or using (37), with the optimal ∇ϕ∗,∇ψ∗, since Z is independent of XT ,

− logZ = log ν(X0)− σ2

2

∫ T

0
∇ · (∇ log ϕ∗t −∇ logψ∗t )(Xt) dt−

∫ T

0
∇ · ft(Xt)dt− logµ(XT ) (56)

in which case the estimator is exact with Xt following (31), or equivalently, (36). Notice (56) bears resem-
blance to Jarzynski’s identity, since the term that’s been integrated is essentially ∂t log ρt(Xt).

In general for imperfect control, since DKL(−→P ν,f+σ2∇ϕ∥
←−
P µ,f−σ2∇ψ) > 0, logZ will only be lower bounded

by E[−S]. Using Lemma 1 however,

1 = E−→P ν,f+σ2∇ϕ

( d−→P ν,f+σ2∇ϕ

d
←−
P µ,f−σ2∇ψ

)−1


= E−→P ν,f+σ2∇ϕ

[
exp

(
−σ

2

2

∫ T

0
∥∇ϕt +∇ψt∥2 +∇ · (ft − σ2∇ψt)dt− σ

∫ T

0
∇ϕt +∇ψtdWt − log ν

µ

)
1
Z

]
(57)

=: E[exp(−S′)/Z] ,

giving Z = E[exp(−S′)] using any (potentially sub-optimal) control ∇ϕ,∇ψ.

For the importance sampling, we use path weights suggested by the terminal requirement that Xϕ∗

T ∼ µ,
therefore for any ϕ and X ∼

−→
P ν,f+σ2∇ϕ,

wϕ(X) = dPXϕ∗

dPXϕ

(X) = dPXϕ∗

dPXr

(X)dPX
r

dPXϕ

(X)

= dµ

dPXr
T

(XT )dPX
r

dPXϕ

(X)
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= exp
(

log dµ

dPXr
T

(XT )− 1
2σ2

∫ T

0
∥ft + σ2∇ϕt∥2dt− 1

σ

∫ T

0
(ft + σ2∇ϕt) dWt

)
, (58)

where we assumed the reference r is drift-free:

dXt = σdWt , X0 ∼ ν

hence Xr
T ∼ ν ∗ N (0, σ2T · I) d= y + σ

√
Tz for y ∼ ν, and PXr

T
is easy to evaluate. Indeed, this choice

guarantees
wϕ(Xϕ

T ) = dµ

dPXϕ

(Xϕ
T )

therefore Eϕ[g(Xϕ
T )wϕ(Xϕ

T )] =
∫
g(x)µ(x)dx for any function g on the terminal variable XT generated with

control ϕ.

Proof of Lemma 4. Similar to (44), we obtain the forward trajectory

Xi
k+1 = Xi

k + (fk(Xi
k) + σ2∇ϕk(Xi

k))(tk+1 − tk) + σ
√
tk+1 − tk · zik, zik ∼ N (0, I) (59)

with Euler-Maruyama for each of the i ∈ [N ] samples. Rewriting the term (54) using (9), (46)-(47) and
proceeding with the approximation (6) give

1
σ2

∫ T

0
ft(Xt)

−−→
dXt −

1
2σ2

∫ T

0
∥ft(Xt)∥2dt− 1

σ2

∫ T

0
(ft − σ2∇ψt)(Xt)

←−−
dXt + 1

2σ2

∫ T

0
∥(ft − σ2∇ψt)(Xt)∥2dt

≈ 1
σ2

K−1∑
k=0

fk(Xk)⊤(Xk+1 −Xk)− 1
2σ2 ∥fk(Xk)∥2(tk+1 − tk)

− 1
σ2 (fk+1(Xk+1)− σ2∇ψk+1(Xk+1))(Xk+1 −Xk) + 1

2σ2 ∥fk+1(Xk+1)− σ2∇ψk+1(Xk+1)∥2(tk+1 − tk)

=
K−1∑
k=0

1
2σ2(tk+1 − tk)∥Xk −Xk+1 + (fk+1 − σ2∇ψk+1)(Xk+1)(tk+1 − tk)∥2

−
K−1∑
k=0

1
2σ2(tk+1 − tk)∥Xk+1 −Xk − fk(Xk)(tk+1 − tk)∥2 ,

which is the estimator for the variance regularizer with (Xk) following (59).

It is also possible to avoid the divergence (i.e., Hutchinson’s trace estimator) in the estimator (57) when
discretizing by leveraging similar ideas. Direct computation using (46)-(47) tell us Z ≈

1
N

N∑
i=1

exp
(

log µ
ν
−
K−1∑
k=0

1
2σ2(tk+1 − tk)∥X

i
k −Xi

k+1 + (fk+1 − σ2∇ψk+1)(Xi
k+1)(tk+1 − tk)∥2 + 1

2∥zk∥
2

)

for the same Euler-Maruyama trajectory (59) as the estimator for the normalizing constant, where we used
that the additional term

K−1∑
k=0

1
2σ2(tk+1 − tk)∥Xk+1 −Xk − (fk + σ2∇ϕk)(Xk)(tk+1 − tk)∥2 = 1

2

K−1∑
k=0
∥zk∥2

from the update. This can be understood as a ratio of two discrete chains as in (45).
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B Numerics

In this section, we summarize the main contributions of the work (Proposition 1 and Lemma 4) and offer
numerical evidence on their advantages compared to existing proposals for solving an optimal trajectory
problem in a typical MCMC setup.

B.1 Algorithm specification

Below we pick the reference process to be a Brownian motion with f = 0 and λ is a parameter that we tune
for best performance, although in principle any λ > 0 should work.

1. PINN-regularization (Vargas & Nüsken (2023)): for i = 1, · · · , n, and Z ∼ N (0, I) independently
draw in parallel

xik+1 = xik + σ2h∇ϕ(xik, kh) + σ
√
hZik, x

i
0 ∼ ν (60)

for k = 0, · · · ,K with stepsize h = c/(K+1) for some c ≥ 1. Using these trajectories {xik}, minimize
over ϕ and s,

1
n

n∑
i=1

[
log ν(xi0)

µ(xiK+1) +
K∑
k=0

1
2σ2h

∥xik − xik+1 + σ2h
(
∇ϕ(xik+1, (k + 1)h)−∇s(xik+1, (k + 1)h)

)
∥2

]

+λ · 1
n

n∑
i=1

[
K∑
k=0

∣∣∣∣∂tϕ(xik, kh) + σ2

2 ∆ϕ(xik, kh) + σ2

2 ∥∇ϕ(xik, kh)∥2
∣∣∣∣ · h

]
. (61)

Above ϕ(x, t), s(x, t) are two neural networks that take t ∈ R and x ∈ Rd as inputs and maps to R,
∇ is the space derivative w.r.t x ∈ Rd (i.e., derivative w.r.t the first input), ∂t is the time derivative
(i.e., derivative w.r.t the second input). With the new ϕ, s we repeat (60) and (61) several times,
and compute statistics using the latest samples {xiK+1}ni=1.
Another possibility is to replace first term of (61) with

1
K + 1Varn

[
log ν(xi0)

µ(xiK+1) +
K∑
k=0

1
2σ2h

∥xik − xik+1 + σ2h
(
∇ϕ(xik+1, (k + 1)h)−∇s(xik+1, (k + 1)h)

)
∥2

−
K∑
k=0

1
2σ2h

∥xik+1 − xik − σ2h∇ϕ(xik, kh)∥2
]
, (62)

which will be a log-variance divergence between the two path measures, and is oblivious to unknown
normalizing constant. Similarly for (64) below.

2. Variance-regularization (loss (2) from Proposition 1): Simulate trajectories (60) exactly as before,
but additionally simulate {yik}Kk=0 as follows and cache them: (this only needs to be done once)

yik+1 = yik + σ
√
hZik, y

i
0 ∼ ν . (63)

Minimize over ϕ, s the following discretized loss

1
n

n∑
i=1

[
log ν(xi0)

µ(xiK+1) +
K∑
k=0

1
2σ2h

∥xik − xik+1 + σ2h
(
∇ϕ(xik+1, (k + 1)h)−∇s(xik+1, (k + 1)h)

)
∥2

]

+ λ

K + 1 ·Varn

[
ϕ(yiK+1, (K + 1)h)− ϕ(yi0, 0) +

K∑
k=0

1
2σ2h

(
∥yik+1 − yik − σ2∇ϕ(yik, kh)h∥2 − ∥yik+1 − yik∥2)] .

(64)
Notice the first term is the same as (61). Again repeat (60) and (64) several times, tracking the loss
(64). Above Varn denotes the empirical variance across the n trajectories {yik}ni=1 of the quantity

20



Under review as submission to TMLR

inside [·]. The loss (64), as the proof of Proposition 1 shows, comes from the fact that along the
prior X ∼ −→P ν,f ,

log
(
d
−→
P ν,f+σ2∇ϕt

d
−→
P ν,f

)
(X) =

∫ T

0
−σ

2

2 ∥∇ϕt∥
2dt+

∫ T

0
σ∇ϕ⊤t dWt = ϕT (XT )− ϕ0(X0) , (65)

and we discretized the Radon-Nikodym derivative similiar to how it was done in the KL divergence
DKL(−→P ν,σ2∇ϕ∥

←−
P µ,−σ2∇ψ) (also see Lemma 4 for similar derivation).

Instead of the regularizer (64), another discretization of condition (65) can be a TD-like regularizer
similar to Liu et al. (2022):

...+λ· 1
n

n∑
i=1

K∑
k=0

h·
∣∣∣∣ϕ(yik+1, (k + 1)h)− ϕ(yik, kh) + σ2h

2 ∥∇ϕ(yik, kh)∥2 − σ
√
h∇ϕ(yik, kh)⊤Zik

∣∣∣∣ . (66)

The loss above can also be justified with Lemma 3. In all (61), (64) and (66), we parameterize the
forward / backward drift as σ2∇ϕ, σ2∇ϕ− σ2∇s. A regularization on the backward drift involving
s is also possible for (61), (64), and (66), but should have similar performance.

3. Separately-controlled loss (loss (3) from Proposition 1): Simulate (60) as before, with the n trajec-
tories {xik}. Minimize over ϕ, ψ the following discretized loss (c.f. Lemma 4):

Varn
[
ψ(xiK+1, (K + 1)h) + ϕ(xiK+1, (K + 1)h)− logµ(xiK+1)

]
+Varn

[
ψ(xi0, 0) + ϕ(xi0, 0)− log ν(xi0)

]
+

λ

K + 1 ·Varn

[
ψ(xiK+1, (K + 1)h)− ψ(xi0, 0) +

K∑
k=0

1
2σ2h

(
∥xik+1 − xik∥2 − ∥xik − xik+1 − σ2h∇ψ(xik+1, (k + 1)h)∥2)]

+ λ

K + 1 ·Varn

[
ϕ(xi0, 0)− ϕ(xiK+1, (K + 1)h) +

K∑
k=0

1
2σ2h

(
∥xik+1 − xik∥2 − ∥xik+1 − xik − σ2h∇ϕ(xik, kh)∥2)] .

(67)
Notice that it has 4 variance terms, and we alternate between simulating (60) and updating ϕ, ψ from
(67) several times. For this loss, we parameterize the forward / backward drift as σ2∇ϕ,−σ2∇ψ.
One can also consider the SDE-based discretization for the last 2 terms but will incur additional
Laplacian and divergence terms as suggested by Lemma 3. In contrast to losses (64) and (66), in
the presence of reference drift f ̸= 0, (67) will have the drift f appearing in the objective in the 3rd
term involving ψ, therefore it can alleviate the potential problem brought by prior forgetting.

We emphasize that the discretized regularizer (64) wouldn’t be available without the path-wise stochastic
process perspective. The FBSDE view (Lemma 3) will naturally lend to a TD-like regularizer as in Liu et al.
(2022), although the actual form there differs as they consider dynamics with mean-field interaction. Similar
comment applies to (67), where we separately impose optimality condition on

log
(
d
−→
P ν,f+σ2∇ϕt

d
−→
P ν,f

)
(X) and log

(
d
−→
P ν,f

d
←−
P µ,f−σ2∇ψt

)
(X) ,

for X ∼ −→P ν,f+σ2∇ϕt to take factorized forms, as opposed to looking at their sum

log
(
d
−→
P ν,f+σ2∇ϕ

d
←−
P µ,f−σ2∇ψ

)
only, effectively erasing the “SB optimality enforcement" part. The two discretized losses (64) and (67) are
our main contributions. Both have the variance reduction (compared to TD (66) with stochasticity in the
objective), without evaluating expensive Laplacian terms (as the PDE-based PINN approach (61) would
require). We also highlight that the algorithm does not use gradient information from the target ∇ logµ as
e.g., Langevin would.
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B.2 Importance weighting

For the very last sampling SDE, we simulate (60) with the latest ∇ϕ, but re-weight the n samples {xiK+1}ni=1
each with individual weights

w(xiK+1) =
µ(xiK+1)
ρ(xiK+1) exp

(
−

K∑
k=0

1
2σ2h

∥xik+1 − xik∥2 +
K∑
k=0

1
2σ2h

∥xik+1 − xik − σ2h∇ϕ(xik, kh)∥2

)

before taking average, i.e.,

Êµ[g] =
1
n

∑n
i=1 g(xiK+1)w(xiK+1)
1
n

∑n
i=1 w(xiK+1)

(68)

for a summary statistics g : Rd 7→ R we are interested in. Above ρ is the Gaussian pdf of N (b1, σ
2c · I+ b2) if

ν = N (b1, b2) and h = c/(K + 1). This estimator follows from Proposition 2 and is used for post-processing
with a potentially suboptimal control ∇ϕ.

B.3 Benchmark and Metrics

Given the computing resource we have available, it was challenging to scale up to high-dimensional problems
with large neural network size. As a proof of concept, we consider three targets with different priors ν:

• 2D Shifted Gaussian: N (x; [4, 4], I) with prior ν(x) = N (x; [1, 1], 4I)

• 2D Gaussian mixture model with 4 modes: 1
4
∑4
i=1N (x;µi, I) where {µi}4

i=1 = {−2, 2} × {−2, 2}
and prior ν(x) = N(x; [0, 0], 4I)

• 2D Gaussian mixture model with 9 modes: 1
9
∑9
i=1N (x;µi, I) where {µi}9

i=1 = {−5, 0, 5}×{−5, 0, 5}
and prior ν(x) = N(x; [0, 0], 3.52I)

For each of the benchmarks and 4 losses, we plot the marginals and report the following:

• Absolute error in mean and relative error in standard deviation compared to the ground truth using
importance-weighted Monte-Carlo estimates (68)

• The log normalizing constant logZ estimator (c.f. Lemma 4):

log
(

1
n

n∑
i=1

µ(xiK+1)
ν(xi0) exp

[
K∑
k=0

1
2∥Z

i
k∥2 − 1

2σ2h
∥xik − xik+1 + σ2h(∇ϕ(xik+1, (k + 1)h)−∇s(xik+1, (k + 1)h))∥2

])

for method 1 and 2, and

log
(

1
n

n∑
i=1

µ(xiK+1)
ν(xi0) exp

[
K∑
k=0

1
2∥Z

i
k∥2 −

K∑
k=0

1
2σ2h

∥xik − xik+1 − σ2h∇ψ(xik+1, (k + 1)h)∥2

])

for method 3, both using the final trajectory {xik} from (60).

B.4 Result and Discussion

For the experiments, we parameterize ϕ, s : Rd × [0, c] → R as feed-forward neural networks where c is
a hyperparameter. The ϕ neural network has 2 hidden layers with 40 neurons each and the s/ψ network
has 1 hidden layer with 10 neurons. All affine transforms are followed by the GELU activation. Adam
optimizer was used to train the models with β1 = 0.9, β2 = 0.999, and weight decay 0.01, where batches of
trajectories are used for several steps of gradient updates in each epoch, before regenerating the n trajectories
and estimating the objective for the next round of updates on the NN parameters. Across all experiments,
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we initialize ϕ(xi0, 0) ≈ logµ(xi0). For fair comparison, the training process is stopped when the loss stops
noticeably decreasing.

In practice we find the log-variance divergence (62) to perform better than the KL divergence, therefore
proceed with this choice for the losses (61), (64), and (66).

In Table 1 and Figure 1 below we show the simulation results, followed by Table 2 where the hyperparameters
used for the experiments are listed.

For a comparison on the computation speed of the four regularizers: using the GMM-9 configuration listed
in Table 2, it took 126 seconds to train with PINN and TD, 118 seconds to train with Separate Control,
and 677 seconds to train with the Variance regularizer. Generating trajectories requires much less time
than evaluating the loss and its gradient. Computing each loss requires processing all K states across
n trajectories. Combined with the number of training epochs and the number of updates per batch, we
estimate the processing time per trajectory state as approximately

training_time
epochs× trajectories× updates_per_batch×K

.

The stated processing time is therefore roughly 1.68 · 10−3s for PINN, 1.81 · 10−6s for Variance, 1.57 · 10−6s
for Separate Control, and 1.68 · 10−6s for TD. The latter three are comparable and much faster than PINN
whose Laplacian computation adds an order of magnitude processing time.

For reproducibility, the anonymous Github repository can be found at the following link:

https://anonymous.4open.science/r/ctrlds-643B/README.md

Table 1: Absolute errors for the importance-weighted mean µ, relative errors for the importance-weighted
standard deviation σ, and log evidence estimates logZ for various target distributions and objectives. The
ground truth logZ is 0 for both GMM targets.

Loss Quantity Gaussian GMM-4 GMM-9
PINN µ 0.124 0.706 0.474

σ 0.035 0.543 0.238
logZ −12.526 −5.716 −3.604

Variance µ 0.158 0.091 0.292
σ 0.074 0.027 0.037
logZ −9.348 −3.005 −2.292

Separate Control µ 0.203 0.049 0.061
σ 0.251 0.008 0.003
logZ −0.361 −1.851 −2.710

TD µ 0.185 0.084 0.436
σ 0.179 0.011 0.085
logZ −17.690 −3.134 −2.255

We see that on multi-modal targets, our separately controlled loss (67) is generally much better compared to
the PINN loss (61), while TD (66) and variance regularizer (64) can sometimes be comparable. In practice,
we also observe that the separately controlled loss is less sensitive to tuning parameters, as can also be
observed by the smoother training loss trajectory.
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Figure 1: Gaussian mixture (9-mode): the second and third column show histograms of the samples for the
first dimension with and without importance weights. Ground truth marginal density is shown in orange.
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Table 2: Hyperparameter setting for different losses. Below K is the trajectory length, λ is the regularization
coefficient, σ is the diffusion coefficient in the SDE. Updates per batch refers to the number of passes we
make over the n trajectories in each epoch. Number of epoch is the number of times we re-generate the
trajectories for training.

Regularizer Hyperparameter Value (Gaussian) Value (GMM-4 and GMM-9)
PINN K 20 15

λ 1 1
c 1.5 4
σ 1 1
learning rate 0.005 0.0001
epochs 20 10
trajectories (n) 50 50
batch size 50 50
updates per batch 5 10

Variance K 150 150
λ 3 0.5
c 2 2
σ 0.2 0.5
learning rate 0.0001 0.0001
epochs 50 50
trajectories (n) 5000 5000
batch size 500 5000
updates per batch 10 10

Separate Control K 100 50
λ 1 3 (GMM-4) and 1 (GMM-9)
c 1.5 1
σ 1 1
learning rate 0.005 0.005
epochs 100 30
trajectories (n) 500 5000
batch size 500 5000
updates per batch 10 10

TD K 100 100
λ 1 0.1
c 1.5 1
σ 1 2
learning rate 0.005 0.001
epochs 100 10
trajectories (n) 500 5000
batch size 500 5000
updates per batch 10 15
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