
Where are we in the search for an Artificial Visual
Cortex for Embodied Intelligence?

Abstract—We present the largest and most compre-
hensive empirical study of pre-trained visual repre-
sentations (PVRs) or visual ‘foundation models’ for
Embodied AI. First, we curate CortexBench, consisting
of 17 different tasks spanning locomotion, navigation,
dexterous, and mobile manipulation. Next, we system-
atically evaluate existing PVRs and find that none are
universally dominant.

To study the effect of pre-training data scale and
diversity, we combine over 4,000 hours of egocentric
videos from 7 different sources (over 5.6M images) and
ImageNet to train different-sized vision transformers
using Masked Auto-Encoding (MAE) on slices of this
data. Contrary to inferences from prior work, we find
that scaling dataset size and diversity does not improve
performance universally (but does so on average).

Our largest model, named VC-1, outperforms all prior
PVRs on average but does not universally dominate
either. Finally, we show that task- or domain-specific
adaptation of VC-1 leads to substantial gains, with
VC-1 (adapted) achieving competitive or superior per-
formance than the best known results on all of the
benchmarks in CortexBench. These models required
over 10,000 GPU-hours to train and can be found on
our website for the benefit of the research community.

I. Introduction
Eyesight is considered one of the greatest inventions

of biological evolution [1]. Out of the 38 known phyla in
the animal kingdom, only 6 have evolved eyes yet they
account for 95% of all species [1] – vision seems to confer
an enormous advantage. Of course, the evolution of visual
sensing via eyes progresses in concordance with visual
perception – via a visual cortex, the region of the brain
that (together with the motor cortex) enables an organism
to convert sight into movement. In this work, we ask the
same question Fukushima [2, 3] did nearly 50 years ago –
how do we design an artificial visual cortex, the module
in a larger computational system that enables an artificial
agent to convert camera input into actions?

In contemporary AI, this question has been operational-
ized as the design of pre-trained visual representations
(PVRs) or visual ‘foundation models’ for embodied AI
(EAI).1 Indeed, recent work has shown that PVRs trained
on large quantities of egocentric-videos and web-images can
substantially improve performance and learning efficiency
for navigation [4–6] and manipulation tasks [7–10]. Unfor-
tunately, each study is fundamentally incommensurable, as

1We use embodied AI (EAI) as an umbrella term for all communities
studying visuomotor control such as robot learning, vision-based
reinforcement learning, egocentric computer vision, etc.

Fig. 1: An artificial visual cortex for embodied intelligence
must support a diverse range of sensorimotor skills, envi-
ronments, and embodiments; we curate CortexBench
to systematically measure progress towards this ambitious
goal. Our strongest model, denoted VC-1 (adapted) above,
is competitive with or outperforms the best prior results
(success rates) on all benchmarks in CortexBench. Notice
that this comparison is particularly unforgiving because
the best prior results are benchmark-specific and not
constrained to share any aspect of their design.

each uses different self-supervised learning (SSL) algorithms
on different pre-training datasets, designed for, and eval-
uated on different downstream EAI tasks. Naturally, one
might ask: is there a universally-dominant configuration?
Essentially, does an artificial visual cortex already exist?2

To answer this question, we conduct the largest
and most comprehensive empirical study to-date of
visual foundation models for EAI. First, we curate
CortexBench, a new benchmark for evaluating PVRs,
consisting of 17 tasks spanning low-level locomotion [11],
table-top manipulation of rigid and articulated objects [12],
dexterous manipulation [13], multi-finger coordinated
manipulation [14], indoor visual navigation [15], and mobile
manipulation [16]. The visual environments span from flat
infinite planes to table-top settings to photorealistic 3D
scans of real-world indoor spaces. The agent embodiments
vary from stationary arms to dexterous hands to idealized

2To the degree of our ability to measure it.



cylindrical navigation agents to articulated mobile
manipulators. The learning conditions vary from few-shot
imitation learning to large-scale reinforcement learning.
The exhaustiveness of this study enables us to draw
conclusions with unprecedented scope and confidence.

Our first finding is a negative result. We discover that
while existing PVRs generally outperform learning-from-
scratch baselines, none is universally dominant. Instead,
we find that PVRs tend to work best in the domains
(locomotion, manipulation, navigation) they were originally
designed for. We note that no claims of universality were
made in prior work, so this finding is illustrative rather
than refutative. Overall, serendipity did not come to pass –
an artificial visual cortex does not already exist.3 However,
curiously, the kinds of PVRs that are locally-dominant in
CortexBench differ significantly in the size and type of
pre-training datasets: CLIP [17] was pre-trained on 400M
image-text pairs from the web; MVP [9] on 4.5M frames
from web-images and many egocentric-video datasets;
R3M [8] on ∼5M frames from Ego4D – yet, each performs
best on some subset of tasks in CortexBench. This leads
to a natural question: how does scaling model size, dataset
size, or diversity affect performance on CortexBench?
Can we use scaling as a means to learn a single PVR that
works for all of the diverse tasks in CortexBench?

To study these questions, we combine over 4,000 hours
of egocentric videos from 7 sources containing humans ma-
nipulating objects and navigating indoor spaces, together
with ImageNet. From this union, we create 4 pre-training
datasets of varying size and diversity, with the largest
containing over 5.6M images. We train vision transformers
(ViT-B and ViT-L) [18] on these 4 datasets using Masked
Auto-Encoding (MAE) [19], and systematically analyze
their performance on CortexBench.

We do find evidence supporting the scaling hypothesis,
but the picture that emerges is more nuanced than what
a superficial reading might suggest. Our largest model
trained on all data, named VC-1, outperforms the best
existing PVR by 1.2% on average. However, VC-1 does not
universally dominate either – i.e., there are PVRs trained
on smaller amounts of data that outperform it on specific
tasks. A similar trend emerges for data diversity – more is
better on average, but not universally. For instance, the best
performance on the Mobile-Pick task from Habitat 2.0 [16]
is achieved by pre-training on the subset of video data
focused on manipulation; presumably because the mobility
involved in the task is fairly limited. Thus, our second key
finding is: Naively scaling dataset size and diversity does
not improve performance uniformly across benchmarks.

Our findings reveal a challenge and opportunity for the
community – the search for a PVR that is universally
dominant (or ‘foundational’) for EAI calls for innovations
in architecture, learning paradigm, data engineering, and
more. As the final step in this paper, but as a first step
towards this open problem, we study adapting VC-1
with either task-specific training losses or datasets (via

MAE [19]) to specialize VC-1 for each domain. We find
that adapting VC-1 results in it becoming competitive
with or outperforming the best prior results on all of the
benchmarks in CortexBench. We highlight that this
comparison is particularly unforgiving, since best prior
results are highly domain-specific and are not constrained
to share any aspect of their design. To our knowledge,
VC-1 (adapted) is the first PVR that is competitive with
(or outperforms) state-of-art results on such a diverse set
of EAI tasks (Figure 1).

We will release code for CortexBench to enable the
EAI, robotics, and CV communities to benchmark their
own models, and share our pre-trained models (including
VC-1) that we believe can serve as a starting point for all
visuomotor tasks of interest today.

II. Benchmarking Progress Towards an
Artificial Visual Cortex for Embodied AI

As shown in Figure 1, CortexBench includes 17 tasks
drawn from 7 existing EAI benchmarks (tasks are detailed
in Appendix C). For each task, we delineate a downstream
policy learning paradigm (e.g., few-shot imitation learning)
and evaluation protocol that follows community standards
in each domain (Appendix D). By fixing the tasks and
downstream learning methods, we are able to focus our
evaluations on the contribution of PVRs, which allows us to
measure progress towards the development of an artificial
visual cortex for embodied intelligence. We recommend two
metrics to evaluate PVR performance: Mean Success and
Mean Rank. Mean Success: the average success rate
across all benchmarks. Mean Rank: for each benchmark,
we rank PVRs based on their success rate; then we average
these rankings across all benchmarks.

A. Do we already have a foundation model?
We use CortexBench to conduct the largest and

most comprehensive empirical study to-date of PVRs
from prior work. For all evaluations we consider frozen
visual representations to disentangle the effect of learned
representations from downstream task learning. Specifically,
we include the following models:
– CLIP [17] Contrastive image-language pre-training objec-

tive; Trains on 400M images-text pairs from the internet
(WIT); ViT-B backbone.

– R3M [8] Time-Contrastive video-language alignment pre-
training objective; Trains on 5M images from a subset
of Ego4D; ResNet-50 backbone.

– MVP [9]. MAE pre-training objective; Trains on 4.5M
images from Egocentric videos and ImageNet; ViT-B
and ViT-L backbones.

– VIP [10]. Goal-conditioned value function pre-training
objective; Trains on 5M images from a subset of Ego4D;
ResNet-50 backbone.
These models cover a wide range of architectures, pre-

training objectives, and pre-training datasets, constituting
a solid set for comparisons. Additionally, we include
randomly initialized ViTs with both frozen weights and



Imitation Learning Reinforcement Learning Mean
# Model Adroit MetaWorld DMControl Tri-Finger ObjectNav ImageNav Mobile Pick Rank Success

1 Best prior result (any setting) 75 80 77 - 70.4 82.0 -
2 Best prior result (Frozen PVR) 75 80 77 - 54.4 61.8 -

3 Random (ViT-B) Frozen 2.0 ± 2.0 0.5 ± 0.5 10.1 ± 0.6 57.8 ± 0.5 19.2 ± 0.9 42.1 ± 0.8 10.8 ± 1.4 7.2 20.4
4 Random (ViT-L) Frozen 2.7 ± 1.8 0.5 ± 0.5 9.1 ± 0.2 57.2 ± 0.9 19.3 ± 0.9 45.2 ± 0.8 20.6 ± 1.8 6.9 22.1
5 Random (ViT-B) Fine-tuned 44.0 ± 2.0 49.9 ± 7.3 43.5 ± 2.4 56.1 ± 1.3 28.5 ± 1.0 62.5 ± 0.7 47.6 ± 2.2 5.3 47.4

6 MVP (ViT-B) 48.0 ± 3.3 91.2 ± 2.9 65.9 ± 2.4 59.7 ± 0.3 51.2 ± 1.1 64.7 ± 0.7 56.0 ± 2.2 3.1 62.4
7 MVP (ViT-L) 53.3 ± 4.1 87.5 ± 3.4 69.2 ± 1.5 74.1 ± 0.3 55.0 ± 1.1 68.1 ± 0.7 65.4 ± 2.1 2.1 67.5
8 CLIP (ViT-B) 47.3 ± 3.0 75.5 ± 3.4 55.5 ± 1.4 62.0 ± 0.5 56.6 ± 1.1 52.2 ± 0.8 49.8 ± 2.2 3.9 57.0
9 VIP (RN-50) 54.0 ± 4.8 90.1 ± 2.2 72.5 ± 2.7 66.7 ± 0.2 26.4 ± 1.0 48.8 ± 0.8 7.2 ± 1.2 4.0 52.3
10 R3M (RN-50) 73.3 ± 2.0 96.0 ± 1.1 81.1 ± 0.7 69.2 ± 0.8 22.7 ± 0.9 30.6 ± 0.7 33.2 ± 2.1 3.4 58.0

TABLE I: Performance of different frozen pre-trained visual representations on a diverse suite of evaluation domains.
Best prior results means that the results are the best reported in literature prior to this work. Overall, we find that no
single PVR consistently performs the best across all benchmarks. However, we find that several of these pre-trained
models often outperform a random training from scratch baseline. Best prior results sources (row 1): Adroit and
MetaWorld approximated from [8], DMControl from [7], ImageNav from [5], ObjectNav from [20]. Frozen PVR Sources
(row 2): Adroit, MetaWorld, and DMControl are the same as SOTA, ImageNav from [5], ObjectNav from [21].
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(a) scaling model size
45

50

55

60

65

70

Av
er

ag
e 

Su
cc

es
s

68.7
67.2 67.1

64.4
63.5

66.2
64.1 63.8 63.0 62.2

M
AE

 E
go

4D
+M

NI
M

AE
 E

go
4D

+M
N

M
AE

 E
go

4D
+N

M
AE

 E
go

4D
+M

M
AE

 E
go

4D

M
AE

 E
go

4D
+M

NI
M

AE
 E

go
4D

+M
N

M
AE

 E
go

4D
+N

M
AE

 E
go

4D
+M

M
AE

 E
go

4D

VIT-B
VIT-L

(b) dataset diversity effect
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Fig. 2: Scaling experiments: Visualizing model performance averaged across all benchmarks in Table II. Overall, we demonstrate
modest but positive scaling trends in both (a) scaling model size, and (b) dataset diversity. c) Average ranking across all
benchmarks. We compare existing PVRs (baselines) (Table I) and scaling models (Table II) by showcasing their ranking across
all benchmarks, VC-1: Ego4D+MNI (ViT-L) achieves the highest average rank.

fine-tuned weights to assess the necessity of pre-training
and the limitations of pure end-to-end in-domain learning.

Table I shows the evaluation results aggregated by
benchmark; no single model excels in all cases. Among all of
the models, R3M performs the best on Adroit, MetaWorld,
and DMControl. While MVP (ViT-L) performs best on
Trifinger, ImageNav, and Mobile Pick. CLIP, on the other
hand, achieves the best results on ObjectNav. These results
indicate that we do not yet have one strong performing
artificial visual cortex for embodied AI.
III. Analyzing the Scaling Hypothesis for EAI
In the previous section, we investigated models pre-

trained on datasets of varying size and diversity. Inter-
estingly, while the model pre-trained on the largest dataset
(CLIP) performs well on one benchmark (ObjectNav) it
does not perform well across all tasks. We now ask: how
much does the relevance and diversity of the pre-training
dataset and the model size matter? To study this, we fix
the pre-training objective – MAE [19] – and then vary the
composition of the pre-training dataset and the size of the
visual backbone (ViT-B with 86M parameters and ViT-L
with 307M parameters). We measure the corresponding
changes in performance on CortexBench.

A. Constructing a Pre-training Dataset for EAI
To evaluate the impact of dataset size and diversity on

our benchmark tasks, which involve various navigation
and manipulation challenges, we employ a combination
of nine datasets. These datasets include Ego4D [22], 100
Days of Hands (100DOH) [23], Something-Something v2
(SS-V2) [24], and Epic Kitchens [25]. This subset consists
of videos showcasing people manipulating objects and are
comparable to the datasets used in MVP [9]. Additionally,
we use two egocentric indoor navigation datasets: the Real
Estate 10K dataset [26] and the OpenHouse24 dataset (de-
scribed in Appendix E1). Finally, we include ImageNet [27]
as a representative static internet image dataset.
B. Scaling Hypothesis Findings

We use subsets of our pre-training dataset (described
in Appendix E) to analyze the effect of increasing model
size, dataset size, and dataset diversity. Results are shown
in Figure 2 and Table II. Key takeaways are:

Model Size. We find that increasing model size posi-
tively impacts performance on CortexBench. Specifically,
in Figure 2a, we find that with all pre-training datasets,
switching from ViT-B to ViT-L improves average perfor-
mance. However, in Table II, we find exceptions where



# Benchmark Adroit Meta-World DMControl Trifinger ObjectNav ImageNav Mobile Pick Mean Rank Mean Success
1 Best prior result (any setting) 75 80 77 - 70.4 82.0 -
2 Rand (ViT-B) fine-tuned 44.0 49.9 34.2 55.0 28.5 65.0 47.6
3 Best result Table I (Frozen PVR) 73.3 96.0 81.1 74.1 56.6 68.1 65.4
4 Ego4D (VIT-B) 48.7 ± 1.3 86.1 ± 2.1 64.1 ± 2.3 68.3 ± 1.1 46.8 ± 1.1 64.0 ± 0.7 57.4 ± 2.2 8.6 62.2
5 Ego4D (VIT-L) 50.0 ± 1.2 92.9 ± 2.4 60.8 ± 3.3 69.7 ± 0.5 47.6 ± 1.1 55.8 ± 0.8 67.6 ± 2.1 5.9 63.5
6 Ego4D+N (VIT-B) 50.0 ± 2.4 86.4 ± 2.9 59.5 ± 2.4 67.8 ± 1.3 54.7 ± 1.1 68.7 ± 0.7 59.4 ± 2.2 7.2 63.8
7 Ego4D+N (VIT-L) 54.0 ± 1.2 89.1 ± 2.9 66.4 ± 1.7 66.9 ± 0.4 57.4 ± 1.1 70.5 ± 0.7 65.2 ± 2.1 3.5 67.1
8 Ego4D+M (VIT-B) 51.3 ± 2.4 83.5 ± 2.6 64.3 ± 1.8 69.1 ± 0.4 47.3 ± 1.1 65.8 ± 0.7 59.8 ± 2.2 7.0 63.0
9 Ego4D+M (VIT-L) 52.0 ± 1.3 88.3 ± 3.2 64.7 ± 2.4 64.7 ± 0.9 47.3 ± 1.1 65.5 ± 0.7 68.6 ± 2.1 6.0 64.4
10 Ego4D+MN (VIT-B) 48.7 ± 2.4 85.3 ± 5.2 64.2 ± 1.9 70.3 ± 0.5 52.8 ± 1.1 68.9 ± 0.7 58.6 ± 2.2 6.9 64.1
11 Ego4D+MN (VIT-L) 52.7 ± 4.2 86.7 ± 3.9 69.7 ± 3.3 72.4 ± 0.5 58.4 ± 1.1 69.1 ± 0.7 61.2 ± 2.2 3.1 67.2
12 Ego4D+MNI (VIT-B) 54.0 ± 4.0 89.6 ± 3.9 63.8 ± 2.7 72.2 ± 0.6 55.4 ± 1.1 67.9 ± 0.7 60.6 ± 2.2 4.4 66.2
11 VC-1: Ego4D + MNI (VIT-L) 59.3 ± 5.2 88.8 ± 2.2 66.9 ± 1.4 71.7 ± 0.4 60.3 ± 1.1 70.3 ± 0.7 63.2 ± 2.2 2.4 68.7

TABLE II: Average success per benchmark of scaling hypothesis models. On average the VC-1 Ego4D+MNI (VIT-L)
performs best, but is not the best for each benchmark.

# Method Adroit MetaWorld DMControl Tri-Finger ObjectNav ImageNav Mobile Pick
1 Best prior result (any setting) 75 80 77 - 70.4 82.0 -
2 Best result from our experiments 73.3 96.0 81.1 74.1 60.3 70.5 68.6
3 In-domain MAE baseline 47.3 83.4 77.6 80.4 39.9 47.6 51.6
4 VC-1 59.3 88.8 66.9 71.7 60.3 70.3 63.2
5 VC-1 E2E fine-tuning 15.9 22.7 6.7 70.9 67.7 81.6 74.0
6 VC-1 MAE adaptation 72.0 96.0 80.9 80.6 57.4 67.0 62.4

TABLE III: Adapting VC-1 with end-to-end fine-tuning or MAE adaptation improves performance.

this general trend does not hold. For instance, when pre-
trained on Ego4D+MNI, the ViT-B model outperforms
the ViT-L model on MetaWorld and Trifinger.

Dataset Size and Diversity. In Figure 2b, models are
are ordered from right to left by increasing size and the
diversity of their pre-training dataset. In general, we find
that increasing dataset size and diversity mostly leads to
improvements for both ViT-B and ViT-L.

Finally, on average, our largest model (ViT-L) pre-
trained on all datasets (Ego4D+MNI), achieves the high-
est rank when averaged across all benchmark tasks (Table II
row 11), with a mean rank of 2.4. This performance is
superior to the second-best model (Ego4D+MN ViT-L,
Table II row 9) that has an average rank of 3.1. We call
this model VC-1, and will open-source it.

However, upon further dis-aggregation, we observe we
find that while VC-1 performs best on average, it is not the
best for each benchmark. For example, the best model for
Mobile Pick, a mobile manipulation task, is a ViT-L trained
on Ego4D+M and the best model for ImageNav, an indoor
navigation task, is the ViT-L trained on Ego4D+N. These
findings suggest that task-specific pre-training datasets
could enhance the performance of models on individual
tasks. However, it is important to note that this approach
would lead to multiple pre-trained models, each tailored to
a specific task, and not a unified visual foundation model.

IV. Adapting VC-1
In prior sections, we focused on evaluating VC-1 as a

frozen PVR for EAI. We now study if adapting VC-1
can improve results in downstream tasks. In the context of
PVRs for EAI, adaptation can serve at least two purposes.
The first is task-specialization in the feature extraction
stage. Since VC-1 was trained with MAE [19], it captures

features that are generally useful for reconstructing images.
Adaptation can specialize the visual backbone to extract
features required for performing specific downstream tasks
such as object rearrangement. Secondly, adaptation can also
help mitigate domain-gap that might exist between pre-
training and evaluation settings. In general, domain-gap
can arise for several reasons such as poor coverage in pre-
training data collection or deployment in novel conditions
(e.g., on robots) not seen in the pre-training data (e.g., in
human-centric video datasets). Domain gap is naturally
instantiated in our setup, since VC-1 was pre-trained
on real-world, human video data while our downstream
evaluation in CortexBench uses simulated EAI domains
with different visual characteristics.

Table III studies two adaptation methods: end-to-end
(E2E) fine-tuning and MAE adaptation in which we
continue training VC-1 with the MAE [19] pre-training
objective on task-specific data. Overall, we find adapting
VC-1 results in competitive performance on all bench-
marks. On MetaWorld, DMControl, and Tri-Finger VC-1
with MAE adaptation (Table III row 6) is comparable with
the best known results (SoTA) and the best results from
previous sections (Table III rows 1 and 2). Similarly, on
ImageNav and Mobile Pick, VC-1 with E2E fine-tuning
(Table III row 5) matches or exceeds the best results.
Together, these results demonstrate that adaptation is a
powerful paradigm for using PVRs for EAI.

V. Discussion
This work introduced CortexBench, which comprises

of 17 different embodied AI (EAI) task spanning loco-
motion, indoor navigation, and dexterous and mobile
manipulation. Enabled by CortexBench, we performed
the most comprehensive study to-date of visual foundation
models for EAI.
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Appendix
A. Limitations

The study presents a thorough examination of visual
foundation models but has several limitations. Firstly, in
proposing the benchmark, we sought to find a balance
between task diversity and the computational resources
required for evaluation. However, new and challenging
benchmarks in embodied AI, such as those presented in
[28], continue to emerge and may merit inclusion in future
studies to track progress in this field. Additionally, while we
have focused on masked auto-encoders as the pre-training
objective and ViT as the architecture in our study, there
may be other SSL algorithms that exhibit different scaling
behaviors or superior performance on the proposed datasets
in our benchmark. Lastly, the adaptation step of the PVR
model necessitates separate training on in-domain datasets,
as well as careful tuning of hyperparameters such as the
number of training epochs and sampling ratio of the dataset.
This results in a significant effort to produce a separate
adapted PVR model for each benchmark evaluated on our
benchmark, and the overall effort increases proportionately
with the number of benchmarks included in the study.

In conclusion, it is important to note that although
we utilize real-world images and videos for pre-training
our visual representation models (PVRs), the evaluation
benchmarks used in this study serve as proxies for actual
robotic tasks, and thus, the performance of the PVR models
on real robots may differ from the rankings established in
this study. Further research is necessary to fully evaluate
the effectiveness of these models in real-world scenarios.

B. Related Work
Pre-trained visual representations (PVRs). The

last few years have seen increasing interest in the self-
supervised learning (SSL) of visual representations [19, 29–
32]. These algorithms use contrastive [31, 32], distillation-
based [29, 30], or reconstructive [19, 33] objectives for
training. Recently, a flurry of works have proposed
using the vision transformers (ViTs) [34] with masked
image modeling [19, 35, 36], which among other benefits
reduces the computation time required for pre-training.
In this work, we use one such pre-training algorithm
(MAE [19]) to explore scaling and adapting pre-trained
visual representations (PVRs).

PVRs for embodied AI. Inspired by the advancements
in self-supervised learning, recent work has incorporated
visual representation learning into the training pipelines
for EAI agents [4–10]. Specifically, Parisi et al. [7] evaluate
several PVRs trained with supervised or self-supervised
learning on a range of EAI tasks, demonstrating promising
results under a few-shot imitation learning evaluation
protocol. Nair et al. [8], Radosavovic et al. [9], Ma et al.
[10] introduce new methods for pre-training visual repre-
sentations using egocentric video data, targeting robotic
manipulation tasks. Similarly, Khandelwal et al. [4], Yadav

Benchmark
Suite

Observation
Space

Action
Space

Goal
Specification

Policy
Learning

Adroit (AD) RGB + proprio. Continuous - IL
Metaworld (MW) RGB + proprio. Continuous - IL
DMControl (DMC) RGB + proprio. Continuous - IL
Trifinger (TF) RGB + proprio. Continuous Goal Image/Position IL
ObjectNav (ON) RGB + proprio. Discrete Object Category IL
ImageNav (IN) RGB Discrete Goal Image RL
MobilePick (MP) RGB + proprio. Continuous Goal Position RL

TABLE IV: CortexBench includes tasks from 7 diverse
benchmarks with different combinations of observations,
actions, and goals as well as different standard policy
learning paradigms.

et al. [5, 6] use pre-trained visual representations to
improve performance on multiple visual navigation tasks.
Closely related, Radosavovic et al. [9] demonstrate that
MAE pre-training on internet-scale video and image data
can produce effective visual representations for robotic
manipulation tasks. In contrast, our work studies a larger
range of embodied AI tasks (collected in CortexBench)
to understand how PVRs can provide a general-purpose
foundation for embodied agents and explores in-domain
model adaptation for various tasks.

Scaling model and dataset size. Several works have
showed that scaling model and dataset size improves
performance on vision tasks like image classification [37–39].
In EAI, Radosavovic et al. [9] find that scaling model and
data sizes improves downstream policy performances for
robotic manipulation tasks. While such prior works have
been confined to narrow domains like image classification
and robotic manipulation, our work is the first to study if
scaling can provide better models on a broad range of EAI
tasks.

Adapting PVRs. When and how to adapt PVRs
for downstream applications remains an open research
question [40–44]. In the context of EAI, Parisi et al. [7] and
Hansen et al. [45] show that naively fine-tuning PVRs with
behavior cloning can reduce performance in simulation, and
Radosavovic et al. [9] observe minimal gains in real-world
tasks manipulation tasks. In large-scale RL settings, Yadav
et al. [5, 6] show that end-to-end finetuning considerably
improves performance for indoor visual navigation. By
comparison, Pari et al. [46] find simple k-nearest-neighbor
adaptation works well for real-world visual imitation tasks.
Our work neither aims nor expects to be the final word on
this fertile topic.

C. Embodied AI Tasks in CortexBench
CortexBench includes tasks from 7 benchmarks listed

in Table IV, illustrated in Figure 1, and described here:
CortexBench includes tasks from 7 benchmarks illus-

trated in Figure 1 and described here:
Adroit (AD) [13] is a suite of challenging dexterous

manipulation tasks in which an agent must control a 28-
DoF anthropomorphic hand to perform a variety of tasks.
We study the two hardest tasks from Adroit: Relocate and
Reorient-Pen. In these tasks, an agent must manipulate



an object into a goal position and orientation, where the
goal must be inferred from the scene.

MetaWorld (MW) [12] is a collection of tasks in which
an agent commands a Sawyer robot arm to manipulate ob-
jects in a tabletop setting. We consider five tasks: Assembly,
Bin-Picking, Button-Press, Drawer-Open, and Hammer,
which follows the evaluations performed in [8].

DeepMind Control (DMC) [11] is a benchmark
for image-based continuous control in which an agent
performs low-level locomotion and object manipulation
tasks. We consider five tasks from DMC: Finger-Spin,
Reacher-Hard, Cheetah-Run, Walker-Stand, and
Walker-Walk, which follows the work in [7].

TriFinger (TF) is a robot, introduced in [14], that is
composed of a three-finger hand with 3-DoF per finger. We
consider two TriFinger tasks: Reach-Cube and Push-Cube.
The Push-Cube task was part of the Real Robot Challenge
2020 [47]. We also consider the easier Reach-Cube task,
which [48] also studies. In these tasks, the agent must
either touch the cube with one finger (Reach-Cube) or
push the cube and move it to a goal location (Push-Cube).

Habitat [15] is a simulation platform that includes
several visual navigation tasks in which agents explore
highly photo-realistic unseen 3D environments. We
consider two semantic navigation tasks in Habitat:
image-goal navigation (ImageNav) [49] and object-goal
navigation (ObjectNav) [50]. In both tasks, the agent
starts at a random location in an unknown 3D environment
and must find a goal location – specified with an image
taken from the goal location in ImageNav or with the
name of an object (e.g., ‘chair’) in ObjectNav. Evaluation
is conducted on unseen environments, thus testing the
generalization capabilities of the visual encoder and policy.

Habitat 2.0 [16] includes a set of mobile manipulation
tasks in which an agent controls a Fetch robot with a 7-DoF
arm, mobile base [51], and suction gripper to rearrange
objects in apartment scenes. We consider a challenging
version of the Mobile-Pick (MP) task from Habitat 2.0,
in which an agent must pick up a target object from a
cluttered receptacle (e.g., a counter) while starting from
a position in which the object is outside of the robot’s
reach (thus, requiring navigation). We relax the dense goal
specification as described in Appendix H.

D. Downstream Policy Learning
Given a frozen PVR, an agent needs to learn a policy for

each task. The EAI community has developed a range of
policy learning algorithms from few-shot imitation learning
(IL) to large-scale reinforcement learning (RL). For each
task in CortexBench, we conform to the community
standard for achieving state-of-art performance in that
domain.

“MuJoCo Tasks” On the tasks from the Adroit,
MetaWorld, and DMC suites we train policies using behav-
ior cloning on a small number of expert demonstrations
(100 for Adroit and DMC and 25 for MetaWorld), which

follows Parisi et al. [7], Nair et al. [8]. Specifically, we
train policies for 100 epochs and report the average rollout
performance on the test set for the best intermediate policy
during training. For all tasks, the policy is a 3-layer MLP.
When using vision transformers (ViT) based PVRs, we use
the [CLS] token as input to the policy, and with ResNets
we use features from the final convolutional layer after
global average pooling. These design choices follow prior
work such as Nair et al. [8], Radosavovic et al. [9].

“Trifinger Tasks” For TriFinger, we train policies
using behavior cloning on 100 demonstrations per task.
Specifically, we train a policy network composed of a 3-
layer MLP for 100 epochs for Reach-Cube and 1,000 epochs
for Move-Cube. We report the average score for the best
checkpoint over the course of training. As in the “MuJoCo
Tasks”, the input to the policy is the [CLS] token for ViT-
based PVRs and average pooled features from the last
convolutional layer for ResNet-based models.

“Habitat Tasks” We train ObjectNav policies with be-
havior cloning on 77k human demonstrations [52] collected
by Habitat-Web [53], totaling 360M environment steps.
For ImageNav and the Habitat 2.0 Mobile-Pick task, we
use RL for 500M environment steps with DD-PPO [54]
and VER [41]. We use patch representations for ViT-based
PVRs and grid-features from last convolutional layer for
ResNet models, passed through a compression layer [15]
for a lower dimensional representation for use by the policy
layers, which is a 2-layer LSTM for navigation and a 2-layer
GRU for manipulation.

More details on tasks and training are in Appendix H.

E. Scaling Hypothesis Datasets
We strategically select combinations of these datasets

(listed in Table V and below) to answer the following
questions:
– What is the impact of scaling dataset size and diversity?
– How does the inclusion of less-relevant datasets influence

the performance of PVRs on embodied AI tasks?
Ego4D [22] is our base pre-training dataset and encom-

passes a wide range of egocentric videos consisting of daily
life activities such as home, leisure, transportation, and
workplace activities.

Ego4D+M extends Ego4D with three object
manipulation-centric datasets: 100DOH, SS-v2, and Epic
Kitchens. This results in a dataset comprising 3.5 million
frames that is primarily focused on manipulation scenarios.

Ego4D+N extends Ego4D with two egocentric indoor
navigation datasets: OpenHouse24 and RealEstate10K.
This results in a dataset with 3.5 million frames, which is
similar in size to Ego4D+M, but is more diverse because
it contains a larger proportion of navigation data than the
manipulation-centric datasets Ego4D and Ego4D+M3.

3While Ego4D does contain navigation data (e.g., people moving
from location to another), the dataset is heavily skewed towards object
manipulation activities.



Name Contains Total Frames Frames used
Ego4D Ego4D 418,578,043 2,790,520

Ego4D+M (Manipulation)

Ego4D 418,578,043 2,790,520
100DOH 99,899 99,899

SS-v2 25,209,271 315,115
Epic Kitchens 19,965,439 332,757

Total 3,538,291

Ego4D+O (OpenHouse24)
Ego4D 418,578,043 2,790,520

OpenHouse24 27,806,971 499,442
Total 3,289,962

Ego4D+N (Navigation)
Ego4D 418,578,043 2,790,520

OpenHouse24 27,806,971 499,442
RealEstate10K 10,000,000 303,087

Total 3,289,962

Ego4D+MN (Manipulation, Navigation)
Ego4D+M 3,538,291 3,538,291

OpenHouse24 27,806,971 499,442
RealEstate10K 10,000,000 303,087

Total 4,340,820

Ego4D+MNI (Manipulation, Navigation, ImageNet)
Ego4D+MN 4,340,820 4,340,820

ImageNet 1,281,167 1,281,167
Total 5,621,987

TABLE V: Overview of the assembled datasets used for our scaling hypothesis experiments, using up to 5.6M frames.

Ego4D+MN combines Ego4D with both the three
object manipulation-centric datasets and two indoor navi-
gation dataset, resulting a dataset with 4.3 million frames.
While larger than Ego4D+M and Ego4D+N, it does not
include any new types of data beyond the manipulation
and navigation videos in the previous subsets. Thus, it is
no more diverse than Ego4D+N (which includes both
types of data).

Ego4D+MNI includes Ego4D, all of the manipulation-
centric and indoor navigation datasets, and ImageNet for a
total of 5.6M frames. This dataset allows us to explore the
impact of static internet images on our benchmark tasks.

1) OpenHouse24 description: The OpenHouse24 dataset
(OH24) is a collection of video walk-throughs of furnished
residential real estate properties. Over 1600 homes are
represented in the dataset, totaling 139 hours of video
footage. Each home is traversed in a continuous shot with
a stable HD RGB camera by an operator that efficiently
visits each room. The dataset represents a diverse set of
properties, including (but not limited to) small and large
suburban homes, high-rise apartments, ranch homes, and
condos. The ensuing walk-throughs range from under a
minute to 14 minutes in length, with the average taking 5
minutes and 12 seconds. The dataset will be open-sourced
by a separate research project.

F. How does VC-1 compare to existing PVRs?
This section compares VC-1 with existing PVRs from

Section II-A. On average, VC-1 ranks as the best model
across all benchmarks Figure 2c. We focus on R3M, MVP,
and CLIP, since they achieved the highest success in at least
one benchmark; we also compare to fine-tuning from scratch
to demonstrate the impact of end-to-end fine-tuning. In
terms of mean success, VC-1 (Table II row 11) outperforms
MVP (ViT-L) by +1.2 points (67.5 → 68.7), R3M by +10.7
(58.0 → 68.7), CLIP by +11.7 (57.0 → 68.7), and end-to-
end fine-tuning from scratch +19.6 (49.1 → 68.7).

Impressively, VC-1 outperforms CLIP on every bench-
mark (Figure 3), despite training on a 70X smaller dataset,
emphasizing the importance of egocentric interaction
datasets. VC-1 also outperforms fine-tuning from scratch
on every benchmark, indicating that PVRs trained with
out-of-domain data can outperform end-to-end learning.

When compared to R3M, VC-1 demonstrates superior
performance on average and on 4 out of 7 benchmarks (Fig-
ure 3). It is outperformed by R3M on Adroit, MetaWorld
and DMControl benchmarks. It is unclear whether this gap
is caused by the different training objective, pre-training
dataset, or backbone. This highlights the need for compa-
rable evaluations on benchmarks like CortexBench.

The MVP model is the most similar in terms of results,
architecture, and pre-training objective to VC-1, with the
main difference being the addition of a convolutional stem
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Fig. 3: Comparison of VC-1 with existing PVRs. VC-1
matches or exceeds existing PVRs on all benchmarks except
R3M on AD, MW, and DMC, indicating an opportunity
for model adaptation.

in MVP. VC-1 outperforms MVP VIT-L by 1.3 points
on mean success and performs better on four out of seven
benchmarks, likely due to the use of a more diverse dataset.

Overall, VC-1 is an effective model across a broad set
of tasks and thus a reasonable starting point for novel EAI
problems. However, it is not always the best performing
model for a specific task. This leads us to theorize that
there is a domain gap that might be bridged with dataset
engineering or adaptation of the PVR.

G. Attention Visualizations of VC-1
To visualize the attention we apply a mean pooling

operation to the attention matrices of the ViT encoder’s
final layer during inference for downstream tasks. The
resulting values are then overlaid onto the image.

We start by noticing the effect of MAE pre-training;
frozen VC-1 attention maps appear to focus on the contours
and general features of the image. We hypothesize that
this results from the MAE reconstruction-based training
objective, as contours provide essential information for
reconstructing images.

Additionally, we study the attention maps after end-to-
end fine-tuning of VC-1 on the downstream tasks. The
attention appears to focus on regions of the image that are
important for the task (e.g., the objects being manipulated).
Thus, through adaptation (via E2E fine-tuning), the model
learns to drop attention on areas irrelevant to the specific
task.

H. CortexBench Tasks and Training Details
We discuss in more details task specification from

Section H in this section.

Fig. 4: Attention Visualization: We overlay the mean
attention matrix in the last layer of the ViT encoder in
one of our tasks -MobilePick-. We notice the effect of MAE
pre-training on VC-1: The attention focuses in general
features of the image; and of task-adaptation: the attention
concentrates in task-specific regions of the image

ImageNav Benchmark. Our study conducts ImageNav
experiments using the standard dataset presented in [55].
This benchmark utilizes the Habitat simulator [16, 56] and
is situated within the Gibson [57] environments, which
comprise 72 training scenes and 14 validation scenes. The
validation set includes 300 episodes for each scene, for
a total of 4,200 episodes. In this benchmark, agents are
modeled as cylinders with a height of 1.5m, radius of
0.1m, and sensors located 1.25m above the center of the
base. The RGB camera has a resolution of 128×128 and
a 90◦ field-of-view. Agent is able to take up to 1000 steps
within the environment and are deemed successful if they
reach a location within 1m of the goal position and call
StopAction.

To train the agents within the Gibson environments, we
utilize 500M timesteps (25k updates) with 320 environ-
ments running in parallel. Each environment collects up
to 64 frames of experience, which is followed by 2 PPO
epochs utilizing 2 mini-batches. Unless otherwise specified,
we use a learning rate of 2.5 × 10−4 for training the agents
and update the parameters using the AdamW optimizer
with a weight decay of 10−6. We train agents with the
reward functions presented in [58] utilizing the following
settings: success weighting cs = 5.0, angle success weighting
ca = 5.0, goal radius rg = 1.0, angle threshold θg = 25◦,
and slack penalty γ = 0.01. We evaluate performance every
25M steps of training and report metrics based on the
highest success rate (SR) achieved on the validation set.

ObjectNav Benchmark. We present an evaluation of



object navigation (ObjectNav) using the HM3D-Sem
dataset [52]. The dataset is comprised of 80 training,
20 validation, and 20 testing scenes and utilizes the
Habitat simulator [16, 56] and HM3D [59] environments.
Our results are reported on the v0.1 HM3D-Sem val
split, which was used in the 2022 Habitat Challenge [60]
ObjectNav benchmark. The agent in this evaluation is
modeled after the LocoBot [61] with a height of 0.88m,
radius of 0.18m, and sensors placed at the top of the agent’s
head. The RGB camera has a 640×480 resolution and a
79◦ horizontal field of view. The task for the agent is to
locate objects from one of 6 categories: ‘chair’, ‘bed’, ‘plant’,
‘toilet’, ‘tv/monitor’, and ‘sofa’ within 500 steps. Successful
episodes are determined by the agent stopping within 0.1m
of a viewpoint that is (a) within 1m of any instance of the
target object and (b) from which the object is visible, as
outlined in the evaluation protocol of [50].

We utilize a dataset of human demonstrations for train-
ing our imitation learning agent in the task of ObjectNav.
The dataset was collected using Habitat-Web [52, 62] and
Amazon Mechanical Turk, and consists of 77k demon-
strations for 80 scenes from the HM3D-Sem dataset [60].
Each scene contains approximately 158 episodes, each with
a unique goal object category and a randomly set start
location, resulting in approximately 950 demonstrations
per scene. The dataset includes a total of ∼12.1 million
steps of experience, with an average of ∼159 steps per
episode. By leveraging this human demonstration data, our
imitation learning agent is able to learn a more effective
policy for navigating to objects in complex environments.

We trained object navigation (ObjectNav) agent in the
HM3D environment for an approximate total of 400 million
steps, utilizing 25,000 updates and 512 parallel environ-
ments. Similar to our previous image-based navigation
(ImageNav) experiments, we employed a weight decay of
10−6 and utilized different learning rates for the visual
encoder and other elements of the model. Specifically, we
used a learning rate of 10−4 for the visual encoder and
10−3 for all other elements, with the AdamW optimizer. To
ensure the quality of our trained models, we evaluated
checkpoints after every 10M steps and only reported
metrics for the checkpoints with the highest validation
success rate.

Habitat 2.0 Rearrangement We investigate the
Habitat 2.0 Rearrangement task proposed by [16]. This
task involves a mobile manipulation scenario in which
a Fetch robot navigates an ReplicaCAD apartment to
pick up a target object from a cluttered receptacle using
a mobile base [51]. The robot starts from a non-trivial
position and must utilize a variety of sensors, including an
egocentric RGB camera, proprioceptive joint sensing, and
an object grasping indicator. The action space for the robot
includes continuous control over the robot’s 7-DOF arm,
base movement, and suction gripper. We relax the dense
goal specification, where the relative position between the
end-effector and the target object must be updated at each

step, to a sparse goal specification, where this information
is only provided at the start of the episode. This relaxation
places greater emphasis on visual input and makes the task
significantly more challenging.

TriFinger Tasks The TriFinger tasks are implemented
in Pybullet. For Reach-Cube, the state for the BC policy
is [xft

t , zt], where xft
t is the current fingertip position and

zt is the latent visual state vector, obtained by passing the
current image observation through the PVR. The success
metric captures how close the fingertip is to the optimal
distance from the center of the cube, accounting for the
half=width of the cube. For Move-Cube, the state for the
BC policy is [xft

t , zt, ∆xc
g], where ∆xc

g is the goal position
for the cube, specified as a displacement from its initial
position. Here the success is the distance of the center of
the cube to the target goal position. We train a policy
network with hidden layers of size 2000 and learning rate
10−4 for up to 100 epochs for the reach task and 1000
epochs for the move cube task.

I. Experiment Details of Training PVRs
To train the MAE models, we use the official codebase

released by the authors on GitHub [19] and use the default
hyperparameters provided by the repo to train the ViT-B
and ViT-L models. We found the default values worked well
on the CortexBench. However, we do vary the number of
epochs we use to train the different models in Section III
given the different dataset sizes. We choose the number
of epochs per run such that the number of model updates
remain constant across all runs and match the number of
model updates taken by MAE on the ImageNet dataset.
We provide details about the dataset sizes and the epochs
calculated for the different runs in Table VI.

Dataset Name Epochs Frames used

Ego4D+N (VIT-B) 289 3,538,291
Ego4D+N (VIT-L) 289 3,538,291
Ego4D+M (VIT-B) 414 3,289,962
Ego4D+M (VIT-L)) 414 3,289,962
Ego4D+MN (VIT-B) 236 4,340,820
Ego4D+MN (VIT-L) 236 4,340,820
Ego4D+MNI (VIT-B) 182 5,621,987
VC-1 (Ego4D+MNI (VIT-L)) 182 5,621,987

TABLE VI: Experiment Details of Training PVRs.

https://github.com/facebookresearch/mae
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