
Concurrent Reinforcement Learning with Aggregated States
via Randomized Least Squares Value Iteration

Yan Chen 1 Qinxun Bai 2 Yiteng Zhang 3 Maria Dimakopoulou 4 Shi Dong 5 Qi Sun 6 Zhengyuan Zhou 6 7

Abstract

Designing learning agents that explore efficiently
in a complex environment has been widely recog-
nized as a fundamental challenge in reinforcement
learning. While a number of works have demon-
strated the effectiveness of techniques based on
randomized value functions on a single agent, it
remains unclear, from a theoretical point of view,
whether injecting randomization can help a soci-
ety of agents concurently explore an environment.
The theoretical results established in this work
tender an affirmative answer to this question. We
adapt the concurrent learning framework to ran-
domized least-squares value iteration (RLSVI)
with aggregated state representation. We demon-
strate polynomial worst-case regret bounds in
both finite- and infinite-horizon environments. In
both setups the per-agent regret decreases at an
optimal rate of Θ

(
1√
N

)
, highlighting the advan-

tage of concurent learning. Our algorithm exhibits
significantly lower space complexity compared
to (Russo, 2019) and (Agrawal et al., 2021). We
reduce the space complexity by a factor of K
while incurring only a

√
K increase in the worst-

case regret bound, compared to (Agrawal et al.,
2021; Russo, 2019). Interestingly, our algorithm
improves the worst-case regret bound of (Russo,
2019) by a factor of H1/2, matching the improve-
ment in (Agrawal et al., 2021). However, this
result is achieved through a fundamentally differ-
ent algorithmic enhancement and proof technique.
Additionally, we conduct numerical experiments
to demonstrate our theoretical findings.

1Duke University 2Horizon Robotics Inc 3UC Berkeley 4Uber
5Google DeepMind 6New York University 7Arena Technologies.
Correspondence to: Zhengyuan Zhou <z@arena-ai.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
The field of reinforcement learning (RL) is dedicated to de-
signing agents that interact with an unknown environment,
aiming to maximize the total amount of reward accumu-
lated throughout the interactions (Sutton & Barto, 2018).
When the environment is complex yet the learning budget
is limited, an agent has to efficiently explore the environ-
ment, giving rise to the well-known exploration-exploitation
trade-off. A large body of works in the RL literature have
addressed the challenge related to smartly balancing this
trade-off. Among the many proposed methods, algorithms
based on randomization are receiving growing attention,
both theoretically (Russo & Van Roy, 2014; Fellows et al.,
2021) and empirically (Osband et al., 2016; Janz et al., 2019;
Dwaracherla et al., 2020), due to their effectiveness and po-
tential scalability in large applications.

Randomized least-squares value iteration (RLSVI) repre-
sents one example of such randomization-based algorithms
(Osband et al., 2019). On a high level, RLSVI injects Gaus-
sian noise into the rewards in the agent’s previous trajec-
tories, and allows the agent to learn a randomized value
function from the perturbed dataset. With judicious noise in-
jection, the resultant value function approximates the agent’s
posterior belief of state values. By acting greedily with
respect to such randomized value function, the agent effec-
tively executes an approximated version of posterior sam-
pling for reinforcement learning (PSRL), whose efficacy
has been substantiated in previous works (Osband et al.,
2013; Russo & Van Roy, 2014; Xu et al., 2022). Compared
with PSRL, RLSVI circumvents the need of maintaining
a model of the environment, severing huge computational
cost. Since its advent, RLSVI has been studied extensively
in theoretical contexts, such as (Russo, 2019) and (Ishfaq
et al., 2021).

In this work, we look into RLSVI from the perspective of
concurrent learning (Silver et al., 2013). Specifically, con-
current RL studies the problem where a cohort of agents
interact with one common environment, yet are able to share
their experience with each other in order to jointly improve
their decisions. Such a collaborative setting has useful ap-
plications in a variety of realms, such as robotics (Gu et al.,
2017), biology (Sinai et al., 2020), and recommendation

1



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

systems (Agarwal et al., 2016). For instance, a team of
drones may be cooperatively executing a search and rescue
mission in a given terrain, and cooperatively learning to
identify the locations of assets requires efficient concurrent
RL. Another example is a team of virtual agents conduct-
ing circuit design, proceeding in parallel the design-circuit
evaluation (via a simulator)-redesign loop. Here, they are
cooperatively exploring the vast and complex design space,
aiming to quickly identify an optimal design that meets all
the sepc requirements1. Importantly, although all agents
share the identical goal, coordination between agents is non-
trivial. In fact, as shown in (Dimakopoulou & Van Roy,
2018; Dimakopoulou et al., 2018), a poorly coordinated
multi-agent algorithm can drastically undermine the overall
learning performance. Results in the existing theoretical
literature on concurrent RL have demonstrated that PSRL
(Osband & Van Roy, 2017; Kim, 2017; Osband & Van Roy,
2014) in a coordinated style is provably efficient (Chen et al.,
2022), compared to the earlier cooperative UCRL type of
algorithms 2. As pointed out in (Chen et al., 2022), “these
sample-complexity guarantees notwithstanding, concurrent
UCRL algorithms suffer from the critical disadvantage of no
coordinated exploration: since the upper confidence bounds
computed by aggregating all agents’ data are the same the
entire team, each agent would follow the exact same pol-
icy, thereby yielding no diversity in exploration." However,
despite the exploration advantage offered by concurrent
Thompson sampling given in a very recent work (Chen
et al., 2022), it remains unclear whether the same level of
efficiency can be extended to cooperative model-free agents,
which are computationally more scalable.

Our Contributions We model the environment as a
Markov decision process (MDP) with Γ aggregated states,
and show theoretically that a cohort of N agents, concur-
rently running RLSVI and sharing interaction trajectories
with each other, are able to efficiently improve their joint

1For instance, Arena, a world leading startup that specializes
in applying AI to shorten the hardware design loop, utilizes RL to
speed up the circuit design, test and debugging cycles.

2It is perhaps not surprising that UCRL algorithms are the first
family of algorithms that have been adapted to the concurrent
RL settings (Guo & Brunskill, 2015) and (Pazis & Parr, 2016).
In particular, concurrent UCRL has been analyzed for the sam-
ple complexity performance measure (i.e. how many samples
are needed to learn an ϵ-optimal policy) under both finite action
space setting and infinite action space setting. More specifically,
(Guo & Brunskill, 2015) provided a high-probability bound of
Õ(S

2A
ϵ3

+ SAn
ϵ

) for the sample complexity with n agents inter-
acting in the environment. Their algorithm was extended from
MBIE(see (Strehl & Littman, 2008)), with a single agent perform-
ing concurrent RL across a set of n infinite-horizon MDPs. The
results there show that with sharing samples from copies of the
same MDP a linear speedup in the sample complexity of learn-
ing can be achieved. But no regret bound was derived there for
concurrent RL.

performance towards the optimal policy in the environment.
The efficiency is established through regret analysis. Ad-
ditionally, for aggregated state representation setup, the
performance typically will not converge to optimal solu-
tion if ϵ > 0, and our result establishes that the cumulative
performance loss is no greater than O(ϵ) per period per
agent. This is consistent with the findings of (Dong et al.,
2019b) for single-agent scenario. Our worst-case regret
bound improves upon (Russo, 2019) by a factor of H1/2,
matching the improvement in (Agrawal et al., 2021) but
achieved through a fundamentally different technique and
proof approach.

One major difference between our algorithm and those from
current literature of RLSVI in tabular setup is that, the al-
gorithms in (Russo, 2019; Agrawal et al., 2021) require
storing the historical trajectories from the very beginning
while our algorithm only stores the trajectories from the
last episode for the finite-horizon case or the last pseudo-
episode (defined in Section 4) for the infinite-horizon case.
This is because for concurrent setup, the computational cost
of storing all historical data scales at least linear in KHN
for finite horizon and TN for infintie horizon, which is
infeasible for problems of practical scale.

In both cases, the regret dependence on the total number
of samples is optimal, signaling well-coordinated informa-
tion sharing among the agents.To our best knowledge, this
work presents the first theoretical analysis of a model-free
concurrent RL algorithm with aggregated states.

Besides theoretical contributions, our analysis also sheds
light on the empirical role of discount factor in RL. In prac-
tical applications, a discount factor is usually not subsumed
under the environment definition. Rather than prescribing a
specific learning target that involves a decaying sequence of
rewards, discount factors often simply function as a tuning
parameter of the algorithm that keeps the value updates sta-
ble. In this work, similar as in (Xu et al., 2022), when the
decision horizon is infinite, the discount factor only shows
up in the algorithm and does not appear in the learning tar-
get. The sole purpose of introducing a discount factor is to
decompose the single stream of interactions into “pseudo-
episodes” that facilitate decision-making. Such view aligns
with the authentic role of discount factor in agent design,
and distinguishes this work from earlier RL theory literature
on discounted regret such as (Dong et al., 2019a). While
(Xu et al., 2022) focuses on PSRL, this paper is the first to
extend the same view to a model-free algorithm that enjoys
empirical successes.

Related Work Multi-agent Reinforcement Learning
(MARL) has been widely studied to address problems in
a variety of applications like robotics, telecommunications
and e-commerce (Buşoniu et al., 2010). Scenarios of MARL

2



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

include fully cooperative (Abed-alguni et al., 2015; Zhang
et al., 2010), fully competitive (Bansal et al., 2017; Wang &
Klabjan, 2018) and other more general settings (Ryu et al.,
2021; Lowe et al., 2017). Under these settings, a group
of agents share and interact with a common random envi-
ronment (Shoham & Leyton-Brown, 2008; Vlassis, 2022;
Weiss, 1999). There are certain challenges of multi-agent
systems as pointed out by (Zhang et al., 2021). For example,
the agents may have non-unique learning goals (Shoham
et al., 2003). Besides, the concurrent learning structure of
MARL problem can cause the environment faced by each
individual to be non-stationary. Particularly in some set-
tings, the action taken by one agent affects the reward of
other opponent agents and the evolution of the state (Zhang
et al., 2021). Furthermore, to handle non-stationarity of
the problems, the agents may need to form the joint action
space, and the dimension the action spaces can increase
exponentially with the number of agents (Kulkarni & Tai,
2010).

We study the MARL problem under a concurrent learning
framework involving homogeneous agents with a common
learning goal. The agents interact with the unknown envi-
ronment independently in parallel, and draw actions from
a commonly shared action space. They communicate and
share information according to some strategically devised
schedule. All the agents share the same reward functions ac-
cording to the states and actions they take. This is different
from the Markov game setup (Szepesvári & Littman, 1999;
Littman, 2001) where the reward is influenced by the joint
action of all the agents in the system.

We apply concurrent learning (Min et al., 2023; Dubey
& Pentland, 2021) concept with the Randomized Least-
Squares Value Iteration (RLSVI) learning framework with
aggregated state representations (Dong et al., 2019b;
Van Roy, 2006). On the one hand, RLSVI leverages random
perturbations to approximate the posterior, applying frequen-
tist regret analysis in the tabular MDP setting (Osband et al.,
2016), inspiring works that focus on theoretical analyses to
improve worst-case regret in tabular MDPs (Russo, 2019;
Agrawal et al., 2021) and linear settings (Zanette et al., 2020;
Ishfaq et al., 2023; Dann et al., 2021). On the other hand,
while a large body of literature is established on tabular rep-
resentations (Agarwal et al., 2020; Azar et al., 2011; Auer
et al., 2008; Jiang et al., 2017; Jin et al., 2018; Osband et al.,
2013; 2016; Strehl & Littman, 2008), aggregated state repre-
sentation offers an approach to reduce statistical complexity
given the fact that the data requirement and learning time
scales with the number of state-action pairs in tabular repre-
sentations. In this paper, we present a concurrent version of
the randomized least-squared value iteration algorithm with
aggregated states in finite-horizon and infinite-horizon set-
tings, and we provide their corresponding worst-case regret
bounds and numerical performances.

As an outline of the rest of the paper, in Section 2, we
define the finite-horizon case and introduce a concurrent
learning framework with aggregated states. In Section 3, we
summarize the finite-horizon concurrent RLSVI algorithm
in Algorithm 3 and provide its worst-case regret bound in
Theorem 2. Section 4 focuses on the infinite-horizon con-
current learning framework with aggregated states, with the
infinite-horizon concurrent RLSVI algorithm summarized
in Algorithm 4. The corresponding worst-case regret bound
is provided in Theorem 7 of Section 5. Numerical results of
both algorithms are reported in Section 6. We also include
Table 1 in Appendix A comparing our approach with prior
work.

2. Finite-Horizon Concurent Learning
In this section, we consider a finite-horizon Markov De-
cision Process (MDP) M = (H,S,A, P,R). There are
N agents interacting with the same environment across K
episodes. Each episode contains H periods. For episode
k ∈ [K], period h ∈ [H], and agent p ∈ [N ], we use
spk,h to denote the state that the agent resides in, apk,h the
action that the agent takes, and rpk,h = r(spk,h, a

p
k,h) the

reward that it receives, where r : S × A 7→ [0, 1] is
a deterministic reward function. Let the information set
Hk = {(spk,h, a

p
k,h, r

p
k,h) : h ∈ [H]} be the trajectory dur-

ing episode k for all the agents. The transition kernel P
is defined as Ph,s,a(s

′) = P
(
sh+1 = s′

∣∣∣ah = a, sh = s
)
.

The expected reward that an agent receives in state s when it
follows policy π at step h is represented by Rh,s,π(s) =

E
[∑

a∈A πh(a|s) · r(s, a)
]
. We assume that all agents

start from a deterministic initial state s1 = {sp1}p∈[N ] with
spk,1 ≡ sp1,∀k, p. In this work we consider deterministic
rewards, which can be viewed as mappings from S to A,
but all our results apply to the environments with bounded
rewards without change. We say that agent p ∈ [N ] follows
policy π if for all h ∈ [H], aph = πh(s

p
h). We use V π

h ∈ RS

to denote the value function associated with policy π in
period h ∈ [H], such that

V π
h (s) = E

 H∑
j=h

Rj,sj ,πj(sj)

∣∣sh = s

 ,

where the expectation is taken over all possible transitions,
and we set V π

H+1(s) = 0 for all s ∈ S. The optimal value
function is denoted as V ∗

h (s) = maxπ∈Π V π
h (s), which is

the value function associated with the optimal policy. For
all s ∈ S, h ∈ [H], and policy π, the value function is the
unique solution to the Bellman equations

V π
h (s) = Rh,s,π(s) +

∑
s∈S

Ps,h,π(s)(s
′)V π

h+1(s
′).

3



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

When π is the optimal policy π∗, there should be V π∗

h (s) =
V ∗
h (s), and we have

V ∗
h (s) = Rh,s,π∗(s) +

∑
s∈S

Ps,h,π∗(s)(s
′)V ∗

h+1(s
′).

For each policy π, we also define the state-action value func-
tion of Q-function of state-action pair (s, a) as the expected
return when agent takes action a at state s, and then follows
policy π, so that

Qπ
h(s, a) = Rh,s,a+E

 H∑
j=h

Rj,sj ,πj(sj)

∣∣sh = s, ah = a

 .

Correspondingly, we define

Q∗
h(s, a) = Rh,s,a + PhV

∗
h+1(s, a),

where we use the notation PhV (s, a) = Es′∼P s,a
h

[V (s′)].
Thus by definition Q∗

h(s, a) is the maximum realizable ex-
pected return when the agent starts from state s and takes
action a at period h. From the optimality of V ∗, we have

V ∗
h (s) = max

a∈A
Q∗

h(s, a), ∀h ∈ [H], s ∈ S.

Furthermore, under the assumption that the reward is
bounded between 0 and 1, we have

0 ≤ V π
h ≤ V ∗

h ≤ H, ∀h ∈ [H], π ∈ Π.

Regret under Finite Horizon Case The goal of an RL al-
gorithm is for the agents to learn a good policy through con-
secutively interacting with the random environment, without
prior knowledge about the transition probability P and the
reward R. Formally, given π = {πkp}k∈[K],p∈[N ], with
each agent p ∈ [N ] taking policy πkp during each episode
k ∈ [K], the cumulative expected regret incurred over K
periods and N agents is defined as

Regret(M,K,H,N, π) =

N∑
p=1

K∑
k=1

V ∗
1 (s

p
1)− Vπkp(sp1).

(1)

Empirical Estimation We examine two types of empiri-
cal estimation methods below. The first method stores data
from a single episode only, meaning the empirical counts
used by the agents to evaluate policies are derived from just
one episode. We take this limitation into account because,
as the number of agents N increases, storing all historical
data becomes practically infeasible. For the second method,
we store all historical data; specifically, at each episode k,
the buffer retains data from all episodes prior to k. This
results in a space complexity of O(KHN).

For the first empirical estimation method, define nk,h(s, a)
to be the number of times action a has been sampled in state
s, period h during episode k by all the agents p ∈ [N ]:

nk,h(s, a) =

N∑
p=1

1
{
(spk,h, a

p
k,h) = (s, a)

}
.

Define the empirical mean reward for period h during
episode k by

R̂k
h,s,a =

∑N
p=1 1

{
(spk−1,h, a

p
k−1,h) = (s, a)

}
rpk−1,h

nk−1,h(s, a)
,

(2)
and ∀s′ ∈ S, define the empirical transition probabilities
for period h during episode k as

P̂ k
h,s,a(s

′)

=

∑N
p=1 1

{
(spk−1,h, a

p
k−1,h, s

p
k−1,h+1) = (s, a, s′)

}
nk−1,h(s, a)

.

(3)
If (h, s, a) is never sampled during episode k − 1, we set
R̂k

h,s,a = 0 ∈ R and P̂ k
h,s,a = 0 ∈ RS . Note that R̂k and

P̂ k are computed from the trajectory from episode k − 1.

The second method stores all historical data up to the current
episode, with the reward and transition probability estima-
tions defined as:

R̂k,full
h,s,a =

∑k−1
i=0

∑N
p=1 1

{
(spi,h, a

p
i,h) = (s, a)

}
rpi,h∑k−1

i=0 ni,h(s, a)
,

P̂ k,full
h,s,a (s′)

=

∑k−1
i=0

∑N
p=1 1

{
(spi,h, a

p
i,h, s

p
i,h+1) = (s, a, s′)

}
∑k−1

i=0 ni,h(s, a)
.

2.1. Aggregated-state Representations

Many RL algorithms aim to estimate the value of each state-
action pair (e.g. under a tabular representation), but this
can be infeasible in some setup where SA is large, since
both the required sample size and computational cost will
scale up at least linearly in SA. One alternative approach
is to consider aggregated-state representations (Dong et al.,
2019b; Wen & Van Roy, 2017; Jiang et al., 2017), which
reduces complexity and can accelerate learning by focusing
on aggregated state-action pairs. This method partitions the
space of state-action pairs into Γ blocks, each block can
be viewed as an aggregate state, so that the value function
representation only needs to maintain one value estimate per
aggregated state. Formally, let Φ be the set of all aggregated
states, and let ϕh : S ×A → Φ be the mapping from state-
action pairs to aggregated states at period h. Without loss
of generality, we let Φ = [Γ]. We define the aggregated
representation as follows:

4



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Definition 1. We say that {ϕh}Hh=1 is an ϵ-error aggregated
state-representation (or ϵ-error aggregation) of an MDP,
if for all s, s′ ∈ S, a, a′ ∈ A and h ∈ [H] such that
ϕh(s, a) = ϕh(s

′, a′), we have

|Q∗
h(s, a)−Q∗

h(s
′, a′)| ≤ ϵ.

When ϵ = 0 in Definition 1, we say that the aggregation
is sufficient, and one can guarantee that an algorithm finds
the optimal policy as K → ∞. When ϵ > 0, there exists
an MDP such that no RL algorithm with aggregated state
representation can find the optimal policy (Van Roy, 2006).
In this case, the best we can do is to approximate the optimal
policy with the suboptimality bounded by a function of ϵ.

3. Finite-horizon Algorithm and Regret Bound
The concurrent RLSVI algorithms for the finite-horizon case
are Algorithm 1 and Algorithm 3.

Tradeoff: Regret Reduction vs. Sample Complexity Al-
gorithm 1 and Algorithm 3 reflect a trade-off between re-
ducing the worst-case regret and the consideration for the
sample complexity in practice. Algorithm 1 stores all his-
torical data, while Algorithm 3 retains only the data from
the previous episode. Although Algorithm 1 achieves lower
regret due to its larger data storage, it becomes impractical
when N is large. Therefore, for practical reasons, we use
Algorithm 3 in our numerical experiments. We first describe
Algorithm 3, with Algorithm 1 following a similar structure,
differing only in the buffer size (i.e. the amount of data
stored for policy evaluation).

We initialize the all the aggregated state values as H , i.e.
Q̂p

h(γ) = H for all h ∈ [H]. At the beginning of each
episode, all the agents restart at initial states s1 = {sp1}, with
agent p starting from state sp1. During pre-round (episode
0), each agent randomly samples their initial trajectory
{sp0,1, a

p
0,1, r

p
0,1, . . . , s

p
0,H , ap0,H , rp0,H}Np=1, with sp0,1 = sp1.

During each episode k ∈ [K], each agent samples a ran-
dom vector with independent components wkp ∈ RHSA,
where wkp(h, s, a) ∼ N (0, σ2

k(h, s, a)) and σk(h, s, a) =√
βk

Nk−1,h(ϕh(s,a))+1 , where βk is a tuning parameter,

Nk−1,h(ϕh(s, a)) is the total number of times that aggre-
gated state ϕh(s, a) is reached at period h across all agents
during episode k−1. Given wkp, we construct a randomized
perturbation of the empirical MDP for agent p as

M
kp

= (H,S,A, P̂ k, R̂k + wkp), (4)

where the empirical distributions R̂k, P̂ k are computed as
in (2) and (3). During each episode k ∈ [K], the data set
D̃p

kh contains perturbation of samples from episode k − 1
for time period h used by agent p.

Each agent computes the values for aggregated states us-
ing a backward approximation, where during episode k,
the uncapped value of aggregated state γ during period h
computed by agent p is

Q̄p
k,h(γ)

= argmin
Q∈R

L(Q|Q̂p
k,h+1, D̃

p
kh, αNk−1,h(γ), ξNk−1,h(γ))

+∥Q− αNk−1,h(γ)Q̃
p
kh∥

2
2,

where ξNk−1,h(γ) is defined as (7) for n = Nk−1,h(γ), and
we set terminal values as Q̂p

k,H+1(γ) = 0, and the reg-
ularization noise Q̃p

kh ∈ RS×A is an independently sam-
pled random vector, such that for each (s, a) ∈ S × A,
Q̃p

kh(s, a) ∼ N
(
0, βk

1+Nk,h(ϕh(s,a))

)
, βk is a tuning param-

eter, and

L(Q | Qnext,D, α, ξ)
=
∑

(s,a,r,s′)∈D{Q− ξ − (1− α)Qk−1,h(ϕh(s, a))

−α(r +maxa′∈A Qnext(s
′, a′))}2.

(5)
Here the regularized loss function defined in (5) is such
that Q(γ) as the computed value of aggregated state γ =
ϕh(s, a) for some pair (s, a) approximates

(1−αNk−1,h(γ))Qk−1,h+αNk−1,h(γ)(r+max
a′∈A

Qnext(s
′, a′)).

And since αNk−1,h(γ) =
1

1+Nk−1,h(γ)
as defined in Theo-

rem 2, we see that when Nk−1,h(γ) increases, the algorithm
puts more weight on the value learned from the previous
episode. At the end of episode k, after each agent inter-
acts with the environment, the algorithm takes a weighted
average of the values learned by each agent p ∈ [N ], by
taking

Q̂k,h(γ) =
1

Nk,h(γ)

N∑
p=1

1{ϕh(s
p
k,h, a

p
k,h) = γ}Q̂p

k,h(γ)

(6)
for each γ ∈ Γ, where Nk,h(γ) is the total number of times
that aggregated state γ appears during episode k period h.

Given tuning parameter β = {βk}k∈N, we denote Algo-
rithm 3 by RLSVIβ . While Algorithm 3 is based on the
RLSVI algorithm of (Russo, 2019), there are some notable
differences. The algorithm of (Russo, 2019) is with single-
agent, and at each time period h during episode k, the agent
needs to keep all the trajectory prior to episode k, which
can be infeasible for multiple agents, because the space
can grow very fast. In our algorithm, we only keep the
historical data of the last episode, to make the algorithm
computationally feasible. This leverages the fact that with
N agents interacting with the random environment, the
information within one single episode is already rich. Al-
gorithm 3 is also related to the aggregated-state algorithm

5



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

proposed by (Dong et al., 2019b), where the authors ap-
ply the aggregated-state idea to an optimisitic variant of
Q-learning on a fixed-horizon episodic Markov decision
process based on the previous UCB-type result by (Jin et al.,
2020). Our work incorporates this idea in the concurrent
randomized least square value iteration.

Algorithm 1 follows a similar structure, with Nk,h(ϕh(s, a))
redefined as the total number of times the aggregated state
ϕh(s, a) is visited at period h across all agents up to and
including episode k. We denote it by RLSVIfullβ to indicate
that Algorithm 1 uses the full history up to the current
episode.

With the employment of aggregated state and the modified
loss function for the learning process, the result highlights
that the per-agent regret decreases at a rate of Θ

(
1√
N

)
. The

concurrent learning algorithm for the finite-horizon case is
Algorithm 3. The worst-case regret bound for Algorithm 3
is provided in the next section.

3.1. Worst-case Regret Bound

LetM be the set of MDPs with episode number K, horizon
H , state space size S, action space size A, transition prob-
abilities P , and rewards R bounded in [0, 1]. Let N be the
number of agents interacting in the same environment. We
use M = (K,H,S,A, P,R) to denote an MDP inM.

Suppose {ϕh}h∈[H] is an ϵ-error aggregation (defined as in
Definition 1) of the underlying MDP. For a tuning parameter
sequences β = {βn}n∈N, α = {αn}n∈N, ξ = {ξn}n∈N
where βn = 1

2H
3 log(2HΓn), αn = 1

1+n , and

ξn = ϵ+
2αnH

√
log(2KHN/δ)√
max{n, 1}

+
2αn

√
βk−1 log(2KHN/δ)√
(n+ 1)max{n, 1}

(7)

We now provide our main results for the finite-horizon case.
As explained, Algorithm 1 stores all historical data, while
Algorithm 3 retains only the previous episode, making it
straightforward that Algorithm 1 has a space complexity of
O(KHN), while Algorithm 3 has a space complexity of
O(HN), and their worst-case regret bounds are
Theorem 2. Algorithm 1 has a worst-case regret bound

sup
M∈M

Regret(M,K,N, π,RLSVIfullβ,α,ξ)

≤ Õ(ϵ
√
KHN +H5/2Γ

√
KN).

(8)

Algorithm 3 has a worst-case regret bound

sup
M∈M

Regret(M,K,N, π,RLSVIβ,α,ξ)

≤ Õ(ϵKHN +KH5/2Γ
√
N),

(9)

where Õ(·) hides the dependence on logarithmic factors.

Since the only difference between the algorithms is the
amount of data stored, and their structures are identical, we
only prove (9), with (8) following immediately by reducing
a factor of

√
K from the regret bound in (9). We omit the

redundant proof for Algorithm 1 and defer the proof for (9)
to Appendix C.

Comparison with worst-case regret bounds from (Russo,
2019; Agrawal et al., 2021) A worst-case regret bound
of Õ(H3S3/2

√
AK) was obtained in (Russo, 2019)

for a single-agent version of RLSVI algorithm. This
bound was improved later by (Agrawal et al., 2021) to
Õ(H5/2S

√
AK). For the single-agent case with N =

1, Algorithm 1 results in a worst-case regret bound of
Õ(
√
KH5/2Γ), which translates into Õ(H2Γ

√
T ). So our

bound matches that of (Agrawal et al., 2021) if Γ = S ×A
and S ≈

√
Γ. Algorithm 3 implies a worst-case regret

bound of Õ(KH5/2Γ). Here an extra
√
K compared to that

of (Agrawal et al., 2021; Russo, 2019) comes from the fact
we only keep the trajectories of the agents from the previous
episode rather than all the episodes up to the current period
as in (Russo, 2019; Agrawal et al., 2021) to reduce space
complexity. The extra ϵ term for both algorithms comes
from model misspecification of state-aggregation formula-
tion, which is similar to the result in (Dong et al., 2019b).

At each time period h, each agent gets N samples of tuples
(s, a, r, s′), and they share information by the aggregation of
information through the computation of a weighted Q-value
(6) at the end of each episode. With this trick, though agents
learn their own policies concurrently in parallel within each
episode, we are able to obtain a sub-linear worst-case regret
bound of O(

√
N) with respect to the number of agents.

4. Infinite-horizon Concurrent Learning
We now turn to the infinite-horizon case. Consider an un-
known fixed environment as M = (T,A,S, P, r,N), with
N agents interacting in M . Here A = [A] is the action
space, S = [S] is the state space, P (s′ | s, a) is the transi-
tion probability from s ∈ S to s′ ∈ S given action a ∈ A.
After agent p selects action apt at state spt , the agent observes
spt+1 and receives a fixed reward rpt+1 = r(spt , a

p
t ) where

r ∈ [0, 1]. A stochastic policy π can be represented by a
probability mass function π(·|st) that an agent assigns to
actions in A given situation state st. For a policy π, we
denote the average reward starting at state s as

λπ(s) = lim inf
T→∞

E

[
1

T

T−1∑
t=0

rt+1

∣∣∣s1 = s

]
. (10)

For any state s ∈ S, denote the optimal average reward as
λ∗(s) = supπ λπ(s). We consider weakly-communicating
MDP, which is defined as follows:

6



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Definition 3 (Weakly-communicating MDP). A MDP is
weakly communicating if there exists a closed subset of
states, where each state within is reachable from any other
state within that set under some deterministic stationary
reward. And there exists a transient subset of states (possibly
empty) under every policy.

For any s, s′ ∈ S and a ∈ A, denote Ps,a,s′ = P (s′|s, a).
For each policy π define transition probabilities under π
as Ps,π,s′ =

∑
a∈A π(a|s)Ps,a,s′ , and reward as rs,π =∑

a∈A π(a|s)r(s, a).

Pseudo-episodes We extend our concurrent learning
framework for the finite-horizon case to the infinite-horizon
case by incorporating the idea of pseudo-episodes from
(Xu et al., 2022). Suppose time step t is the beginning
of a pseudo-episode when we sample a random variable
H ∼ Geometric(1− η), where Geometric(1− η) is geo-
metric distribution with parameter 1− η. In the numerical
experiment (section 6), we set η = 0.99. The agents com-
pute new policies respectively according to the collected
trajectories from last pseudo-episode, and sample their own
MDPs respectively at time steps t+1, . . . , t+H − 1. Now
the beginning of the next pseudo-episode is set as t + H .
We useHt1,t2 =

⋃N
p=1

⋃t2
i=t1
{spi , a

p
i , r

p
i } to denote the tra-

jectories of all agents from time step t1 to time step t2.
For policy π, denote the η-discounted value function as
V η
π ∈ RS , then we have

V η
π := EH

[
H−1∑
h=0

Ph
π rπ

∣∣∣∣M
]
= E

[ ∞∑
h=0

ηhPh
π rπ

∣∣∣∣M
]
,

(11)
where the expectation is taken over the random episode
length H . A policy is said to be optimal if V η

π = supπ′ V
η
π′ .

For an optimal policy, we also write V η
∗ (s) ≡ V η

π (s) as
the optimal value. Note that V η

π ∈ RS satisfies the Bell-
man equation V η

π = rπ + ηPπV
η
π . For any (s, a), define

Qη
π(s, a) = r(s, a) + ηPV η

π (s), where we use the notation
that PπV (s) = Es′∼Ps,π(s)

[V (s′)]. Correspondingly, define

Qη
∗(s, a) = r(s, a) + ηPV η

∗ (s
′).

By definition, we have V η
∗ (s) = maxa∈A Qη

∗(s, a).

Discounted Regret To analyze the algorithm over T time
steps, consider K = argmax{k : tk ≤ T} as the number
of pesudo-episodes until time T . We use the convention that
tK+1 = T+1. Given a discount factor η ∈ [0, 1), define the
η-discounted regret up to time T as Regretη(M,T, π) =∑K

k=1 ∆k, where ∆k is the total regret of all N agents over
pseudo-episode k: ∆k =

∑N
p=1 V

η
∗ (s

p
k,1) − V η

πkp(s
p
k,1),

where V η
∗ = V β

π∗ , policy πkp is computed from the trajec-
tory Htk−1,tk−1 from pseudo-episode k − 1 by agent p,
and apt ∼ πkp(· | spt ), s

p
t+1 ∼ P (·|spt , a

p
t ), r

p
t = r(spt , a

p
t )

for t ∈ Ek, and Ek denotes the time steps within pseudo-
episode k. So the discounted regret is a random variable
depending on the algorithm’s random sampling, and the
random lengths of the pseudo-episodes, and as a result,

∆k = EHk

[
N∑

p=1

Hk∑
h=0

(Ph
π∗rπ∗ − Pπkprπkp) |M

]

= E

[
N∑

p=1

∞∑
h=0

ηh(Ph
π∗rπ∗ − Pπkprπkp) |M

]
.

Regret The optimal average reward λ∗ is state-
independent under a weakly-communicating MDP. The
agent p selects a policy πkp and executes it within the kth

pseudo-episode. The cumulative expected regret incurred
by the collection of policies π = {πkp}k∈[K],p∈[N ] over T
time steps and across N agents with the fixed environment
M is

Regret(M,T,N, π) := EK

[
K∑

k=1

∆k

∣∣M] , (12)

where the expectation is taken over the random seeds used
by the randomized algorithm, conditioning on the true MDP
M . In the following, we denote (spk,h, a

p
k,h, r

p
k,h) as the

state, action and reward for agent p during pseudo-episode
k and period h.

Empirical Estimation We let nk(s, a) be the total num-
ber of times that (s, a)-pair appears during the kth pseudo-
episode, such that

nk(s, a) =

N∑
p=1

tk+1−1∑
t=tk

1 {(spt , a
p
t ) = (s, a)} .

Then ∀s′, the empirical estimate P̂
(
s′
∣∣s, a) of the transition

probability for pseudo-episode k is

P̂k

(
s′
∣∣s, a)

=

∑N
p=1

∑
t∈Ek−1

1
{
(spt , a

p
t , s

p
t+1) = (s, a, s′)

}
nk−1(s, a)

.

(13)
The empirical estimate of the corresponding reward is

R̂k(s, a)

=

∑N
p=1 1{(s

p
t , a

p
t ) = (s, a)}

∑
t∈Ek−1

r(spt , a
p
t )

nk−1(s, a)
.

(14)
For the second empirical estimation method, we utilize the
full historical data, and similar to the finite-horizon case, the
empirical estimates for transition probability and reward are

P̂ full
k

(
s′
∣∣s, a)

=

∑k−1
i=0

∑N
p=1

∑
t∈Ei

1
{
(spt , a

p
t , s

p
t+1) = (s, a, s′)

}∑k−1
i=0 ni(s, a)

.

7



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

R̂full
k (s, a)

=

∑N
p=1

∑k−1
i=0 1{(spt , a

p
t ) = (s, a)}

∑
t∈Ei

r(spt , a
p
t )∑k−1

i=0 ni(s, a)
.

Aggregated States We extend the aggregated states in the
finite-horizon case to the infinite horizon case. Let Φ be
the set of all aggregated states, and let ϕ : S × A → Φ
be the mapping from state-action pairs to aggregated states.
We let Φ = [Γ]. The aggregated representation for the
infinite-horizon case is defined as follows:

Definition 4. We say that ϕ is an ϵ-error aggregated state-
representation (or ϵ-error aggregation) of an MDP, if for all
s, s′ ∈ S, a, a′ ∈ A such that ϕ(s, a) = ϕ(s′, a′), we have
|Qη

∗(s, a)−Qη
∗(s

′, a′)| ≤ ϵ.

We are now ready to present the concurrent learning al-
gorithm for the infinite-horizon case and the theoretical
guarantee, as detailed in the next section.

5. Infinite-Horizon Algorithm and Regret
Bound

The concurrent learning algorithm for the infinite-horizon
MDP is summarized as Algorithm 4. Our result is based on
the following definition of reward averaging time proposed
by (Dong et al., 2022).

Definition 5. The reward averaging time τπ of a policy π
is the smallest value τ ∈ [0,∞) such that ∀T ≥ 0, s ∈ S,∣∣∣Eπ

[∑T−1
t=0 rt+1

∣∣∣s0 = s
]
− T · λπ(s)

∣∣∣ ≤ τ .

Typically the regret bounds established in the literature re-
quires assessing an optimal policy within bounded time.
Examples include episode duration (Osband et al., 2013; Jin
et al., 2018), diameter (Auer et al., 2008), or span (Bartlett
& Tewari, 2012). Policies that require intractably large
amount of time are infeasible in practice. So we impose the
following assumption:

Assumption 6. For any weakly communicating MDP M
with state space S and action space A, ∃τ <∞ such that
τ∗ ≤ τ .

When π∗ is an optimal policy for M , τ∗ := τπ∗ is equiva-
lent to the notion of span in (Bartlett & Tewari, 2012). Let
M be the set of infinite-horizon weakly-communicating
MDPs with state space size S, action space size A, rewards
bounded in [0, 1] that satisfy Assumption 6. Let N be the
number of agents interacting in the same environment. Re-
call that τ is given by Assumption 6.

Suppose {ϕ} is an ϵ-error aggregation (defined as in
Definition 4) of the underlying MDP. For a tuning pa-
rameter sequences β = {βn}n∈N, α = {αn}n∈N, ξ =
{ξn}n∈N, where for k as the index of pseudo-episode,

βk = 1
2τ

3 log(2τΓk), αn = 1
1+n , and

ξn = ϵ+
2αn

√
log(2TN/δ)

(1− η)
√
max{n, 1}

+
2αn

√
βk−1 log(2TN/δ)√

(n+ 1)max{n, 1}

(15)

Theorem 7 (Infinite-horizon Worst-case Regret Bound).
Algorithm 2 has a worst-case regret bound

supM∈M Regret(M,T,N,RLSVIfullβ,α,ξ)

≤ Õ(ϵ
√
TN + τ3/2Γ

√
TN).

(16)

Algorithm 4 has a worst-case regret bound

supM∈M Regret(M,T,N,RLSVIβ,α,ξ)

≤ Õ(ϵTN + τ3/2TΓ
√
N).

(17)

Note that the bound in (17) matches that of the finite-
horizion case (9) by noting that T = KH for the finite-
horizon case. And τ3/2 corresponds to the H3/2 factor in
the finite-horizon case bound by noting that taking τ = H
makes the condition holds in Definition 5 in the finite-
horizon case with T = KH . Similar to the finite-horizon
case, (16) follows directly from (17) with a

√
T reduction,

as Algorithm 2 utilizes the full history, whereas Algorithm
4 retains only the last pseudo-episode. The intuition and
worst-case regret comparison follow the discussion after
Theorem 2.

6. Numerical Experiments
We present numerical results for both finite-horizon and
infinite-horizon cases in Figure 1. For the finite-horizon
case (S,A,K,H) or the infinite-horizon case (S,A, T ),
the transition probabilities are drawn from a Dirichlet
distribution, and rewards, fixed as deterministic, are uni-
formly distributed on [0, 1], forming inherent features of
the MDP class. The finite-horizon case settings are (i)
K = 20, H = 30, S = 5, A = 5; (ii) K = 25, H =
40, S = 10, A = 10; (iii) K = 30, H = 50, S =
20, A = 20. The infinite-horizon case settings are with
T = 300 and (i) S = 5, A = 5; (ii) S = 20, A = 20; (iii)
S = 30, A = 30, where η = 0.99 in the pseudo-episode
sampling. Under each setting, we compare the results for
N = 1, 3, 5, 7, 10, 15, 20, 30, 40, 50, with ϵ = 0. We set
η = 0.99.

For each agent number N in the finite-horizon setting, we
sample 500 MDPs from the defined class. For each sam-
pled MDP, we compute the cumulative regret over time and
then identify the maximum regret across all 500 instances,
representing the worst-case regret in our analysis.

For the infinite-horizon setting, we estimate regret by av-
eraging over 50 geometric segmentations of [T ] per MDP,

8



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

consistent with the definition of infinite-horizon regret based
on pseudo-episodes in (12). The worst-case regret is then
obtained by taking the maximum across 500 sampled MDPs.

Figure 1 illustrates a 1/
√
N decreasing trend in per-agent

regret for both settings, consistent with our theoretical
predictions. The replication code is available at https:
//github.com/yz2/rlsvi_code.

Figure 1. Per-agent regret vs number of agents for finite-horizon
(top panel) and infinite-horizon (bottom panel) settings. The solid
curves represent the per-agent worst-case regret computed from
500 random environments. The dashed ones are the reference
curves of constant/

√
N fitting the Θ(1/

√
N) trend as we show

in our theoretical results.

Acknowledgements
We gratefully acknowledge the support from the NSF grant
CCF-2312205 and the ONR grant ONR 13983263. We
would like to thank Pratap Ranade and Engin Ural for in-
spiring discussions on society of agents that have helped
shape and push an ambitious vision of this research agenda,
for which this work is only an initial step.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be
specifically highlighted here.

References
Abed-alguni, B. H., Chalup, S. K., Henskens, F. A., and

Paul, D. J. A multi-agent cooperative reinforcement learn-
ing model using a hierarchy of consultants, tutors and
workers. Vietnam Journal of Computer Science, 2:213–
226, 2015.

Agarwal, A., Bird, S., Cozowicz, M., Hoang, L., Langford,
J., Lee, S., Li, J., Melamed, D., Oshri, G., Ribas, O.,
et al. Making contextual decisions with low technical
debt. arXiv preprint arXiv:1606.03966, 2016.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. Op-
timality and approximation with policy gradient methods
in markov decision processes. In Conference on Learning
Theory, pp. 64–66. PMLR, 2020.

Agrawal, P., Chen, J., and Jiang, N. Improved worst-case
regret bounds for randomized least-squares value itera-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 6566–6573, 2021.

Auer, P., Jaksch, T., and Ortner, R. Near-optimal regret
bounds for reinforcement learning. Advances in neural
information processing systems, 21, 2008.

Azar, M. G., Munos, R., Ghavamzadeh, M., and Kappen,
H. Speedy q-learning. In Advances in neural information
processing systems, 2011.

Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., and Mor-
datch, I. Emergent complexity via multi-agent competi-
tion. arXiv preprint arXiv:1710.03748, 2017.

Bartlett, P. L. and Tewari, A. Regal: A regularization based
algorithm for reinforcement learning in weakly commu-
nicating mdps. arXiv preprint arXiv:1205.2661, 2012.

Buşoniu, L., Babuška, R., and De Schutter, B. Multi-agent
reinforcement learning: An overview. Innovations in
multi-agent systems and applications-1, pp. 183–221,
2010.

Chen, Y., Dong, P., Bai, Q., Dimakopoulou, M., Xu, W., and
Zhou, Z. Society of agents: Regret bounds of concurrent
thompson sampling. In Advances in Neural Information
Processing Systems, 2022.

Dann, C., Mohri, M., Zhang, T., and Zimmert, J. A prov-
ably efficient model-free posterior sampling method for
episodic reinforcement learning. Advances in Neural
Information Processing Systems, 34:12040–12051, 2021.

9

https://github.com/yz2/rlsvi_code
https://github.com/yz2/rlsvi_code


Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Desai, N., Critch, A., and Russell, S. J. Negotiable rein-
forcement learning for pareto optimal sequential decision-
making. Advances in Neural Information Processing
Systems, 31, 2018.

Dimakopoulou, M. and Van Roy, B. Coordinated explo-
ration in concurrent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 1271–1279.
PMLR, 2018.

Dimakopoulou, M., Osband, I., and Van Roy, B. Scal-
able coordinated exploration in concurrent reinforcement
learning. Advances in Neural Information Processing
Systems, 31, 2018.

Dong, K., Wang, Y., Chen, X., and Wang, L. Q-learning with
UCB exploration is sample efficient for infinite-horizon
MDP. arXiv preprint arXiv:1901.09311, 2019a.

Dong, S., Van Roy, B., and Zhou, Z. Provably efficient
reinforcement learning with aggregated states. arXiv
preprint arXiv:1912.06366, 2019b.

Dong, S., Van Roy, B., and Zhou, Z. Simple agent, complex
environment: Efficient reinforcement learning with agent
states. Journal of Machine Learning Research, 23(255):
1–54, 2022.

Dubey, A. and Pentland, A. Provably efficient cooperative
multi-agent reinforcement learning with function approx-
imation. arXiv preprint arXiv:2103.04972, 2021.

Dwaracherla, V., Lu, X., Ibrahimi, M., Osband, I., Wen, Z.,
and Van Roy, B. Hypermodels for exploration. arXiv
preprint arXiv:2006.07464, 2020.

Fellows, M., Hartikainen, K., and Whiteson, S. Bayesian
bellman operators. Advances in Neural Information Pro-
cessing Systems, 34:13641–13656, 2021.

Gu, S., Holly, E., Lillicrap, T., and Levine, S. Deep rein-
forcement learning for robotic manipulation with asyn-
chronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pp. 3389–
3396. IEEE, 2017.

Guo, Z. and Brunskill, E. Concurrent pac rl. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 30, 2015.

Ishfaq, H., Cui, Q., Nguyen, V., Ayoub, A., Yang, Z., Wang,
Z., Precup, D., and Yang, L. Randomized exploration
in reinforcement learning with general value function
approximation. In International Conference on Machine
Learning, pp. 4607–4616. PMLR, 2021.

Ishfaq, H., Lan, Q., Xu, P., Mahmood, A. R., Precup,
D., Anandkumar, A., and Azizzadenesheli, K. Prov-
able and practical: Efficient exploration in reinforce-
ment learning via langevin monte carlo. arXiv preprint
arXiv:2305.18246, 2023.

Janz, D., Hron, J., Mazur, P., Hofmann, K., Hernández-
Lobato, J. M., and Tschiatschek, S. Successor uncertain-
ties: exploration and uncertainty in temporal difference
learning. Advances in Neural Information Processing
Systems, 32, 2019.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J.,
and Schapire, R. E. Contextual decision processes with
low bellman rank are pac-learnable. In International Con-
ference on Machine Learning, pp. 1704–1713. PMLR,
2017.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is
q-learning provably efficient? Advances in neural infor-
mation processing systems, 31, 2018.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably effi-
cient reinforcement learning with linear function approxi-
mation. In Conference on learning theory, pp. 2137–2143.
PMLR, 2020.

Kim, M. J. Thompson sampling for stochastic control: The
finite parameter case. IEEE Transactions on Automatic
Control, 62(12):6415–6422, 2017.

Kulkarni, A. J. and Tai, K. Probability collectives: a multi-
agent approach for solving combinatorial optimization
problems. Applied Soft Computing, 10(3):759–771, 2010.

Littman, M. L. Value-function reinforcement learning in
markov games. Cognitive systems research, 2(1):55–66,
2001.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neu-
ral information processing systems, 30, 2017.

Min, Y., He, J., Wang, T., and Gu, Q. Cooperative multi-
agent reinforcement learning: Asynchronous commu-
nication and linear function approximation. In Inter-
national Conference on Machine Learning, pp. 24785–
24811. PMLR, 2023.

Osband, I. and Van Roy, B. Model-based reinforcement
learning and the eluder dimension. Advances in Neural
Information Processing Systems, 27, 2014.

Osband, I. and Van Roy, B. On optimistic versus randomized
exploration in reinforcement learning. arXiv preprint
arXiv:1706.04241, 2017.

10



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Osband, I., Russo, D., and Van Roy, B. (More) efficient
reinforcement learning via posterior sampling. Advances
in Neural Information Processing Systems, 26, 2013.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped DQN. Advances in neural
information processing systems, 29, 2016.

Osband, I., Van Roy, B., Russo, D. J., Wen, Z., et al. Deep
exploration via randomized value functions. J. Mach.
Learn. Res., 20(124):1–62, 2019.

Pazis, J. and Parr, R. Efficient pac-optimal exploration in
concurrent, continuous state mdps with delayed updates.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 30, 2016.

Russo, D. Worst-case regret bounds for exploration via
randomized value functions. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Russo, D. and Van Roy, B. Learning to optimize via poste-
rior sampling. Mathematics of Operations Research, 39
(4):1221–1243, 2014.

Ryu, H., Shin, H., and Park, J. Cooperative and competi-
tive biases for multi-agent reinforcement learning. arXiv
preprint arXiv:2101.06890, 2021.

Shoham, Y. and Leyton-Brown, K. Multiagent systems: Al-
gorithmic, game-theoretic, and logical foundations. Cam-
bridge University Press, 2008.

Shoham, Y., Powers, R., and Grenager, T. Multi-agent
reinforcement learning: a critical survey. Technical report,
Citeseer, 2003.

Silver, D., Newnham, L., Barker, D., Weller, S., and McFall,
J. Concurrent reinforcement learning from customer inter-
actions. In International conference on machine learning,
pp. 924–932. PMLR, 2013.

Sinai, S., Wang, R., Whatley, A., Slocum, S., Locane, E.,
and Kelsic, E. D. Adalead: A simple and robust adap-
tive greedy search algorithm for sequence design. arXiv
preprint arXiv:2010.02141, 2020.

Strehl, A. L. and Littman, M. L. An analysis of model-
based interval estimation for markov decision processes.
Journal of Computer and System Sciences, 74(8):1309–
1331, 2008.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Szepesvári, C. and Littman, M. L. A unified analysis of
value-function-based reinforcement-learning algorithms.
Neural computation, 11(8):2017–2060, 1999.

Taiga, A. A., Courville, A., and Bellemare, M. G. Introduc-
ing coordination in concurrent reinforcement learning. In
ICLR 2022 Workshop on Gamification and Multiagent
Solutions, 2022.

Van Roy, B. Performance loss bounds for approximate
value iteration with state aggregation. Mathematics of
Operations Research, 31(2):234–244, 2006.

Vlassis, N. A concise introduction to multiagent systems
and distributed artificial intelligence. Springer Nature,
2022.

Wang, X. and Klabjan, D. Competitive multi-agent in-
verse reinforcement learning with sub-optimal demonstra-
tions. In International conference on machine learning,
pp. 5143–5151. PMLR, 2018.

Weiss, G. Multiagent systems: a modern approach to dis-
tributed artificial intelligence. MIT press, 1999.

Wen, Z. and Van Roy, B. Efficient reinforcement learn-
ing in deterministic systems with value function gener-
alization. Mathematics of Operations Research, 42(3):
762–782, 2017.

Xu, W., Dong, S., and Van Roy, B. Posterior sampling for
continuing environments. ArXiv preprint, 2022. URL
https://arxiv.org/abs/2211.15931.

Zanette, A., Brandfonbrener, D., Brunskill, E., Pirotta, M.,
and Lazaric, A. Frequentist regret bounds for randomized
least-squares value iteration. In International Conference
on Artificial Intelligence and Statistics, pp. 1954–1964.
PMLR, 2020.

Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and algo-
rithms. Handbook of reinforcement learning and control,
pp. 321–384, 2021.

Zhang, P., Ma, X., Pan, Z., Li, X., and Xie, K. Multi-agent
cooperative reinforcement learning in 3d virtual world.
In Advances in Swarm Intelligence: First International
Conference, ICSI 2010, Beijing, China, June 12-15, 2010,
Proceedings, Part I 1, pp. 731–739. Springer, 2010.

11

https://arxiv.org/abs/2211.15931


Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

A. Comparison Table: Existing Work vs. Our Approach

Table 1. Comparison of regret bounds for various RLSVI/LSVI algorithms
Agent Setup Algorithm Regret Bound Regret-Type Data Stored Numerical

Single Tabular RLSVI (Russo, 2019) Õ
(
H3S3/2

√
AK

)
Worst-case All-history N/A

Single Tabular RLSVI (Agrawal et al., 2021) Õ
(
H5/2S

√
AK

)
Worst-case All-history N/A

Multi Tabular Concurrent RLSVI (Taiga et al., 2022) N/A Bayes All-history Synthetic

Multi Linear Functional
Approximation Concurrent LSVI (Desai et al., 2018) Õ

(
H2

√
d3KN

)
Worst-case All-history N/A

Multi Linear Functional
Approximation Concurrent LSVI (Min et al., 2023) Õ

(
H
√
dKN

)
Worst-case All-history N/A

Multi Tabular Concurrent RLSVI (ours-1) Õ
(
H5/2T

√
KN

)
Worst-case All-history N/A

Multi Tabular Concurrent RLSVI (ours-2) Õ
(
H5/2TK

√
N
)

Worst-case One episode Synthetic

We outline several key observations for Table 1 below:

• The methods marked as “N/A" in the “numerical" column store all agents’ trajectories at every step, making them
computationally infeasible as N grows large. These approaches (including our first finite-horizon algorithm, second-to-
last row in the table) provide only theoretical analyses without numerical results.

• Although Taiga et al. (2022) stores all data empirically, their RLSVI algorithm assumes a known parametric feature
matrix, making it simpler to implement than ours. Also they evaluate only Bayes regret—less stringent than our
worst-case regret—and provide empirical results exclusively on synthetic data without theoretical guarantees.

• The last row corresponds to storing only the latest episode data, increasing the regret bound by a factor of
√
K but

reduces space complexity by a factor of K, making it computationally feasible.

B. Algorithms
Algorithm 1 and Algorithm 3 are finite-horizon algorithms, where the former stores all historical data, and the latter only
keeps one episode in the buffer. Algorithm 2 and Algorithm 4 are infinite-horizon algorithms, where the former stores all
historical data and the latter only keeps one pseudo-episode.

12



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Algorithm 1 Concurent RLSVI: Finite-Horizon Storing All Historical Data
Data: K,H, S,A, N, s1, {ϕh}Hh=1, Tuning parameters {βk}k∈N
Define constants αt ← 1/(1 + t), t = 1, 2, . . .
/* Define squared temporal difference error */
L(Q | Qk−1,h, Qnext,D, ξ, α) =

∑
(s,a,r,s′)∈D(Q− ξ − (1− α)Qk−1,h(ϕh(s, a))− α(r +maxa′∈A Qnext(s

′, a′)))2

Initialize:
Q̂p

0h(γ) = H , ∀h ∈ [H], γ ∈ [Γ], p ∈ [N ]
Each agent randomly samples the initial trajectory {sp0,1, a

p
0,1, r

p
0,1, . . . , s

p
0,H , ap0,H , rH0,1}Np=1, with sp0,1 = sp1

N0,h(γ) =
N∑

p=1
1{ϕh(s

p
0,h, a

p
0,h) = γ}, ∀γ ∈ [Γ], h ∈ [H]

compute Q̂0,h by ( 6)
for episode k = 1, 2, . . . do
/*Each agent rollouts in the evironment*/

for p = 1, . . . , N do
/*Executed in parallel*/

for period h = 1, . . . ,H do
apk,h ← argmaxa∈A Q̂p

k−1,h(ϕh(s
p
k,h, a))

observe reward rpk,h and next state spk,h+1

Dh ← Dh ∪ {(spk,h, a
p
k,h, r

p
k,h, s

p
k,h+1)}

end
end
/*Visitation of aggregated-states*/
Nk,h(γ)←

∑k−1
i=1

∑N
p=1 1{ϕh(s

p
i,h, a

p
i,h) = γ}, ∀γ ∈ [Γ], h ∈ [H]

/*Construct perturbed data sets and sample regularization noise Q̃*/
for p ∈ [N ] and h ∈ [H] do
/*Executed in parallel*/

For any (s, a) ∈ S ×A, sample array
Q̃p

kh(s, a) ∼ N
(
0, βk

1+Nk,h(ϕh(s,a))

)
,

/* Draw prior sample */
D̃p

kh ← {}
for (s, a, r, s′) ∈ Dk

h do
Sample wp(s, a) ∼ N

(
0, βk

1+Nk,h(ϕh(s,a))

)
D̃p

kh ← D̃p
kh ∪ {(s, a, r + wp, s′)}

end
end
/*Estimate Q on perturbed data*/

for p = 1, . . . , N do
/*Executed in parallel*/

Define terminal value Q̂p
k,H+1(γ)← H ∀γ ∈ [Γ]

for period h = H, . . . , 1 do
Q̄p

k,h(γ)← argminQ∈R L(Q|Q̂k−1,h, Q̂
p
k,h+1, D̃

p
kh, ξ, α) + ∥Q− αNk−1,h(γ)Q̃

p
kh∥22, ∀γ ∈ [Γ]

Q̂p
k,h(γ)← min{Q̄p

k,h(γ), H}, ∀γ ∈ [Γ]

end
spk,1 ← sp1

end
Update Q̂k,h(γ), ∀γ ∈ [Γ] by ( 6)

end

13



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Algorithm 2 Concurent RLSVI: Infinite-Horizon Storing All Historical Data
Data: Discount factor η, t0 = 1, t = 1, k = 0, X1 = 0, S,A,N, T , ϕ, tuning parameters {βk}k∈N,ξ,η
Initialize Nk(γ)← 0, ∀γ ∈ [Γ], k ∈ [K]; Q̂0(γ)← 0, ∀γ ∈ [Γ]
Define constants αt ← 1/(1 + t), t = 1, 2, . . .
/* Define squared temporal difference error */
L(Q | Q̂,Qnext,D, ξ, η, α) =

∑
(s,a,r,s′)∈D(Q− ηξ − η(1− α)Q̂(ϕ(s, a))− αη(r +maxa′∈A Qnext(s

′, a′)))2

Sample H0 ∼ Geometric(1− η), set H0 ← min{H0, T + 1− t}
Each agent randomly samples the initial trajectory {sp0,1, a

p
0,1, r

p
0,1, . . . , s

p
0,H , ap0,H , rp0,H}Np=1, with sp0,1 = sp1

k ← k + 1, tk = 1 +H0

tk ←the start time of pseudo-episode k
while t ≤ T do

Sample H ∼ Geometric(1− η)
H ← min{H,T + 1− t}
tk+1 ← tk +H (the start time of pseudo-episode k + 1)
/*Each agent rollouts in the environment */
for p = 1, . . . , N do
/*Executed in parallel*/

for t = tk, . . . , tk+1 − 1 do
apt ← argmaxa∈A Q̂p

t (ϕ(s
p
t , a))

observe reward rpt and next state spt+1

Dk ← Dk ∪ {(spt , a
p
t , r

p
t , s

p
t+1)}

end
/* Visitation of aggregated-states */
Nk−1(γ)←

∑N
p=1

∑tk−1
t=0 1{ϕ(spt , a

p
t ) = γ}, ∀γ ∈ [Γ]

end
/* Construct perturbed datasets and sample regularization noise Q̃ */

for p ∈ [N ] and t = tk, . . . , tk+1 − 1 do
/* Executed in parallel */

Sample array Q̃p
t (s, a) ∼ N (0,

βNk−1(ϕ(s,a))

Nk−1(ϕ(s,a))+1 ), ∀(s, a)
/* Draw prior sample */
Hp

k ← {}
for (s, a, r, s′) ∈ Dk do
/* Randomly perturb data */

Sample wp(s, a) ∼ N (0,
βNk−1(ϕ(s,a))

Nk−1(ϕ(s,a))+1 )

Hp
k ← H

p
k ∪ {(s, a, r + wp, s′)}

end
end
/* Estimate Q on perturbed data */

for p = 1, . . . , N do
/* Executed in Parallel */

Define terminal value Q̂p
tk+1

(γ)← 0 ∀γ ∈ [Γ]

for t = tk+1 − 1, . . . , tk do
/* Estimate Q on noisy data */
Q̂p

t ← argminQ∈R L(Q | Q̂k−1, Q̂
p
t+1,H

p
k, ξ, η, αNk−1(γ)) + ∥Q− ηαNk−1(γ)Q̃

p
t ∥22

Q̂p
t ← min{Q̂p

t ,
1

1−η},∀γ ∈ [Γ]

end
sptk = sp1,∀p ∈ [N ].

end

Q̂k(γ) =
∑N

p=1

∑tk+1−1

t=tk
1{ϕ(spt ,a

p
t )=γ}Q̂p

tk
(γ)

Nk(γ)
, ∀γ ∈ Γ

t← tk+1, k ← k + 1
end

14



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Algorithm 3 Concurent RLSVI: Finite-Horizon (Storing the Data of One Episode)
Data: K,H, S,A, N, s1, {ϕh}Hh=1, Tuning parameters {βk}k∈N
Define constants αt ← 1/(1 + t), t = 1, 2, . . .
/* Define squared temporal difference error */
L(Q | Qk−1,h, Qnext,D, ξ, α) =

∑
(s,a,r,s′)∈D(Q− ξ − (1− α)Qk−1,h(ϕh(s, a))− α(r +maxa′∈A Qnext(s

′, a′)))2

Initialize:
Q̂p

0h(γ) = H , ∀h ∈ [H], γ ∈ [Γ], p ∈ [N ]
Each agent randomly samples the initial trajectory {sp0,1, a

p
0,1, r

p
0,1, . . . , s

p
0,H , ap0,H , rH0,1}Np=1, with sp0,1 = sp1

N0,h(γ) =
N∑

p=1
1{ϕh(s

p
0,h, a

p
0,h) = γ}, ∀γ ∈ [Γ], h ∈ [H]

compute Q̂0,h by ( 6)
for episode k = 1, 2, . . . do
/*Each agent rollouts in the evironment*/

for p = 1, . . . , N do
/*Executed in parallel*/

for period h = 1, . . . ,H do
apk,h ← argmaxa∈A Q̂p

k−1,h(ϕh(s
p
k,h, a))

observe reward rpk,h and next state spk,h+1

Dk
h ← Dk

h ∪ {(s
p
k,h, a

p
k,h, r

p
k,h, s

p
k,h+1)}

end
end
/*Visitation of aggregated-states*/
Nk,h(γ)←

∑N
p=1 1{ϕh(s

p
k,h, a

p
k,h) = γ}, ∀γ ∈ [Γ], h ∈ [H]

/*Construct perturbed data sets and sample regularization noise Q̃*/
for p ∈ [N ] and h ∈ [H] do
/*Executed in parallel*/

For any (s, a) ∈ S ×A, sample array
Q̃p

kh(s, a) ∼ N
(
0, βk

1+Nk,h(ϕh(s,a))

)
,

/* Draw prior sample */
D̃p

kh ← {}
for (s, a, r, s′) ∈ Dk

h do
Sample wp(s, a) ∼ N

(
0, βk

1+Nk,h(ϕh(s,a))

)
D̃p

kh ← D̃p
kh ∪ {(s, a, r + wp, s′)}

end
end
/*Estimate Q on perturbed data*/

for p = 1, . . . , N do
/*Executed in parallel*/

Define terminal value Q̂p
k,H+1(γ)← H ∀γ ∈ [Γ]

for period h = H, . . . , 1 do
Q̄p

k,h(γ)← argminQ∈R L(Q|Q̂k−1,h, Q̂
p
k,h+1, D̃

p
kh, ξ, α) + ∥Q− αNk−1,h(γ)Q̃

p
kh∥22, ∀γ ∈ [Γ]

Q̂p
k,h(γ)← min{Q̄p

k,h(γ), H}, ∀γ ∈ [Γ]

end
spk,1 ← sp1, Dk

h = ∅

end
Update Q̂k,h(γ), ∀γ ∈ [Γ] by ( 6)

end

15



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Algorithm 4 Concurent RLSVI: Infinite-Horizon (Storing the Data of One Pseudo-episode)
Data: Discount factor η, t0 = 1, t = 1, k = 0, X1 = 0, S,A,N, T , ϕ, tuning parameters {βk}k∈N,ξ,η
Initialize Nk(γ)← 0, ∀γ ∈ [Γ], k ∈ [K]; Q̂0(γ)← 0, ∀γ ∈ [Γ]
Define constants αt ← 1/(1 + t), t = 1, 2, . . .
/* Define squared temporal difference error */
L(Q | Q̂,Qnext,D, ξ, η, α) =

∑
(s,a,r,s′)∈D(Q− ηξ − η(1− α)Q̂(ϕ(s, a))− αη(r +maxa′∈A Qnext(s

′, a′)))2

Sample H0 ∼ Geometric(1− η), set H0 ← min{H0, T + 1− t}
Each agent randomly samples the initial trajectory {sp0,1, a

p
0,1, r

p
0,1, . . . , s

p
0,H , ap0,H , rp0,H}Np=1, with sp0,1 = sp1

k ← k + 1, tk = 1 +H0

tk ←the start time of pseudo-episode k
while t ≤ T do

Sample H ∼ Geometric(1− η)
H ← min{H,T + 1− t}
tk+1 ← tk +H (the start time of pseudo-episode k + 1)
/*Each agent rollouts in the environment */
for p = 1, . . . , N do
/*Executed in parallel*/

for t = tk, . . . , tk+1 − 1 do
apt ← argmaxa∈A Q̂p

t (ϕ(s
p
t , a))

observe reward rpt and next state spt+1

Dk ← Dk ∪ {(spt , a
p
t , r

p
t , s

p
t+1)}

end
/* Visitation of aggregated-states */
Nk−1(γ)←

∑N
p=1

∑tk−1
t=tk−1

1{ϕ(spt , a
p
t ) = γ}, ∀γ ∈ [Γ]

end
/* Construct perturbed datasets and sample regularization noise Q̃ */

for p ∈ [N ] and t = tk, . . . , tk+1 − 1 do
/* Executed in parallel */

Sample array Q̃p
t (s, a) ∼ N (0,

βNk−1(ϕ(s,a))

Nk−1(ϕ(s,a))+1 ), ∀(s, a)
/* Draw prior sample */
Hp

k ← {}
for (s, a, r, s′) ∈ Dk do
/* Randomly perturb data */

Sample wp(s, a) ∼ N (0,
βNk−1(ϕ(s,a))

Nk−1(ϕ(s,a))+1 )

Hp
k ← H

p
k ∪ {(s, a, r + wp, s′)}

end
end
/* Estimate Q on perturbed data */

for p = 1, . . . , N do
/* Executed in Parallel */

Define terminal value Q̂p
tk+1

(γ)← 0 ∀γ ∈ [Γ]

for t = tk+1 − 1, . . . , tk do
/* Estimate Q on noisy data */
Q̂p

t ← argminQ∈R L(Q | Q̂k−1, Q̂
p
t+1,H

p
k, ξ, η, αNk−1(γ)) + ∥Q− ηαNk−1(γ)Q̃

p
t ∥22

Q̂p
t ← min{Q̂p

t ,
1

1−η},∀γ ∈ [Γ]

end
sptk = sp1,∀p ∈ [N ]; Dk ← ∅.

end

Q̂k(γ) =
∑N

p=1

∑tk+1−1

t=tk
1{ϕ(spt ,a

p
t )=γ}Q̂p

tk
(γ)

Nk(γ)
,

∀γ ∈ Γ
t← tk+1, k ← k + 1

end

16



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

C. Proofs for the Finite-Horizon Case
In this section, we prove the worst-case regret bound for the finite-horizon case. We use the following notations:

• nk
h(γ): the number of visits to aggregate state γ at period h from episodes 0 to k − 1.

• Nk,h(γ): total number of agents who visit aggregate state γ during episode k and period h.

• πkp: the greedy policy with respect to Q̂p
k,h, i.e. the policy that the agent p follows to produce the trajectory

spk,1, a
p
k,1, r

p
k,1, . . . , s

p
k,H , apk,H , rpk,H .

• V̂ p
k,h(s): the state value function estimate at period h, induced by Q̂p

k,h(γ) through

V̂ p
k,h(s) = max

a∈A
Q̂p

k,h(ϕh(s, a)).

• V p(M,π): the value function corresponding to policy π from the initial state sp1, where sp1 is the initial state of agent p
at the beginning of each episode. For the true MDP M we have V π

1 (sp1) := V p(M,π).

• V̂ πkp

k,1 (sp1) := V p(M
kp
, πkp): the value function corresponding to MDP M

kp
with initial state sp1 and policy πkp,

where MDP M
kp

is defined as (4).

For any γ ∈ [Γ], we define the following events:

E(γ) :=
{ ∣∣∣∣∣∣ 1

Nk−1,h(γ)

Nk−1,h(γ)∑
j=1

1{ϕh(s
j
k−1,h, a

j
k−1,h) = γ}{V ∗

h+1(s
j
k−1,h)− PhV

∗
h+1(s

j
k−1,h)}

∣∣∣∣∣∣
≤

2H
√
log(2KHN/δ)√
Nk−1,h(γ)

}
.

(18)

G(γ) :=
{ ∣∣∣∣∣∣ 1

Nk−1,h(γ)

Nk−1,h(γ)∑
j=1

1{ϕh(s
j
k−1,h, a

j
k−1,h) = γ}Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)

∣∣∣∣∣∣
≤ 2

√
βk−1 log(2KHN/δ)√

(Nk−1,h(γ) + 1)Nk−1,h(γ)

}
.

(19)

C.1. Proof of Finite-Horizon Main Result: Theorem 2

Proof of Theorem 2. Following the derivation of (37) and (38) in Lemma 11, we have∑
γ∈[Γ]

∑H
h=1

∑K
k=1

1√
Nk−1,h(γ)+1

=
∑H

h=1

∑K
k=1

∑
γ∈[Γ]

∑Nk−1,h(γ)
j=1

1√
j

≤
∑K

k=1

∑H
h=1

∑
γ∈[Γ] 2

√
Nk,h(γ) ≤ 2

√
KHΓ

∑K
k=1

∑H
h=1

∑
γ∈[Γ] Nk,h(γ) = 2KH

√
ΓN

(20)

and

∑N
p=1

∑K
k=1

∑H
h=1

1√
NK−1,h(γ

p
kh)

=
∑H

h=1

∑K
k=1

∑
γ∈[Γ]

∑NK−1,h(γ)
j=1

1√
j

≤
∑H

h=1

∑K
k=1

∑
γ∈[Γ] 2

√
Nk−1,h(γ)

≤ 2
√
HKΓ

∑H
h=1

∑K
k=1

∑
γ∈[Γ] Nk−1,h(γ)

= 2HK
√
ΓN.

Under events E(γp
kh),G(γ

p
kh),∀γ

p
kh ∈ [Γ], we have

17



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Regret(M,K,N, π,RLSVIβ,α,ξ) =
∑K

k=1

∑N
p=1 V

∗
1 (s

p
1)− V η

πkp(s
p
1) ≤

∑K
k=1

∑N
p=1 V̂k,1(s

p
1)− V η

πkp(s
p
1).

Recall from Lemma 11 that when E(γp
kh) and G(γp

kh) hold for all γp
kh ∈ [Γ], with probability 1− 2δ, we have

N∑
p=1

K∑
k=1

V̂ p
k,1(s

p
1)− V η

πkp(s
p
1)

≤ 2ϵKHN + 8KH2
√
ΓN
√
log(2KHN/δ) + 32H2

√
KΓN

√
log(HKN/δ)

+2KH5/2Γ
√
N
√
log(2KHΓ)

√
log(2KHN/δ).

Note that by (18), (19) and the first statement of Lemma 10, we have

P(E(γp
kh),G(γ

p
kh), γ

p
kh,∀k ∈ [K], h ∈ [H], p ∈ [N ])

≥ 1−
∑

k∈[K],h∈[H],p∈[N ](P(E(γ
p
kh)

c) + P(G(γp
kh)

c))

≥ 1− 2NKHδ/(2KHN) ≥ 1− δ.
(21)

Hence with probability 1− 3δ, we have

Regret(M,K,N, π,RLSVIβ,α,ξ)

≤ 2ϵKHN + 8KH2
√
ΓN
√
log(2KHN/δ) + 32H2

√
KΓN

√
log(HKN/δ)

+2KH5/2Γ
√
N
√
log(2KHΓ)

√
log(2KHN/δ).

So we obtain (9).

C.2. Lemmas for State-Aggregation Results

Lemma 8 (Concentration Bound). Conditioning on Dk = ∪p∈[N ]

∑
h∈[H]{s

p
k−1,h, a

p
k−1,h} as the trajectories of episode

k− 1 across all agents, for every possible γp
kh = ϕh(s

p
k,h, a

p
k,h) in episode k, event E(γp

kh) defined in (18) and event G(γp
kh)

both hold with probability 1− δ/(2KHN).

Proof of Lemma 8. By Höeffding’s inequality, conditional on the trajectory during episode k − 1, with probability 1 −
δ/(2KHN), we have∣∣∣∣∣∣ 1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V ∗
h+1(s

j
k−1,h+1)− PhV

∗
h+1(s

j
k−1,h)}

∣∣∣∣∣∣ ≤ 2H
√

log(2KHN/δ)√
Nk−1,h(γ

p
kh)

. (22)

Additionally, recall from Algorithm 3 that for k ≥ 2, the random perturbation during episode k − 1 is drawn from normal
distribution Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h) ∼ N (0, βk−1

Nk−2,h(ϕh(s
j
k−1,h,a

j
k−1,h))+1

), and since ϕh(s
j
k−1,h, a

j
k−1,h) = γp

kh in (24),

we have Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h) ∼ N (0, βk−1

Nk−2,h(γ
p
kh)+1

). Also note that the random perturbations Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h)

are i.i.d. across j ∈ [N ], hence by Höeffding bound, conditioning on Dk, with probability 1− δ/(2KHN), we have∣∣∣∣∣∣ 1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h)

∣∣∣∣∣∣ ≤ 2

√
βk−1

Nk−2,h(γ
p
kh) + 1

√
log(2KHN/δ)

Nk−1,h(γ
p
kh)

.

Thus the result follows.

Lemma 9 (Optimism). When events E(γp
kh) and G(γp

kh) hold for all γp
kh in episode k and for all k ∈ [K], p ∈ [N ], the

on-policy error V̂ p
k,h(s)− V ∗

h (s) is lower bounded by zero for any s ∈ S, k ∈ [K], p ∈ [N ].

18



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Proof of Lemma 9. Recall from Algorithm 3 that the unclipped value function estimates Q̄p
k,h(·) in episode k can be written

as

Q̄p
k,h(γ) = argminQ∈R

∑
(s,a):ϕh(s,a)=γ(Q− ξNk−1,h(γ) − (1− αNk−1,h(γ))Q̂k−1,h(γ)

−αNk−1,h(γ){r(s, a) + maxa′∈A Q̂p
k,h+1(s

′, a′)})2 +
∥∥∥Q− αNk−1,h(γ)Q̃

p
k,h

∥∥∥2
2
.

By first-order condition, we have

0 = 2
∑

(s,a):ϕh(s,a)=γ(Q̄
p
k,h(γ)− ξNk−1,h(γ) − (1− αNk−1,h(γ))Q̂k−1,h(γ)

−αNk−1,h(γ){r(s, a) + maxa′∈A Q̂p
k,h+1(s

′, a′)})
+2
∑

(s,a)∈Dk
h:ϕh(s,a)=γ(Q̄

p
k,h(γ)− αNk−1,h(γ)Q̃

p
k,h(s, a)),

so by calculation we have

Q̄p
k,h(γ)

= ξNk−1,h(γ) +
1

Nk−1,h(γ)

∑
(s,a)∈Dk

h:ϕh(s,a)=γ

(1− αNk−1,h(γ))Q̂k−1,h(γ)

+αNk−1,h(γ)(r(s, a) + max
a′∈A

Q̂p
k,h+1(s

′, a′)) + αNk−1,h(γ)Q̃
p
k,h(s, a))

= ξNk−1,h(γ) +
1

Nk−1,h(γ)

N∑
p=1

∑
(spk−1,h,a

p
k−1,h)∈Dp

kh:ϕh(s,a)=γ

(1− αNk−1,h(γ))Q̂k−1,h(γ)

+αNk−1,h(γ)(r(s
p
k−1,h, a

p
k−1,h) + V̂ p

k,h+1(s
p
k−1,h+1)) + αNk−1,h(γ)Q̃

p
k,h(s

p
k−1,h, a

p
k−1,h)

= ξNk−1,h(γ) + (1− αNk−1,h(γ))Q̂k−1,h(γ)

+
αNk−1,h(γ)

Nk−1,h(γ)

N∑
p=1

∑
(spk−1,h,a

p
k−1,h)∈Dp

k,h:ϕh(s,a)=γ

(r(spk−1,h, a
p
k−1,h) + V̂ p

k,h+1(s
p
k−1,h+1) + Q̃p

k,h(s
p
k−1,h, a

p
k−1,h))

= ξNk−1,h(γ) + (1− αNk−1,h(γ))Q̂k−1,h(γ)

+
αNk−1,h(γ)

Nk−1,h(γ)

Nk−1,h(γ)∑
p=1

(r(spk−1,h, a
p
k−1,h) + V̂ p

k,h+1(s
p
k−1,h+1) + Q̃p

k,h(s
p
k−1,h, a

p
k−1,h))

= ξNk−1,h(γ) +
1

Nk−1,h(γ)

Nk−1,h(γ)∑
p=1

(1− αNk−1,h(γ))Q̂
p
k−1,h(γ)

+αNk−1,h(γ)(r(s
p
k−1,h, a

p
k−1,h) + V̂ p

k,h+1(s
p
k−1,h+1) + Q̃p

k,h(s
p
k−1,h, a

p
k−1,h)),

where in the above derivation we used the fact that
∑N

p=1 1{ϕh(s
p
k−1,h, a

p
k−1,h) = γ} = Nk−1,h(γ).

Thus for γp
kh = ϕh(s

p
k,h, a

p
k,h), with ϕh(s

j
k−1,h, a

j
k−1,h) = γp

kh in the following, we have

19



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Q̄p
k,h(s

p
k,h, a

p
k,h)−Q∗

h(s
p
k,h, a

p
k,h)

= ξNk−1,h(γ) +
1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

(1− αNk−1,h(γ
p
kh)

)(Q̂j
k−1,h(s

j
k−1,h, a

j
k−1,h)−Q∗

h(s
p
k,h, a

p
k,h))

+αNk−1,h(γ
p
kh)

[{rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1,h+1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)}

−Q∗
h(s

p
k,h, a

p
k,h)]

= ξNk−1,h(γ) +
1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

(1− αNk−1,h(γ
p
kh)

)(Q̂j
k−1,h(s

j
k−1,h, a

j
k−1,h)−Q∗

h(s
p
k,h, a

p
k,h))

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

p=1

{[rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1,h+1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)]

−Q∗
h(s

j
k−1,h, a

j
k−1,h)}

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{Q∗
h(s

j
k−1,h, a

j
k−1,h)−Q∗

h(s
p
k,h, a

p
k,h)}︸ ︷︷ ︸

≥−ϵ

≥ −ϵ+ ξNk−1,h(γ) +
1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

(1− αNk−1,h(γ
p
kh)

)(Q̂j
k−1,h(s

j
k−1,h, a

j
k−1,h −Q∗

h(s
j
k−1,h, a

j
k−1,h))

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{[rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1,h+1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)]

−Q∗
h(s

j
k−1,h, a

j
k−1,h)}

(23)

where we use the definition of ϵ-error aggregation as in Definition 1 in the last inequality above, and the right hand side of
(23) is equal to

RHS of (23) =(1) −ϵ+ ξNk−1,h(γ) +
(1− αNk−1,h(γ

p
kh)

)

Nk−1,h(γ)

Nk−1,h(γ
p
kh)∑

j=1

(Q̂j
k−1,h(s

j
k−1,h, a

j
k−1,h)−Q∗

h(s
j
k−1,h, a

j
k−1,h))

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h)

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V̂ j
k−1,h+1(s

j
k−1,h+1)− V ∗

h+1(s
j
k−1,h+1)}

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V ∗
h+1(s

j
k−1,h+1)− PhV

∗
h+1(s

j
k−1,h)}

=(2) −ϵ+ ξNk−1,h(γ) +
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h)

+
1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V̂ j
k−1,h+1(s

j
k−1,h+1)− V ∗

h+1(s
j
k−1,h+1)}

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V ∗
h+1(s

j
k−1,h+1)− PhV

∗
h+1(s

j
k−1,h)}

(24)
where the equalities (1) and (2) use the fact that

Qh(s
′, a′) = rh(s

′, a′) + PhV
∗
h+1(s

′, a′), ∀(s′, a′) ∈ S ×A.

20



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Suppose events E(γp
kh) and G(γp

kh) hold for all γp
kh in episode k, then by (18),(19), we have

αNk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V ∗
h+1(s

j
k−1,h+1)− PhV

∗
h+1(s

j
k−1,h)} ≥ −

2αNk−1,h(γ
p
kh)

H
√
log(2KHN/δ)√

max{Nk−1,h(γ
p
kh), 1}

,

and
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h) ≥ −

2αNk−1,h(γ
p
kh)

√
βk−1 log(2KHN/δ)√

(Nk−1,h(γ
p
kh) + 1)max{Nk−1,h(γ

p
kh), 1}

.

So recall from (7)

ξNk−1,h(γ
p
kh)

= ϵ+
2αNk−1,h(γ

p
kh)

H
√
log(2KHN/δ)√

max{Nk−1,h(γ
p
kh), 1}

+
2αNk−1,h(γ

p
kh)

√
βk−1 log(2KHN/δ)√

(Nk−1,h(γ
p
kh) + 1)max{Nk−1,h(γ

p
kh), 1}

,

thus we have

Q̄p
k,h(s

p
k,h, a

p
k,h)−Q∗

h(s
p
k,h, a

p
k,h) ≥

1
Nk−1,h(γ

p
kh)

∑Nk−1,h(γ
p
kh)

j=1 {V̂ j
k−1,h+1(s

j
k−1,h+1)− V ∗

h+1(s
j
k−1,h+1)}. (25)

Note that when Nk−1,h(γ) = 0, then Q̄p
k,h(γ) = Q̂p

k,h(γ) = H , and we define terminal values as H with Q̄p
k,h+1(γ) =

Q̂p
k,h+1(γ) = H , so by plugging in h = H in (25), for any possible γ ∈ [Γ], we have Q̄p

k,H(γ) ≥ Q∗
H(γ). Thus

V̂ p
k,H(s) ≥ V ∗

H(s), ∀s ∈ S, k ∈ [K], p ∈ [N ].

Furthermore, suppose that at period h, we have

V̂ p
k,h(s) ≥ V ∗

h (s), ∀s ∈ S, k ∈ [K], p ∈ [N ],

then from (25) we have

Q̄p
k,h−1(s, a)−Q∗

h(s, a) ≥
1

Nk−1,h(ϕh(s, a)

Nk−1,h(ϕh(s,a))∑
j=1

{V̂ j
k−1,h+1(s

j
k−1,h+1)− V ∗

h+1(s
j
k−1,h+1)} ≥ 0,

which implies that
Q̄p

k,h−1(s, a) ≥ Q∗
h(s, a), ∀(s, a) ∈ S ×A, k ∈ [K], p ∈ [N ].

By maximizing over a ∈ A on both sides above, we have

V̂ p
k−1,h−1 ≥ V ∗

h−1(s), ∀s ∈ S, k ∈ [K].

Thus by induction, we conclude that when events E(γp
kh) and G(γp

kh) hold for all γp
kh in episode k for all k ∈ [K], we have

V̂ p
k,h(s) ≥ V ∗

h (s), ∀s ∈ S, k ∈ [K], p ∈ [N ].

Lemma 10. Suppose events E(γp
kh) and G(γp

kh) hold for all γp
kh, for all k ∈ [K] and p ∈ [N ], then we have∑N

p=1

∑K
k=1

[
V̂ p
k,h(s

p
k,h)− V ∗

h (s
p
k,h)

]
≤ 2ϵKN(H − h+ 1)

+4H
√
log(2KHN/δ)

K∑
k=1

N∑
p=1

H∑
ℓ=h

1√
Nk−1,ℓ(γ

p
kℓ)

1

1 +Nk−1,ℓ(γ
p
kℓ)

+4

H∑
ℓ=h

N∑
p=1

K∑
k=2

√
βk−1 log(2KHN/δ)√(

nh
k−1(γ

p
kh) + 1)Nk−2,h(γ

p
kh

) 1

1 +Nk−1,ℓ(γ
p
kℓ)

.

21



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Proof of Lemma 10. By (23) we have

Q̄p
k,h(s

p
k,h, a

p
k,h)−Q∗

h(s
p
k,h, a

p
k,h)

= ξNk−1,h(γ) +
1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

(1− αNk−1,h(γ
p
kh)

)(Q̂j
k−1,h(s

j
k−1,h, a

j
k−1,h)−Q∗

h(s
p
k,h, a

p
k,h))

+αNk−1,h(γ
p
kh)

[{rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1,h+1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)}

−Q∗
h(s

p
k,h, a

p
k,h)]

= ξNk−1,h(γ) +
1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

(1− αNk−1,h(γ
p
kh)

)(Q̂j
k−1,h(s

j
k−1,h, a

j
k−1,h)−Q∗

h(s
p
k,h, a

p
k,h))

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

p=1

{[rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1,h+1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)]

−Q∗
h(s

j
k−1,h, a

j
k−1,h)}

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{Q∗
h(s

j
k−1,h, a

j
k−1,h)−Q∗

h(s
p
k,h, a

p
k,h)}︸ ︷︷ ︸

≤ϵ

≤ ϵ+ ξNk−1,h(γ) +
1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

(1− αNk−1,h(γ
p
kh)

)(Q̂j
k−1,h(s

j
k−1,h, a

j
k−1,h −Q∗

h(s
j
k−1,h, a

j
k−1,h))

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{[rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1,h+1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)]

−Q∗
h(s

j
k−1,h, a

j
k−1,h)}

(26)

where we use the definition of ϵ-error aggregation as in Definition 1 in the last inequality above, and the right hand side of
(26) is equal to

RHS of (26) =(1) ϵ+ ξNk−1,h(γ) +
(1− αNk−1,h(γ

p
kh)

)

Nk−1,h(γ)

Nk−1,h(γ
p
kh)∑

j=1

(Q̂j
k−1,h(s

j
k−1,h, a

j
k−1,h)−Q∗

h(s
j
k−1,h, a

j
k−1,h))

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h)

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V̂ j
k−1,h+1(s

j
k−1,h+1)− V ∗

h+1(s
j
k−1,h+1)}

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V ∗
h+1(s

j
k−1,h+1)− PhV

∗
h+1(s

j
k−1,h)}

=(2) ϵ+ ξNk−1,h(γ) +
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h)

+
1

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V̂ j
k−1,h+1(s

j
k−1,h+1)− V ∗

h+1(s
j
k−1,h+1)}

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

{V ∗
h+1(s

j
k−1,h+1)− PhV

∗
h+1(s

j
k−1,h)}

(27)
where the equalities (1) and (2) above use the fact that

Qh(s
′, a′) = rh(s

′, a′) + PhV
∗
h+1(s

′, a′), ∀(s′, a′) ∈ S ×A.

22



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Now suppose E(γp
kh) and G(γp

kh) holds for all aggregated states γp
kh during period k for all p ∈ [N ].

By definition, note that

V̂ p
k,h(s

p
k,h)− V ∗

h (s
p
k,h) ≤ Q̂p

k,h(s
p
k,h, a

p
k,h)−Q∗

h(s
p
k,h, a

p
k,h) ≤ Q̄p

k,h(s
p
k,h, a

p
k,h)−Q∗

h(s
p
k,h, a

p
k,h), (28)

Denote

∆p
k,h = V̂ p

k,h(s
p
k,h)− V ∗

h (s
p
k,h), (29)

then under events E(γp
kh) and G(γp

kh),

Q̄p
k,h(s

p
k,h, a

p
k,h)−Q∗

h(s
p
k,h, a

p
k,h) ≤ ϵ+ ξNk−1,h(γ) +

2αNk−1,h(γ
p
kh)

√
βk−1 log(2KHN/δ)√

(Nk−2,h(γ
p
kh) + 1)Nk−1,h(γ

p
kh)

+
αNk−1,h(γ

p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

∆j
k,h+1 +

2αNk−1,h(γ
p
kh)

H
√
log(2KHN/δ)√

Nk−1,h(γ
p
kh)

.

(30)
Since E(γp

kh) and G(γp
kh) hold for all γp

kh ∈ [Γ], and recall from (7)

ξNk−1,h(γ
p
kh)

= ϵ+
2αNk−1,h(γ

p
kh)

H
√
log(2KHN/δ)√

max{Nk−1,h(γ
p
kh), 1}

+
2αNk−1,h(γ

p
kh)

√
βk−1 log(2KHN/δ)√

(Nk−1,h(γ
p
kh) + 1)max{Nk−1,h(γ

p
kh), 1}

,

so we have
N∑

p=1

K∑
k=1

∆p
k,h(s

p
k,h) ≤

∑N
p=1

∑K
k=1 Q

∗
h(s

p
k,h, a

p
k,h)− Q̄p

k,h(s
p
k,h, a

p
k,h)

≤ 2KNϵ+ 4

N∑
p=1

K∑
k=1

αNk−1,h(γ
p
kh)

H
√
log(2KHN/δ)√

Nk−1,h(γ
p
kh)

+4

N∑
p=1

K∑
k=2

αNk−1,h(γ
p
kh)

√
βk−1 log(2KHN/δ)√

(Nk−2,h(γ
p
kh) + 1)Nk−1,h(γ

p
kh)

+

N∑
p=1

K∑
k=1

αNk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

∆j
k,h+1.

(31)

For any γ ∈ [Γ], for spk,h, a
p
k,h such that ϕh(s

p
k,h, a

p
k,h) = γ, denote

∆̄k,h+1(γ) =
1

Nk−1,h(γ)

Nk−1,h(γ)∑
p=1

∆p
k,h+1.

Note that
N∑

p=1

K∑
k=1

αNk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

∆j
k,h+1

=

K∑
k=1

Nk−1,h(γ
p
kh)αNk−1,h(γ

p
kh)

∆̄k,h+1 =

K∑
k=1

αNk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

p=1

∆p
k,h+1

≤
K∑

k=1

N∑
p=1

∆p
k,h+1,

(32)

where the last inequality above follows from Lemma 9.

Hence by above recursion and (31) we have that when E(γp
kh) and G(γp

kh) hold for all γp
kh ∈ [Γ], we have

23



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

∑N
p=1

∑K
k=1 ∆

p
k,h ≤ 2ϵKN(H − h+ 1) + 4H

√
log(2KHN/δ)

K∑
k=1

N∑
p=1

H∑
ℓ=h

1√
Nk−1,ℓ(γ

p
kℓ)

1

1 +Nk−1,ℓ(γ
p
kℓ)

+4

H∑
ℓ=h

N∑
p=1

K∑
k=2

√
βk−1 log(2KHN/δ)√

(Nk−2,h(γ
p
k,h) + 1)Nk−1,h(γ

p
k,h)

1

1 +Nk−1,ℓ(γ
p
k,ℓ)

.

(33)

Lemma 11. Suppose E(γp
kh) and G(γp

kh) hold for all γp
kh ∈ [Γ], then with probability 1− 2δ, we have

N∑
p=1

K∑
k=1

V̂ p
k,1(s

p
1)− V η

πkp(s
p
1)

≤ 2ϵKHN + 8KH2
√
ΓN
√
log(2KHN/δ) + 32H2

√
KΓN

√
log(HKN/δ)

+2KH5/2Γ
√
N
√
log(2KHΓ)

√
log(2KHN/δ).

Proof of Lemma 11. Note that

V̂ p
k,h(s

p
k,h)− V πkp

h (spk,h)

= V̂ p
k,h(s

p
k,h)−Q∗

h(s
p
k,h, a

p
k,h) +Q∗

h(s
p
k,h, a

p
k,h)− V πkp

h (spk,h)

= Q̂πkp

h (spk,h, a
p
k,h)−Q∗

h(s
p
k,h, a

p
k,h) +Q∗

h(s
p
k,h, a

p
k,h)−Qπkp

h (spk,h, a
p
k,h)

= Q̂πkp

h (spk,h, a
p
k,h)−Q∗

h(s
p
k,h, a

p
k,h) + PhV

∗
h+1(s

p
k,h+1)− PhV

πkp

h+1(s
p
k,h+1)

= [Q̂πkp

h (spk,h, a
p
k,h)−Q∗

h(s
p
k,h, a

p
k,h)] + [V ∗

h+1(s
p
k,h+1)− V πkp

h+1(s
p
k,h+1)]

+[PhV
∗
h+1(s

p
k,h+1)− V ∗

h+1(s
p
k,h+1)] + [V πkp

h+1(s
p
k,h+1)− PhV

πkp

h+1(s
p
k,h+1)]

= [Q̂πkp

h (spk,h, a
p
k,h)−Q∗

h(s
p
k,h, a

p
k,h)] + [V̂ πkp

k,h+1(s
p
k,h+1)− V πkp

h+1(s
p
k,h+1)]−∆p

k,h+1

+[PhV
∗
h+1(s

p
k,h+1)− V ∗

h+1(s
p
k,h+1)] + [V πkp

h+1(s
p
k,h+1)− PhV

πkp

h+1(s
p
k,h+1)].

(34)

Summing over k = 1, 2, . . . ,K, by (28), (31), (32) and (33) of Lemma 10 we have

N∑
p=1

K∑
k=1

V̂ p
k,h(s

p
k,h)− V πkp

h (spk,h)

≤
N∑

p=1

K∑
k=1

[V̂ p
k,h+1(s

p
k,h+1)− V πkp

h+1(s
p
k,h+1)]−

N∑
p=1

K∑
k=1

∆p
k,h+1

+2KNϵ+ 4

N∑
p=1

K∑
k=1

αNk−1,h(γ
p
kh)

H
√
log(2KHN/δ)√

Nk−1,h(γ
p
kh)

+2

N∑
p=1

K∑
k=2

αNk−1,h(γ
p
kh)

√
βk−1 log(2KHN/δ)√

(Nk−2,h(γ
p
kh) + 1)Nk−1,h(γ

p
kh)

1

1 +Nk−1,h(γ
p
kh)

+

K∑
k=1

N∑
p=1

∆p
k,h+1

+

K∑
k=1

N∑
p=1

[PhV
∗
h+1(s

p
k,h+1)− V ∗

h+1(s
p
k,h+1)]

+

K∑
k=1

N∑
p=1

[V πkp

h+1(s
p
k,h+1)− PhV

πkp

h+1(s
p
k,h+1)].

(35)

Note that (35) is recursive. Recall that spk,1 = sp1 for any k ∈ [K], p ∈ [N ]. Thus by Lemma 10, when E(γp
kh) and G(γp

kh)

24



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

hold for all γp
kh, for all k ∈ [K], p ∈ [N ], we have

N∑
p=1

K∑
k=1

V̂ p
k,1(s

p
1)− V η

πkp(s
p
1)

≤ 2ϵKHN + 4H
√

log(2KHN/δ)

K∑
k=1

N∑
p=1

H∑
h=1

1√
Nk−1,h(γ

p
kh)

1

1 +Nk−1,h(γ
p
kh)

+4

H∑
h=1

N∑
p=1

K∑
k=2

√
βk−1 log(2KHN/δ)√

(Nk−2,h(γ
p
kh) + 1)Nk−1,h(γ

p
kh)

1

1 +Nk−1,h(γ
p
kh)

+

H∑
h=1

K∑
k=1

N∑
p=1

[V πkp

h+1(s
p
k,h+1)− PhV

πkp

h+1(s
p
k,h)].

(36)

Further note that

K∑
k=1

N∑
p=1

[PhV
πkp

h+1(s
p
k,h+1)− V πkp

h+1(s
p
k,h+1)]

=
∑
γ∈[Γ]

K∑
k=1

N∑
p=1

1{ϕh(s
p
k,h, a

p
k,h) = γ}[PhV

πkp

h+1(s
p
k,h+1)− V πkp

h+1(s
p
k,h+1)]

and

K∑
k=1

N∑
p=1

[PhV
∗
h+1(s

p
k,h+1)− V ∗

h+1(s
p
k,h+1)]

=
∑
γ∈[Γ]

K∑
k=1

N∑
p=1

1{ϕh(s
p
k,h, a

p
k,h) = γ}[PhV

∗
h+1(s

p
k,h+1)− V ∗

h+1(s
p
k,h+1)].

By Azuma-Höeffding’s inequality, with probability ≥ 1− δ/Γ,

K∑
k=1

N∑
p=1

1{ϕh(s
p
k,h, a

p
k,h) = γ}[PhV

πkp

h+1(s
p
k,h+1)− V πkp

h+1(s
p
k,h+1)] ≤ 2H

√
nK
h (γ)

√
log

Γ

δ
,

and with probability ≥ 1− δ/Γ, we have

K∑
k=1

N∑
p=1

1{ϕh(s
p
k,h, a

p
k,h) = γ}[PhV

∗
h+1(s

p
k,h+1)− V ∗

h+1(s
p
k,h+1)] ≤ 2H

√
nK
h (γ)

√
log

Γ

δ
,

thus by summing over all the possible γp
kh ∈ [Γ], with probability 1− 2δ,

K∑
k=1

N∑
p=1

[PhV
πkp

h+1(s
p
k,h+1)− V πkp

h+1(s
p
k,h+1)] + [PhV

∗
h+1(s

p
k,h+1)− V ∗

h+1(s
p
k,h+1)]

≤ 4H
∑
γ∈[Γ]

√
nK
h (γ)

√
log

Γ

δ
.

25



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Finally, note that

N∑
p=1

K∑
k=1

H∑
h=1

1√
Nk−1,h(γ

p
kh)

1

1 +Nk−1,h(γ
p
kh)

≤
H∑

h=1

K∑
k=1

∑
γ∈[Γ]

Nk−1,h(γ)∑
j=1

1

j

≤(1)

K∑
k=1

H∑
h=1

∑
γ∈[Γ]

√
Nk−1,h(γ)

√√√√ ∞∑
j=1

1/j2 ≤(2)

H∑
h=1

K∑
k=1

∑
γ∈[Γ]

2
√
Nk−1,h(γ)

≤(3) 2

√√√√HKΓ

H∑
h=1

K∑
k=1

∑
γ∈[Γ]

Nk−1,h(γ)

= 2HK
√
ΓN

(37)

where (1) and (3) hold by Cauchy’s inequality, and (2) holds because
√
π2/6 < 2.

Furthermore, we also have∑H
h=1

∑
γ∈[Γ]

√
nK
h (γ) ≤

√
HΓ

∑H
h=1

∑
γ∈[Γ] n

K
h (γ) =

√
H2KΓN. (38)

Additionally, note that whenever Nk−2,h(γ
p
kh) ≥ 1, we have

H∑
h=1

N∑
p=1

K∑
k=2

√
βk−1 log(2KHN/δ)√

(Nk−2,h(γ
p
kh) + 1)Nk−1,h(γ

p
kh)

1

1 +Nk−1,h(γ
p
kh)

≤
H∑

h=1

N∑
p=1

K∑
k=2

√
βk−1 log(2KHN/δ)√
Nk−2,h(γ

p
kh) + 1

1

1 +Nk−1,h(γ
p
kh)

,

(39)

and note that

H∑
h=1

N∑
p=1

K∑
k=2

1√
Nk−2,h(γ

p
k+1,h) + 1

1

1 +Nk−1,h(γ
p
k+1,h)

=(1)

K∑
k=1

H∑
h=1

∑
γ∈[Γ]

Nk,h(γ)√
Nk−1,h(γ) + 1

1

1 +Nk,h(γ)

≤
K∑

k=1

H∑
h=1

∑
γ∈[Γ]

1√
Nk−1,h(γ)

≤
K∑

k=1

H∑
h=1

∑
γ∈[Γ]

1{Nk,h(γ ≥ 1)}√
Nk,h(γ)

≤

√√√√KHΓ

K∑
k=1

H∑
h=1

∑
γ∈[Γ]

Nk,h(γ) = KHΓ
√
N,

(40)
where equality (1) holds because Nk,h(γ) is the number of agents that reach aggregated state γ at period h during episode k.
And the last inequality holds by Cauchy’s inequality. Recall that βk = 1

2H
3 log(2kHΓ), thus by (39),

∑H
h=1

∑N
p=1

∑K
k=2

√
βk−1 log(2KHN/δ)√

(Nk−2,h(γ
p
kh)+1)Nk−1,h(γ

p
kh)

1
1+Nk−1,h(γ

p
kh)
≤ KH5/2Γ

√
N
√
log(2KHΓ)

√
log(2KHN/δ).

(41)

Thus by (36), when events E(γp
kh) and G(γp

kh) hold for all γp
kh ∈ [Γ], with probability 1− 2δ, we have

N∑
p=1

K∑
k=1

V̂ p
k,1(s

p
1)− V η

πkp(s
p
1)

≤ 2ϵKHN + 4KH2
√
ΓN
√
log(2KHN/δ) + 32H2

√
KΓN

√
log(HKN/δ)

+2KH5/2Γ
√
N
√
log(2KHΓ)

√
log(2KHN/δ).

26



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

D. Proofs for the Infinite-Horizon Case
Additional notations For true MDP M and policy π we denote the discounted value function under π at state s as.
V η
π,1(s) = V η

π (s). We denote V η
∗ as the discounted value function under the optimal policy π∗.

During each pseudo-episode k ∈ [K], each agent samples a random vector with independent components wkp ∈
RHkSA, where wkp(h, s, a) ∼ N (0, σ2

k(h, s, a)) and σk(h, s, a) =
√

βk

Nk−1(ϕ(s,a))+1 , where βk is a tuning parameter,
Nk−1,h(ϕ(s, a)) is the total number of times that aggregated state ϕ(s, a) is reached across all agents during episode k − 1.
Given wkp, we construct a randomized perturbation of the empirical MDP for agent p as

M
kp

= (T,S,A, P̂ k, R̂k + wkp, N), (42)

where the empirical distributions P̂ k and empirical rewards R̂k are computed as in (13) and (14). During each pseudo-episode
k ∈ [K], the data set D̃p

k contains perturbation of samples from pseudo-episode k − 1 used by agent p.

We define the following events:

EI(γ) :=

{ ∣∣∣∣∣∣ 1

Nk−1(γ)

N∑
j=1

∑
h∈[Hk−1]

1{ϕ(sjk−1,h, a
j
k−1,h) = γ}{V η

∗ (s
j
k−1,h)− PV η

∗ (s
j
k−1,h)}

∣∣∣∣∣∣
≤

2Hk−1

√
log(TN/δ)√

Nk−1,h(γ)

}
.

(43)

GI(γ) :=

{ ∣∣∣∣∣∣ 1

Nk−1(γ)

N∑
j=1

∑
h∈[Hk−1]

1{ϕ(sjk−1,h, a
j
k−1,h) = γ}Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)

∣∣∣∣∣∣
≤

2
√

βk−1 log(TN/δ)√
(Nk−1(γ) + 1)Nk−1(γ)

}
.

(44)

Lemma 12 (Lemma 2 of (Dong et al., 2022)). For all π, s ∈ S and η ∈ [0, 1),
∣∣∣V η

π (s)−
λπ(s)
1−η

∣∣∣ ≤ τπ .

Remark 13. For weakly communicating M , the optimal average reward is state independent, so under Assumption 6,
almost surely for any s, s′ ∈ S, we have |V η

∗ (s)− V η
∗ (s

′)| ≤ 2τ∗ ≤ 2τ .

Regret Decomposition Recall that Regret(M,T,N,RLSVIβ,α,ξ) denotes the regret under infinite-horizon case for MDP
M . Here K = argmax{k : tk ≤ T}. We put K explicitly here to derive the regret bound in a way dependent on the
random K. Let Hk be the length of pseudo-episode k. So we can decompose the regret as

Regret(M,T,N,RLSVIβ,α,ξ)

= EK,Hk

[∑N
p=1

∑K
k=1

∑Hk

t=1 (λ∗ −Rp
t )
∣∣M]

= EK,Hk

[∑N
p=1

∑K
k=1 Hkλ∗ −

∑N
p=1

∑K
k=1

∑Hk

t=1 R
p
t

∣∣M]
= EK,Hk

[
N∑

p=1

K∑
k=1

{Hkλ∗ − V η
∗ (s

p
k,1)}

∣∣M]︸ ︷︷ ︸
(a)

+

N∑
p=1

K∑
k=1

{
V η
∗ (s

p
k,1)− V η

πkp(s
p
k,1)
}

︸ ︷︷ ︸
(b)

(45)

Recall from (11) that V η
∗ , V

η
πkp ≤ 1

1−η . Note that (a) in (45) is the difference between the optimal average reward weighted
by the pseudo-horizons and the discounted reward, and part (b) is the sum of the differences between the optimal discounted
value and cumulative the discounted value of the employed policies throughout K pseudo-episodes by all agents. We
provide an upper bound for the worst-case regret by bounding (a) and (b) respectively.

27



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

D.1. Proof for Infinite-Horizon Main Result: Theorem 7

Proof of Theorem 7. By Azuma-Höeffding inequality, conditional on the trajectory during pseudo-episode k − 1, with
probability 1− δ/(2TN), we have∣∣∣∣∣∣ 1

Nk−1(γ)

Nk−1(γ)∑
j=1

{V η
∗ (s

j
k−1,h+1)− PhV

η
∗ (s

j
k−1,h)}

∣∣∣∣∣∣ ≤ 2
√

log(2TN/δ)

(1− η)
√
Nk−1(γ)

.

Additionally, recall from Algorithm 4 that Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h) ∼ N

(
0, βk−1

Nk−1(γ)+1

)
. Note that conditional on the

trajectories during pseudo-episode k−1, the random perturbations are i.i.d. across j ∈ [p], h ∈ [Hk−1], thus by Höefdding’s
inequality, conditional on the trajectory during pseduo-period k − 1, with probability 1− δ/(2TN), we have∣∣∣∣∣∣ 1

Nk−1(γ)

N∑
j=1

∑
h∈[Hk−1]

1{ϕh(s
p
k−1,h, a

p
k−1,h) = γ}Q̃j

k−1,h(s
p
k−1,h, a

p
k−1,h)

∣∣∣∣∣∣ ≤ 2

√
βk−1

Nk−1(γ) + 1

√
log(2TN/δ)

Nk−1(γ)
.

So we have

P(E(γp
kh),G(γ

p
kh), γ

p
kh,∀k ∈ [K], h ∈ [Hk], p ∈ [N ]) = P(E(γp

t ),G(γ
p
t ), γ

p
t ,∀t ∈ [T ], p ∈ [N ])

≥ 1−
∑

t∈[T ],p∈[N ]

(P(E(γp
t )

c) + P(G(γp
t )

c)) ≥ 1− 2NTδ/(2NT ) ≥ 1− δ. (46)

By Lemma 15 and Lemma 14, with probability 1− 3δ, we have

Regret(M,T,N,RLSVIβ,α,ξ) ≤ τN [(1− η)T + 1]√
NT

+ [(1− η)T + 1]τ
(
1 +

√
N log(NT )

)
+
8T
√
ΓN log(2TN/δ)

(1− η)2
+

8Γτ3/2T
√
N log(2τΓT ) log(2TN/δ)

(1− η)2

+
4K
√
NΓ
√
log(Γ/δ)

1− η
+ 2ηϵTN.

(47)

Recall that τ = max{τ, τ}, so with probability 1− δ, we have

Regret(M,T,N,RLSVIβ,α,ξ) ≤ τN [(1− η)T + 1]√
NT

+ [(1− η)T + 1]τ
(
1 +

√
N log(NT )

)
+
8T
√
ΓN log(6TN/δ)

(1− η)2
+

8τ3/2TΓ
√

N log(2τΓT ) log(6TN/δ)

(1− η)2

+
4K
√
NΓ
√
log(3Γ/δ)

1− η
+ 2ηϵTN.

When 1− η such that 1
(1−η)2 ≤ C for some constant C, is bounded from below, we have

Regret(M,T,N,RLSVIβ,α,ξ) ≤ 2ϵTN + 2τ
√
NT + 4Tτ

√
N log(NT )

+16Cmax{τ3/2, 1}TΓ
√

ΓN log(2τT ) log(6TN/δ)

D.2. Lemmas for bounding (a) and (b) in (45)

Lemma 14 (Bound for (a) of (45)). EHk,K

[∑N
p=1

∑K
k=1 Hkλ∗ − V η

∗ (s
p
k,1)
]
≤ τN [(1−η)T+1]√

NT
+ [(1 − η)T +

1]τ
(
1 +

√
N log(NT )

)
.

28



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Proof of Lemma 14. Note that the expected length of each pseudo-episode is independent of the policy and is equal to 1
1−η .

Thus for K fixed, EHk

[∑N
p=1

∑K
k=1 Hkλ∗ − V η

∗ (s
p
k,1)
]
=
∑N

p=1

∑K
k=1

(
λ∗
1−η − V η

∗ (s
p
k,1)
)

, thus

E

[
N∑

p=1

K∑
k=1

Hkλ∗ − V η
∗ (s

p
k,1)

]
≤ E

[
N∑

p=1

K∑
k=1

∣∣∣∣ λ∗

1− η
− V η

∗ (s
p
k,1)

∣∣∣∣
]
.

By Lemma 12, we know that
∣∣∣ λ∗
1−η − V η

∗ (s
p
k,1)
∣∣∣ ≤ τ . So that for any p ∈ [N ], for any fixed K,

K∑
k=1

∣∣∣∣ λ∗

1− η
− V η

∗ (s
p
k,1)

∣∣∣∣ ≤ Kτ.

Note that spk,1 are sampled i.i.d. across p at the beginning of each pseudo-episode k. Höeffding’s inequality shows that for
any ϵ > 0,

P

(
N∑

p=1

K∑
k=1

∣∣∣∣ λ∗

1− η
− V η

∗ (s
p
k,1)

∣∣∣∣ ≥ ϵ+Kτ

)
≤ exp

(
− 2ϵ2

4NK2τ2

)
.

Take
ϵ = Kτ

√
N log(NT ),

we then have

P

(
N∑

p=1

K∑
k=1

∣∣∣∣ λ∗

1− η
− V η

∗ (s
p
k,1)

∣∣∣∣ ≥ Kτ
(
1 +

√
N log(NT )

))
≤ 1√

NT
.

Thus conditioning on the total number of pseudo-episodes K,

EK

[
N∑

p=1

K∑
k=1

∣∣∣∣ λ∗

1− η
− V η

∗ (s
p
k,1)

∣∣∣∣
]
≤ τKN√

NT
+Kτ

(
1 +

√
N log(NT )

)
.

Further note that since Hk ∼ Geometric(1− η) and are i.i.d. across k, so

E[K] ≤ (1− η)T + 1.

Hence by taking expectation over K, we have

E

[
N∑

p=1

K∑
k=1

∣∣∣∣ λ∗

1− η
− V η

∗ (s
p
k,1)

∣∣∣∣
]
≤ τE[K]N√

NT
+ E[K]τ

(
1 +

√
N log(NT )

)
≤ τN [(1− η)T + 1]√

NT
+ [(1− η)T + 1]τ

(
1 +

√
N log(NT )

)
.

Lemma 15 (Bound for (b) of (45)). Suppose events EI(γ) and GI(γ) hold for any γ ∈ [Γ], then with probability 1− 2δ, we
have

∑N
p=1

∑K
k=1

{
V η
∗ (s

p
k,1)− V η

πkp,M
(spk,1)

}
≤

8T
√

ΓN log(2TN/δ)

(1− η)2
+

8τ3/2TΓ
√

N log(2τΓT ) log(2TN/δ)

1− η

+
4T
√
NΓ
√

log(Γ/δ)

1− η
+ 2ηϵTN.

29



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Proof of Lemma 15. Recall from Algorithm 4 that the unclipped value function estimates Q̄p
k,h(·) during pseudo-episode k

at time period h ∈ [Hk] (recall that Hk here is random) as

Q̄p
k,h(γ) = argminQ∈R

∑
(s,a):ϕh(s,a)=γ(Q− ξNk−1(γ) − (1− αNk−1(γ))Q̂k−1(γ)

−ηαNk−1,h(γ){r(s, a) + maxa′∈A Q̂p
k,h+1(s

′, a′)})2 +
∥∥∥Q− ηαNk−1,h(γ)Q̃

p
k,h

∥∥∥2
2
.

So similar to the derivation in the proof of Lemma 10, we have

Q̄p
k,h(γ) = ξNk−1(γ) +

1

Nk−1(γ)

Nk−1(γ)∑
p=1

(1− αNk−1(γ))Q̂
p
k−1(γ)

+αNk−1(γ)η(r(s
p
k−1, a

p
k−1) + V̂ p

k (s
p
k−1,h+1) + Q̃p

k,h(s
p
k−1,h, a

p
k−1,h)).

By definition, we have Q̄p
k,1(γ) = Q̄p

tk
(γ). We denote Q̄p

k(γ) := Q̄p
k,1(γ) in the following. Thus for any γ = ϕ(spk,h, a

p
k,h)

during pseudo-episode k, with ϕ(sjk−1,h, a
j
k−1,h) = γ in the following, where {(sjk−1,h, a

j
k−1,h)} come from all the

state-action pairs during pseudo-period k − 1 (note that we don’t distinguish between different pseudo periods now),
where h ∈ {1, 2, . . . ,Hk−1}, and Hk−1 is the random length of pseudo-episode k − 1, and recall that Nk−1(γ) =∑N

p=1

∑
h∈[Hk−1]

1{ϕh(s
p
k−1,h, a

p
k−1,h) = γ}, so we have

Q̄p
k,h(s

p
k,h, a

p
k,h)−Qη

∗(s
p
k,h, a

p
k,h)

= ηξNk−1(γ) +
1

Nk−1(γ)

Nk−1(γ)∑
j=1

(1− αNk−1(γ))(Q
η
∗(s

p
k,h, a

p
k,h)− Q̂j

k−1(s
j
k−1,h, a

j
k−1,h))

+η
αNk−1(γ)

Nk−1(γ)

Nk−1(γ)∑
p=1

{−[rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)]

+Qη
∗(s

j
k−1,h, a

j
k−1,h)}

+
αNk−1,h(γ)

Nk−1(γ)

Nk−1,h(γ)∑
j=1

{Qη
∗(s

p
k,h, a

p
k,h)−Qη

∗(s
j
k−1,h, a

j
k−1,h))}︸ ︷︷ ︸

≤ϵ

≤ ϵ+ ηξNk−1(γ) +
η

Nk−1(γ)

Nk−1(γ)∑
j=1

(1− αNk−1(γ))(Q
η
∗(s

p
k,h, a

p
k,h)− Q̂j

k−1(s
j
k−1,h, a

j
k−1,h))

+η
αNk−1(γ)

Nk−1,h(γ)

Nk−1(γ)∑
p=1

{−[rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)]

= ϵ+ ηξNk−1(γ) − η
αNk−1(γ)

Nk−1(γ)

Nk−1(γ)∑
j=1

Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h)

− η

Nk−1(γ)

Nk−1(γ)∑
j=1

{V̂ j
k−1(s

j
k−1,h+1)− V η

∗ (s
j
k−1,h+1)}

−η
αNk−1(γ)

Nk−1(γ)

Nk−1(γ)∑
j=1

{V η
∗ (s

j
k−1,h+1)− PhV

η
∗ (s

j
k−1,h)},

(48)

where we used the fact that under optimal policy π∗ for the true MDP, we have

Q∗(s
′, a′) = r(s′, a′) + ηP∗V∗(s

′),

and under the optimal policy πk−1,j under MDP M
k−1,j

, we have

Q̂j
k−1(s

′, a′) = r(s′, a′) + ηP̂πkj V̂k−1(s).

Now suppose that events EI(γp
kh) and GI(γp

kh) hold for all aggregated states γp
kh during pseudo-perido k for all k ∈ [K].

Then by similar derivation as that for the finite-horion case in Lemma 9, we have

V̂ p
k,h(s)− V∗(s) ≥ 0, ∀s ∈ S, k ∈ [K], p ∈ [N ]. (49)

30



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

We denote
∆p

k,h = V̂ p
k,h(s

p
k,h)− V η

∗ (s
p
k,h).

Note that

V̂k,h(s
p
k,h)− V∗(s

p
k,h) ≤ Q̂p

k,h(s
p
k,h, a

p
k,h)−Qη

∗(s
p
k,h, a

p
k,h) ≤ Q̄p

k,h(s
p
k,h, a

p
k,h)−Qη

∗(s
p
k,h, a

p
k,h).

By (48) we have

Q̄p
k,h(s

p
k,h, a

p
k,h)−Qη

∗(s
p
k,h, a

p
k,h)

= ηξNk−1(γ) +
η

Nk−1(γ)

Nk−1(γ)∑
j=1

(1− αNk−1(γ))(Q
η
∗(s

p
k,h, a

p
k,h)− Q̂j

k−1(s
j
k−1,h, a

j
k−1,h))

+η
αNk−1(γ)

Nk−1(γ)

Nk−1(γ)∑
p=1

{−[rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)]

+Qη
∗(s

j
k−1,h, a

j
k−1,h)}

+η
αNk−1,h(γ)

Nk−1(γ)

Nk−1,h(γ)∑
j=1

{Qη
∗(s

p
k,h, a

p
k,h)−Qη

∗(s
j
k−1,h, a

j
k−1,h))}︸ ︷︷ ︸

≤ϵ

≤ ηϵ+ ξNk−1(γ) +
1

Nk−1(γ)

Nk−1(γ)∑
j=1

(1− αNk−1(γ))(Q
η
∗(s

p
k,h, a

p
k,h)− Q̂j

k−1(s
j
k−1,h, a

j
k−1,h))

+η
αNk−1(γ)

Nk−1,h(γ)

Nk−1(γ)∑
p=1

{−[rjk−1,h(s
j
k−1,h, a

j
k−1,h) + V̂ j

k−1(s
j
k−1,h+1) + Q̃j

k−1,h(s
j
k−1,h, a

j
k−1,h)]

= ηξNk−1(γ) + ηϵ− η
αNk−1(γ)

Nk−1(γ)

Nk−1(γ)∑
j=1

Q̃j
k−1,h(s

j
k−1,h, a

j
k−1,h)

− η

Nk−1(γ)

Nk−1(γ)∑
j=1

{V̂ j
k−1(s

j
k−1,h+1)− V η

∗ (s
j
k−1,h+1)}

−η
αNk−1(γ)

Nk−1(γ)

Nk−1(γ)∑
j=1

{V η
∗ (s

j
k−1,h+1)− PhV

η
∗ (s

j
k−1,h)},

(50)

where the inequality follows by definition of ϵ-error aggregated states as in Definition 4.

Then by similar derivation as for (32), by summing from the i-th pseudo-episode to K-th pseudo-episode, we have

∑N
p=1

∑K
k=i ∆

p
k,h ≤ 2Nη

K∑
k=i

ϵ+
4η

1− η

N∑
p=1

K∑
k=i

αNk−1,h(γ
p
kh)

√
log(2TN/δ)√

Nk−1,h(γ
p
kh)

+η

N∑
p=1

K∑
k=i+1

αNk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)

Nk−1,h(γ
p
kh)∑

j=1

∆j
k,h+1.

Then by similar derivation as in (33) under events EI(γp
kh) and GI(γp

kh) for all γp
kh across K pseudo-episodes and p agents,

we have

∑N
p=1

∑K
k=i ∆

p
k,h ≤ 2ηϵN

K∑
k=i

Hk +
4η

1− η

√
log(2TN/δ)

K∑
k=i

N∑
p=1

H∑
ℓ=h

1√
Nk−1,ℓ(γ

p
kℓ)

1

1 +Nk−1,ℓ(γ
p
kℓ)

+4η

H∑
ℓ=h

N∑
p=1

K∑
k=i+1

√
βk−1 log(2TN/δ)√

(Nk−2,h(γ
p
k,h) + 1)Nk−1,h(γ

p
k,h)

1

1 +Nk−1,ℓ(γ
p
k,ℓ)

.

31



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

Then following similar steps as in the proof of Lemma 11, we have ∆p
k,h = V̂ p

k,h(s
p
k,h)− V η

∗ (s
p
k,h).

V̂ p
k,h(s

p
k,h)− V η

πkp(s
p
k,h)

= [Q̂πkp

h (spk,h, a
p
k,h)−Qη

∗(s
p
k,h, a

p
k,h)] + η[V̂ πkp

k,h+1(s
p
k,h+1)− V η

πkp(s
p
k,h+1)]− η∆p

k,h+1

+η[V η
πkp(s

p
k,h+1)− PhV

η
πkp(s

p
k,h+1)].

(51)

Note that (51) is recursive, so when events EI(γp
kh) and GI(γp

kh) hold for all aggregated states γp
kh during pseudo-perido k

for all k ∈ [K], we have

K∑
k=1

N∑
p=1

V̂ p
k,1(s

p
1)− V η

πkp(s
p
1)

≤ 2ηϵTN +
4

1− η

√
log(2TN/δ)

K∑
k=1

N∑
p=1

Hk∑
h=1

ηh−1 1√
Nk−1(γ

p
kh)

1

1 +Nk−1(γ
p
kh)

+4

K∑
k=2

Hk∑
h=1

ηh−1
N∑

p=1

√
βk−1 log(2TN/δ)√

(Nk−2(γ
p
kh) + 1)Nk−1(γ

p
kh)

1

1 +Nk−1(γ
p
kh)

+

K∑
k=1

Hk∑
h=1

ηh−1
N∑

p=1

[PhV
η
∗ (s

p
k,h+1)− V η

∗ (s
p
k,h+1)]

+

K∑
k=1

Hk∑
h=1

ηh−1
N∑

p=1

[V η
πkp(s

p
k,h+1)− Ph

πkpV
η
πkp(s

p
k,h+1)].

(52)

Note that

4

1− η

√
log(2TN/δ)

K∑
k=1

N∑
p=1

Hk∑
h=1

ηh−1 1√
Nk−1(γ

p
kh)

1

1 +Nk−1(γ
p
kh)

≤ 4

1− η

√
log(2TN/δ)

K∑
k=1

Hk∑
h=1

ηh−1
N∑

p=1

1√
Nk−1(γ

p
kh)

1

1 +Nk−1(γ
p
kh)

≤ 4

1− η

√
log(2TN/δ)

K∑
k=1

Hk∑
h=1

ηh−1
∑
γ∈[Γ]

Nk−1(γ)∑
j=1

1/j

≤ 4

1− η

√
log(2TN/δ)

K∑
k=1

Hk∑
h=1

ηh−1
∑
γ∈[Γ]

2
√
Nk−1(γ)

≤ 8

(1− η)

√
log(2TN/δ)

K∑
k=1

Hk∑
h=1

ηh−1

√
Γ
∑
γ∈[Γ]

Nk−1(γ)

≤ 8

(1− η)

√
log(2TN/δ)

K∑
k=1

Hk∑
h=1

ηh−1
√

ΓNHk−1 ≤
8
√
ΓN log(2TN/δ)

(1− η)

∞∑
h=1

ηh−1
K∑

k=1

√
Hk−1

≤
8
√

ΓN log(2TN/δ)

(1− η)2

K∑
k=1

Hk−1 ≤
8T
√

ΓN log(2TN/δ)

(1− η)2
.

(53)

Next, note that βk = 1
2τ

3 log(2τΓk), following similar steps as (53) and (40) we have

4

K∑
k=1

Hk∑
h=1

ηh−1
N∑

p=1

√
βk−1 log(2TN/δ)√

(Nk−2(γ
p
kh) + 1)Nk−1(γ

p
kh)

1

1 +Nk−1(γ
p
kh)
≤

8τ3/2TΓ
√

N log(2τΓT ) log(2TN/δ)

(1− η)2
. (54)

Additionally, denote Nk,h(γ) as the number of times that aggregated state γ is attained during pseudo-episode k and pseudo

32



Concurrent Reinforcement Learning with Aggregated States via Randomized Least Squares Value Iteration

period h, then by Azuma-Höeffding’s inequality, with probability 1− 2δ, we have

N∑
p=1

{[V η
πkp(s

p
k,h+1)− Ph

πkpV
η
πkp(s

p
k,h+1)] + [PhV

η
∗ (s

p
k,h+1)− V η

∗ (s
p
k,h+1)]} ≤

4

1− η

∑
γ∈[Γ]

√
Nk,h(γ)

√
log

Γ

δ
.

Hence with probability 1− 2δ,

K∑
k=1

Hk∑
h=1

ηh−1
N∑

p=1

{[PhV
η
∗ (s

p
k,h+1)− V η

∗ (s
p
k,h+1)] + [V η

πkp(s
p
k,h+1)− Ph

πkpV
η
πkp(s

p
k,h+1)]}

≤
4
√
log(Γ/δ)

1− η

K∑
k=1

Hk∑
h=1

ηh−1
∑
γ∈[Γ]

√
Nk(γ) ≤

4
√
ΓN log(Γ/δ)

1− η

K∑
k=1

Hk∑
h=1

ηh−1

≤
4K
√
ΓN log(Γ/δ)

(1− η)2

(55)

Thus by (52), (53), (54), (55), when events EI(γp
kh) and GI(γp

kh) hold for all aggregated states γp
kh during pseudo-perido k

for all k ∈ [K], with probability 1− 2δ, we have

∑K
k=1

∑N
p=1 V̂

p
k,1(s

p
1)− V η

πkp(s
p
1) ≤

8T
√
ΓN log(2TN/δ)

(1− η)2
+

8τ3/2TΓ
√

N log(2τΓT ) log(2TN/δ)

(1− η)2

+
4K
√
ΓN log(Γ/δ)

(1− η)2
.

(56)

Finall, by (49), when events EI(γp
kh) and GI(γp

kh) hold for all aggregated states γp
kh during pseudo-perido k for all k ∈ [K],

V̂ p
k,h(s)− V∗(s) ≥ 0, ∀s ∈ S, k ∈ [K], p ∈ [N ],

And with probability 1− 2δ, we have

∑N
p=1

∑K
k=1

{
V η
∗ (s

p
k,1)− V η

πkp,M
(spk,1)

}
≤

8T
√

ΓN log(2TN/δ)

(1− η)2
+

8τ3/2TΓ
√

N log(2τΓT ) log(2TN/δ)

1− η

+
4T
√
NΓ
√

log(Γ/δ)

1− η
.

33


