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ABSTRACT

Embodied Question Answering (EQA) is a critical task for developing embod-
ied intelligence, requiring agents to autonomously explore environments and an-
swer human questions through perception, navigation, and reasoning. However,
existing EQA benchmarks suffer from three key limitations: constrained explo-
ration scope, passive trajectory, and insufficient viewpoint annotation. To address
these challenges, we introduce ExploraQA, a large-scale dataset featuring 12,436
diverse, open-ended questions across seven categories, designed to evaluate lan-
guage, visual, and spatial reasoning. ExploraQA emphasizes long-horizon explo-
ration, proactive trajectory, and comprehensive viewpoint annotations, enabling
rigorous assessment of autonomous agents. We further propose an Iterative EQA
Data Generation Framework to efficiently produce high-quality annotations via
VLMs and human verification. To enhance exploration, we present the Answer
Quality-Guided Navigator, which leverages a Topology-Aware Keyframe Search
Module for efficient long-range navigation and an Answer Quality Reward Mech-
anism to optimize question-driven trajectories through dual LLM evaluators. Ex-
perimental results show that AQ-Nav achieves a 5.4% absolute improvement in
E score on the ExploraQA unseen test set over state-of-the-art navigators. We
will release our dataset and code.

1 INTRODUCTION

Embodied Question Answering (EQA) has emerged as a crucial task within the broader pursuit of
embodied intelligence. Concretely, the EQA task requires agents to autonomously explore and ana-
lyze their environment to answer human questions, involving perception, navigation, and reasoning
capabilities.

Current EQA benchmarks Das et al. (2018a); Yu et al. (2019); Majumdar et al. (2024); Wijmans
et al. (2019); Gordon et al. (2017) exhibit three major limitations: (1) Constrained Exploration
Scope: Existing datasets predominantly focus on short-range exploration, with average distances of
merely 1-2m as shown in Tab. 1, while neglecting the challenges of long-range exploration. Such
constrained settings fail to reflect scenarios where agents must navigate expansive environments
to locate distant targets to answer questions; (2) Passive Trajectory: Some benchmarks Majumdar
et al. (2024) employ a two-stage process: first generating exploration trajectories through question-
agnostic methods (e.g., Frontier-Based Exploration in Fig. 1), second constructing QA pairs based
on the visual observations captured along these trajectories. This decoupled approach produces
suboptimal trajectories that are not tailored to specific questions, rendering them ineffective as ex-
pert demonstrations for imitation learning; (3) Insufficient Viewpoint Annotation: Existing bench-
marks Das et al. (2018a;b) annotate only a single viewpoint as the ground-truth answer location.
However, trajectories often contain multiple valid viewpoints that could answer the same question.
This sparse annotation promotes overfitting to endpoint biases and constrains valid alternatives, lim-
iting proactive reasoning.

To address these limitations, we present ExploraQA, a novel, large-scale dataset featuring three
distinctive characteristics: (1) Long-horizon Exploration Trajectories: The benchmark requires
agents to perform extensive navigation, with an average trajectory length of 10.4m, a more than five-
fold increase over prior work (1.9m). Such long-horizon design necessitates efficient environment
exploration and effective information gathering; (2) Proactive Trajectory: ExploraQA integrates
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Table 1: Comparison of the EQA datasets. ‘Open Vocab’ indicates that the dataset’s questions and
answers are not restricted to a predefined vocabulary. ‘Active’ indicates that the agent can interact
with the environment. ‘LLM score’ signifies that a Large Language Model is used to evaluate the
quality of the answers.

Datasets Capabilities Statistics

Open Vocab Active LLM score Proactive Traj. Traj. Len. Total Ques.

SQA3D [ICLR 2022] ✓ ✗ ✗ ✗ - 33.4k

RoboVQA [NIPS 2023] ✓ ✗ ✗ ✗ - 829k

MMbench [ECCV 2024] ✓ ✗ ✓ ✗ - 2.9k

IQA [CVPR 2017] ✗ ✓ ✗ ✗ - 75k

EQA-v1 [CVPR 2018] ✗ ✓ ✗ ✗ 1.9m 5.2k

MP3D-EQA [CVPR 2019] ✗ ✓ ✗ ✗ 1.9m 1.1k

MT-EQA [CVPR 2019] ✗ ✓ ✗ ✗ 1.9m 19k

OpenEQA [CVPR 2023] ✓ ✓ ✓ ✗ - 0.5k

ExploraQA (Ours) ✓ ✓ ✓ ✓ 10.4m 12k

expert-annotated trajectories with corresponding language instructions from Krantz et al. (2020) to
construct QA pairs as shown in Fig. 2. This ensures that agents can dynamically explore environ-
ments in a question-guided manner, efficiently reaching relevant regions to answer the question;
(3) Comprehensive Viewpoint Annotation: The benchmark annotated multiple valid viewpoints
for each question. This dense annotation method encourages agents to learn diverse observational
strategies, rewarding agents for reaching any valid viewpoint rather than enforcing convergence to a
single predefined location.

ExploraQA: Walk out of the bedroom, and tell me how 
many potted plants are there in the living room？

Agent: There are three potted plants in the living room.

Step 6

A B C

Step 7

EQA: What is the color of the couch in the
living room？

Agent: Grey.

Step 10

Frontier-Based Exploration

AQ - Nav

B

A
C

Figure 1: Comparison of ExploraQA with exist-
ing EQA datasets, highlighting long-horizon ex-
ploration and proactive navigation.

Additionally, ExploraQA includes 12,436 di-
verse, open-ended questions spanning seven
distinct categories: object recognition, state
recognition, style recognition, functional rea-
soning, commonsense reasoning, spatial local-
ization and spatial reasoning. This dataset
serves as a comprehensive benchmark for em-
bodied research, fostering advancements in au-
tonomous agent performance.

To facilitate large-scale EQA data annotation,
we introduce Iterative EQA Data Generation
Framework. This approach leverages VLMs
in a cyclical process of generation and vali-
dation, progressively refining question-answer
pairs across multiple iterations. The methodol-
ogy enables efficient and scalable EQA dataset
construction. Additionally, all generated data
undergoes human verification to ensure high-
quality annotations.

To enhance the question-guided exploration ca-
pability of the agent, we propose the Answer
Quality-Guided Navigator (AQ-Nav). The AQ-
Nav module conducts environment exploration
while delivering high-relevance visual observa-
tions aligned with the target query to the VLM
for open-ended question answering. To address
long-horizon exploration challenges, we devise
a Topology-Aware Keyframe Search Module in AQ-Nav that strategically selects critical viewpoints
using topological environment maps and visual saliency analysis, reducing redundant observations
and enhancing VLM processing efficiency. To optimize AQ-Nav’s question-driven exploration strat-
egy, we propose an Answer Quality Reward Mechanism (AQR): During training, we employ dual
LLM evaluators—an answer VLM generates responses from observed visual sequences, while a
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Act as a VLM QA Generator to produce diverse 
question-answer pairs based on the following 
inputs:
1. For the navigation instruction…
2. For the visual context…
3. For the object-related category…
4. For the spatial-related category..
Category: { spatial reasoning  }
Navigation Instruction: { Walk out of …}
Refine information:
Visual information:

QA Generator
Act as a VLM QA Evaluator to eval generated 
question-answer pairs based on the following 
inputs:
1. Factual Consistency…
2. Linguistic & Contextual Accuracy…
3. Spatial & Multi-Frame Reasoning…
4. multi-frame observations...
5. Category Appropriateness… 
Please decide whether to accept the data.
If reject, explain the reason.
Category: { spatial reasoning }
Generated QA: 
Visual information:

QA Evaluator
Question: Walk out of the bedroom, …
Answer: There are three potted plants…
Category: { spatial reasoning }
start_position: [1.51, 2.72, 1.39]
Start_rotation: [1.0, 0.0, 0.0, 0.0]
Goal_position: [1.31,10.31,3.93]
Goal_rotation: [0.31, 0.0, -0.83, 2.33]
Semantic_start_location: bedroom_01
Semantic_goal_location: livingroom_01
Trajectory:{ [position, rotation], … }

…

QA Generator Output

…

QA Evaluator Output

GPT Claude

{position1, rotation1}  {position2, rotation2}   {position3, rotation3}

{position1, rotation1}  {position2, rotation2}  {position3, rotation3}

ExploraQA 

Human VerificationObservation
Selector

top-down map Simulator

Ques: …    Ans: …

#1:… #2:…

#1:The clarity and logic of the generated questions 
meet the requirements..
#2:There are three potted plants in the images.

First round

Third round

#4: the question and the answer  are correct.
#5:The question needs to emphasize the potted 
plants in the living room.

Ques : Walk out of the bedroom, and tell me how
 many potted plants are there in the living room?
Ans: There are three potted plants in the living room.

Fourth round

Ques : Walk out of the bedroom, and tell me how 
many potted plants are there?
Ans:There are two potted plants in the living room.

First round

RGB                  Depth             Video

√

Figure 2: The ExploraQA Construction Pipeline. The process begins with an Observation Se-
lector identifying optimal viewpoints from a top-down map and capturing RGB images with poses.
This data, combined with navigation instructions, is sent to a QA Generator to create QA pairs.
Next, a QA Evaluator assesses the pairs, retaining high-quality examples and providing corrective
feedback to the generator in a refinement loop. All annotations are human-verified.

critic LLM scores answer quality based on semantic completeness and factual consistency. The
AQ-Nav is optimized to maximize these scores through reinforcement learning, ensuring explo-
ration trajectories yield maximally informative visual evidence. Experimental results demonstrate
that AQ-Nav achieves 5.4% E score absolute improvement in test unseen set of ExploraQA over the
state-of-the-art VLN-based navigators when paired with identical VLMs, validating its effectiveness
in question guided exploration.

2 RELATED WORK

2.1 EMBODIED QUESTION & ANSWERING

Embodied Question Answering (EQA) marks a significant paradigm shift beyond earlier Visual
Question Answering (VQA) tasks Xue et al. (2024); Ji et al. (2024); Zhu et al. (2024), which fo-
cused on static, pre-acquired visual data Marino et al. (2019); Zellers et al. (2019); Li et al. (2023);
Mangalam et al. (2023); Zhong et al. (2022). The EQA task is a challenging problem that emerged
alongside advancements in robotics. It requires an agent to navigate and perceive a 3D environ-
ment to answer questions related to that environment. Early works primarily focused on Question
Answering tasks using pre-acquired static images, Ishmam et al. (2024a;b); Marino et al. (2019),
videos Zhong et al. (2022). Das et al. (2018a) introduced a synthetic dataset that involves control-
ling a virtual robot to navigate within an environment, gather visual information from an egocentric
perspective, and answer language-based questions. Subsequent works, such as Wijmans et al.
(2019); Liu et al. (2024a); Yu et al. (2019); Das et al. (2018b), designed template-based questions
focusing on aspects like color and object locations. Later studies Ren et al. (2024); Majumdar
et al. (2024), began exploring methods for actively searching for targets within the environment and
answering corresponding questions. However, current EQA datasets remain limited by insufficient
navigation information, resulting in predominantly short-range question answering tasks. This lim-
itation highlights the need for more comprehensive benchmarks that better capture the complexities
of embodied intelligence in diverse environments.

2.2 VISION-AND-LANGUAGE NAVIGATION

The development of instruction-following navigation agents has emerged as a prominent research
area in recent years Zhang & Kordjamshidi (2024); Wu et al. (2022); Hong et al. (2024); Chen et al.
(2024); Tian et al. (2024). This field was significantly advanced by the introduction of the Room-
to-Room navigation task Anderson et al. (2018), which established a benchmark requiring agents to
navigate between rooms based on natural language instructions. Building upon this foundation, sub-
sequent research Liu et al. (2023); Blukis et al. (2019); Lee et al. (2024) has expanded the paradigm
through diverse tasks and datasets that address various challenges in instruction-guided navigation.
Notably, Qi et al. (2020) developed a framework to specifically evaluate an agent’s ability to ground
and execute natural language instructions, while Chen et al. (2019) extended the scope to outdoor
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Cross-Modal Transformer Cross-Modal Transformer

Q&A
VLM

Navigation Planning Module

Action

Unvisited Node

Visited Node

Current Node

Trajectory

Answer Quality Reward Mechanism

Topology-Aware Keyframe Search Module

BathroomHallway

Bedroom Living Room

Topological Mapping
Q：Go to the living room through the hallway,
how many paintings in living room?Graph Encoder Text Encoder

Obs. + Que.

A: There
are three

paintings.

Keyframes for Q&A

Critic
VLM

Keyframes
Reward

Ans.
VLM

Figure 3: Overview of our proposed method. Our method includes a Topological Mapping Module
that dynamically constructs and updates a topological map based on observational inputs. This map,
along with the current question, is fed into the Navigation Planning Module, which predicts optimal
exploration targets. The TAKS module subsequently identifies question-relevant visual regions to
facilitate VLM question answering. We optimize the navigator using AQR Mechanism.

urban navigation scenarios with complex verbal directives. While existing works like VLN-CE
Krantz et al. (2020) primarily focus on precise trajectory following, our work distinguishes itself by
emphasizing the agent’s active question-answering capability. This approach moves beyond passive
instruction-following to enable more natural human-agent interaction during navigation tasks, where
the agent can proactively seek clarification or additional information to answer the questions.

3 EXPLORAQA DATASET

We propose Iterative EQA Data Generation Framework, a systematic approach for construct-
ing the ExploraQA dataset. This framework facilitates the generation of long-horizon exploration
and proactive navigation trajectories. Additionally, we augment the dataset with comprehensive
viewpoint annotations corresponding to each question, enhancing its utility for EQA research.

3.1 ITERATIVE EQA DATA GENERATION FRAMEWORK

Our data is collected in the Habitat environment Savva et al. (2019). While recent studies Han et al.
(2025); Patel et al. (2024); Zhou et al. (2025) have leverages VLMs for direct question-answer pair
generation, existing VLMs Li et al. (2024; 2025); Wu et al. (2024) are not readily applicable to gen-
erating the EQA dataset featuring long-horizon exploration and proactive trajectory. To overcome
this limitation, we introduce an Iterative EQA Data Generation Framework as shown in Fig. 2. The
framework is composed of three synergistic components:

Observation Selector. To generate high-quality visual data aligned with proactive trajectories, we
propose an observation selection strategy that identifies optimal viewpoints near the trajectory end-
points in VLN-CE Krantz et al. (2020). The geometric plausibility of these viewpoints is verified
through a 2D occupancy map and heuristic-based filtering, enforcing three critical constraints: i)
The pose must be within 3 meters of the trajectory endpoint to keep relevant content in view. ii)
The viewpoint must not directly face a wall, ensuring the captured images contain sufficient visual
information. iii) The relative orientation between poses is managed to guarantee non-overlapping
visual coverage. Crucially, as each trajectory is paired with navigation instructions (e.g., “walk out
of the bedroom...”), the selected viewpoints inherently align with the described navigation context.

QA Generator. We propose a QA Generator that leverages the capabilities of GPT-4o Hurst et al.
(2024) to create proactive QA pairs. The generator produces an initial QA pair based on three inputs:
i) the visual input captured from Observation Selector. ii) refinement feedback from QA Evaluator.
iii) navigation instruction from VLN-CE Anderson et al. (2018). Through this process, it generates
proactive QA pairs.

QA Evaluator. To validate the generated data and provide effective feedback for quality improve-
ment, we employ an Evaluator based on Claude Sonnet 3.5 Anthropic (2024) to assess data quality
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Figure 4: Overview of our dataset statistical analysis. (a) - (d) Statistical analysis of the dataset,
covering question lengths, exploration distances, question categories, and dataset splits.

and generate refinement feedback. The evaluator examines the generated QA pairs through multiple
criteria to determine their acceptance, employing the following strategies: i) To ensure QA pairs
are proactive, the evaluator assesses the appropriateness of the guidance instruction of each answer.
ii) To minimize factual errors, the evaluator verifies whether all objects mentioned in the question
are present in the visual input. iii) To ensure accurate spatial relationships, the evaluator checks
whether answers are properly derived from the multi-frame data. Finally, the evaluator consolidates
all assessment results to determine whether to accept the data or proceed with refinement. If refine-
ment is needed, the Explainer generates refinement feedback based on the Evaluator’s findings and
incorporates it into the refinement history for the QA generator to improve subsequent iterations.

3.2 DATA QUANTITATIVE ANALYSIS

This section analyzes the ExploraQA dataset in terms of question categories and data splits.

Category Analysis. As illustrated in Fig. 4 (a), we collected 12,436 QA pairs with corresponding
trajectories, featuring an average question length of 44 words. Fig. 4 (b) demonstrates our trajectory
distribution, with an average length of 10.4 meters, the extended trajectories pose challenges for the
model to reach question-relevant regions. We designed seven distinct question types as shown in
Fig. 4 (c). The questions are categorized into two primary types: object-related and spatial-related.

Dataset Split. As shown in Fig. 4 (d), we divide the dataset into subsets: Train, Test Seen, and Test
Unseen. The word ’Seen’ means the visual environments that have been seen in the train separation.
We assign 72 scenes for training, where the train set contains 9,819 question-answer pairs and Test
Seen set contains 778 QA pairs. The Test Unseen is assigned 8 scenes with 1,839 QA pairs.

4 THE ANSWER QUALITY-GUIDED NAVIGATOR

There are three core components in AQ-Nav: i) the topological map constructor that builds envi-
ronmental structural graphs, ii) a navigation planning module that predicts subgoals based on topo-
logical graphs, and iii) a Topology-Aware Keyframe Search (TAKS) module that locates question-
relevant keyframes using environmental cues.

4.1 TASK DEFINITION

EQA requires an intelligent agent to answer a natural language question Q through active exploration
in a 3D environment S. The agent is initialized at pose P0 = (x, y, z, h), where (x, y, z) denotes its
spatial coordinates and h represents its heading orientation. At each timestep t, the agent selects a
navigational action At (e.g., MOVEFORWARD, TURNLEFT/RIGHT, or STOP), transitioning to a new
pose Pt. The episode terminates upon executing the STOP action, after which the agent generates
its final answer based on the accumulated observation history O = {o1, o2, ..., ot}.

4.2 TOPOLOGICAL-BASED NAVIGATOR

Our navigator uses a two-stage process: a Topological Map Conductor dynamically builds a graph
map, which a Navigation Planning Module then uses with text instructions to select waypoints. This
graph-based approach also inherently enables the agent to backtrack.

5
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Topological Map Conductor. Topological Map Conductor presents an online topological map-
ping approach for autonomous navigation that dynamically constructs a graph-structured map
Gt = ⟨Nt, Et⟩ at step t from visual observations. The agent predicts potential waypoints using the
current depth observations, then integrates them to update Gt to Gt+1 An et al. (2024). The graph
Gt comprises nodes that store both positional coordinates for graph integration and their associated
visual features, with edges representing reachability and pairwise distances between nodes. The Nt

has two subsets,i.e., visited nodes N v
t and unvisited nodes N u

t . Nodes in nv
t,i ∈ N v

t represent pre-
viously traversed locations in the navigation trajectory, each storing visual features Iv

t,i ∈ R12×D,
which encoded 12 distinct directional observations at the respective position. In contrast, nu

t,i ∈ N u
t

denote unexplored locations, preserving visual features of their directions from the latest adjacent
node Iu

t,i ∈ R1×D. To navigate to a nearby unvisited node on Gt, the agent computes the relative
direction and executes a move-forward action. By constructing Gt, the continuous navigation task
is transformed into a discrete graph-based navigation problem, where action prediction reduces to
selecting the next unvisited node to explore.

Navigation Planning Module. This module leverages textual information to decide which unvisited
node to visit on Gt. The module consists of a multimodal transformer Tan & Bansal (2019), with two
parallel encoder dedicated to processing textual inputs and the graph structure Gt, respectively. The
text encoder, which is a transformer first processes the instruction into contextual word embeddings
X . To encode Gt, we first encode the topological structure of the graph and then fuse it with visual
features. For brevity, we omit the time subscript t in the subsequent discussion of this section. For
topological encoding, the coordinate and visiting time step of each node are embedded into a vector,
which is further processed via Graph-Aware Self-Attention (GASA) An et al. (2024) encoding along
with E to obtain the topological features {τk}Kk=1, where K is the node number of N . For visual
features, we average the omnidirectional visual features in N v to ensure consistent dimensionality
for each node, denoted as {Îk}Kk=1. Subsequently, the feature representation of Gt is represented as:

{ρk}Kk=1 = {Îk + τk}Kk=1. (1)

Subsequently, multi-layer cross-attention is applied between X and {ρk}Kk=1, producing the up-
dated feature {ρ̂k}Kk=1. The features in {ρ̂k}Kk=1 belonging to N u are concatenated to form
ρ̂v ∈ RKv×D. The ρ̂v are then scored via a feed-forward network to predict the action distribu-
tion a :

a = softmax(FFN([s0, ρ̂
v])), (2)

where s0 ∈ R1×D is a learnable embedding indicating stop action. The agent selects the unvisited
node (or stop action) with the highest probability in a as the current action At.

4.3 TOPOLOGY-AWARE KEYFRAME SEARCH MODULE

In the ExploraQA task, agents must perform long-range exploration where question-relevant visual
information is sparsely located. This characteristic poses a problem: providing the entire observation
history to a VLM causes significant hallucinations due to a low signal-to-noise ratio. To overcome
this, we introduce the TAKS module. This method filters the navigation history by analyzing frames
from all visited locations to select a concise set of topologically-relevant keyframes.

As {ρk}Kk=1 encodes the complete trajectory topology, positional relationships, and visual features,
we use it to predict the locations of question-relevant keyframes. Since nodes in N u lack obser-
vational data at their corresponding locations, we exclusively select keyframes from N v . We con-
catenate the features in {ρk}Kk=1 that belong to N v , denoted as ρv . ρv are then processed through
2 transformer layers. The final selection scores v are computed via a two-layer FFN. We select
nodes with confidence scores in v exceeding β as question-relevant locations, and use the agent’s
observations at these positions as keyframes.

4.4 ANSWER-QUALITY GUIDED TRAINING PIPELINE

To enhance the agent’s combined navigation and question-answering capabilities, we designed a
three-phase training strategy. This process begins by establishing foundational navigation ability via
IL, followed by fine-tuning with a hybrid RL approach, and concludes with a specialized optimiza-
tion phase to improve keyframe selection quality.

6
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Table 2: Comparison across different navigators on the ExploraQA with QwenVL2.5-7B
Object Spatial Average

Split Method
C score TL E score C score TL E score C score E score

Test
Seen

Random 28.5 29.5 20.1 27.7 32.9 18.6 28.1 19.3
Seq2Seq 36.7 12.7 29.8 35.7 11.3 30.0 36.2 29.9
RecBERT 39.4 12.3 31.7 36.6 12.3 31.5 37.9 31.6
ETPNav 42.6 11.6 35.1 42.6 11.3 35.6 42.6 35.3
Ours 48.5 10.8 42.4 45.1 10.6 39.3 46.7 40.7

Test
Unseen

Random 29.2 33.4 18.9 28.9 35.3 19.4 28.9 19.4
Seq2Seq 33.8 12.5 26.7 32.3 13.0 25.3 33.0 26.0
RecBERT 36.5 12.2 29.4 35.0 12.6 30.7 35.7 30.1
ETPNav 41.2 11.9 32.7 41.2 12.6 32.4 41.2 32.5
Ours 44.9 10.8 38.2 45.8 11.0 37.6 45.4 37.9

Phase 1: Navigator Pre-Training. We pre-train the navigation model on expert trajectories using
IL. The core objective is to equip the agent with stable and general-purpose navigation ability.

Phase 2: Navigator Fine-Tuning. We fine-tune the agent using a hybrid approach that combines
IL and RL. The IL component ensures the model maintains its foundational navigation capabilities,
while the RL component uses two core reward mechanisms to guide question-oriented exploration:
(i) Answer-Quality Reward. This reward quantifies the value of a keyframe selected at the naviga-
tion endpoint for answering a given question. A QA VLM (QwenVL2.5-7B) generates a candidate
answer, which is then assessed by a distinct Critic VLM (InternVL2.5-8B) on a 1-5 scale. To mit-
igate reward hacking and account for VLM stochasticity, we adopt a stringent policy: a positive
reward RAQR = 1 is granted only for a perfect score of 5, and 0 otherwise. (ii) Navigation Suc-
cess Reward. The agent receives RTarget = 1 if its final position is within 3 meters of the target
destination, and 0 otherwise. The final PPO reward is a weighted combination:

R = λ ·RAQR + (1− λ) ·RTarget. (3)

This combined signal jointly optimizes exploration strategy and keyframe selection in the TAKS
module.

Phase 3: TAKS Module Fine-tuning. We freeze the navigator’s parameters and fine-tune only
the TAKS module. The ground-truth is defined by the semantic context of the target location (e.g.,
“Bedroom A”). We then use a MSE loss to align the module’s predicted viewpoint importance scores
with the ground-truth relevance labels. This targeted optimization enhances the model’s ability to
select the most crucial viewpoints for answering questions.

5 EXPERIMENTS

To evaluate ExploraQA, our framework integrates navigation models with VLMs to assess agents
based on their answers. We selected multiple baseline methods and state-of-the-art (SOTA) models
from related benchmarks, and conducted comprehensive evaluation on ExploraQA.

Implementation Details. We train our model on two RTX 4090 GPUs for a total of approximately
60 hours, using a batch size of 16 and learning rate of 1e-5. The training process is divided into
three distinct phases. First, the navigator undergoes pre-training with IL for 15,000 epochs. Second,
the navigator is fine-tuned for 5,000 epochs using a combination of IL and RL at a 3:1 ratio, with
the RL coefficient λ set to 0.25. In the final stage, all navigator parameters are frozen, and only the
TAKS module is trained for 5,000 epochs, with the confidence threshold β set to 0.5.

Comparison Baselines. We evaluate our approach against several navigation baselines on the Ex-
ploraQA task, using QwenVL2.5-7B Bai et al. (2023) for visual question answering, which is dis-
tinct from GPT-4o Hurst et al. (2024) to avoid reward hacking. Baselines include: (1) Random
Policy; (2) Seq2Seq Krantz et al. (2020); (3) RecBERT Hong et al. (2022); (4) ETPNav An et al.
(2024).

Evaluation Metrics. We evaluate the model using two key metrics: question correctness score
(C score) and completion efficiency score (E score). For C score assessment, following the
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Table 3: Ablation study on the TAKS module and the AQR on ExploraQA.
Object Spatial Average

Split AQR TAKS
C score TL E score C score TL E score C score E score

Test
Seen

✗ ✗ 42.6 11.6 35.1 42.6 11.3 35.6 42.6 35.3
✓ ✗ 44.9 10.8 39.0 42.8 10.6 37.3 43.7 38.1
✓ ✓ 48.5 10.8 42.4 45.1 10.6 39.3 46.7 40.7

Test
Unseen

✗ ✗ 41.2 11.9 32.7 41.2 12.6 32.4 41.2 32.5
✓ ✗ 42.3 10.8 35.2 43.4 11.0 35.8 42.9 35.5
✓ ✓ 44.9 10.8 38.2 45.8 11.0 37.6 45.4 37.9

methodology in Liu et al. (2024b), we employ an LLM to evaluate the model’s responses on a
5-point scale for each question, where 1 represents a completely incorrect answer and 5 indicates
a fully correct response. Intermediate scores σ (2–4) correspond to varying levels of correctness
relative to the reference answer. The final C score metric is then computed as:

C score =
σ − 1

4
× 100%. (4)

We introduce the E score, a unified metric that comprehensively evaluates both the question-
answering capability and exploration efficiency of the model, which is defined as:

E score =
σ − 1

4
× l

max(p, l)
× 100%, (5)

where p denotes the trajectory length taken by the agent, and l represents the reference path length.

5.1 QUANTITATIVE RESULT

We evaluate the EQA performance of models using two primary metrics: E score and C score.

Comparison with Baselines. As illustrated in Tab. 4.4, our method achieves significant improve-
ments over the ETPNav An et al. (2024) baseline. Specifically, the proposed approach elevates the
C score by 4.1% on test seen environment, indicating that the critical information captured by our
method effectively enhances question-answering capabilities. Moreover, our method reduces the
navigation distance by 0.8m and 0.7m for object-related and spatial-related questions, respectively.
Collectively, these enhancements in both question answering and navigation efficiency lead to a
5.4% increase in E score over ETPNav in seen environments. These advancements stem from our
TAKS module and AQR mechanism. While random policies achieve an E score of 19.3%, they sig-
nificantly underperform compared to our method’s 40.7%. Indicating that achieving the ExploraQA
tasks without understanding instructions and visual information is extremely difficult.

Performance on Object and Spatial Related Questions. For object-related questions, which pri-
marily test the navigation model’s ability to locate relevant objects, our method achieves perfor-
mance improvements of 7.3% in E score and 5.9% in C score compared to ETPNav in seen envi-
ronments, demonstrating enhanced capability for target object localization. For spatial-related ques-
tions, which require the model to localize multiple spatial positions, the performance improvement
is 3.7%, indicating our approach’s superior multi-target exploration capabilities. Spatial-related
questions consistently exhibit lower performance than object-related questions, suggesting that the
dataset’s spatial reasoning tasks present greater challenges, as they necessitate accurate identification
of multiple spatial locations to correctly answer queries.

Generalization on Unseen Cases. As shown in Tab. 4.4, our method achieves E score metrics
of 38.2% and 37.6% for object-related and spatial-related questions respectively, demonstrating ro-
bust adaptability to novel scenarios in unseen test environments. While pure imitation learning is
constrained by the quality of expert demonstrations, our hybrid methodology enables the agent to
discover more optimal policies through reinforcement learning mechanisms. Concurrently, the aver-
age exploration distance decreased by 1.1m for object-related and 1.6m for spatial-related questions,
indicating enhanced navigation efficiency through optimized trajectory planning and improved tar-
get localization precision.
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1

Question: Please first go forward to the dining table and then turn left into the room… Where are the three table lamps located in the room?

2 3 4 5 6

7 8 9 10 11 12

Predict Answer: I can see three table lamps in the bedroom, with two on the nightstand and another one between two black chairs.

Correct Answer: Two table lamps are on the nightstand, and a third one is placed between two black chairs.

Figure 5: A visualization example from the ExploraQA test set. AQ-Nav can accurately localize
the target objects relevant to the given questions with TAKS.

5.2 ABLATION STUDY.

In this section, we conduct an ablation study on the two methods we proposed, AQR and TAKS, to
show their effectiveness.

Ablation Study of AQR. As illustrated in Tab. 5.1, the application of AQR finetuning yields sub-
stantial improvements in EQA performance, with the C score increasing by 1.1% and 1.7% on
the seen and unseen sets, respectively. Furthermore, the navigation distance decreases significantly,
leading to E score improvements of 2.8% on the seen set and 3.0% on the unseen set, indicat-
ing that the AQR reward mechanism successfully minimizes trajectory length and enhances overall
navigation efficiency.

Ablation Study of TAKS. Applying the TAKS module, our model exhibits notable improvements
in object-related questions, achieving gains of 3.4% and 3.0% on seen and unseen environments,
respectively. This suggests that when the agent encounters objects, the topological interest mod-
ule effectively leverages cross-modal vision-language topological information to identify question-
relevant regions. Furthermore, for spatial-related questions, performance improves by 4.6% and
5.2% on seen and unseen environments, respectively. This demonstrates that the TAKS module
remains robust in selecting key observation points even in complex multi-target environments.

5.3 QUALITATIVE RESULT

As shown in Fig. 5, given the language instruction, the model first correctly turns left and enters the
room. During exploration, it successfully locates the first and second lamps, but temporarily loses
visual tracking of them while scanning other areas. After detecting the final lamp, the exploration
phase concludes. The topological interest module then analyzes the topological map and vision-
language features, identifying step 8, step 9, and step 12 as key frames. This approach enables the
model to filter redundant visual information in long trajectories and select optimal observations for
question answering.

6 CONCLUSION

In this paper, we present ExploraQA, a novel benchmark for evaluating EQA agents on long-horizon
exploration and open ended question-answering ability. The benchmark encompasses 7 distinct em-
bodied question types and features extended exploration trajectories. To build ExploraQA, we pro-
pose an iterative VLM-based pipeline for question-answer generation. To address the requirement
for proactive exploration in EQA agents, we propose AQ-Nav, which leverages VLMs to assess ex-
ploration trajectories and select key frames for decision-making. The superior EQA performance
achieved by AQ-Nav demonstrates the effectiveness of the proposed approach. ExploraQA intro-
duces a more challenging benchmark in the EQA domain, aiming to advance research in this field.
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A APPENDIX

A.1 VLM-AS-A-JUDGE HUMAN ALIGNMENT

The evaluation of open-vocabulary responses to inquiries, particularly within the domain of ques-
tion answering, presents a significant challenge in the field of artificial intelligence. Traditional
human evaluation, while considered the gold standard, is both cost-prohibitive and time-intensive.
Consequently, the adoption of automated evaluation metrics is imperative for robust and efficient
benchmarking. In this study, we leverage a VLM based automated evaluation metric, designated as
VLM-Match.

To validate the efficacy of this metric, we focus of our investigation was to determine the degree
of concordance between the VLM-Match metric and human evaluators. To this end, we designed
an experiment to measure this alignment. A random sample of 300 questions was drawn from the
exploraQA dataset and subsequently answered by our SOTA model. These 300 responses were then
independently assessed by three human annotators, who followed an evaluation rubric analogous to
that used by the VLM-Match metric.

Our analysis reveals a strong positive correlation between the human evaluations and the VLM-
based assessments. As shown in Tab. 4. The Spearman’s rank correlation coefficient (ρ) between
the aggregated human judgments and the VLM-Match scores was 0.909. This result indicates a high
degree of consistency with human judgment.

Table 4: Per-annotator Spearman-ρ. The results indicate excellent agreement between human
raters and also between human and LLM scoring methodologies.

annotator vs. Other Humans vs. LLM
1 0.91 0.91
2 0.92 0.90
3 0.91 0.91

A.2 COMPARISON BASELINES.

The navigation baselines include: (1) Random Policy: The agent selects actions uniformly at ran-
dom to navigate through the environment. (2) Seq2Seq Baseline Krantz et al. (2020): A sequence-
to-sequence model that encodes visual observations and language instructions using a transformer
encoder, then decodes the action sequence in an autoregressive manner. (3) RecBERT Baseline
Hong et al. (2022): A candidate waypoints predictor that generates accessible waypoints from vi-
sual observations, then a high-level navigation agents VLN-BERT to make decisions. (4) ETPNav
Baseline An et al. (2024): A topology-aware navigation method that dynamically constructs and
updates a navigation graph to guide the agent toward the target location.

A.3 NAVIGATION RESULTS

While effective navigation is a critical component of the ExploraQA task, our primary evaluation
centers on the quality of the embodied question answering process. Consequently, we prioritize the
task-specific performance metrics, E score and C score, over Vision-and-Language Navigation
(VLN) performance indicators. These scores are designed to directly measure the effectiveness of
the agent’s exploration and the accuracy of its final answer. Nevertheless, we also report standard
VLN performance metrics in Tab. 5.
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Table 5: VLN Metrics Comparison. Our method also demonstrates SOTA performance under
VLN metrics.

Split Method NE OSR SR SPL

Test
Seen

Seq2Seq 7.19 42.5 35.9 31.5
RecBERT 5.11 57.3 49.1 42.4
ETPNav 3.926 71.5 63.8 56.7
Ours 3.767 71.2 66.1 60.0

Test
Unseen

Seq2Seq 7.387 39.8 31.5 26.3
RecBERT 5.92 49.3 38.9 34.2
ETPNav 5.272 57.8 51.6 43.7
Ours 5.144 61.6 52.2 45.1

Table 6: Category-level C score Performance on ExploraQA. Comparison of C score across
different navigators on the ExploraQA benchmark using QwenVL2.5-7B.

Split Method Style
Rec.

Object
Rec.

State
Rec.

Spatial
Loc.

Func.
Reas.

Common
Sense

Spatial
Reas.

Seen

Seq2Seq 39.7 34.1 35.8 37.2 42.0 24.3 24.7
RecBERT 42.1 36.7 39.1 40.1 43.9 26.8 31.4
ETPNav 45.5 39.5 42.5 45.8 47.7 31.6 41.3
Ours 50.7 42.5 52.5 45.5 50.3 39.0 42.8

Unseen

Seq2Seq 30.4 31.3 39.0 31.5 35.7 30.9 31.0
RecBERT 34.4 33.3 41.1 35.8 38.4 32.1 33.8
ETPNav 38.8 38.1 46.1 44.8 44.2 37.5 39.1
Ours 42.1 41.7 50.3 45.2 48.2 47.8 42.2

A.4 CATEGORY-LEVEL PERFORMANCE ON EXPLORAQA

To offer a comprehensive evaluation, we present a detailed metrics across each of the seven question
categories. We report the exploration effectiveness, measured by the C score, in Tab. 7. The final
answer accuracy, measured by the E score, is presented in Tab. 6.

A.5 DATA GENERATION DETAILS

The prompt used for the QA Generator is detailed in Fig. 6 and the prompt used for the QA Evaluator
is detailed in Fig. 7.

Human Verification. To ensure the quality of our dataset, all annotations underwent a rigorous
human verification process. We initially employed VLMs to generate preliminary labels. These
candidates were then reviewed by human annotators to confirm semantic correctness, visual align-
ment, and adherence to formatting standards. Our protocol dictated that each entry be evaluated by
three annotators; an entry that failed to secure unanimous approval was flagged. In this process, 83%
of the labels were approved directly. The remaining 17% were manually revised by our annotators
and subsequently passed a second round of verification before their final inclusion in the dataset.

A.6 DATA QUALITATIVE ANALYSIS

To advance the development of EQA, we propose the ExploraQA dataset to address the limitations
of existing EQA benchmarks. First, while current EQA datasets primarily focus on object-centric
questions (e.g., ”What color is this chair?”), we extend the scope by introducing spatial-related ques-
tions alongside traditional object-related queries. Second, existing EQA datasets lack navigation-
aware question design, where methods like forward-only policies in Wijmans et al. (2019) or
frontier-based exploration in Majumdar et al. (2024) suffice for task completion. To bridge this
gap, we leverage the powerful linguistic capabilities of GPT-4o Hurst et al. (2024) and Claude Son-
net 3.5 Anthropic (2024), we generate questions that naturally incorporate navigation instructions
from Krantz et al. (2020), thereby constructing a more realistic and challenging benchmark.
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Table 7: Category-level E score Performance on ExploraQA. Comparison of E score across
different navigators on the ExploraQA benchmark using QwenVL2.5-7B.

Split Method Style
Rec.

Object
Rec.

State
Rec.

Spatial
Loc.

Func.
Reas.

Common
Sense

Spatial
Reas.

Seen

Seq2Seq 32.6 27.3 29.2 33.3 35.0 20.0 27.8
RecBERT 33.6 29.3 32.1 35.0 36.9 22.5 27.9
ETPNav 37.4 33.1 34.3 41.4 39.0 26.6 32.3
Ours 44.5 36.3 46.6 41.0 43.9 34.2 35.7

Unseen

Seq2Seq 23.7 24.1 31.7 24.7 28.8 23.2 24.4
RecBERT 27.7 26.3 33.8 28.1 32.1 27.8 33.8
ETPNav 29.5 29.2 38.6 35.6 35.3 28.1 31.2
Ours 35.5 35.4 43.1 36.5 40.2 38.8 35.0

Table 8: Ablation study. The coefficient λ between the two reinforcement learning objectives in the
navigation model.

λ Object Spatial Average
C score TL E score C score TL E score C score E score

0.00 44.0 11.5 35.9 44.8 11.8 35.2 44.4 35.5
0.25 44.9 10.8 38.2 45.8 11.0 37.6 45.4 37.9
0.50 42.8 11.3 35.1 44.4 11.5 35.3 43.7 35.2
0.75 41.6 12.1 33.5 42.7 13.0 32.7 42.2 33.1
1.00 36.3 14.8 27.5 36.6 15.0 27.2 36.5 27.3

As illustrated in Fig. 8, the ExploraQA dataset incorporates explicit navigation instructions, en-
abling an explore-then-answer paradigm. The object-related questions are categorized into three
types: style recognition, object recognition, and state recognition Additionally, Fig. 9 presents our
spatial-related questions, which encompass four challenging subtypes: spatial localization, spatial
understanding, functional reasoning and commonsense reasoning.

A.7 AQR MECHANISM DETAILS

The AQR mechanism is designed to generate appropriate rewards for model optimization. During
the QA process, we employ the same prompt structure as used in the final VQA evaluation. As
illustrated in Fig. 10, the prompt includes information from multiple images along with their corre-
sponding pose, which aids the model in understanding spatial relationships across the images. For
scoring, we adopt a prompt design similar to Majumdar et al. (2024) as shown in Fig. 11, consis-
tency with the evaluation phase. Specifically, we utilize a few-shot learning approach to help the
model discern the meaning behind different score levels.

A.8 ABLATION STUDY

We investigate the effect of different reward component ratio, with the ablation results presented
in Tab. 8. The experiments demonstrate that the optimal performance is attained when λ = 0.25
Compared to using only the target reward λ = 0, our approach achieves improvements of 1.1% in
C score and 2.4% in E score on the unseen set, validating the effectiveness of the hybrid reward
design specifically for the EQA task.

A.9 DETAILS OF LLM USAGE

We used large language models solely to assist with language polishing, including grammar correc-
tion, improving sentence fluency, and refining the clarity of exposition. The research ideas, methods,
analyses, and experimental results were fully developed and validated by the authors.
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Q&A Generator Prompt:

Act as a Vision-Language Model QA Generator to produce diverse question-answer pairs based on the following inputs:

1. For the navigation instruction, you have now accurately reached the destination position according to the instructions. 

2. For the visual context, it consists of 3 images captured from suitable observation positions within a 3m range of the 

destination. 

3. For the historical information, it is provided by your explainer based on the results of the previous round to iteratively optimize 

the question-answer pairs you propose. 

4. For the object-related category, the designed questions should primarily inquire about object-related information, including:

{object recognition, state recognition, style recognition}. 

5. For the spatial-related category, the designed questions should consider the relationships between multiple images, including 

{spatial reasoning, spatial localization, functional reasoning, commonsense reasoning}.

Please generate the question-answer pair. Note that the generated question should include the original navigation information 

to ensure the agent can explore and answer the question based on it.

Input information：

Category: {category result}

Visual Context: [ {img1}, {img2}, {img3} ] (Relative positions: img1 (x1, y1, z1, h1), img2 (x2, y2, z2, h2), img3 (x3, y3, z3, h3))

Navigation Instruction: {navigation instruction}

Refine History: {refine history}

The final output should maintain the following template format: 

“Question”: ”Question result”

“Answer”: ”Answer result”

Figure 6: The GPT-4o prompt for QA generator.
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Q&A Evaluator and Explainer Prompt:

Act as a Vision-Language Model QA Evaluator to eval generated question-answer pairs based on the following inputs: 

Evaluation Criteria: 

1. Factual Consistency: Verify all objects/attributes mentioned in the QA pair exist in the visual context. 

2. Linguistic & Contextual Accuracy: Check grammar, clarity, and logical coherence of the QA pair. 

3. Spatial & Multi-Frame Reasoning (if applicable):

4. For spatial-related categories. Confirm the answer leverages multi-frame observations when needed. 

5. Category Appropriateness: Ensure the QA pair matches the claimed category 

Please analyze all the provided information for the question-answer pairs and decide whether to accept the data.

Input Information: 

Category: {category result} 

Visual Context: [ {img1}, {img2}, {img3} ] (Relative positions: img1 (x1, y1, z1, h1), img2 (x2, y2, z2, h2), img3 (x3, y3, z3, h3)) 

Question:{question result} 

Answer:{answer result} 

The final output should maintain the following template format:

“evaluation result”: “evaluation result” (accept or reject)

If rejected, continue to use the explainer for explanation:

Act as a Vision-Language Model Explainer to eval question-answer pairs based on the following inputs: 

Please provide reasoning on how to offer effective suggestions as refine history for improving data quality based on all the 

given information.

The final output should maintain the following template format: 

“refine history”: “refine history”

Figure 7: The Claude Sonnet 3.5 prompt for QA Evaluator
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Object-Related Questions:

Style Recognition

Question: To reach your destination, enter the hallway and take a left. Continue straight ahead, then make a right at the end of

the hall. Enter the room with the bear and walk straight across that room into the hallway. The bedroom will be the first door on 

your right, stop in the doorway once you arrive. While you're there, can you tell me what the color of the curtain?

Answer: The curtain is red.

Object Recognition

Question: To get to your destination, go straight into the garage and then turn right into the room. After that, turn right again to 

enter the bathroom and wait near the sink. While you're there, can you tell me what is located on the bathroom counter?

Answer : There is a sink on the bathroom counter.

State Recognitation 

Question: Exit the room and head down the hallway. Stop in front of the two chairs on your left. While you're there, could you 

check if the sliding door to the balcony is open or closed?

Answer: The balcony door is closed.

Figure 8: Illustration of the object-related questions in ExploraQA.

Spatial-Related Questions:

Spatial Localization

Question: Walk past the mirror to your right and continue through the bedroom until you reach the patio door. Wait just outside 

the door. By the way, do you know where the outdoor grill is located?  

Answer: In the outdoor patio area with tiled flooring. 

Sptial Reasoning

Question: Begin by going up four stairs. Once you reach the top, head towards the sunset painting. From there, make your 

way to the marble table, then to the oven, and finally to the dining room table. As you approach the dining table, take a 

moment to look to your right. What do you see between the dining table and the window?

Answer: Between the dining table and the window, there is a chair.

Functional Reasoning

Question: To get to the living room, go around the stairs and enter the hallway. Walk straight down the hallway until you reach 

the end, then take a right. You’ll find yourself at the entrance to the living room. And tell me how many can sit in this room.

Answer: The room can seat four people.

Common Sense:

Question: To get to the bedroom, turn around and walk past the bed. Exit through the door and take a right. Enter the next 

door on your right, and you'll find a cozy space with a snowman quilt on the bed. Once you arrive, you might wonder: Can I 

stay warm in this bedroom during the winter?

Answer: Yes, there's a fireplace and heater.

Figure 9: Illustration of the spatial-related questions in ExploraQA.
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QA Prompt:

You are an intelligent question answering agent. I will ask you questions about an indoor space and you must provide an 

answer. 

You will be shown a set of images that have been collected from a single location. 

Given a user query, you must output `text` to answer to the question asked by the user. 

User Query:

[ {img1}, {img2}, {img3} ] (Relative positions: img1 (x1, y1, z1, h1), img2 (x2, y2, z2, h2), img3 (x3, y3, z3, h3)) {question}

Figure 10: The prompt for QA VLM.

Critic Prompt

You are an AI assistant who will help me to evaluate the response given the question and the correct answer.

To mark a response, you should output a single integer between 1 and 5 (including 1, 5).

5 means that the response perfectly matches the answer.

1 means that the response is completely different from the answer.

Example 1: Question: Is it overcast?

Answer: no, Response: yes, Your mark: 1

Example 2: Question: Who is standing at the table?

Answer: woman, Response: Jessica, Your mark: 3

Example 3:

Question: Are there drapes to the right of the bed?

Answer: yes, Response: yes, Your mark: 5

Your Turn:

Question: {question}

Answer: {answer}

Response: {prediction}

Figure 11: The prompt for Critic VLM
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