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Abstract

Ground deformation is regarded in volcanology as a key precursor signal preced-
ing volcanic eruptions. Satellite-based Interferometric Synthetic Aperture Radar
(InSAR) enables consistent, global-scale deformation tracking; however, deep
learning methods remain largely unexplored in this domain, mainly due to the
lack of a curated machine learning dataset. In this work, we build on the existing
Hephaestus dataset, and introduce Hephaestus Minicubes, a global collection of 38
spatiotemporal datacubes offering high resolution, multi-source and multi-temporal
information, covering 44 of the world’s most active volcanoes over a 7-year period.
Each spatiotemporal datacube integrates InSAR products, topographic data, as
well as atmospheric variables which are known to introduce signal delays that can
mimic ground deformation in InNSAR imagery. Furthermore, we provide expert
annotations detailing the type, intensity and spatial extent of deformation events,
along with rich text descriptions of the observed scenes. Finally, we present a
comprehensive benchmark, demonstrating Hephaestus Minicubes’ ability to sup-
port volcanic unrest monitoring as a multi-modal, multi-temporal classification
and semantic segmentation task, establishing strong baselines with state-of-the-art
architectures. This work aims to advance machine learning research in volcanic
monitoring, contributing to the growing integration of data-driven methods within
Earth science applications.

1 Introduction

Ground deformation monitoring plays a vital role in volcanic hazard assessment, providing early
insights into subsurface magmatic activity [Dzurisin, |2003]]. It is widely regarded as one of the most
reliable eruption precursors, with detectable signals that may emerge from days to even years before
an event [Biggs et al.| [2014]]. Timely detection of such signals can offer critical lead time for risk
mitigation and emergency response efforts [[Tilling} 2008].

While ground-based networks, particularly those relying on Global Navigation Satellite Systems
(GNSS), have traditionally been used to monitor deformation [Poland, [2024]], many volcanoes
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Figure 1: Hephaestus Minicubes data sources (left) vis-a-vis the spatial distribution of the minicubes
(right). Box sizes on the map are proportional to frame dimensions and color intensity reflects the
number of available products per region.

worldwide remain poorly instrumented or entirely unmonitored [Loughlin et al.|[2015]]. This limitation,
coupled with the growing availability of publicly accessible satellite data, from missions such as
Copernicus Sentinel, has prompted a shift toward satellite-based approaches |Spaans and Hooper
[2016]. Among these, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a powerful

tool for global monitoring of surface motion 2001].

InSAR estimates surface displacement with millimeter-level precision by analyzing phase differences
between two or more SAR acquisitions from the same location at different times, while coherence
quantifies the similarity between signals, serving as a measure of phase reliability and surface stability.
A major challenge in interpreting InSAR data is distinguishing true ground deformation from
atmospheric propagation delays. Lateral variations in ionospheric electron density and tropospheric
water vapor concentration can alter the radar signal’s propagation time, introducing phase delays
that contaminate the InSAR deformation signal [Zebker et al [1997, Massonnet and Feigll [1998]
Beauducel et al. [2000]. These delays can produce artifacts that mimic real deformation, sometimes
manifesting as apparent centimeter-scale ground motion 2009], thereby complicating data
interpretation and downstream analysis. The issue is even more prominent in volcanic regions, where
complex atmospheric conditions—especially vertical stratification in mountainous terrain—can
generate deformation-like patterns. This increases the risk of false positives in unrest detection,
especially over elevated topography such as volcanoes and high-altitude ridges [[Parker et al} 2015,
[Shirzaei and Biirgmann|, [2012].

Deep learning pipelines have been successfully developed for various SAR-based tasks in Earth
observation 2021]], including natural disasters mapping (e.g. flood mapping
[2025])). However, their application to InSAR remains limited, mainly due to the lack of a
curated machine learning dataset. This poses a significant barrier as the processing, understanding
and annotation of InSAR products require specialized domain expertise. Hephaestus
marked the first attempt to construct a unique, expert-annotated InSAR dataset centered around
volcanic activity monitoring. Despite its contributions, Hephaestus exhibits several limitations, which
we discuss in detail in section[3.1] that have hindered its broader adoption within the community.

Our work builds on the Hephaestus dataset, by enhancing it both in ground sampling distance
(GSD), as well as in information depth, by introducing additional data sources, and engineering its
structure to better support time-series analysis. Hephaestus Minicubes introduces a collection of
high-resolution spatiotemporal datacubes integrating InSAR phase difference and coherence products,
digital elevation models (DEMs), and relevant atmospheric variables known to confound deformation
signals (Fig. [T). In addition, we include a diverse set of expert annotations characterizing deformation
type, intensity, and extent. Leveraging these improvements, we establish a comprehensive benchmark
demonstrating the ability of Hephaestus Minicubes to support volcanic unrest monitoring as a multi-
modal, multi-temporal classification and semantic segmentation task. We report strong baselines
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Figure 2: Examples of the different ground deformation types available in Hephaestus Minicubes.

using state-of-the-art architectures, while also identifying key limitations and challenges associated
with applying deep learning in this context.

To support further research and promote the application of machine learning in InSAR-based volcanic
unrest monitoring, we publicly release the Hephaestus Minicubes dataset at https://github.com/Orion-
Al-Lab/Hephaestus-minicubes. The repository includes comprehensive documentation and is actively
maintained to provide access to the latest version of the dataset. All code is released under the MIT
License[Jand data under the CC-BY license Pl

2 Related Work

Despite the recent success of deep learning in Earth Observation (e.g. [Sumbul et al., [2021}, |[Sdraka’
et al.| 2024]), its adoption in the InNSAR domain has remained limited. One of the main reasons for
this is the lack of a large curated dataset, primarily due to a) the scarcity of positive instances and b)
the high cost of the annotation process, which demands expert knowledge.

To overcome these challenges, and alleviate the need for time-consuming manual annotation, many
works leveraged synthetically generated datasets, and models pretrained on optical tasks. In particular,
[Anantrasirichai et al., 2018]], relied on major data augmentations and transfer learning from ImageNet
[Deng et al.l | 2009]]. Building on this, several works focused on synthetically generated InSAR data to
train Convolutional Neural Networks (CNNs) for ground deformation detection e.g. [Brengman and
Barnhart, 2021} |Anantrasirichai et al., 2019] and [Gaddes et al., 2024]. [[Valade et al., 2019] utilized
synthetic data to train a CNN to predict the associated phase gradients and phase decorrelation mask,
which can later be used to detect ground displacement. Similarly, [Beker et al.l [2023]] utilized a
synthetic dataset to train CNNs to detect subtle ground deformation from velocity maps. [Bountos
et al.l 2022a] proposed to train transformer architectures on synthetically generated InSAR using a
prototype learning framework, assigning classes with a nearest-neighbor approach comparing the
sample’s representation with the class prototypes.

Bountos et al.|[2022b]] diverged from this line of research and proposed the utilization of in-domain
self-supervised contrastive learning to create reliable feature extractors without the need for human
annotations, emphasizing the performance improvement compared to pretrained weights from optical
tasks. In a separate line of work, [Popescu et al.| [2024]] proposed to formulate the volcanic ground
deformation identification problem as an anomaly detection task utilizing Patch Distribution Modeling
[Defard et al.,[2021]].

Given the gradual evolution of volcanic activity, time-series analysis is critical for effective monitoring,
with several works exploring this direction. [Sun et al.| [2020] trained a CNN on synthetic data,
generated using the Mogi model as the deformation source. They created 20,000 time-series groups,
with each group containing 20 time-consecutive pairs of unwrapped surface displacement maps.
Moreover, [Ansari et al.,[2021]] proposed an unsupervised pipeline to cluster similar displacement
patterns from InSAR time-series, building on a Long Short Term Memory (LSTM) autoencoder and
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) Campello
et al.|[2013]].

Finally, [Bountos et al.l 2022c|| introduced Hephaestus in an attempt to address the data scarcity at its
core. Hephaestus was the largest manually annotated InSAR dataset to date with global coverage. Its
introduction addressed many open gaps enabling the deployment of large deep learning models on a

Thttps://opensource.org/license/MIT:
“https://creativecommons.org/licenses/by/4.0/
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variety of ground deformation related problems, while paving the way for the adaptation of complex
multi-modal tasks to the InNSAR domain e.g. InNSAR captioning and text to InSAR generation. Despite
its significance, however, Hephaestus still presents notable limitations, which we discuss in detail in

Section 311

3 Dataset Construction

3.1 Building on Hephaestus

The Hephaestus dataset represents a significant step towards advancing machine learning-based
approaches for volcanic unrest monitoring. While it offers rich, expert annotations across a global
set of volcanoes, its effectiveness in high-precision and time-series geophysical analysis is limited
by several factors. First, the spatial resolution of the annotated imagery is relatively coarse, at
approximately 333 m x 333 m per pixel. Second, the dataset consists of RGB composites of the
InSAR products, lacking physically interpretable pixel values and geolocation information. Finally,
the dataset structure is not designed for spatiotemporal modeling, lacking a machine-learning-friendly
format. Recognizing both the promise and the limitations of Hephaestus, we take steps to redefine
the dataset by addressing its weaknesses and expanding its scope.

3.2 Hephaestus Minicubes

In this work we introduce Hephaestus Minicubes, a collection of 38 datacubes covering 44 of the
most active volcanoes globally from 2014 to 2021, with a significantly enhanced spatial resolution
of approximately 100 m x 100 m per pixel, containing a total of 19,942 annotated samples. Each
datacube integrates InSAR products, topographic information, atmospheric variables that are known
to introduce delays to SAR signals, combined under a diverse collection of expert annotations. The
datacubes are stored in a compressed Zarr format [Miles et al.,[2020], as structured multi-dimensional
arrays optimized for efficient spatiotemporal analysis, with the full dataset totaling 1.7 TB.

In the following paragraphs, we provide a detailed description of each component of the Hephaestus
Minicubes dataset, along with important design choices made during its development.

InSAR Products. The InSAR component lies at the core of the dataset, Table 1: Summary of an-
including: a) the wrapped phase difference, which captures surface dis- notated activity variables
placement between SAR acquisitions, and b) the coherence, which mea-
sures the quality of the interferometric signal. These products are acquired  Annotation Variable ~ Count
by the COMET-LiCSAR system, which processes Copernicus Sentinel-1  pLabel

imagery for global volcano surveillance, in a resolution of approximately =~ Non-Deformation 18089
. . . . Deformation 1798
100 m x 100 m per pixel. For more information on the InNSAR generation g, oo 55
. T < quake 3

and processing pipeline, readers are referred to [Lazecky et al., 2020]. —

Activity Type

sill 1258
Topography. Stratified atmospheric noise is often correlated with to-  Dyke 527
pography. To capture this we include the Digital Elevation Model (DEM) Barhquake S
from LiCSAR, based on the 1 arc-second Shuttle Radar Topography Mis-  Unidentified 50
sion DEM [Farr et al, [2007]]. This static variable is downsampled for _ Spheroid 25
each frame to match the resolution of the InNSAR products, approximately  Intensity Level

Low 908
100 m x 100 m. Modium 33

High 751
Atmospheric Component. A key advancement of Hephaestus _None 53
Minicubes is the explicit integration of atmospheric variables known to ~ Phase
directly contribute to phase delays in the SAR signal. These delays may Eiitesl }2239
produce patterns in InSAR imagery that closely resemble true surface Rebound 134
deformation, [Zebker et al.| 1997, [Massonnet and Feigl, |1998| Beauducel None 15

et al.,2000] Following state-of-the-art atmospheric correction methods [Yu
et al.,|2018a]] we incorporate atmospheric variables that represent humidity,
temperature, and pressure. Specifically we include Total Column Water Vapour, Surface Pressure, and
the Vertical Integral of Temperature, from the ERAS single-level reanalysis dataset [Hersbach et al.,
2020]], for both primary and secondary SAR acquisition dates. We prioritize vertically integrated
atmospheric measures, as the impact of atmospheric delays is not confined to specific atmospheric



155
156

157
158
159
160
161
162

164
165

166

167
168
169
170
171
172
173

174
175
176
177
178
179

180
181
182
183
184

185
186
187
188
189

Secondary Dates

Primary Date

Phase Difference (radians)

-3

Figure 3: Schematic representation of the time-series construction method. A single primary
acquisition date is associated with multiple secondary dates, forming a sequence of InSAR products.
Each image displays the phase difference with an overlaid mask to highlight areas with apparent
deformation.

layers. We select the ERAS data closest in time to each SAR acquisition and resample them to align
with the spatial resolution of the InSAR data.

Expert Annotations. Hephaestus Minicubes builds upon the manually curated annotations provided
by Hephaestus, adapting them to the datacube format by converting relevant labels into spatiotemporal
masks and carefully addressing differences in spatial resolution and alignment. The available
spatiotemporal masks include multi-level information on ground deformation, activity type (e.g. Dyke,
Sill, Spheroid, etc.), and intensity level (e.g. Low, Medium, High), while the related volcano’s
phase (e.g. Rest, Unrest, Rebound) is represented as a categorical variable (see Tab[T). Additional
annotations provide auxiliary information on the presence and type of noise, quality of the samples,
annotator confidence and a textual description, offering expert commentary and annotation rationale.
Detailed information on all available labels is provided in the Supplemental Material.

4 Benchmark

To enable a fair comparison of future methods for InSAR based volcanic unrest detection, we
provide the first benchmark on Hephaestus Minicubes. This benchmark is designed to serve as a
strong baseline across two fundamental tasks: binary ground deformation classification and semantic
segmentation. To transform our problem to a binary task, we group all sub-classes of ground
deformation (e.g. Mogi, Sill) into one class. Below we present the main decisions made for the
experimental setup. For detailed information on the complete experimental framework, readers are
referred to the Supplemental Material.

Data Split. We apply a temporal data split, separating InSAR products by the primary acquisition
date. The training set includes interferograms with the primary SAR acquired between January 1,
2014, and May 31, 2019, while the validation from June 1, 2019, to December 31, 2019. Finally
the test set consists of interferograms with primary acquisition dates between January 1, 2020, and
December 31, 2021. This split was carefully chosen to maintain spatial diversity by including data
from all the available frames, with an adequate ratio of positive samples in each set, as seen in Tab. [2]

Data Preparation. To reduce input size, each InNSAR product is cropped to 512 x 512 pixels.
We apply cropping with a random offset from the frame center, ensuring any existing deformation
patterns are included within the cropped area.We address class imbalance, by undersampling during
training, using all available positive samples and an equal number of random negative samples in
each epoch, and apply data augmentation to improve model generalization.

Constructing InNSAR Time-Series. Constructing meaningful InSAR time-series is non-trivial due
to the bi-temporal nature of each product, characterized by both primary and secondary acquisition
dates. Moreover, the temporal gap between the primary and secondary acquisition in Hephaestus is
not fixed, making temporal ordering highly ambiguous. In our framework, we define a valid time
series as a sequence of interferograms that share the same primary and different secondary acquisition



190
191

192
193
194

196
197
198
199
200
201

202
203
204
205

207
208

210
211
212
213

214
215
216
217
218
219
220
221
222
223
224

225

226
227
228
229
230
231

Table 2: Summary of the temporal split windows and class distribution for both the single-timestep
and time-series approaches.

Split Dates Single-Timestep Time-Series
Positives  Negatives  Positives  Negatives
Training  Jan 2014 — May 2019 1143 8697 701 2626
Validation ~ Jun 2019 — Dec 2019 154 2416 75 728
Test Jan 2020 — Dec 2021 509 5992 225 1776
Sum Jan 2014 — Dec 2021 1806 17105 1001 5130

dates. These sequences are then ordered chronologically based on the secondary dates, as illustrated
in Fig.[3

This formulation allows models to observe the evolution of deformation relative to a fixed reference,
providing insights into the dynamics of volcanic unrest. At the same time, sampling different
secondary acquisitions can expose the model to variations in atmospheric noise, thereby encouraging
learning of more robust, discriminative features [Dzurisin, [2003]].

The number of valid InSAR products per primary SAR acquisition date varies across the dataset.
To maintain a consistent input shape for model training, we either select all subsets that match
the target sequence length or apply controlled duplication of available products when necessary.
After examining the distribution of available secondary dates for each primary date, we choose to
construct time-series of length 3, aiming for a balance between a rich temporal sequence and limited
duplications.

In the time-series setting, labels are aggregated across the sequence. For the classification task, a
sequence is considered positive if at least one of the products is labeled as showing deformation. For
the segmentation task, the target mask is defined as the union of all individual deformation masks
across the sequence. This approach ensures that models can leverage temporal information while
maintaining a single target.

Models. We employ a diverse set of state-of-the-art models, widely used in Earth observation
benchmarks (e.g. GEO-Bench|Lacoste et al.| [2023]]), assessing their capacity for ground deformation
classification and segmentation. For the classification task, we include ResNet-50 [He et al., 2016],
Vision Transformer (ViT) [Dosovitskiy et al., [2020], ConvNeXt [Liu et al.| [2022], MobileNetV3
[Howard et al., 2019], and EfficientNetV2 [Tan and Le, 2021]], all pretrained on ImageNet [Deng
et al., 2009]. For the segmentation task, we use UNet [Ronneberger et al.| 2015]], DeepLabv3 [[Chen
et al.| 2017]] and SegFormer [Xie et al.| 2021]], with ResNet-50 backbones pretrained on ImageNet.

Evaluating Input Contributions. Exploiting the diverse information of Hephaestus Minicubes, we
examine the models’ performance across varying configurations to evaluate the importance of each
available data source. We vary the input on two dimensions for both classification and segmentation
tasks. First, we examine the significance of temporal context in detecting volcanic unrest on both
single-timestep and time-series setups. Second, we assess the impact of the auxiliary atmospheric
variables by evaluating the models’ performance with and without them. In Tabs. [3|and[d] we present
the classification and segmentation results, respectively, reporting Precision, Recall, F1-score, and
Area Under the Receiver Operating Characteristic curve (AUROC) for the classification task, and
Precision, Recall, F1-score, and Intersection over Union (IoU) for the segmentation task. To account
for variability introduced by initialization, undersampling, and augmentations, we report the average
performance along with standard deviation over three random seeds.

5 Discussion

Overall performance. Examining the performance of the classification baselines in Tab. [3| we ob-
serve strong discriminative capability reaching up to ~ 79% in F1-Score. However, this performance
declines in the segmentation task reaching up to & 71%. This is not a surprising behavior, as exact
delineation of ground deformation is often non-trivial even for experts. Even after discerning true
ground deformation fringes from atmospheric contributions, defining the extent of such fringes is an
ambiguous process, especially in regions with high incoherence. Such noise is inherent to the data
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Table 3: Deformation classification metrics (mean + std) for best model configurations between
different random seeds. The tables report Precision (Prec), Recall (Rec), F1-score (F1), and Area
Under the Receiver Operating Characteristic curve (AUROC) for the deformation class. The best

value in each column is marked in bold, and the second best is underlined.

Model Atm. \ Prec Rec F1 AUROC
ResNet.S0 X | 83.63+294  685+3.05 7529+2.74 96.99 +0.39
v 87.53+37  6437+1.64 7418+232 96.26 +0.88
MobileNety3 X | 95:03+117  6477+088 77.02£037 9206261
obrieine v | 89.56+054 69.02+1.79 78.06+1.13 91.99+2.32
. . . X | 7628+374 4466+271 56.18+1.08 74.98 +4.13
Single-Timestep  EfficientNetV2 | ¢5503 3’55 49442420 6161 £3.1  8325+5.02
ComNeXt X | 93.04+185 69.09+201 79.25+0.69 90.01 +3.88
v 93.58+03  68.76+1.89 7926+ 1.33 90.29 + 1.75
ViT X 85161121 5581003 673+10.51 87.58+5.02
v | 9075+151  5927+747 7145+545 88.6+3.0
ResNet.50 X | 67.79+211  60.0+036 63.64+0.89 92.68+1.84
esine v | 68.65+085 5941+327 63.66+2.08 88.0+2.33
. X | 64.08+138 6356+3.82 63.79+2.54 89.39+1.16
MobileNetV3 | (3511446 65484588 64294371 8929+ 1.06
. . . X | 6858+294 49.04+726 56.88+536 8222+3.5
Time-Series EfficientNetV2 -1 64534007 5604297 5942+42 8263+ 1.54
ComNeXt X | 73194202 68.89+1512 7036+863 91.65+5.01
onvie v | 75.88+7.14 5748+255 6536+43 7824 +3.18
ViT X | 80524561 5348+462 6392+1.69 91.21+3.26
v | 71.19+274  61.63+134  6554+85 89.2+3.42

Table 4: Deformation segmentation metrics (mean =+ std) for best model configurations between dif-
ferent random seeds. The tables report Precision (Prec), Recall (Rec), F1-score (F1), and Intersection
over Union (IoU) for the deformation class. The best value in each column is marked in bold, and
the second best is underlined.

Model Atm. | Prec Rec F1 IoU
DeenLabv3 X 8141+142 63.74+0.52 7149+030 55.63+0.37
P v 81.64+1.77 60.82+261 69.65+148 53.46=+1.75
Single-Timestep UNet X 8243 +0.64 61.25+1.27 70.27+0.63 54.17+0.75
Ve 81.70 £0.41 53.71+1.89 64.80+1.48 47.95+1.62
SesFormer X 80.87 +1.74 61.32+196 69.70+0.70 53.50+0.82
g Ve 83.13+£230 55.71+098 66.68+0.22 50.01+0.25
DeepLabv3 X 75.68 £2.15 54.66+1.54 63.42+0.25 46.44+0.27
P Ve 74.64 £248 46.67+2.15 5739+1.84 4027+1.82
Time-Series UNet X 7457 +3.10 58.57+239 6550+035 48.7+0.39
Ve 7028 +4.56 44.18+1.64 54.19+2.03 372+192
SeeFormer X 79.22+0.55 57.87+1.46 6687 +0.77 50.23+0.87
g Ve 77.14+0.10 47.88+2.73 59.05+2.10 4192+2.12

itself, making the annotation, and thereby accurate prediction challenging Kondylatos et al.| [2025].
Many works have sought to improve segmentation capabilities in such conditions e.g.|Acuna et al.
[2019],|Yu et al.|[2018b]]. Our benchmark establishes a strong reference point for future methods
aimed at addressing these complexities.

Impact of temporal dimension. Examining both classification and segmentation experiments,
we note a surprising drop in performance when we use a time-series input. While the theoretical
advantages of using time-series data to capture volcanic unrest and account for atmospheric delays
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are well established [Dzurisin, [2003], it is important to note that performance comparisons between
single-timestep and time-series inputs are not entirely equivalent in our framework. Although both
approaches aim to detect the same underlying geophysical phenomena, they operate on different
data subsets due to the stricter requirements for constructing valid time-series (See Tab. [2)). More
importantly, the task formulation shifts: single-timestep models predict deformation masks for
individual images, while time-series models segment the union of deformation patterns across
multiple observations, effectively capturing the total extent of the affected area. As such, while
performance trends are informative, variability in absolute metrics between the two setups should be
interpreted with these structural differences in mind.

Impact of atmospheric variables. The impact of atmospheric information varies across tasks. In
classification, some models exhibit modest performance gains with the inclusion of atmospheric
context, with EfficientNetV2 and ViT demonstrating a consistent improvement both in the single-
timestep and the time-series settings. In contrast, atmospheric information does not lead to improved
performance in segmentation models. This discrepancy likely reflects the different demands of the
two tasks. While atmospheric variables offer valuable insights into the atmospheric conditions, they
are available at a substantially coarser spatial resolution than the InSAR data itself. This resolution
mismatch may constrain their effectiveness, particularly in segmentation tasks where fine-grained
spatial detail is critical for distinguishing true deformation from confounding patterns. Moreover,
InSAR data offer significantly stronger information for the detailed delineation of ground deformation,
which may lead it to dominate the learning process diminishing the influence of atmospheric input.

Motivated by this discussion, we examine specific cases where the inclusion of atmospheric variables
helps the model mitigate false positives caused by atmospheric delays in semantic segmentation. In
doing so, we aim to explore potential nuances that are not fully captured by aggregate performance
metrics, in order to better understand the limitations of our baseline modeling approach and identify
possible paths forward. In Fig. ] we compare predicted masks from models trained with and without
atmospheric inputs. Along with this, we also investigate the mean lateral gradient of total column
water vapour (TCWYV) across the primary and secondary SAR acquisition dates, contextualized
against the broader distribution of mean TCWV gradients for the given frame, as lateral variation in
atmospheric moisture is a key driver of atmospheric phase delays in InSAR measurements. Notably,
both scenes exhibit high lateral variation in TCWYV, suggesting that the atmospheric component can,
under specific conditions, contribute meaningful information about phase delay artifacts. However,
incorporating this knowledge into deep learning models remains a non-trivial challenge, particularly
due to the aforementioned mismatch in resolution and information density between atmospheric
inputs and InSAR data.

Finally, the inclusion of the atmospheric component as additional channels, for both primary and
secondary SAR acquisitions, comes with a significant increase in input dimensionality, thereby adding
to model complexity and potentially hindering performance. Effective and efficient handling of the
atmospheric component remains a non-trivial and open challenge. Addressing this issue may require
more sophisticated and context-aware approaches that model both the internal relationships of the
atmospheric variables, as well as cross-modal interactions with the InSAR imagery.

5.1 Limitations

Despite extensive efforts in the annotation process, which incorporates validation from both internal
and external sources, annotating InSAR imagery remains inherently challenging. The labels used
for training and evaluation are not free from noise, reflecting the complexities involved in detecting
volcanic unrest. The subtlety and variability of volcanic deformation patterns often lead to ambiguities
in interpretation, making accurate and consistent annotation difficult, especially in regions with low
signal coherence. This limitation is compounded by the fact that some volcanic events are subtle or
evolve over extended periods, which can further complicate the identification and classification of
deformation signals in the data.

Additionally, the temporal scale and nature of volcanic activity introduce significant challenges. Some
unrest episodes are subtle and unfold over many years, while others are abrupt and short-lived. The
frequency and expression of these events vary widely between volcanoes; some may remain inactive
for extended periods before suddenly exhibiting signs of unrest. Consequently, certain volcanoes
may not show any positive samples during the dataset’s timeframe, limiting the model’s exposure to
their activity patterns. As a result, models trained under such constraints may struggle to generalize
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Figure 4: Compact view of DeepLabV3 predictions (top) with and without atmospheric input and
the associated mean lateral gradient distributions of TCWYV (bottom) for two samples: (a) Sierra
Negra volcano, Galdpagos islands. (15/3/2020 - 15/04/2020), (b) Valle de Piedras Encimadas region
in Puebla, Mexico (05-08-2020 - 17/08/2020). We examine, representative examples where the
inclusion of atmospheric variables leads to improved segmentation performance by mitigating false
positives linked to atmospheric artifacts. In both cases, this improvement coincides with high lateral
variation in TCWYV, hinting at the potential value of atmospheric variables.

effectively in operational settings, particularly when tasked with detecting unrest at volcanoes with
sparse or no prior positive observations.

6 Conclusion

Hephaestus Minicubes represents a significant advancement in data-driven volcanic unrest monitoring.
By integrating high-resolution InSAR phase and coherence products, digital elevation models,
atmospheric information and expert annotations into structured spatiotemporal datacubes, the dataset
provides a rich foundation for machine learning research in this domain. The additional inclusion
of atmospheric variables addresses a key challenge in InNSAR analysis—distinguishing true ground
deformation from atmospheric phase delays that can mimic similar patterns.

Building on Hephaestus Minicubes, we provide an extensive benchmark demonstrating the dataset’s
ability to support volcanic unrest monitoring as a multi-modal, multi-temporal problem. We examine
two fundamental tasks, i.e. InNSAR classification and semantic segmentation, across both single-
timestep and time-series formats. Our results establish strong baselines for future applications,
assessing the capacity of state-of-the-art architectures in this domain. The inclusion of time-series and
atmospheric data—while theoretically promising—reveals practical complexities. Similarly, while
atmospheric variables can help mitigate false positives from phase delay artifacts, their coarse spatial
resolution and increased model complexity limit their overall utility in segmentation tasks. These
findings underscore the importance of developing more nuanced, context-aware modeling strategies
that can effectively leverage atmospheric information and temporal context, pointing to promising
directions for future research.

Hephaestus Minicubes is, to the best of our knowledge, the first large-scale machine learning ready
dataset to incorporate such diverse information. We believe Hephaestus Minicubes will be a valuable
asset to the research community, contributing to the growing integration of data-driven methods
within Earth science applications.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims of the paper consist of: a) introducing our dataset Hephaestus
Minicubes which we present in detail in Section [3|and provide public access to in Section ]
along with the relevant code, b) providing a comprehensive benchmark to demonstrate the
datasets ability to approach the task of volcanic unrest via different problem formulations
which we present in Section 4] c) highlighting key challenges and limitations which we do
in Section

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the paper are outlined in the whole of Section[5]and discussed
in detail in Subsection 511

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code to reproduce the experimental results is made publicly available in[T]
with the experimental setup explained in[]and more detailed information provided in the
Supplemental Material.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code in Section [T} with detailed
instructions to faithfully reproduce the experimental results described in the Supplemental
Material and further documented in the linked repository.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g. , data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all major training and test details in Section 4] and further detail
the experimental setup in the Supplemental Material and in the publicly provided code
repository.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The results provided in Section ] represent the mean and standard deviation
calculated over 3 different random seeds, with the factors of variability clearly explained.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources needed to run the
experiments in the Supplemental Matieral.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted fully conforms with the NeurIPS Code of Ethics. The
dataset does not include sensitive information relevant to privacy and consent while research
impact is discussed in Section 3]

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impacts of the provided research are discussed in [5}
more specifically talking about the limitations of the use of such methods in an operational
setting.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g. , pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks for misuse.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g. , code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of the assets we use are properly credited throughout the
paper. This is more specific to the different data sources the dataset consists of as mentioned
in[3} Licenses and terms of use are explicitly mentioned in Section [I]and further included in
the code repository and dataset metadata croissant file.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Detailed description of the available data sources introduced in the dataset
are provided in Section [3]and in detail in Supplemental Material. Further documentation is
provided in the code repository made available in Section I}

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

15


https://neurips.cc/public/EthicsGuidelines

581

582
583

584
585
586
587

588

589

590

591

593
594

595

596
597

15.

16.

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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