Hephaestus Minicubes: A Global, Multi-Modal Dataset for Volcanic Unrest **Monitoring**

Nikolas Papadopoulos ¹ npapadopoulos@mail.ntua.gr Nikolaos Ioannis Bountos^{1,2} bountos@noa.gr

Maria Sdraka^{1,2} masdra@noa.gr

Andreas Karavias¹ andreas_karavias@mail.ntua.gr

Ioannis Papoutsis¹ ipapoutsis@mail.ntua.gr

¹ Orion Lab National Observatory of Athens & National Technical University of Athens

² Harokopio University of Athens

Abstract

Ground deformation is regarded in volcanology as a key precursor signal preceding volcanic eruptions. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) enables consistent, global-scale deformation tracking; however, deep learning methods remain largely unexplored in this domain, mainly due to the lack of a curated machine learning dataset. In this work, we build on the existing Hephaestus dataset, and introduce Hephaestus Minicubes, a global collection of 38 spatiotemporal datacubes offering high resolution, multi-source and multi-temporal information, covering 44 of the world's most active volcanoes over a 7-year period. Each spatiotemporal datacube integrates InSAR products, topographic data, as well as atmospheric variables which are known to introduce signal delays that can mimic ground deformation in InSAR imagery. Furthermore, we provide expert annotations detailing the type, intensity and spatial extent of deformation events, along with rich text descriptions of the observed scenes. Finally, we present a comprehensive benchmark, demonstrating Hephaestus Minicubes' ability to support volcanic unrest monitoring as a multi-modal, multi-temporal classification and semantic segmentation task, establishing strong baselines with state-of-the-art architectures. This work aims to advance machine learning research in volcanic monitoring, contributing to the growing integration of data-driven methods within Earth science applications.

Introduction

5

6

8

10

11

12

13

14

15

16

17

18

19

- Ground deformation monitoring plays a vital role in volcanic hazard assessment, providing early 21 insights into subsurface magmatic activity [Dzurisin, 2003]. It is widely regarded as one of the most 22
- reliable eruption precursors, with detectable signals that may emerge from days to even years before 23
- an event [Biggs et al., 2014]. Timely detection of such signals can offer critical lead time for risk 24 mitigation and emergency response efforts [Tilling, 2008]. 25
- While ground-based networks, particularly those relying on Global Navigation Satellite Systems (GNSS), have traditionally been used to monitor deformation [Poland, 2024], many volcanoes

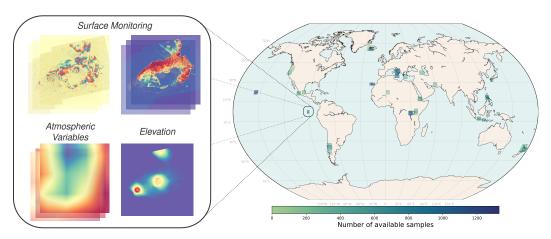


Figure 1: Hephaestus Minicubes data sources (left) vis-à-vis the spatial distribution of the minicubes (right). Box sizes on the map are proportional to frame dimensions and color intensity reflects the number of available products per region.

worldwide remain poorly instrumented or entirely unmonitored Loughlin et al. [2015]. This limitation, coupled with the growing availability of publicly accessible satellite data, from missions such as 29 Copernicus Sentinel, has prompted a shift toward satellite-based approaches Spaans and Hooper 30 [2016]. Among these, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a powerful 31 tool for global monitoring of surface motion [Hanssen, 2001]. 32

33

34

37

38

39

40

41

42

43

44

46

47

48

49 50

51 52

53

54

55

56

57

58

59

60

61

62

InSAR estimates surface displacement with millimeter-level precision by analyzing phase differences between two or more SAR acquisitions from the same location at different times, while coherence quantifies the similarity between signals, serving as a measure of phase reliability and surface stability. 35 36 A major challenge in interpreting InSAR data is distinguishing true ground deformation from atmospheric propagation delays. Lateral variations in ionospheric electron density and tropospheric water vapor concentration can alter the radar signal's propagation time, introducing phase delays that contaminate the InSAR deformation signal [Zebker et al., 1997, Massonnet and Feigl, 1998, Beauducel et al., 2000]. These delays can produce artifacts that mimic real deformation, sometimes manifesting as apparent centimeter-scale ground motion [Doin et al., 2009], thereby complicating data interpretation and downstream analysis. The issue is even more prominent in volcanic regions, where complex atmospheric conditions—especially vertical stratification in mountainous terrain—can generate deformation-like patterns. This increases the risk of false positives in unrest detection, especially over elevated topography such as volcanoes and high-altitude ridges [Parker et al., 2015, 45 Shirzaei and Bürgmann, 2012].

Deep learning pipelines have been successfully developed for various SAR-based tasks in Earth observation [Zhu et al., 2021], including natural disasters mapping (e.g. flood mapping Bountos et al. [2025]). However, their application to InSAR remains limited, mainly due to the lack of a curated machine learning dataset. This poses a significant barrier as the processing, understanding and annotation of InSAR products require specialized domain expertise. *Hephaestus* [Bountos et al., 2022c] marked the first attempt to construct a unique, expert-annotated InSAR dataset centered around volcanic activity monitoring. Despite its contributions, *Hephaestus* exhibits several limitations, which we discuss in detail in section 3.1, that have hindered its broader adoption within the community.

Our work builds on the *Hephaestus* dataset, by enhancing it both in ground sampling distance (GSD), as well as in information depth, by introducing additional data sources, and engineering its structure to better support time-series analysis. Hephaestus Minicubes introduces a collection of high-resolution spatiotemporal datacubes integrating InSAR phase difference and coherence products, digital elevation models (DEMs), and relevant atmospheric variables known to confound deformation signals (Fig. 1). In addition, we include a diverse set of expert annotations characterizing deformation type, intensity, and extent. Leveraging these improvements, we establish a comprehensive benchmark demonstrating the ability of Hephaestus Minicubes to support volcanic unrest monitoring as a multimodal, multi-temporal classification and semantic segmentation task. We report strong baselines

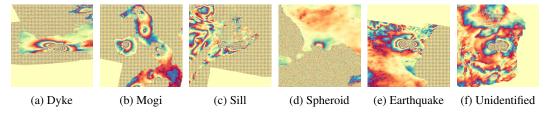


Figure 2: Examples of the different ground deformation types available in *Hephaestus Minicubes*.

using state-of-the-art architectures, while also identifying key limitations and challenges associated
 with applying deep learning in this context.

To support further research and promote the application of machine learning in InSAR-based volcanic unrest monitoring, we publicly release the *Hephaestus Minicubes* dataset at https://github.com/Orion-AI-Lab/Hephaestus-minicubes. The repository includes comprehensive documentation and is actively maintained to provide access to the latest version of the dataset. All code is released under the MIT License ¹ and data under the CC-BY license ².

2 Related Work

71

Despite the recent success of deep learning in Earth Observation (*e.g.* [Sumbul et al., 2021, Sdraka et al., 2024]), its adoption in the InSAR domain has remained limited. One of the main reasons for this is the lack of a large curated dataset, primarily due to a) the scarcity of positive instances and b) the high cost of the annotation process, which demands expert knowledge.

To overcome these challenges, and alleviate the need for time-consuming manual annotation, many 76 works leveraged synthetically generated datasets, and models pretrained on optical tasks. In particular, 77 [Anantrasirichai et al., 2018], relied on major data augmentations and transfer learning from ImageNet 78 [Deng et al., 2009]. Building on this, several works focused on synthetically generated InSAR data to 79 train Convolutional Neural Networks (CNNs) for ground deformation detection e.g. [Brengman and 80 Barnhart, 2021, Anantrasirichai et al., 2019] and [Gaddes et al., 2024]. [Valade et al., 2019] utilized 81 synthetic data to train a CNN to predict the associated phase gradients and phase decorrelation mask, 82 which can later be used to detect ground displacement. Similarly, [Beker et al., 2023] utilized a 83 synthetic dataset to train CNNs to detect subtle ground deformation from velocity maps. [Bountos 84 et al., 2022a] proposed to train transformer architectures on synthetically generated InSAR using a 85 prototype learning framework, assigning classes with a nearest-neighbor approach comparing the sample's representation with the class prototypes. 87

Bountos et al. [2022b] diverged from this line of research and proposed the utilization of in-domain self-supervised contrastive learning to create reliable feature extractors without the need for human annotations, emphasizing the performance improvement compared to pretrained weights from optical tasks. In a separate line of work, [Popescu et al., 2024] proposed to formulate the volcanic ground deformation identification problem as an anomaly detection task utilizing Patch Distribution Modeling [Defard et al., 2021].

Given the gradual evolution of volcanic activity, time-series analysis is critical for effective monitoring, with several works exploring this direction. [Sun et al., 2020] trained a CNN on synthetic data, generated using the Mogi model as the deformation source. They created 20,000 time-series groups, with each group containing 20 time-consecutive pairs of unwrapped surface displacement maps. Moreover, [Ansari et al., 2021] proposed an unsupervised pipeline to cluster similar displacement patterns from InSAR time-series, building on a Long Short Term Memory (LSTM) autoencoder and Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) Campello et al. [2013].

Finally, [Bountos et al., 2022c] introduced *Hephaestus* in an attempt to address the data scarcity at its core. *Hephaestus* was the largest manually annotated InSAR dataset to date with global coverage. Its introduction addressed many open gaps enabling the deployment of large deep learning models on a

¹https://opensource.org/license/MIT

²https://creativecommons.org/licenses/by/4.0/

variety of ground deformation related problems, while paving the way for the adaptation of complex 105 multi-modal tasks to the InSAR domain e.g. InSAR captioning and text to InSAR generation. Despite 106 its significance, however, Hephaestus still presents notable limitations, which we discuss in detail in 107 Section 3.1. 108

Dataset Construction 3 109

Building on Hephaestus

110

138

139

140

141

142

143

144

145

146

147

148

149

150

The Hephaestus dataset represents a significant step towards advancing machine learning-based 111 approaches for volcanic unrest monitoring. While it offers rich, expert annotations across a global 112 set of volcanoes, its effectiveness in high-precision and time-series geophysical analysis is limited 113 by several factors. First, the spatial resolution of the annotated imagery is relatively coarse, at 114 approximately $333 \,\mathrm{m} \times 333 \,\mathrm{m}$ per pixel. Second, the dataset consists of RGB composites of the 115 InSAR products, lacking physically interpretable pixel values and geolocation information. Finally, 116 the dataset structure is not designed for spatiotemporal modeling, lacking a machine-learning-friendly 117 format. Recognizing both the promise and the limitations of Hephaestus, we take steps to redefine 118 the dataset by addressing its weaknesses and expanding its scope. 119

3.2 Hephaestus Minicubes

In this work we introduce Hephaestus Minicubes, a collection of 38 datacubes covering 44 of the 121 most active volcanoes globally from 2014 to 2021, with a significantly enhanced spatial resolution of approximately 100 m × 100 m per pixel, containing a total of 19,942 annotated samples. Each 123 datacube integrates InSAR products, topographic information, atmospheric variables that are known 124 125 to introduce delays to SAR signals, combined under a diverse collection of expert annotations. The datacubes are stored in a compressed Zarr format [Miles et al., 2020], as structured multi-dimensional 126 arrays optimized for efficient spatiotemporal analysis, with the full dataset totaling 1.7 TB. 127

In the following paragraphs, we provide a detailed description of each component of the Hephaestus 128 Minicubes dataset, along with important design choices made during its development. 129

InSAR Products. The InSAR component lies at the core of the dataset, 130 including: a) the wrapped phase difference, which captures surface dis-131 placement between SAR acquisitions, and b) the coherence, which measures the quality of the interferometric signal. These products are acquired 133 by the COMET-LiCSAR system, which processes Copernicus Sentinel-1 imagery for global volcano surveillance, in a resolution of approximately 135 $100 \,\mathrm{m} \times 100 \,\mathrm{m}$ per pixel. For more information on the InSAR generation 136 and processing pipeline, readers are referred to [Lazeckỳ et al., 2020]. 137

Topography. Stratified atmospheric noise is often correlated with topography. To capture this we include the *Digital Elevation Model (DEM)* from LiCSAR, based on the 1 arc-second Shuttle Radar Topography Mission DEM [Farr et al., 2007]. This static variable is downsampled for each frame to match the resolution of the InSAR products, approximately $100 \,\mathrm{m} \times 100 \,\mathrm{m}$.

Atmospheric Component. A key advancement of Hephaestus Minicubes is the explicit integration of atmospheric variables known to directly contribute to phase delays in the SAR signal. These delays may produce patterns in InSAR imagery that closely resemble true surface deformation, [Zebker et al., 1997, Massonnet and Feigl, 1998, Beauducel et al., 2000] Following state-of-the-art atmospheric correction methods [Yu

Table 1: Summary of annotated activity variables

Annotation Variable	Count	
Label		
Non-Deformation	18089	
Deformation	1798	
Earthquake	55	
Activity Type		
Sill	1258	
Dyke	527	
Mogi	333	
Earthquake	55	
Unidentified	50	
Spheroid	25	
Intensity Level		
Low	908	
Medium	533	
High	751	
None	55	
Phase		
Rest	18089	
Unrest	1664	
Rebound	134	
None	15	

et al., 2018a] we incorporate atmospheric variables that represent humidity, temperature, and pressure. Specifically we include Total Column Water Vapour, Surface Pressure, and 151 the Vertical Integral of Temperature, from the ERA5 single-level reanalysis dataset [Hersbach et al., 152 2020], for both primary and secondary SAR acquisition dates. We prioritize vertically integrated atmospheric measures, as the impact of atmospheric delays is not confined to specific atmospheric

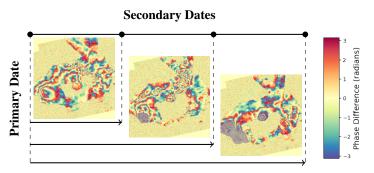


Figure 3: Schematic representation of the time-series construction method. A single primary acquisition date is associated with multiple secondary dates, forming a sequence of InSAR products. Each image displays the phase difference with an overlaid mask to highlight areas with apparent deformation.

layers. We select the ERA5 data closest in time to each SAR acquisition and resample them to align with the spatial resolution of the InSAR data.

Expert Annotations. Hephaestus Minicubes builds upon the manually curated annotations provided by Hephaestus, adapting them to the datacube format by converting relevant labels into spatiotemporal masks and carefully addressing differences in spatial resolution and alignment. The available spatiotemporal masks include multi-level information on ground deformation, activity type (e.g. Dyke, Sill, Spheroid, etc.), and intensity level (e.g. Low, Medium, High), while the related volcano's phase (e.g. Rest, Unrest, Rebound) is represented as a categorical variable (see Tab.1). Additional annotations provide auxiliary information on the presence and type of noise, quality of the samples, annotator confidence and a textual description, offering expert commentary and annotation rationale. Detailed information on all available labels is provided in the Supplemental Material.

4 Benchmark

To enable a fair comparison of future methods for InSAR based volcanic unrest detection, we provide the first benchmark on *Hephaestus Minicubes*. This benchmark is designed to serve as a strong baseline across two fundamental tasks: binary ground deformation classification and semantic segmentation. To transform our problem to a binary task, we group all sub-classes of ground deformation (*e.g.* Mogi, Sill) into one class. Below we present the main decisions made for the experimental setup. For detailed information on the complete experimental framework, readers are referred to the Supplemental Material.

Data Split. We apply a temporal data split, separating InSAR products by the primary acquisition date. The training set includes interferograms with the primary SAR acquired between January 1, 2014, and May 31, 2019, while the validation from June 1, 2019, to December 31, 2019. Finally the test set consists of interferograms with primary acquisition dates between January 1, 2020, and December 31, 2021. This split was carefully chosen to maintain spatial diversity by including data from all the available frames, with an adequate ratio of positive samples in each set, as seen in Tab. 2.

Data Preparation. To reduce input size, each InSAR product is cropped to 512×512 pixels. We apply cropping with a random offset from the frame center, ensuring any existing deformation patterns are included within the cropped area. We address class imbalance, by undersampling during training, using all available positive samples and an equal number of random negative samples in each epoch, and apply data augmentation to improve model generalization.

Constructing InSAR Time-Series. Constructing meaningful InSAR time-series is non-trivial due to the bi-temporal nature of each product, characterized by both primary and secondary acquisition dates. Moreover, the temporal gap between the primary and secondary acquisition in *Hephaestus* is not fixed, making temporal ordering highly ambiguous. In our framework, we define a valid time series as a sequence of interferograms that share the same primary and different secondary acquisition

Table 2: Summary of the temporal split windows and class distribution for both the single-timestep and time-series approaches.

Split	Dates	Single-Timestep		Time-Series	
		Positives	Negatives	Positives	Negatives
Training	Jan 2014 – May 2019	1143	8697	701	2626
Validation	Jun 2019 – Dec 2019	154	2416	75	728
Test	Jan 2020 – Dec 2021	509	5992	225	1776
Sum	Jan 2014 – Dec 2021	1806	17105	1001	5130

dates. These sequences are then ordered chronologically based on the secondary dates, as illustrated in Fig. 3.

This formulation allows models to observe the evolution of deformation relative to a fixed reference, providing insights into the dynamics of volcanic unrest. At the same time, sampling different secondary acquisitions can expose the model to variations in atmospheric noise, thereby encouraging learning of more robust, discriminative features [Dzurisin, 2003].

The number of valid InSAR products per primary SAR acquisition date varies across the dataset. To maintain a consistent input shape for model training, we either select all subsets that match the target sequence length or apply controlled duplication of available products when necessary. After examining the distribution of available secondary dates for each primary date, we choose to construct *time-series of length 3*, aiming for a balance between a rich temporal sequence and limited duplications.

In the time-series setting, labels are aggregated across the sequence. For the classification task, a sequence is considered positive if at least one of the products is labeled as showing deformation. For the segmentation task, the target mask is defined as the union of all individual deformation masks across the sequence. This approach ensures that models can leverage temporal information while maintaining a single target.

Models. We employ a diverse set of state-of-the-art models, widely used in Earth observation benchmarks (*e.g.* GEO-Bench Lacoste et al. [2023]), assessing their capacity for ground deformation classification and segmentation. For the classification task, we include ResNet-50 [He et al., 2016], Vision Transformer (ViT) [Dosovitskiy et al., 2020], ConvNeXt [Liu et al., 2022], MobileNetV3 [Howard et al., 2019], and EfficientNetV2 [Tan and Le, 2021], all pretrained on ImageNet [Deng et al., 2009]. For the segmentation task, we use UNet [Ronneberger et al., 2015], DeepLabv3 [Chen et al., 2017] and SegFormer [Xie et al., 2021], with ResNet-50 backbones pretrained on ImageNet.

Evaluating Input Contributions. Exploiting the diverse information of *Hephaestus Minicubes*, we examine the models' performance across varying configurations to evaluate the importance of each available data source. We vary the input on two dimensions for both classification and segmentation tasks. First, we examine the significance of temporal context in detecting volcanic unrest on both single-timestep and time-series setups. Second, we assess the impact of the auxiliary atmospheric variables by evaluating the models' performance with and without them. In Tabs. 3 and 4, we present the classification and segmentation results, respectively, reporting Precision, Recall, F1-score, and Area Under the Receiver Operating Characteristic curve (AUROC) for the classification task, and Precision, Recall, F1-score, and Intersection over Union (IoU) for the segmentation task. To account for variability introduced by initialization, undersampling, and augmentations, we report the average performance along with standard deviation over three random seeds.

5 Discussion

Overall performance. Examining the performance of the classification baselines in Tab. 3, we observe strong discriminative capability reaching up to $\approx 79\%$ in F1-Score. However, this performance declines in the segmentation task reaching up to $\approx 71\%$. This is not a surprising behavior, as exact delineation of ground deformation is often non-trivial even for experts. Even after discerning true ground deformation fringes from atmospheric contributions, defining the extent of such fringes is an ambiguous process, especially in regions with high incoherence. Such noise is inherent to the data

Table 3: Deformation classification metrics (mean \pm std) for best model configurations between different random seeds. The tables report Precision (Prec), Recall (Rec), F1-score (F1), and Area Under the Receiver Operating Characteristic curve (AUROC) for the deformation class. The best value in each column is marked in **bold**, and the second best is <u>underlined</u>.

	Model	Atm.	Prec	Rec	F1	AUROC
	ResNet-50	Х	83.63 ± 2.94	68.5 ± 3.05	75.29 ± 2.74	96.99 ± 0.39
		\checkmark	87.53 ± 3.7	64.37 ± 1.64	74.18 ± 2.32	96.26 ± 0.88
	MobileNetV3	Х	95.03 ± 1.17	64.77 ± 0.88	77.02 ± 0.37	92.06 ± 2.61
		\checkmark	89.56 ± 0.54	69.02 ± 1.79	78.06 ± 1.13	91.99 ± 2.32
Cinala Timastan	EfficientNetV2	X	76.28 ± 3.74	44.66 ± 2.71	56.18 ± 1.08	74.98 ± 4.13
Single-Timestep		\checkmark	82.28 ± 3.55	49.44 ± 4.22	61.61 ± 3.1	83.25 ± 5.02
	ConvNeXt	Х	93.04 ± 1.85	69.09 ± 2.01	79.25 ± 0.69	90.01 ± 3.88
		\checkmark	93.58 ± 0.3	68.76 ± 1.89	79.26 ± 1.33	90.29 ± 1.75
	ViT	Х	85.16 ± 11.21	55.8 ± 10.03	67.3 ± 10.51	87.58 ± 5.02
		\checkmark	90.75 ± 1.51	59.27 ± 7.47	71.45 ± 5.45	88.6 ± 3.0
Time-Series	ResNet-50	Х	67.79 ± 2.11	60.0 ± 0.36	63.64 ± 0.89	92.68 ± 1.84
		\checkmark	68.65 ± 0.85	59.41 ± 3.27	63.66 ± 2.08	88.0 ± 2.33
	MobileNetV3	Х	64.08 ± 1.38	63.56 ± 3.82	63.79 ± 2.54	89.39 ± 1.16
		\checkmark	63.51 ± 4.46	65.48 ± 5.88	64.29 ± 3.71	89.29 ± 1.06
	EfficientNetV2	Х	68.58 ± 2.94	49.04 ± 7.26	56.88 ± 5.36	82.22 ± 3.5
		\checkmark	64.23 ± 9.07	56.0 ± 2.97	59.42 ± 4.2	82.63 ± 1.54
	ConvNeXt	Х	73.19 ± 2.02	68.89 ± 15.12	70.36 ± 8.63	91.65 ± 5.01
		\checkmark	75.88 ± 7.14	57.48 ± 2.55	65.36 ± 4.3	78.24 ± 3.18
	ViT	Х	80.52 ± 5.61	53.48 ± 4.62	63.92 ± 1.69	91.21 ± 3.26
		\checkmark	71.19 ± 2.74	61.63 ± 13.4	65.54 ± 8.5	89.2 ± 3.42

Table 4: Deformation segmentation metrics (mean \pm std) for best model configurations between different random seeds. The tables report Precision (Prec), Recall (Rec), F1-score (F1), and Intersection over Union (IoU) for the deformation class. The best value in each column is marked in **bold**, and the second best is underlined.

	Model	Atm.	Prec	Rec	F1	IoU
Single-Timestep	DeepLabv3	X ✓	81.41 ± 1.42 81.64 ± 1.77	63.74 ± 0.52 60.82 ± 2.61	71.49 ± 0.30 69.65 ± 1.48	55.63 ± 0.37 53.46 ± 1.75
	UNet	X ✓	$\begin{array}{ c c }\hline 82.43 \pm 0.64 \\ \hline 81.70 \pm 0.41 \end{array}$	61.25 ± 1.27 53.71 ± 1.89	$\frac{70.27 \pm 0.63}{64.80 \pm 1.48}$	$\frac{54.17 \pm 0.75}{47.95 \pm 1.62}$
	SegFormer	X ✓	$ \begin{vmatrix} 80.87 \pm 1.74 \\ 83.13 \pm 2.30 \end{vmatrix} $	$\frac{61.32 \pm 1.96}{55.71 \pm 0.98}$	69.70 ± 0.70 66.68 ± 0.22	53.50 ± 0.82 50.01 ± 0.25
Time-Series	DeepLabv3	X ✓	$\begin{array}{ c c }\hline 75.68 \pm 2.15 \\ \hline 74.64 \pm 2.48 \end{array}$	54.66 ± 1.54 46.67 ± 2.15	63.42 ± 0.25 57.39 ± 1.84	46.44 ± 0.27 40.27 ± 1.82
	UNet	X ✓	74.57 ± 3.10 70.28 ± 4.56	58.57 ± 2.39 44.18 ± 1.64	$\frac{65.50}{54.19} \pm 0.35$ 54.19 ± 2.03	$\frac{48.7 \pm 0.39}{37.2 \pm 1.92}$
	SegFormer	X ✓	79.22 ± 0.55 <u>77.14</u> ± 0.10	$\frac{57.87}{47.88} \pm 1.46$ $\frac{57.87}{47.88} \pm 2.73$	66.87 ± 0.77 59.05 ± 2.10	50.23 ± 0.87 41.92 ± 2.12

itself, making the annotation, and thereby accurate prediction challenging Kondylatos et al. [2025]. Many works have sought to improve segmentation capabilities in such conditions *e.g.* Acuna et al. [2019], Yu et al. [2018b]. Our benchmark establishes a strong reference point for future methods aimed at addressing these complexities.

233

234

235

236

237

Impact of temporal dimension. Examining both classification and segmentation experiments, we note a surprising drop in performance when we use a time-series input. While the theoretical advantages of using time-series data to capture volcanic unrest and account for atmospheric delays

are well established [Dzurisin, 2003], it is important to note that performance comparisons between single-timestep and time-series inputs are not entirely equivalent in our framework. Although both approaches aim to detect the same underlying geophysical phenomena, they operate on different data subsets due to the stricter requirements for constructing valid time-series (See Tab. 2). More importantly, the task formulation shifts: single-timestep models predict deformation masks for individual images, while time-series models segment the union of deformation patterns across multiple observations, effectively capturing the total extent of the affected area. As such, while performance trends are informative, variability in absolute metrics between the two setups should be interpreted with these structural differences in mind.

Impact of atmospheric variables. The impact of atmospheric information varies across tasks. In classification, some models exhibit modest performance gains with the inclusion of atmospheric context, with EfficientNetV2 and ViT demonstrating a consistent improvement both in the single-timestep and the time-series settings. In contrast, atmospheric information does not lead to improved performance in segmentation models. This discrepancy likely reflects the different demands of the two tasks. While atmospheric variables offer valuable insights into the atmospheric conditions, they are available at a substantially coarser spatial resolution than the InSAR data itself. This resolution mismatch may constrain their effectiveness, particularly in segmentation tasks where fine-grained spatial detail is critical for distinguishing true deformation from confounding patterns. Moreover, InSAR data offer significantly stronger information for the detailed delineation of ground deformation, which may lead it to dominate the learning process diminishing the influence of atmospheric input.

Motivated by this discussion, we examine specific cases where the inclusion of atmospheric variables helps the model mitigate false positives caused by atmospheric delays in semantic segmentation. In doing so, we aim to explore potential nuances that are not fully captured by aggregate performance metrics, in order to better understand the limitations of our baseline modeling approach and identify possible paths forward. In Fig. 4 we compare predicted masks from models trained with and without atmospheric inputs. Along with this, we also investigate the mean lateral gradient of total column water vapour (TCWV) across the primary and secondary SAR acquisition dates, contextualized against the broader distribution of mean TCWV gradients for the given frame, as lateral variation in atmospheric moisture is a key driver of atmospheric phase delays in InSAR measurements. Notably, both scenes exhibit high lateral variation in TCWV, suggesting that the atmospheric component can, under specific conditions, contribute meaningful information about phase delay artifacts. However, incorporating this knowledge into deep learning models remains a non-trivial challenge, particularly due to the aforementioned mismatch in resolution and information density between atmospheric inputs and InSAR data.

Finally, the inclusion of the atmospheric component as additional channels, for both primary and secondary SAR acquisitions, comes with a significant increase in input dimensionality, thereby adding to model complexity and potentially hindering performance. Effective and efficient handling of the atmospheric component remains a non-trivial and open challenge. Addressing this issue may require more sophisticated and context-aware approaches that model both the internal relationships of the atmospheric variables, as well as cross-modal interactions with the InSAR imagery.

5.1 Limitations

Despite extensive efforts in the annotation process, which incorporates validation from both internal and external sources, annotating InSAR imagery remains inherently challenging. The labels used for training and evaluation are not free from noise, reflecting the complexities involved in detecting volcanic unrest. The subtlety and variability of volcanic deformation patterns often lead to ambiguities in interpretation, making accurate and consistent annotation difficult, especially in regions with low signal coherence. This limitation is compounded by the fact that some volcanic events are subtle or evolve over extended periods, which can further complicate the identification and classification of deformation signals in the data.

Additionally, the temporal scale and nature of volcanic activity introduce significant challenges. Some unrest episodes are subtle and unfold over many years, while others are abrupt and short-lived. The frequency and expression of these events vary widely between volcanoes; some may remain inactive for extended periods before suddenly exhibiting signs of unrest. Consequently, certain volcanoes may not show any positive samples during the dataset's timeframe, limiting the model's exposure to their activity patterns. As a result, models trained under such constraints may struggle to generalize

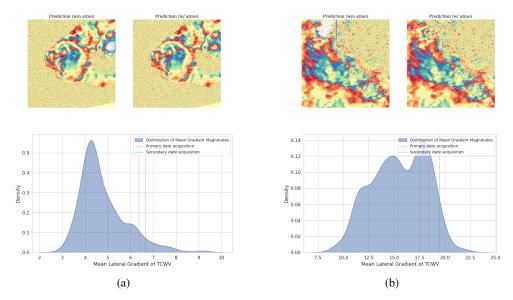


Figure 4: Compact view of DeepLabV3 predictions (top) with and without atmospheric input and the associated mean lateral gradient distributions of TCWV (bottom) for two samples: (a) Sierra Negra volcano, Galápagos islands. (15/3/2020 - 15/04/2020), (b) Valle de Piedras Encimadas region in Puebla, Mexico (05-08-2020 - 17/08/2020). We examine, representative examples where the inclusion of atmospheric variables leads to improved segmentation performance by mitigating false positives linked to atmospheric artifacts. In both cases, this improvement coincides with high lateral variation in TCWV, hinting at the potential value of atmospheric variables.

effectively in operational settings, particularly when tasked with detecting unrest at volcanoes with sparse or no prior positive observations.

296 6 Conclusion

Hephaestus Minicubes represents a significant advancement in data-driven volcanic unrest monitoring. By integrating high-resolution InSAR phase and coherence products, digital elevation models, atmospheric information and expert annotations into structured spatiotemporal datacubes, the dataset provides a rich foundation for machine learning research in this domain. The additional inclusion of atmospheric variables addresses a key challenge in InSAR analysis—distinguishing true ground deformation from atmospheric phase delays that can mimic similar patterns.

Building on *Hephaestus Minicubes*, we provide an extensive benchmark demonstrating the dataset's ability to support volcanic unrest monitoring as a multi-modal, multi-temporal problem. We examine two fundamental tasks, *i.e.* InSAR classification and semantic segmentation, across both single-timestep and time-series formats. Our results establish strong baselines for future applications, assessing the capacity of state-of-the-art architectures in this domain. The inclusion of time-series and atmospheric data—while theoretically promising—reveals practical complexities. Similarly, while atmospheric variables can help mitigate false positives from phase delay artifacts, their coarse spatial resolution and increased model complexity limit their overall utility in segmentation tasks. These findings underscore the importance of developing more nuanced, context-aware modeling strategies that can effectively leverage atmospheric information and temporal context, pointing to promising directions for future research.

Hephaestus Minicubes is, to the best of our knowledge, the first large-scale machine learning ready dataset to incorporate such diverse information. We believe *Hephaestus Minicubes* will be a valuable asset to the research community, contributing to the growing integration of data-driven methods within Earth science applications.

References

- David Acuna, Amlan Kar, and Sanja Fidler. Devil is in the edges: Learning semantic boundaries from noisy annotations. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11075–11083, 2019.
- N. Anantrasirichai, J. Biggs, F. Albino, P. Hill, and D. Bull. Application of Machine Learning to Classification of Volcanic Deformation in Routinely Generated InSAR Data. *Journal of Geophysical Research: Solid Earth*, 123(8):6592–6606, August 2018. ISSN 2169-9313, 2169-9356. doi: 10.1029/2018JB015911. URL https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JB015911.
- Nantheera Anantrasirichai, Juliet Biggs, Fabien Albino, and David Bull. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. *Remote Sensing of Environment*, 230:111179, 2019.
- Homa Ansari, Marc Ruβwurm, Mohsin Ali, Sina Montazeri, Alessandro Parizzi, and Xiao Xiang Zhu.
 Insar displacement time series mining: A machine learning approach. In 2021 IEEE International
 Geoscience and Remote Sensing Symposium IGARSS, pages 3301–3304. IEEE, 2021.
- François Beauducel, Pierre Briole, and Jean-Luc Froger. Volcano-wide fringes in ers synthetic aperture radar interferograms of etna (1992–1998): Deformation or tropospheric effect? *Journal of Geophysical Research: Solid Earth*, 105(B7):16391–16402, 2000.
- Teo Beker, Homa Ansari, Sina Montazeri, Qian Song, and Xiao Xiang Zhu. Deep learning for subtle volcanic deformation detection with insar data in central volcanic zone. *IEEE Transactions on Geoscience and Remote Sensing*, 61:1–20, 2023.
- J Biggs, SK Ebmeier, WP Aspinall, Z Lu, ME Pritchard, RSJ Sparks, and TA Mather. Global link
 between deformation and volcanic eruption quantified by satellite imagery. *Nature communications*,
 5(1):1–7, 2014.
- Nikolaos Ioannis Bountos, Dimitrios Michail, and Ioannis Papoutsis. Learning from synthetic insar with vision transformers: The case of volcanic unrest detection. *IEEE Transactions on Geoscience and Remote Sensing*, 60:1–12, 2022a.
- Nikolaos Ioannis Bountos, Ioannis Papoutsis, Dimitrios Michail, and Nantheera Anantrasirichai.
 Self-Supervised Contrastive Learning for Volcanic Unrest Detection. *IEEE Geoscience and Remote Sensing Letters*, 19:1–5, 2022b. ISSN 1545-598X, 1558-0571. doi: 10.1109/LGRS.2021.3104506.
 URL https://ieeexplore.ieee.org/document/9517282/.
- Nikolaos Ioannis Bountos, Ioannis Papoutsis, Dimitrios Michail, Andreas Karavias, Panagiotis Elias, and Isaak Parcharidis. Hephaestus: A Large Scale Multitask Dataset Towards InSAR Understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern* Recognition (CVPR) Workshops, pages 1453–1462, June 2022c.
- Nikolaos Ioannis Bountos, Maria Sdraka, Angelos Zavras, Andreas Karavias, Ilektra Karasante,
 Themistocles Herekakis, Angeliki Thanasou, Dimitrios Michail, and Ioannis Papoutsis. Kuro siwo:
 33 billion m² under the water. a global multi-temporal satellite dataset for rapid flood mapping.
 Advances in Neural Information Processing Systems, 37:38105–38121, 2025.
- Clayton MJ Brengman and William D Barnhart. Identification of surface deformation in insar using machine learning. *Geochemistry, Geophysics, Geosystems*, 22(3):e2020GC009204, 2021.
- Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based clustering based on hierarchical density estimates. In *Pacific-Asia conference on knowledge discovery and data mining*, pages 160–172. Springer, 2013.
- Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation. *arXiv preprint arXiv:1706.05587*, 2017.
- Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch distribution modeling framework for anomaly detection and localization. In *International conference* on pattern recognition, pages 475–489. Springer, 2021.

- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pages 248–255. Ieee, 2009.
- M-P Doin, Cécile Lasserre, Gilles Peltzer, Olivier Cavalié, and Cécile Doubre. Corrections of
 stratified tropospheric delays in sar interferometry: Validation with global atmospheric models.
 Journal of Applied Geophysics, 69(1):35–50, 2009.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- Daniel Dzurisin. A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. *Reviews of Geophysics*, 41(1), 2003. doi: https://doi.org/10.1029/2001RG000107. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001RG000107.
- Tom G Farr, Paul A Rosen, Edward Caro, Robert Crippen, Riley Duren, Scott Hensley, Michael Kobrick, Mimi Paller, Ernesto Rodriguez, Ladislav Roth, et al. The shuttle radar topography mission. *Reviews of geophysics*, 45(2), 2007.
- M. Gaddes, A. Hooper, and F. Albino. Simultaneous Classification and Location of Volcanic Deformation in SAR Interferograms Using a Convolutional Neural Network. *Earth and Space Science*,
 11(6):e2024EA003679, June 2024. ISSN 2333-5084, 2333-5084. doi: 10.1029/2024EA003679.
 URL https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024EA003679.
- Ramon F Hanssen. *Radar interferometry: data interpretation and error analysis*, volume 2. Springer Science & Business Media, 2001.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater,
 Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis. *Quarterly journal of the royal meteorological society*, 146(730):1999–2049, 2020.
- Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. Searching for mobilenetv3. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (*ICCV*), October 2019.
- Spyros Kondylatos, Nikolaos Ioannis Bountos, Ioannis Prapas, Angelos Zavras, Gustau Camps-Valls,
 and Ioannis Papoutsis. Probabilistic machine learning for noisy labels in earth observation. arXiv
 preprint arXiv:2504.03478, 2025.
- Alexandre Lacoste, Nils Lehmann, Pau Rodriguez, Evan Sherwin, Hannah Kerner, Björn Lütjens,
 Jeremy Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, et al. Geo-bench: Toward
 foundation models for earth monitoring. *Advances in Neural Information Processing Systems*, 36:
 51080–51093, 2023.
- Milan Lazeckỳ, Karsten Spaans, Pablo J González, Yasser Maghsoudi, Yu Morishita, Fabien Albino,
 John Elliott, Nicholas Greenall, Emma Hatton, Andrew Hooper, et al. Licsar: An automatic insar
 tool for measuring and monitoring tectonic and volcanic activity. *Remote Sensing*, 12(15):2430,
 2020.
- Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 A convnet for the 2020s. Proceedings of the IEEE/CVF Conference on Computer Vision and
 Pattern Recognition, pages 11976–11986, 2022.
- Susan C Loughlin, Robert Stephen John Sparks, Steve Sparks, Sarah K Brown, Susanna F Jenkins, and Charlotte Vye-Brown. *Global volcanic hazards and risk*. Cambridge University Press, 2015.

- Didier Massonnet and Kurt L Feigl. Radar interferometry and its application to changes in the earth's surface. *Reviews of geophysics*, 36(4):441–500, 1998.
- Alistair Miles, John Kirkham, Martin Durant, James Bourbeau, Tarik Onalan, Joe Hamman, Zain
 Patel, shikharsg, Matthew Rocklin, Raphael dussin, Vincent Schut, Elliott Sales de Andrade,
 Ryan Abernathey, Charles Noyes, sbalmer, pyup.io bot, Tommy Tran, Stephan Saalfeld, Justin
 Swaney, and Anderson Banihirwe. zarr-developers/zarr-python: v2.4.0, 2020. URL https:
 //doi.org/10.5281/zenodo.3773450.
- Amy L. Parker, Juliet Biggs, Richard J. Walters, Susanna K. Ebmeier, Tim J. Wright, Nicholas A.
 Teanby, and Zhong Lu. Systematic assessment of atmospheric uncertainties for insar data at
 volcanic arcs using large-scale atmospheric models: Application to the cascade volcanoes, united
 states. Remote Sensing of Environment, 170:102–114, 2015. ISSN 0034-4257. doi: https://doi.
 org/10.1016/j.rse.2015.09.003. URL https://www.sciencedirect.com/science/article/
 pii/S0034425715301267.
- Michael P. Poland. *Remote Sensing of Volcano Deformation and Surface Change*, pages 173–203. Springer International Publishing, Cham, 2024. ISBN 978-3-031-59306-2. doi: 10.1007/978-3-031-59306-2_9. URL https://doi.org/10.1007/978-3-031-59306-2_9.
- Robert Gabriel Popescu, Nantheera Anantrasirichai, and Juliet Biggs. Anomaly detection for the identification of volcanic unrest in satellite imagery. In 2024 IEEE International Conference on Image Processing (ICIP), pages 2327–2333. IEEE, 2024.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. *Medical Image Computing and Computer-Assisted Intervention–MICCAI* 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241, 2015.
- Maria Sdraka, Alkinoos Dimakos, Alexandros Malounis, Zisoula Ntasiou, Konstantinos Karantzalos,
 Dimitrios Michail, and Ioannis Papoutsis. Floga: A machine learning ready dataset, a benchmark
 and a novel deep learning model for burnt area mapping with sentinel-2. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 2024.
- M. Shirzaei and R. Bürgmann. Topography correlated atmospheric delay correction in radar interferometry using wavelet transforms. *Geophysical Research Letters*, 39(1), 2012. doi: https://doi.org/10.1029/2011GL049971. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GL049971.
- Karsten Spaans and Andrew Hooper. Insar processing for volcano monitoring and other near-real
 time applications. *Journal of Geophysical Research: Solid Earth*, 121(4):2947–2960, 2016.
- Gencer Sumbul, Arne De Wall, Tristan Kreuziger, Filipe Marcelino, Hugo Costa, Pedro Benevides,
 Mario Caetano, Begüm Demir, and Volker Markl. Bigearthnet-mm: A large-scale, multimodal,
 multilabel benchmark archive for remote sensing image classification and retrieval [software and
 data sets]. *IEEE Geoscience and Remote Sensing Magazine*, 9(3):174–180, 2021.
- Jian Sun, Christelle Wauthier, Kirsten Stephens, Melissa Gervais, Guido Cervone, Peter La Femina,
 and Machel Higgins. Automatic detection of volcanic surface deformation using deep learning.
 Journal of Geophysical Research: Solid Earth, 125(9):e2020JB019840, 2020.
- Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In Marina Meila
 and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
 volume 139 of Proceedings of Machine Learning Research, pages 10096–10106. PMLR, 18–24
 Jul 2021. URL https://proceedings.mlr.press/v139/tan21a.html.
- R. I. Tilling. The critical role of volcano monitoring in risk reduction. *Advances in Geosciences*, 14:3–11, 2008. doi: 10.5194/adgeo-14-3-2008. URL https://adgeo.copernicus.org/articles/14/3/2008/.
- Sébastien Valade, Andreas Ley, Francesco Massimetti, Olivier D'Hondt, Marco Laiolo, Diego Coppola, David Loibl, Olaf Hellwich, and Thomas R Walter. Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: The mounts monitoring system. *Remote Sensing*, 11(13):1528, 2019.

- Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
 Simple and efficient design for semantic segmentation with transformers. *Advances in neural information processing systems*, 34:12077–12090, 2021.
- Chen Yu, Zhenhong Li, and Nigel T Penna. Interferometric synthetic aperture radar atmospheric
 correction using a gps-based iterative tropospheric decomposition model. *Remote Sensing of Environment*, 204:109–121, 2018a.
- Zhiding Yu, Weiyang Liu, Yang Zou, Chen Feng, Srikumar Ramalingam, BVK Kumar, and Jan
 Kautz. Simultaneous edge alignment and learning. In *Proceedings of the European conference on computer vision (ECCV)*, pages 388–404, 2018b.
- Howard A Zebker, Paul A Rosen, and Scott Hensley. Atmospheric effects in interferometric synthetic
 aperture radar surface deformation and topographic maps. *Journal of geophysical research: solid* earth, 102(B4):7547–7563, 1997.
- Xiao Xiang Zhu, Sina Montazeri, Mohsin Ali, Yuansheng Hua, Yuanyuan Wang, Lichao Mou,
 Yilei Shi, Feng Xu, and Richard Bamler. Deep learning meets sar: Concepts, models, pitfalls,
 and perspectives. *IEEE Geoscience and Remote Sensing Magazine*, 9(4):143–172, 2021. doi: 10.1109/MGRS.2020.3046356.

2 NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main claims of the paper consist of: a) introducing our dataset *Hephaestus Minicubes* which we present in detail in Section 3 and provide public access to in Section 1 along with the relevant code, b) providing a comprehensive benchmark to demonstrate the datasets ability to approach the task of volcanic unrest via different problem formulations which we present in Section 4, c) highlighting key challenges and limitations which we do in Section 5.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the paper are outlined in the whole of Section 5 and discussed in detail in Subsection 5.1.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code to reproduce the experimental results is made publicly available in 1 with the experimental setup explained in 4 and more detailed information provided in the Supplemental Material.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper provides open access to the data and code in Section 1, with detailed instructions to faithfully reproduce the experimental results described in the Supplemental Material and further documented in the linked repository.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (*e.g.*, data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide all major training and test details in Section 4 and further detail the experimental setup in the Supplemental Material and in the publicly provided code repository.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results provided in Section 4 represent the mean and standard deviation calculated over 3 different random seeds, with the factors of variability clearly explained.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources needed to run the experiments in the Supplemental Matieral.

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted fully conforms with the NeurIPS Code of Ethics. The dataset does not include sensitive information relevant to privacy and consent while research impact is discussed in Section 5.

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impacts of the provided research are discussed in 5, more specifically talking about the limitations of the use of such methods in an operational setting.

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks for misuse.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original owners of the assets we use are properly credited throughout the paper. This is more specific to the different data sources the dataset consists of as mentioned in 3. Licenses and terms of use are explicitly mentioned in Section 1 and further included in the code repository and dataset metadata croissant file.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Detailed description of the available data sources introduced in the dataset are provided in Section 3 and in detail in Supplemental Material. Further documentation is provided in the code repository made available in Section 1.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.