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Abstract

Ground deformation is regarded in volcanology as a key precursor signal preced-1

ing volcanic eruptions. Satellite-based Interferometric Synthetic Aperture Radar2

(InSAR) enables consistent, global-scale deformation tracking; however, deep3

learning methods remain largely unexplored in this domain, mainly due to the4

lack of a curated machine learning dataset. In this work, we build on the existing5

Hephaestus dataset, and introduce Hephaestus Minicubes, a global collection of 386

spatiotemporal datacubes offering high resolution, multi-source and multi-temporal7

information, covering 44 of the world’s most active volcanoes over a 7-year period.8

Each spatiotemporal datacube integrates InSAR products, topographic data, as9

well as atmospheric variables which are known to introduce signal delays that can10

mimic ground deformation in InSAR imagery. Furthermore, we provide expert11

annotations detailing the type, intensity and spatial extent of deformation events,12

along with rich text descriptions of the observed scenes. Finally, we present a13

comprehensive benchmark, demonstrating Hephaestus Minicubes’ ability to sup-14

port volcanic unrest monitoring as a multi-modal, multi-temporal classification15

and semantic segmentation task, establishing strong baselines with state-of-the-art16

architectures. This work aims to advance machine learning research in volcanic17

monitoring, contributing to the growing integration of data-driven methods within18

Earth science applications.19

1 Introduction20

Ground deformation monitoring plays a vital role in volcanic hazard assessment, providing early21

insights into subsurface magmatic activity [Dzurisin, 2003]. It is widely regarded as one of the most22

reliable eruption precursors, with detectable signals that may emerge from days to even years before23

an event [Biggs et al., 2014]. Timely detection of such signals can offer critical lead time for risk24

mitigation and emergency response efforts [Tilling, 2008].25

While ground-based networks, particularly those relying on Global Navigation Satellite Systems26

(GNSS), have traditionally been used to monitor deformation [Poland, 2024], many volcanoes27
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Figure 1: Hephaestus Minicubes data sources (left) vis-à-vis the spatial distribution of the minicubes
(right). Box sizes on the map are proportional to frame dimensions and color intensity reflects the
number of available products per region.

worldwide remain poorly instrumented or entirely unmonitored Loughlin et al. [2015]. This limitation,28

coupled with the growing availability of publicly accessible satellite data, from missions such as29

Copernicus Sentinel, has prompted a shift toward satellite-based approaches Spaans and Hooper30

[2016]. Among these, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a powerful31

tool for global monitoring of surface motion [Hanssen, 2001].32

InSAR estimates surface displacement with millimeter-level precision by analyzing phase differences33

between two or more SAR acquisitions from the same location at different times, while coherence34

quantifies the similarity between signals, serving as a measure of phase reliability and surface stability.35

A major challenge in interpreting InSAR data is distinguishing true ground deformation from36

atmospheric propagation delays. Lateral variations in ionospheric electron density and tropospheric37

water vapor concentration can alter the radar signal’s propagation time, introducing phase delays38

that contaminate the InSAR deformation signal [Zebker et al., 1997, Massonnet and Feigl, 1998,39

Beauducel et al., 2000]. These delays can produce artifacts that mimic real deformation, sometimes40

manifesting as apparent centimeter-scale ground motion [Doin et al., 2009], thereby complicating data41

interpretation and downstream analysis. The issue is even more prominent in volcanic regions, where42

complex atmospheric conditions—especially vertical stratification in mountainous terrain—can43

generate deformation-like patterns. This increases the risk of false positives in unrest detection,44

especially over elevated topography such as volcanoes and high-altitude ridges [Parker et al., 2015,45

Shirzaei and Bürgmann, 2012].46

Deep learning pipelines have been successfully developed for various SAR-based tasks in Earth47

observation [Zhu et al., 2021], including natural disasters mapping (e.g. flood mapping Bountos48

et al. [2025]). However, their application to InSAR remains limited, mainly due to the lack of a49

curated machine learning dataset. This poses a significant barrier as the processing, understanding50

and annotation of InSAR products require specialized domain expertise. Hephaestus [Bountos et al.,51

2022c] marked the first attempt to construct a unique, expert-annotated InSAR dataset centered around52

volcanic activity monitoring. Despite its contributions, Hephaestus exhibits several limitations, which53

we discuss in detail in section 3.1, that have hindered its broader adoption within the community.54

Our work builds on the Hephaestus dataset, by enhancing it both in ground sampling distance55

(GSD), as well as in information depth, by introducing additional data sources, and engineering its56

structure to better support time-series analysis. Hephaestus Minicubes introduces a collection of57

high-resolution spatiotemporal datacubes integrating InSAR phase difference and coherence products,58

digital elevation models (DEMs), and relevant atmospheric variables known to confound deformation59

signals (Fig. 1). In addition, we include a diverse set of expert annotations characterizing deformation60

type, intensity, and extent. Leveraging these improvements, we establish a comprehensive benchmark61

demonstrating the ability of Hephaestus Minicubes to support volcanic unrest monitoring as a multi-62

modal, multi-temporal classification and semantic segmentation task. We report strong baselines63
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(a) Dyke (b) Mogi (c) Sill (d) Spheroid (e) Earthquake (f) Unidentified

Figure 2: Examples of the different ground deformation types available in Hephaestus Minicubes.

using state-of-the-art architectures, while also identifying key limitations and challenges associated64

with applying deep learning in this context.65

To support further research and promote the application of machine learning in InSAR-based volcanic66

unrest monitoring, we publicly release the Hephaestus Minicubes dataset at https://github.com/Orion-67

AI-Lab/Hephaestus-minicubes. The repository includes comprehensive documentation and is actively68

maintained to provide access to the latest version of the dataset. All code is released under the MIT69

License 1 and data under the CC-BY license 2.70

2 Related Work71

Despite the recent success of deep learning in Earth Observation (e.g. [Sumbul et al., 2021, Sdraka72

et al., 2024]), its adoption in the InSAR domain has remained limited. One of the main reasons for73

this is the lack of a large curated dataset, primarily due to a) the scarcity of positive instances and b)74

the high cost of the annotation process, which demands expert knowledge.75

To overcome these challenges, and alleviate the need for time-consuming manual annotation, many76

works leveraged synthetically generated datasets, and models pretrained on optical tasks. In particular,77

[Anantrasirichai et al., 2018], relied on major data augmentations and transfer learning from ImageNet78

[Deng et al., 2009]. Building on this, several works focused on synthetically generated InSAR data to79

train Convolutional Neural Networks (CNNs) for ground deformation detection e.g. [Brengman and80

Barnhart, 2021, Anantrasirichai et al., 2019] and [Gaddes et al., 2024]. [Valade et al., 2019] utilized81

synthetic data to train a CNN to predict the associated phase gradients and phase decorrelation mask,82

which can later be used to detect ground displacement. Similarly, [Beker et al., 2023] utilized a83

synthetic dataset to train CNNs to detect subtle ground deformation from velocity maps. [Bountos84

et al., 2022a] proposed to train transformer architectures on synthetically generated InSAR using a85

prototype learning framework, assigning classes with a nearest-neighbor approach comparing the86

sample’s representation with the class prototypes.87

Bountos et al. [2022b] diverged from this line of research and proposed the utilization of in-domain88

self-supervised contrastive learning to create reliable feature extractors without the need for human89

annotations, emphasizing the performance improvement compared to pretrained weights from optical90

tasks. In a separate line of work, [Popescu et al., 2024] proposed to formulate the volcanic ground91

deformation identification problem as an anomaly detection task utilizing Patch Distribution Modeling92

[Defard et al., 2021].93

Given the gradual evolution of volcanic activity, time-series analysis is critical for effective monitoring,94

with several works exploring this direction. [Sun et al., 2020] trained a CNN on synthetic data,95

generated using the Mogi model as the deformation source. They created 20,000 time-series groups,96

with each group containing 20 time-consecutive pairs of unwrapped surface displacement maps.97

Moreover, [Ansari et al., 2021] proposed an unsupervised pipeline to cluster similar displacement98

patterns from InSAR time-series, building on a Long Short Term Memory (LSTM) autoencoder and99

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) Campello100

et al. [2013].101

Finally, [Bountos et al., 2022c] introduced Hephaestus in an attempt to address the data scarcity at its102

core. Hephaestus was the largest manually annotated InSAR dataset to date with global coverage. Its103

introduction addressed many open gaps enabling the deployment of large deep learning models on a104

1https://opensource.org/license/MIT
2https://creativecommons.org/licenses/by/4.0/
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variety of ground deformation related problems, while paving the way for the adaptation of complex105

multi-modal tasks to the InSAR domain e.g. InSAR captioning and text to InSAR generation. Despite106

its significance, however, Hephaestus still presents notable limitations, which we discuss in detail in107

Section 3.1.108

3 Dataset Construction109

3.1 Building on Hephaestus110

The Hephaestus dataset represents a significant step towards advancing machine learning-based111

approaches for volcanic unrest monitoring. While it offers rich, expert annotations across a global112

set of volcanoes, its effectiveness in high-precision and time-series geophysical analysis is limited113

by several factors. First, the spatial resolution of the annotated imagery is relatively coarse, at114

approximately 333m × 333m per pixel. Second, the dataset consists of RGB composites of the115

InSAR products, lacking physically interpretable pixel values and geolocation information. Finally,116

the dataset structure is not designed for spatiotemporal modeling, lacking a machine-learning-friendly117

format. Recognizing both the promise and the limitations of Hephaestus, we take steps to redefine118

the dataset by addressing its weaknesses and expanding its scope.119

3.2 Hephaestus Minicubes120

In this work we introduce Hephaestus Minicubes, a collection of 38 datacubes covering 44 of the121

most active volcanoes globally from 2014 to 2021, with a significantly enhanced spatial resolution122

of approximately 100m × 100m per pixel, containing a total of 19,942 annotated samples. Each123

datacube integrates InSAR products, topographic information, atmospheric variables that are known124

to introduce delays to SAR signals, combined under a diverse collection of expert annotations. The125

datacubes are stored in a compressed Zarr format [Miles et al., 2020], as structured multi-dimensional126

arrays optimized for efficient spatiotemporal analysis, with the full dataset totaling 1.7 TB.127

In the following paragraphs, we provide a detailed description of each component of the Hephaestus128

Minicubes dataset, along with important design choices made during its development.129

Table 1: Summary of an-
notated activity variables

Annotation Variable Count

Label
Non-Deformation 18089
Deformation 1798
Earthquake 55

Activity Type
Sill 1258
Dyke 527
Mogi 333
Earthquake 55
Unidentified 50
Spheroid 25

Intensity Level
Low 908
Medium 533
High 751
None 55

Phase
Rest 18089
Unrest 1664
Rebound 134
None 15

InSAR Products. The InSAR component lies at the core of the dataset,130

including: a) the wrapped phase difference, which captures surface dis-131

placement between SAR acquisitions, and b) the coherence, which mea-132

sures the quality of the interferometric signal. These products are acquired133

by the COMET-LiCSAR system, which processes Copernicus Sentinel-1134

imagery for global volcano surveillance, in a resolution of approximately135

100m × 100m per pixel. For more information on the InSAR generation136

and processing pipeline, readers are referred to [Lazeckỳ et al., 2020].137

Topography. Stratified atmospheric noise is often correlated with to-138

pography. To capture this we include the Digital Elevation Model (DEM)139

from LiCSAR, based on the 1 arc-second Shuttle Radar Topography Mis-140

sion DEM [Farr et al., 2007]. This static variable is downsampled for141

each frame to match the resolution of the InSAR products, approximately142

100m × 100m.143

Atmospheric Component. A key advancement of Hephaestus144

Minicubes is the explicit integration of atmospheric variables known to145

directly contribute to phase delays in the SAR signal. These delays may146

produce patterns in InSAR imagery that closely resemble true surface147

deformation, [Zebker et al., 1997, Massonnet and Feigl, 1998, Beauducel148

et al., 2000] Following state-of-the-art atmospheric correction methods [Yu149

et al., 2018a] we incorporate atmospheric variables that represent humidity,150

temperature, and pressure. Specifically we include Total Column Water Vapour, Surface Pressure, and151

the Vertical Integral of Temperature, from the ERA5 single-level reanalysis dataset [Hersbach et al.,152

2020], for both primary and secondary SAR acquisition dates. We prioritize vertically integrated153

atmospheric measures, as the impact of atmospheric delays is not confined to specific atmospheric154
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Figure 3: Schematic representation of the time-series construction method. A single primary
acquisition date is associated with multiple secondary dates, forming a sequence of InSAR products.
Each image displays the phase difference with an overlaid mask to highlight areas with apparent
deformation.

layers. We select the ERA5 data closest in time to each SAR acquisition and resample them to align155

with the spatial resolution of the InSAR data.156

Expert Annotations. Hephaestus Minicubes builds upon the manually curated annotations provided157

by Hephaestus, adapting them to the datacube format by converting relevant labels into spatiotemporal158

masks and carefully addressing differences in spatial resolution and alignment. The available159

spatiotemporal masks include multi-level information on ground deformation, activity type (e.g. Dyke,160

Sill, Spheroid, etc.), and intensity level (e.g. Low, Medium, High), while the related volcano’s161

phase (e.g. Rest, Unrest, Rebound) is represented as a categorical variable (see Tab.1). Additional162

annotations provide auxiliary information on the presence and type of noise, quality of the samples,163

annotator confidence and a textual description, offering expert commentary and annotation rationale.164

Detailed information on all available labels is provided in the Supplemental Material.165

4 Benchmark166

To enable a fair comparison of future methods for InSAR based volcanic unrest detection, we167

provide the first benchmark on Hephaestus Minicubes. This benchmark is designed to serve as a168

strong baseline across two fundamental tasks: binary ground deformation classification and semantic169

segmentation. To transform our problem to a binary task, we group all sub-classes of ground170

deformation (e.g. Mogi, Sill) into one class. Below we present the main decisions made for the171

experimental setup. For detailed information on the complete experimental framework, readers are172

referred to the Supplemental Material.173

Data Split. We apply a temporal data split, separating InSAR products by the primary acquisition174

date. The training set includes interferograms with the primary SAR acquired between January 1,175

2014, and May 31, 2019, while the validation from June 1, 2019, to December 31, 2019. Finally176

the test set consists of interferograms with primary acquisition dates between January 1, 2020, and177

December 31, 2021. This split was carefully chosen to maintain spatial diversity by including data178

from all the available frames, with an adequate ratio of positive samples in each set, as seen in Tab. 2.179

Data Preparation. To reduce input size, each InSAR product is cropped to 512 × 512 pixels.180

We apply cropping with a random offset from the frame center, ensuring any existing deformation181

patterns are included within the cropped area.We address class imbalance, by undersampling during182

training, using all available positive samples and an equal number of random negative samples in183

each epoch, and apply data augmentation to improve model generalization.184

Constructing InSAR Time-Series. Constructing meaningful InSAR time-series is non-trivial due185

to the bi-temporal nature of each product, characterized by both primary and secondary acquisition186

dates. Moreover, the temporal gap between the primary and secondary acquisition in Hephaestus is187

not fixed, making temporal ordering highly ambiguous. In our framework, we define a valid time188

series as a sequence of interferograms that share the same primary and different secondary acquisition189
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Table 2: Summary of the temporal split windows and class distribution for both the single-timestep
and time-series approaches.

Split Dates Single-Timestep Time-Series

Positives Negatives Positives Negatives

Training Jan 2014 – May 2019 1143 8697 701 2626
Validation Jun 2019 – Dec 2019 154 2416 75 728

Test Jan 2020 – Dec 2021 509 5992 225 1776

Sum Jan 2014 – Dec 2021 1806 17105 1001 5130

dates. These sequences are then ordered chronologically based on the secondary dates, as illustrated190

in Fig. 3.191

This formulation allows models to observe the evolution of deformation relative to a fixed reference,192

providing insights into the dynamics of volcanic unrest. At the same time, sampling different193

secondary acquisitions can expose the model to variations in atmospheric noise, thereby encouraging194

learning of more robust, discriminative features [Dzurisin, 2003].195

The number of valid InSAR products per primary SAR acquisition date varies across the dataset.196

To maintain a consistent input shape for model training, we either select all subsets that match197

the target sequence length or apply controlled duplication of available products when necessary.198

After examining the distribution of available secondary dates for each primary date, we choose to199

construct time-series of length 3, aiming for a balance between a rich temporal sequence and limited200

duplications.201

In the time-series setting, labels are aggregated across the sequence. For the classification task, a202

sequence is considered positive if at least one of the products is labeled as showing deformation. For203

the segmentation task, the target mask is defined as the union of all individual deformation masks204

across the sequence. This approach ensures that models can leverage temporal information while205

maintaining a single target.206

Models. We employ a diverse set of state-of-the-art models, widely used in Earth observation207

benchmarks (e.g. GEO-Bench Lacoste et al. [2023]), assessing their capacity for ground deformation208

classification and segmentation. For the classification task, we include ResNet-50 [He et al., 2016],209

Vision Transformer (ViT) [Dosovitskiy et al., 2020], ConvNeXt [Liu et al., 2022], MobileNetV3210

[Howard et al., 2019], and EfficientNetV2 [Tan and Le, 2021], all pretrained on ImageNet [Deng211

et al., 2009]. For the segmentation task, we use UNet [Ronneberger et al., 2015], DeepLabv3 [Chen212

et al., 2017] and SegFormer [Xie et al., 2021], with ResNet-50 backbones pretrained on ImageNet.213

Evaluating Input Contributions. Exploiting the diverse information of Hephaestus Minicubes, we214

examine the models’ performance across varying configurations to evaluate the importance of each215

available data source. We vary the input on two dimensions for both classification and segmentation216

tasks. First, we examine the significance of temporal context in detecting volcanic unrest on both217

single-timestep and time-series setups. Second, we assess the impact of the auxiliary atmospheric218

variables by evaluating the models’ performance with and without them. In Tabs. 3 and 4, we present219

the classification and segmentation results, respectively, reporting Precision, Recall, F1-score, and220

Area Under the Receiver Operating Characteristic curve (AUROC) for the classification task, and221

Precision, Recall, F1-score, and Intersection over Union (IoU) for the segmentation task. To account222

for variability introduced by initialization, undersampling, and augmentations, we report the average223

performance along with standard deviation over three random seeds.224

5 Discussion225

Overall performance. Examining the performance of the classification baselines in Tab. 3, we ob-226

serve strong discriminative capability reaching up to ≈ 79% in F1-Score. However, this performance227

declines in the segmentation task reaching up to ≈ 71%. This is not a surprising behavior, as exact228

delineation of ground deformation is often non-trivial even for experts. Even after discerning true229

ground deformation fringes from atmospheric contributions, defining the extent of such fringes is an230

ambiguous process, especially in regions with high incoherence. Such noise is inherent to the data231

6



Table 3: Deformation classification metrics (mean ± std) for best model configurations between
different random seeds. The tables report Precision (Prec), Recall (Rec), F1-score (F1), and Area
Under the Receiver Operating Characteristic curve (AUROC) for the deformation class. The best
value in each column is marked in bold, and the second best is underlined.

Model Atm. Prec Rec F1 AUROC

Single-Timestep

ResNet-50 ✗ 83.63 ± 2.94 68.5 ± 3.05 75.29 ± 2.74 96.99 ± 0.39
✓ 87.53 ± 3.7 64.37 ± 1.64 74.18 ± 2.32 96.26 ± 0.88

MobileNetV3 ✗ 95.03 ± 1.17 64.77 ± 0.88 77.02 ± 0.37 92.06 ± 2.61
✓ 89.56 ± 0.54 69.02 ± 1.79 78.06 ± 1.13 91.99 ± 2.32

EfficientNetV2 ✗ 76.28 ± 3.74 44.66 ± 2.71 56.18 ± 1.08 74.98 ± 4.13
✓ 82.28 ± 3.55 49.44 ± 4.22 61.61 ± 3.1 83.25 ± 5.02

ConvNeXt ✗ 93.04 ± 1.85 69.09 ± 2.01 79.25 ± 0.69 90.01 ± 3.88
✓ 93.58 ± 0.3 68.76 ± 1.89 79.26 ± 1.33 90.29 ± 1.75

ViT ✗ 85.16 ± 11.21 55.8 ± 10.03 67.3 ± 10.51 87.58 ± 5.02
✓ 90.75 ± 1.51 59.27 ± 7.47 71.45 ± 5.45 88.6 ± 3.0

Time-Series

ResNet-50 ✗ 67.79 ± 2.11 60.0 ± 0.36 63.64 ± 0.89 92.68 ± 1.84
✓ 68.65 ± 0.85 59.41 ± 3.27 63.66 ± 2.08 88.0 ± 2.33

MobileNetV3 ✗ 64.08 ± 1.38 63.56 ± 3.82 63.79 ± 2.54 89.39 ± 1.16
✓ 63.51 ± 4.46 65.48 ± 5.88 64.29 ± 3.71 89.29 ± 1.06

EfficientNetV2 ✗ 68.58 ± 2.94 49.04 ± 7.26 56.88 ± 5.36 82.22 ± 3.5
✓ 64.23 ± 9.07 56.0 ± 2.97 59.42 ± 4.2 82.63 ± 1.54

ConvNeXt ✗ 73.19 ± 2.02 68.89 ± 15.12 70.36 ± 8.63 91.65 ± 5.01
✓ 75.88 ± 7.14 57.48 ± 2.55 65.36 ± 4.3 78.24 ± 3.18

ViT ✗ 80.52 ± 5.61 53.48 ± 4.62 63.92 ± 1.69 91.21 ± 3.26
✓ 71.19 ± 2.74 61.63 ± 13.4 65.54 ± 8.5 89.2 ± 3.42

Table 4: Deformation segmentation metrics (mean ± std) for best model configurations between dif-
ferent random seeds. The tables report Precision (Prec), Recall (Rec), F1-score (F1), and Intersection
over Union (IoU) for the deformation class. The best value in each column is marked in bold, and
the second best is underlined.

Model Atm. Prec Rec F1 IoU

Single-Timestep

DeepLabv3 ✗ 81.41 ± 1.42 63.74 ± 0.52 71.49 ± 0.30 55.63 ± 0.37
✓ 81.64 ± 1.77 60.82 ± 2.61 69.65 ± 1.48 53.46 ± 1.75

UNet ✗ 82.43 ± 0.64 61.25 ± 1.27 70.27 ± 0.63 54.17 ± 0.75
✓ 81.70 ± 0.41 53.71 ± 1.89 64.80 ± 1.48 47.95 ± 1.62

SegFormer ✗ 80.87 ± 1.74 61.32 ± 1.96 69.70 ± 0.70 53.50 ± 0.82
✓ 83.13 ± 2.30 55.71 ± 0.98 66.68 ± 0.22 50.01 ± 0.25

Time-Series

DeepLabv3 ✗ 75.68 ± 2.15 54.66 ± 1.54 63.42 ± 0.25 46.44 ± 0.27
✓ 74.64 ± 2.48 46.67 ± 2.15 57.39 ± 1.84 40.27 ± 1.82

UNet ✗ 74.57 ± 3.10 58.57 ± 2.39 65.50 ± 0.35 48.7 ± 0.39
✓ 70.28 ± 4.56 44.18 ± 1.64 54.19 ± 2.03 37.2 ± 1.92

SegFormer ✗ 79.22 ± 0.55 57.87 ± 1.46 66.87 ± 0.77 50.23 ± 0.87
✓ 77.14 ± 0.10 47.88 ± 2.73 59.05 ± 2.10 41.92 ± 2.12

itself, making the annotation, and thereby accurate prediction challenging Kondylatos et al. [2025].232

Many works have sought to improve segmentation capabilities in such conditions e.g. Acuna et al.233

[2019], Yu et al. [2018b]. Our benchmark establishes a strong reference point for future methods234

aimed at addressing these complexities.235

Impact of temporal dimension. Examining both classification and segmentation experiments,236

we note a surprising drop in performance when we use a time-series input. While the theoretical237

advantages of using time-series data to capture volcanic unrest and account for atmospheric delays238
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are well established [Dzurisin, 2003], it is important to note that performance comparisons between239

single-timestep and time-series inputs are not entirely equivalent in our framework. Although both240

approaches aim to detect the same underlying geophysical phenomena, they operate on different241

data subsets due to the stricter requirements for constructing valid time-series (See Tab. 2). More242

importantly, the task formulation shifts: single-timestep models predict deformation masks for243

individual images, while time-series models segment the union of deformation patterns across244

multiple observations, effectively capturing the total extent of the affected area. As such, while245

performance trends are informative, variability in absolute metrics between the two setups should be246

interpreted with these structural differences in mind.247

Impact of atmospheric variables. The impact of atmospheric information varies across tasks. In248

classification, some models exhibit modest performance gains with the inclusion of atmospheric249

context, with EfficientNetV2 and ViT demonstrating a consistent improvement both in the single-250

timestep and the time-series settings. In contrast, atmospheric information does not lead to improved251

performance in segmentation models. This discrepancy likely reflects the different demands of the252

two tasks. While atmospheric variables offer valuable insights into the atmospheric conditions, they253

are available at a substantially coarser spatial resolution than the InSAR data itself. This resolution254

mismatch may constrain their effectiveness, particularly in segmentation tasks where fine-grained255

spatial detail is critical for distinguishing true deformation from confounding patterns. Moreover,256

InSAR data offer significantly stronger information for the detailed delineation of ground deformation,257

which may lead it to dominate the learning process diminishing the influence of atmospheric input.258

Motivated by this discussion, we examine specific cases where the inclusion of atmospheric variables259

helps the model mitigate false positives caused by atmospheric delays in semantic segmentation. In260

doing so, we aim to explore potential nuances that are not fully captured by aggregate performance261

metrics, in order to better understand the limitations of our baseline modeling approach and identify262

possible paths forward. In Fig. 4 we compare predicted masks from models trained with and without263

atmospheric inputs. Along with this, we also investigate the mean lateral gradient of total column264

water vapour (TCWV) across the primary and secondary SAR acquisition dates, contextualized265

against the broader distribution of mean TCWV gradients for the given frame, as lateral variation in266

atmospheric moisture is a key driver of atmospheric phase delays in InSAR measurements. Notably,267

both scenes exhibit high lateral variation in TCWV, suggesting that the atmospheric component can,268

under specific conditions, contribute meaningful information about phase delay artifacts. However,269

incorporating this knowledge into deep learning models remains a non-trivial challenge, particularly270

due to the aforementioned mismatch in resolution and information density between atmospheric271

inputs and InSAR data.272

Finally, the inclusion of the atmospheric component as additional channels, for both primary and273

secondary SAR acquisitions, comes with a significant increase in input dimensionality, thereby adding274

to model complexity and potentially hindering performance. Effective and efficient handling of the275

atmospheric component remains a non-trivial and open challenge. Addressing this issue may require276

more sophisticated and context-aware approaches that model both the internal relationships of the277

atmospheric variables, as well as cross-modal interactions with the InSAR imagery.278

5.1 Limitations279

Despite extensive efforts in the annotation process, which incorporates validation from both internal280

and external sources, annotating InSAR imagery remains inherently challenging. The labels used281

for training and evaluation are not free from noise, reflecting the complexities involved in detecting282

volcanic unrest. The subtlety and variability of volcanic deformation patterns often lead to ambiguities283

in interpretation, making accurate and consistent annotation difficult, especially in regions with low284

signal coherence. This limitation is compounded by the fact that some volcanic events are subtle or285

evolve over extended periods, which can further complicate the identification and classification of286

deformation signals in the data.287

Additionally, the temporal scale and nature of volcanic activity introduce significant challenges. Some288

unrest episodes are subtle and unfold over many years, while others are abrupt and short-lived. The289

frequency and expression of these events vary widely between volcanoes; some may remain inactive290

for extended periods before suddenly exhibiting signs of unrest. Consequently, certain volcanoes291

may not show any positive samples during the dataset’s timeframe, limiting the model’s exposure to292

their activity patterns. As a result, models trained under such constraints may struggle to generalize293
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(a) (b)

Figure 4: Compact view of DeepLabV3 predictions (top) with and without atmospheric input and
the associated mean lateral gradient distributions of TCWV (bottom) for two samples: (a) Sierra
Negra volcano, Galápagos islands. (15/3/2020 - 15/04/2020), (b) Valle de Piedras Encimadas region
in Puebla, Mexico (05-08-2020 - 17/08/2020). We examine, representative examples where the
inclusion of atmospheric variables leads to improved segmentation performance by mitigating false
positives linked to atmospheric artifacts. In both cases, this improvement coincides with high lateral
variation in TCWV, hinting at the potential value of atmospheric variables.

effectively in operational settings, particularly when tasked with detecting unrest at volcanoes with294

sparse or no prior positive observations.295

6 Conclusion296

Hephaestus Minicubes represents a significant advancement in data-driven volcanic unrest monitoring.297

By integrating high-resolution InSAR phase and coherence products, digital elevation models,298

atmospheric information and expert annotations into structured spatiotemporal datacubes, the dataset299

provides a rich foundation for machine learning research in this domain. The additional inclusion300

of atmospheric variables addresses a key challenge in InSAR analysis—distinguishing true ground301

deformation from atmospheric phase delays that can mimic similar patterns.302

Building on Hephaestus Minicubes, we provide an extensive benchmark demonstrating the dataset’s303

ability to support volcanic unrest monitoring as a multi-modal, multi-temporal problem. We examine304

two fundamental tasks, i.e. InSAR classification and semantic segmentation, across both single-305

timestep and time-series formats. Our results establish strong baselines for future applications,306

assessing the capacity of state-of-the-art architectures in this domain. The inclusion of time-series and307

atmospheric data—while theoretically promising—reveals practical complexities. Similarly, while308

atmospheric variables can help mitigate false positives from phase delay artifacts, their coarse spatial309

resolution and increased model complexity limit their overall utility in segmentation tasks. These310

findings underscore the importance of developing more nuanced, context-aware modeling strategies311

that can effectively leverage atmospheric information and temporal context, pointing to promising312

directions for future research.313

Hephaestus Minicubes is, to the best of our knowledge, the first large-scale machine learning ready314

dataset to incorporate such diverse information. We believe Hephaestus Minicubes will be a valuable315

asset to the research community, contributing to the growing integration of data-driven methods316

within Earth science applications.317
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Justification: The paper does not involve crowdsourcing nor research with human subjects.581
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approvals (or an equivalent approval/review based on the requirements of your country or586
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